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Abstract

We study the stationary Dirac equation:

−ic�

3∑

k=1

αk∂ku + mc2βu + M(x)u = Ru(x, u),

where M(x) is a matrix potential describing the external field, and R(x, u) stands
for an asymptotically quadratic nonlinearity modeling various types of interac-
tion without any periodicity assumption. For � fixed our discussion includes the
Coulomb potential as a special case, and for the semiclassical situation (� → 0), we
handle the scalar fields. We obtain existence and multiplicity results of stationary
solutions via critical point theory.

1. Introduction

Nonlinear Dirac equations occur in the attempt to model extended relativistic
particles in external fields (see [9,18,25]). In a general form, such equations are
given by

− i�∂tψ = ic�

3∑

k=1

αk∂kψ − mc2βψ − M(x)ψ + Gψ(x, ψ) ; (1.1)

here x = (x1, x2, x3) ∈ R
3, ∂k = ∂

∂xk
, c denotes the speed of light, m > 0 the mass

of the electron, and � denotes Planck’s constant. Furthermore, α1, α2, α3 and β are
4 × 4 complex matrices whose standard form (in 2 × 2 blocks) is

β =
(

I 0
0 −I

)
, αk =

(
0 σk

σk 0

)
, k = 1, 2, 3



Yanheng Ding & Bernhard Ruf

with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

One verifies that β = β∗, αk = α∗
k , αkαl + αlαk = 2δkl and αkβ + βαk = 0;

due to these relations, the linear operator H0 = −ic�
∑3

k=1 αk∂kψ + mc2βψ is a
symmetric operator, such that

H 2
0 = −c2

�
2∆+ m2c4 .

A solution ψ : R × R
3 → C

4 of (1.1), with Ψ (t, ·) ∈ L2(R3,C4), is a wave
function which represents the state of a relativistic electron.

The external fields are given by the real matrix potential M(x), and the nonli-
nearity G : R

3 × C
4 → R represents a nonlinear self-coupling. We assume throu-

ghout the paper that G satisfies G(x, eiθψ) = G(x, ψ), for all θ ∈ [0, 2π ]. We are
looking for stationary solutions of (1.1) which may be regarded as “particle-like
solutions” (see [25]): they propagate without changing their shape and thus have a
soliton-like behavior.

The stationary solutions of Equation (1.1) are found by the Ansatz

ψ(t, x) = e
iθ t
� u(x) ;

then u : R
3 → C

4 satisfies the equation

− ic�

3∑

k=1

αk∂ku + mc2β u + M(x)u = Gu(x, u)− θu . (1.2)

Dividing Equation (1.2) by � c, we are led to study equations of the form

− i
3∑

k=1

αk ∂ku + a β u + ω u + M(x)u = Gu(x, u) , (1.3)

where a > 0 and ω ∈ R. We look for weak solutions which are localized in space;
more precisely, the solutions we find satisfy u ∈ ⋂

2�q<∞ W 1,q(R3,C4).
Nonlinear problems of the form (1.3) have been studied in recent years by

several authors.
In [3,4,11,24], the so-called Soler problem was considered, in which M ≡ 0

and G has the form

G(u) = 1
2 H(ũu), H ∈ C2(R,R), H(0) = 0; here ũu := (βu, u)C4 (1.4)

Note that G does not depend explicitly on x and that no external field is present. In
this case, using a suitable Ansatz for the solution u, Equation (1.3) can be reduced
to a system of ODE’s. In [3,4,11,24] shooting methods were used to prove the
existence of a solution provided that ω ∈ (−a, 0) and under suitable assumptions
on H .
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In [17], M. Esteban and E. Séré treated the above mentioned system of ODEs
variationally, obtaining the existence of infinitely many solutions, under the main
additional assumption that H ′(s) s � θ H(s) for some θ > 1, and all s ∈ R.

In another model presented by Finkelstein et al. [19], the nonlinearity G has
the form

G(u) = 1
2 |ũu|2 + b|ũαu|2, ũαu := (βu, αu)C4 , α := α1α2α3 (1.5)

with b > 0. For such nonlinearities, the above mentioned Ansatz cannot be applied.
In [17], Esteban and Séré considered nonlinearities of type (1.5), however with a
weaker growth

G(u) = µ|ũu|τ + b|ũαu|σ , 1 < τ, σ < 3
2 , µ, b > 0

This growth restriction is due to the variational approach, in which the natural space
for the associated functional is given by H1/2(R3,C4).

In the paper [7], Th. Bartsch and Y. Ding investigated the Dirac equation by using
some recently developed critical point theorems from [6] for strongly indefinite
functionals. They mainly treated functions G(x, u) which depend periodically on
x and which may be superquadratic or asymptotically quadratic in u as |u| → ∞;
they obtained infinitely many solutions if G is even, for superquadratic G as well
as in the asymptotically quadratic case. They also considered the case where the
nonlinearity has a non-vanishing quadratic part in the origin, so that the linearized
equation has a potential.

In the present paper, we consider equations of the form (1.3) with symmetric
real matrix potentials M(x) (that is M(x) := (

m j,k(x)
)

is a symmetric real 4 × 4-
matrix). In the following, for convenience, any real function U (x) will be regarded
as the symmetric matrix U (x)I4 where I4 denotes the 4 × 4 identity matrix. For
two given symmetric 4 × 4 real matrix functions L1(x) and L2(x), we write that
L1(x) � L2(x) if and only if

max
ξ∈C4,|ξ |=1

(L1(x)− L2(x)) ξ · ξ̄ � 0.

We are interested in

a. Vector potentials M(x) (see Thaller [29]) which either
i) are of Coulomb-type that is, tend to 0 as |x | → ∞ and are singular at the

origin (for example the Coulomb potential κ
|x | ), or

ii) have the property that for some b > 0 the measure of the sublevel setΩb

of βM(x) is finite (i.e |Ωb| = |{x ∈ R
3 : βM(x) < b}| < ∞).

Vector potentials serve, for example, to take into account external electroma-
gnetic fields.

b. Scalar potentials of the form M(x) = βV (x), where V : R
3 → R; such

potentials can be used as a model for quark confinement (see [29]). A Dirac
operator with this type of potential is also referred to as a Dirac operator
with supersymmetry. We will assume that V is non-positive in some point x0,
and that for some b > 0 the sublevel set Ωb of V has finite measure (that is
|Ωb| = |{x ∈ R

3 : V (x) < b}| < ∞ for some b > 0).
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To treat the nonlinear problem, it is crucial to have information about the
spectrum of the linearized operator A := −i

∑3
k=1 αk∂k +aβ+ω+M in the origin.

Our assumptions on M will guarantee that A is selfadjoint acting in L2(R3,C4)

with D(A ) ⊂ H1/2(R3,C4) and has a spectral gap around the origin, and that
there exist a finite number (or infinitely many) eigenvalues in the spectral gap.

We will consider nonlinearities Gu(x, u) which are asymptotically linear, that
is, Gu(x, u) = Q(x)u + o(|u|) for |u| → ∞, where Q(x) is a continuous and
symmetric real 4 × 4-matrix-function. We assume q0 := inf

x
Qmin(x) > 0 where

Qmin(x) denotes the minimal eigenvalue of Q(x). Furthermore, we assume that
Gu(x, u) = o(|u|) for u near 0, that q∞ := lim sup|x |→∞ Qmax(x) lies in the
spectral gap where Qmax(x) denotes the maximal eigenvalue of Q(x), and that
between 0 and q0 lie some eigenvalues of A . We recall that nonlinearities of this
type have been introduced by Amann–Zehnder [1] in other contexts (see also [28]).

Roughly speaking, the results we prove are:

Theorem A. Suppose that M is a vector potential having either the form

a.i), and q∞ < a, where a > 0 is the upper bound of the spectral gap; or the
form
a.ii), and q∞ < a + bmax, where bmax := sup{b : |Ωb| < ∞}.

Then (provided G satisfies some additional technical conditions) problem (1.3) has
at least one solution. If in addition Gu(x, u) is odd in u, then (1.3) has at least �
pairs of solutions, where � is the number of eigenvalues of A between 0 and q0.

We also consider the so-called semi-classical limit, that is, when (formally)
Planck’s constant � tends to zero.

Theorem B. Suppose that M is a scalar potential satisfying the above condition
(b). If G(x, u) is as in Theorem A, and if q∞ < a +bmax, then there exists a ε0 > 0
such that problem (1.2) has at least one solution for ε2 := � < ε0. If Gu(x, u) is
odd in u, then for each m ∈ N there exists εm > 0 such that Equation (1.2) has at
least m solutions for ε2 < εm.

The paper is organized as follows. In Section 2 we state the precise hypotheses
and our main results. In Section 3 we formulate the variational setting and we
discuss the required critical point theory. We prove our theorems for fixed � in
Section 4, and finally, in Section 5 for the singularly perturbed equation (semi-
classical solutions).

2. Main results

Specifically, we are interested in the Dirac equation with external fields of the
form

− ε2
3∑

k=1

iαk∂ku + aβu + M(x)u = Ru(x, u) (2.1)
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where ε2 = �, a = mc > 0, M(x) = (
m jk(x)

)
is a 4 × 4 symmetric real

matrix function defined almost everywhere on R
3, that is, m jk(x) = mkj (x) ∈ R

for j, k = 1, 2, 3, 4 and almost every x ∈ R
3, such that

A := H0 + M with H0 := −i
3∑

k=1

αk∂k + aβ

is a selfadjoint operator in L2(R3,C4) with domain D(A) ⊂ H1(R3,C4), and
R(x, u) satisfies

(R1) R(x, u) � 0 and Ru(x, u) = o(|u|) as u → 0 uniformly in x ;
(R2) Ru(x, u) − Q(x)u = o(|u|) uniformly in x as |u| → ∞, where Q is a

continuous symmetric 4 × 4 real matrix function;
(R3) Either (i) 0 �∈ σ(A − Q), or (i i) R̃(x, u) � 0 and there exist δ0, ν0 > 0

such that R̃(x, u) � δ0 if |u| � ν0;
(R4) q0 := inf

x
Qmin(x) > inf σ(A) ∩ (0,∞).

Here (and below) we denote by σ(B) the spectrum of an operator B, and we write

R̃(x, u) := 1

2
Ru(x, u) · u − R(x, u)

(u · v or uv denotes the scalar product of C
4). Set

q∞ := lim sup
|x |→∞

(
sup

u

|Ru(x, u)|
|u|

)
.

First we consider the case that ε = 1:

− i
3∑

k=1

αk∂ku + aβu + M(x)u = Ru(x, u) (P)

with the Coulomb type potential

(M1) M is a symmetric continuous real 4 × 4-matrix function on R
3 \ {0} with

0 � M(x) � − κ
|x | where κ <

√
3

2 .

It is known that the corresponding operator A is selfadjoint with domain D(A) =
H1(R3,C4), σe(A) = R \ (−a, a) and σd(A) ∩ (0, a) �= ∅ where σe(A) denotes
the essential spectrum and σd(A) the eigenvalues of finite multiplicity (cf. [21,29]).
We assume, in addition to (R1)− (R4), that

(R5) q∞ < a.

Involving (R4), let � be the number of (0, q0) ∩ σ(A). We are going to prove the
following result:

Theorem 2.1. Assume that (M1) and (R1)–(R5) hold. Then (P) has at least one
solution. If, additionally, Ru(x, u) is odd in u ∈ C

4, then (P) has � pairs of
solutions.
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Next we consider again the problem (P) with the matrix potential M(x)
satisfying

(M2) M ∈ L∞(R3,R4×4), and there is b > 0 such that |Ωb| < ∞ where
Ωb := {x ∈ R

3 : βM(x) < b}.
Here we write |S| for the Lebesgue measure of S ⊂ R

3. We define the number
bmax := sup{b : |Ωb| < ∞}. Assume instead of (R5) that

(R̂5) q∞ < a + bmax.

Note that, since M ∈ L3
loc, it is known from [22] (see also [29], p. 306) that A is

selfadjoint. Under assumption (R4), let � be the number of points in (0, q0)∩σ(A).
Theorem 2.2. Assume that (M2), (R1)–(R4) and (R̂5) hold. Then (P) has at least
one solution. If, additionally, Ru(x, u) is odd in u ∈ C

4, then (P) has � pairs of
solutions.

Finally we consider the semi-classical solutions of the Dirac equation with the
scalar potential M(x) = V (x)β (cf. [29]):

− ε2
3∑

k=1

iαk∂ku + (a + V (x))βu = Ru(x, u) (Pε)

where V is a real function satisfying

(V ) V ∈ L∞(R3,R), and there are x0 ∈ R
3 and b > 0 such that V (x0) � 0 and

|Ωb| < ∞ where Ωb := {x ∈ R
3 : V (x) < b}.

This type of matrix is also referred to the Dirac operator with supersymmetry (cf.
[29]). The semiclassical point of view is important for studying Dirac operators
and semiclassical methods are employed in treating Dirac equation problems (see
[29, pp. 308] and the references therein).

Theorem 2.3. Let (V ), (R1)–(R3) and (R̂5) be satisfied. Assume q0 > a. Then
there is E0 > 0 such that (Pε) has at least one solution for each ε ∈ (0, E0). If,
additionally, Ru(x, u) is odd in u ∈ C

4, then for each m ∈ N there is Em > 0 such
that (Pε) has m solutions for each ε ∈ (0, Em).

Note that in this theorem we assume only that q0 > a, which is weaker than
(R4).

Remark 2.4. The assumption M ∈ L∞ in (M2) can be weakened. It is sufficient to
require that each m jk(x) is measurable such that A is selfadjoint acting in L2 with
D(A) ⊂ H1. We assume M ∈ L∞ only for simplicity. Similarly, the assumption
V ∈ L∞ in (V ) can be weakened. See Section 3.

Here are some examples where the assumptions apply.

Example 2.5. (a) R(x, u) = 1
2 Q(x)u · u

(
1 − 1

ln(e+|u|)
)

.

(b) R(x, u) = Q(x)ϕ( 1
2 |u|2) where ϕ : [0,∞) → [0,∞) is of class C2 with

ϕ(0) = ϕ′(0) = 0, and ϕ′(s) → 1 as s → ∞, ϕ′′(s) � 0.
(c) Ru(x, u) = f (x, |u|)u, where f (x, s) is even in s; f (x, s) → 0 as s → 0

uniformly in x ; f (x, s) is non-decreasing for s ∈ [0,∞); and f (x, s) → q(x)
as s → ∞.
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3. Variational arguments

In what follows, by |·|q we denote the usual Lq -norm, and by (·, ·)2 the usual
L2-inner product. Throughout the section we always assume that the matrix M(x)
is such that A = H0 + M is a selfadjoint operator on L2(R3,C4) with domain
D(A) ⊂ H1(R3,C4), and consider the equation (P) with R(x, u) satisfying
(R1)-(R4).

Let

µ−
e := sup (σe(A) ∩ (−∞, 0)) , µ+

e := inf (σe(A) ∩ (0,∞)) ,

and µe := min{−µ−
e , µ

+
e }. We assume

(A0) µ
−
e < 0 < µ+

e ;
(R0) q∞ < µe.

We are going to prove the following result:

Theorem 3.1. Assume that (R1)–(R4), (A0) and (R0) hold. Then (P) has at least
one solution. If, additionally, Ru(x, u) is odd in u ∈ C

4, then (P) has � pairs of
solutions.

3.1. A variational setting

Observe that, since we have assumed M is such that A is a selfadjoint operator
with D(A) ⊂ H1(R3,C4), D(A) is a Hilbert space with the graph inner product

(u, v)A := (Au, Av)2 + (u, v)2

and the induced norm |u|A := (u, u)1/2A . Let {Fλ : λ ∈ R} denote the spectral
family and |A| the absolute value of A. A has the polar decomposition A = U |A|
with U = 1 − F0 − F−0 (see [16]). The assumption (A0) induces an orthogonal
decomposition of L2(R3,C4):

L2 = L− ⊕ L0 ⊕ L+, u = u− + u0 + u+

so that A is negative definite (resp. positive definite) in L− (resp. L+) and
L0 = ker A. In fact, L± = {u ∈ L2 : Uu = ±u} and L0 = {u ∈ L2 : Uu = 0}
(see [16, Theorem IV, 3.3]). Let P0 : L2 → L0 denote the projector. Then P0

commutes with A and |A|. Note that (A0) implies also dim(L0) < ∞. On D(A)
we introduce the inner product

〈u, v〉A :=(Au, Av)2 + (P0u, P0v)2

=(|A|u, |A|v)2 + (P0u, v)2

whose induced norm will be denoted by ‖u‖A. Since (A0) implies that 0 is at most
an isolated eigenvalue of finite multiplicity of A, it is clear that | · |A and ‖ · ‖A are
equivalent norms on D(A): d1 |u|A � ‖u‖A � d2 |u|A for all u ∈ D(A). Define

Ã := |A| + P0.
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Then D( Ã) = D(A). Noting that P0|A| = |A|P0 = 0 we have for u and
v ∈ D(A),

( Ãu, Ãv)2 = (|A|u, |A|v)2 + (|A|u, P0v)2 + (P0u, |A|v)2 + (P0u, P0v)2

= (|A|u, |A|v)2 + (P0u, P0v)2 = 〈u, v〉A ,

hence,

d1|u|A � ‖u‖A = | Ãu|2 � d2|u|A for all u ∈ D(A). (3.1)

Let E := D(|A|1/2) be the domain of the selfadjoint operator |A|1/2, which is
a Hilbert space equipped with the inner product

(u, v) = (|A|1/2u, |A|1/2v)2 + (P0u, P0v)2

and the induced norm ‖u‖ = (u, u)1/2. E possesses the following decomposition

E = E− ⊕ E0 ⊕ E+ with E± = E ∩ L± and E0 = L0,

orthogonal with respect to both (·, ·)2 and (·, ·) inner products. In fact, the (·, ·)2
orthogonality follows from the decomposition of L2. To show the (·, ·) orthogona-
lity, observe that, for u± ∈ L± ∩ D(A),

(u+, u−) = (|A|1/2u+, |A|1/2u−)2 = (|A|u+, u−)2 = (|A|Uu+, u−)2
= (Au+, u−)2 = (u+, Au−)2 = (u+, |A|Uu−)2 = −(u+, |A|u−)2
= −(|A|1/2u+, |A|1/2u−)2
= −(u+, u−),

hence (u+, u−) = 0. Since D(A) is dense in E , one sees that E+ and E− are
orthogonal in (·, ·). Similarly, one checks that E± are orthogonal to E0 in (·, ·).
Observe that for all u ∈ D(A) and v ∈ D(|A|1/2)
( Ã1/2u, Ã1/2v)2 = ( Ãu, v)2 = ((|A| + P0)u, v)2 = (|A|u, v)2 + (P0u, v)2

= (|A|1/2u, |A|1/2v)2 + (P0u, P0v)2 = (u, v).

Consequently, since D(A) = D( Ã) is a core of Ã1/2, we have

(u, v) = ( Ã1/2u, Ã1/2v)2 for all u, v ∈ D(|A|1/2)
which induces in particular that

‖u‖ = | Ã1/2u|2 for all u ∈ E . (3.2)

In order to study certain embedding properties of E we set

H̃0 := −i
3∑

k=1

αk∂k + β
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(selfadjoint with D(H̃0) = H1(R3,C4)). Then H̃2
0 = −∆ + 1 and, letting |H̃0|

denote the absolute value of H̃0,

||H̃0|u|22 = |H̃0u|22 = (H̃0u, H̃0u)2 = (H̃2
0 u, u)2

= ((−∆+ 1)u, u)2 = |∇u|22 + |u|22
which implies that

‖u‖H1 = ||H̃0|u|2 (3.3)

for all u ∈ D(H̃2
0 ) = H2(R3,C4), hence for all u ∈ H1(R3,C4) because of the

density of H2 in H1.

Lemma 3.2. The assumption D(A) ⊂ H1(R3,C4) implies that

‖u‖H1 = ||H̃0|u|2 � d3| Ãu|2 for all u ∈ D(A). (3.4)

Proof. Let H̃A be the restriction of H̃0 to D(A). H̃A is a linear map from D(A)

to L2. We claim that H̃A is closed. Indeed, let un
|· |A−→ u and H̃Aun

|· |2−→ v. Then
u ∈ D(A), and since H̃0 is closed, H̃Aun = H̃0un → H̃0u = H̃Au, hence
the claim. Now the Closed-Graph theorem implies that H̃A ∈ B(D(A), L2) (the
Banach space of bounded linear maps), so |H̃0u|2 = |H̃Au|2 � d4|u|A for all
u ∈ D(A). This, together with (3.1) and (3.3), implies (3.4). ��

By interpolation theory we have that H1/2 = [L2, H1]1/2 (see [30, Theo-
rem 2.4.1]). Since D(|H̃0|0) = L2 and ‖u‖H1 = ||H̃0|u|2, one has

H1/2 = [D(|H̃0|0), D(|H̃0|)]1/2

with equivalent norms. It then follows from [30, Theorem 1.18.10] that

H1/2 = [D(|H̃0|0), D(|H̃0|)]1/2 = D(|H̃0|1/2),

hence ‖u‖H1/2 and ||H̃0|1/2u|2 are equivalent norms in H1/2:

d5‖u‖H1/2 � ||H̃0|1/2u|2 � d6‖u‖H1/2 for all u ∈ H1/2(R3,C4). (3.5)

Lemma 3.3. E embeds continuously into H1/2(R3,C4), hence, E embeds conti-
nuously into L p for all p ∈ [2, 3] and compactly into L p

loc for all p ∈ [1, 3).

Proof. By (3.4),

||H̃0|u|2 � d3| Ãu|2 = |(d3 Ã)u|2
for all u ∈ D(A). Thus (|H̃0|u, u)2 � (d3 Ãu, u)2 for all u ∈ D(A) (see [16,
Proposition III 8.11]). This implies

||H̃0|1/2u|22 = (|H̃0|u, u)2 � (d3 Ãu, u)2 = d3| Ã1/2u|22
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for all u ∈ D(A) (see, [16, Proposition III 8.12]). Since D(A) is a core of Ã1/2 we
obtain that ||H̃0|1/2u|22 � d3| Ã1/2u|22 for all u ∈ E . This, jointly with (3.2), shows
that

||H̃0|1/2u|22 � d3‖u‖2 for all u ∈ E

which, together with (3.5), implies that

‖u‖H1/2 � d7‖u‖ for all u ∈ E

ending the proof. ��
For further requirements, we arbitrarily fix a positive number γ with

q∞ < γ < µe. (3.6)

Let n be the number of eigenvalues in the interval [−γ, γ ]. We write η j and f j (1 �
i � n) for the eigenvalues and eigenfunctions. Setting

Ld := span{ f1, · · · , fn},
we have another orthogonal decomposition

L2 = Ld ⊕ Le, u = ud + ue.

Correspondingly, E has the decomposition

E = Ed ⊕ Ee with Ed = Ld and Ee = E ∩ Le,

orthogonal with respect to both the inner products (·, ·)2 and (·, ·).
We define on E the following functional

Φ(u) := 1

2

(
‖u+‖2 − ‖u−‖2

)
− Ψ (u) with Ψ (u) :=

∫

R3
R(x, u).

Note that by assumptions (R1)-(R2) and (R0), given p ∈ (2, 3], for any ε > 0,
there is Cε > 0 such that

|Ru(x, u)| � ε|u| + Cε|u|p−1 (3.7)

and

R(x, u) � ε|u|2 + Cε|u|p (3.8)

for all (x, u). Thus Φ ∈ C1(E,R) and a standard argument shows that critical
points of Φ are weak solutions of (P). Moreover, by [17], such solutions are in
W 1,s(R3,C4) for all s � 2 (see also [7]).

In order to find critical points ofΦ we will use the following abstract theorems.
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3.2. Critical point theorems

The following two critical point theorems are quoted from [6] (see also [5] and
[23] for earlier versions of Theorem 3.4).

Let E be a Banach space with direct sum decomposition E = X ⊕Y and corres-
ponding projections PX , PY onto X,Y , respectively. For a functional
Φ ∈ C1(E,R) we write Φa = {u ∈ E : Φ(u) � a}. Recall that a sequence
(un) ⊂ E is said to be a (C)c-sequence ifΦ(un) → c and (1 +‖un‖)Φ ′(un) → 0.
Φ is said to satisfy the (C)c-condition if any (C)c-sequence has a convergent sub-
sequence.

From now on, we assume that X is separable and reflexive, and we fix a countable
dense subset S ⊂ X∗. For each s ∈ S there is a semi-norm on E defined by

ps : E → R, ps(u) = |s(x)| + ‖y‖ for u = x + y ∈ X ⊕ Y.

We denote by TS the induced topology. Let w∗ denote the weak*-topology on E∗.
Suppose:

(Φ0) For any c ∈ R, Φc is TS -closed, and Φ ′ : (Φc, TS) → (E∗, w∗) is conti-
nuous.

(Φ1) For any c > 0, there exists ζ > 0 such that ‖u‖ < ζ‖PY u‖ for all u ∈ Φc.
(Φ2) There exists ρ > 0 with ν := inf Φ(SρY ) > 0 where SρY := {u ∈ Y :

‖u‖ = ρ}.
The following theorem is a special case of the Theorem 3.4 of [6]; see also [23].

Theorem 3.4. Let (Φ0)–(Φ2) be satisfied and suppose there are R > ρ > 0 and
e ∈ Y with ‖e‖ = 1 such that sup Φ(∂Q) � ν where Q = {u = x + te : x ∈ X,
t � 0, ‖u‖ < R}. Then Φ has a (C)c-sequence with ν � c � supΦ(Q).

For our next result on multiple critical points we assume:

(Φ3) There is a finite-dimensional subspace Y0 ⊂ Y and R > ρ such that we have
for E0 := X ⊕ Y0 and B0 := {u ∈ E0 : ‖u‖ � R} : b := sup Φ(E0) < ∞
and sup Φ(E0 \ B0) < inf Φ(Bρ ∩ Y ).

A special case of Theorem 4.6 of [6] is

Theorem 3.5. If Φ is even, satisfies (Φ0), (Φ2), (Φ3) and the (C)c condition for
all c ∈ [κ, b], then it has at least n := dim Y0 pairs of critical points.

3.3. Weakly sequential continuity and linking structure

Lemma 3.6. Let (R1)–(R2), (A0) and (R0) be satisfied. Then Ψ is weakly sequen-
tially lower semicontinuous and Φ ′ is weakly sequentially continuous. Moreover,
there is ζ > 0 such that for any c > 0:

‖u‖ < ζ‖u+‖ for all u ∈ Φc. (3.9)
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Proof. The first conclusion follows easily because E ↪→ H1/2(R3,C4), so E
embeds continuously into Lq(R3,C4) for q ∈ [2, 3] and compactly into
Lq

loc(R
3,C4) for q ∈ [1, 3). For showing (3.9) we adopt an argument of [14].

Arguing indirectly, assume by contradiction that for some c > 0, there is a
sequence un ∈ Φc and ‖un‖2 � n‖u+‖2. This, jointly with the form of Φ, yields
that

‖u−
n + u0

n‖2 � (n − 1)‖u+‖2 � (n − 1)

(
2c + ‖u−

n ‖2 + 2
∫

R3
R(x, un)

)
,

or

‖u0
n‖2 � (n − 1)2c + (n − 2)‖u−

n ‖2 + 2(n − 1)
∫

R3
R(x, un).

Since c > 0 and R(x, u) � 0, it follows that ‖u0
n‖ → ∞, hence ‖un‖ → ∞. Set

wn = un/‖un‖. We have ‖w+
n ‖2 � 1/n → 0. By

1 � ‖w0
n‖2 � (n − 1)2c

‖un‖2 + (n − 2)‖w−
n ‖2 + 2(n − 1)

∫

R3

R(x, un)

‖un‖2 ,

we also have ‖w−
n ‖2 � 1/(n − 2) → 0. Therefore, wn → w = w0 in E and

‖w0‖ = 1. By (R2) we set

r(x, u) := R(x, u)− 1

2
Q(x)u · u. (3.10)

Then |r(x, u)|/|u|2 → 0 as |u| → ∞ uniformly in x . In particular |r(x, u)| �
c1|u|2. Observe that |un(x)| → ∞ for w(x) �= 0. Therefore,

∫

R3

r(x, un)

‖un‖2 =
∫

w(x) �=0

r(x, un)

|un|2 |wn|2 +
∫

w(x)=0

r(x, un)

|un|2 |wn − w|2

� 2
∫

w(x) �=0

|r(x, un)|
|un|2 |w|2 + 2c1|wn − w|22 → 0.

This implies

1

2(n − 1)
�

∫

R3

R(x, un)

‖un‖2 = 1

2

∫

R3
Q(x)wn · wn +

∫

R3

r(x, un)

‖un‖2

� q0

2
|wn|22 + o(1),

consequently, w0 = 0, a contradiction. ��
Lemma 3.7. Under the assumptions of Lemma (3.6), there is ρ > 0 such that
ν := inf Φ(∂Bρ ∩ E+) > 0.

Proof. Choosing p ∈ (2, 3), it follows from (3.8),

Ψ (u) � ε|u|22 + Cε|u|p
p � C(ε‖u‖2 + Cε‖u‖p)

for all u ∈ E . The desired conclusion now follows easily. ��
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In the following, we arrange all the eigenvalues (counted in multiplicity) of A
in (0, q0) by 0 < µ1 � µ2 � ... � µ� < q0 and let e j denote the corresponding
eigenfunctions: Ae j = µ j e j for j = 1, ..., �. Set Y0 := span{e1, ..., e�}. Note that

µ1|w|22 � ‖w‖2 � µ�|w|22 for all w ∈ Y0. (3.11)

For any subspace F of Y0 set EF = E− ⊕ E0 ⊕ F .

Lemma 3.8. Let (R1), (R2), (R4), (A0) and (R0) be satisfied. Then for any sub-
space F of Y0, supΦ(EF ) < ∞, and there is RF > 0 such thatΦ(u) < inf Φ(Bρ)
for all u ∈ EF with ‖u‖ � RF .

Proof. See [14]. For the reader’s convenience, we repeat here with apparent modi-
fications. Clearly, it is sufficient to check thatΦ(u) → −∞ as u ∈ EF , ‖u‖ → ∞.
Arguing indirectly, one can assume that for some sequence u j ∈ EF with ‖u j‖ →
∞, there is c > 0 such that Φ(u j ) � −c for all j . Then, setting w j = u j/‖u j‖,
we have ‖w j‖ = 1, w j ⇀ w, w−

j ⇀ w−, w0
j → w0, w+

j → w+ ∈ Y and

− c

‖u j‖2 � Φ(u j )

‖u j‖2 = 1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫

R3

R(x, u j )

‖u j‖2 . (3.12)

Note that w+ �= 0. Indeed, if not, then it follows from (3.12) that

0 � 1

2
‖w−

j ‖2 +
∫

R3

R(x, u j )

‖u j‖2 � 1

2
‖w+

j ‖2 + c

‖u j‖2 → 0,

in particular, ‖w−
j ‖ → 0, hencew j → w = w0. Since r(x, u)/|u|2 → 0 uniformly

in x as |u| → ∞ and |u j (x)| → ∞ if w(x) �= 0, we have

∫

R3

r(x, u j )

‖u j‖2 =
∫

R3

r(x, u j )

|u j |2 |w j |2

� 2
∫

R3

|r(x, u j )|
|u j |2 |w j − w|2 + 2

∫

R3

|r(x, u j )|
|u j |2 |w|2

= o(1)+ 2
∫

w(x) �=0

|r(x, u j )|
|u j |2 |w|2 = o(1)

and

1

2

∫

R3

Q(x)u j · u j

‖u j‖2 = 1

2

∫

R3

Q(x)u j · u j

|u j |2 |w j |2 � q0

2
|w j |22.

It then follows from
∫
R3

R(x,u j )

‖u j ‖2 → 0 that |w j |2 → 0, consequently 1 = ‖w j‖ →
0, a contradiction. Now since

‖w+‖2 − ‖w−‖2 −
∫

R3
Q(x)w · w � ‖w+‖2 − ‖w−‖2 − q0|w|22

� −
(
(q0 − µ�)|w+|22 + ‖w−‖2 + q0|w0|22

)
< 0,
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there is d > 0 such that

‖w+‖2 − ‖w−‖2 −
∫

Bd

Q(x)w · w < 0. (3.13)

Since |r(x, u)| � c1|u|2 it follows from the fact |w j − w|L2(Bd )
→ 0 that

lim
j→∞

∫

Bd

r(x, u j )

‖u j‖2 = lim
j→∞

∫

Bd

r(x, u j )|w j |2
|u j |2 = 0.

Thus (3.12) and (3.13) imply that

0 � lim
j→∞

(
1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫

Bd

R(x, u j )

‖u j‖2

)

� 1

2

(
‖w+‖2 − ‖w−‖2 −

∫

Bd

Q(x)w · w
)
< 0,

a contradiction. ��
As a special case we have

Lemma 3.9. Under the conditions of Lemma (3.8), letting e ∈ Y0 with ‖e‖ = 1,
there is r0 > 0 such that supΦ(∂Q) = 0 where Q := {u = u− + u0 + se :
u− + u0 ∈ E− ⊕ E0, s � 0, ‖u‖ � r0}.

3.4. The Cerami condition

We now discuss the Cerami condition. We adapt an argument of [14] (see also
[13,15]). Observe that by (R0) and (3.10), given γ0 ∈ (q∞, γ ), there exists t0 > 0
large so that

sup
u

|Ru(x, u)|
|u| < γ0 if |x | � t0. (3.14)

Set

I0 := {x ∈ R
3 : |x | < t0} and I c

0 := R
3 \ I0.

Lemma 3.10. Let (R1)–(R4), (R0) and (A0) be satisfied. Then any (C)c-sequence
is bounded.

Proof. Let (u j ) ⊂ E be such that

Φ(u j ) → c and (1 + ‖u j‖)Φ ′(u j ) → 0. (3.15)

Then

C0 � Φ(u j )− 1

2
Φ ′(u j )u j =

∫

R3
R̃(x, u j ) . (3.16)

Arguing indirectly we assume that, up to a subsequence, ‖u j‖ → ∞ and set
v j = u j/‖u j‖. Then ‖v j‖ = 1, |v j |s � Cs‖v j‖ = Cs for all s ∈ [2, 3], and passing
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to a subsequence if necessary, v j ⇀ v in E , v j → v in Ls
loc for all s ∈ [1, 3),

v j (x) → v(x) for almost every x ∈ R
3. Since, by (R2), |Ru(x, u)| � c1|u| and

|u j (x)| → ∞ if v(x) �= 0, it is easy to see that

∫

R3

Ru(x, u j (x))v jϕ(x)

|u j (x)| →
∫

R3
Q(x)vϕ

for all ϕ ∈ C∞
0 (R

3,C4), hence

Av = Q(x)v. (3.17)

We claim that v �= 0. Arguing by contradiction, one can assume v = 0. Then
vd

j → 0 in E and v j → 0 in Ls
loc. Observe that

Φ ′(u j )(u
e+
j − ue−

j )

‖u j‖2 = ‖ve
j‖2 −

∫

R3

Ru(x, u j )

|u j | (ve+
j − ve−

j )|v j |. (3.18)

It follows from (3.18) and (3.14) that

‖ve
j‖2 =

∫

I0

Ru(x, u j )

|u j | (ve+
j − ve−

j )|v j |

+
∫

I c
0

Ru(x, u j )

|u j | (ve+
j − ve−

j )|v j | + o(1)

� c1

∫

I0

|v j ||ve+
j − ve−

j | + γ0

∫

I c
|v j ||ve+

j − ve−
j | + o(1)

� o(1)+ γ0|ve
j |22

� o(1)+ γ0

γ
‖ve

j‖2

hence
(

1 − γ0
γ

)
‖ve

j‖2 → 0, which implies that 1 = ‖v j‖2 = ‖vd
j ‖2 +‖ve

j‖2 → 0,

a contradiction.
Therefore, v �= 0. This is a contradiction if (i) of (R4) is satisfied.
Assume (i i) of (R4) is satisfied. Motivated by [15], set Ω j (r,∞) := {x ∈

R
3 : |u j (x)| � r} for r � 0. By assumption R̃(x, u) � δ0 if |u| � ν0, hence,

|Ω j (ν0,∞)| � C0/δ0 by (3.16). Note that v is a solution of (3.17). Set Ω := {x :
v(x) �= 0}. By the weak unique continuation property for Dirac operators one has
|Ω| = ∞ (cf. [8,10]). There exist ε > 0 and ω ⊂ Ω such that |v(x)| � 2ε for
x ∈ ω and 2C0/δ0 � |ω| < ∞. By Egoroff’s theorem we can find a setω′ ⊂ ωwith
|ω′| > C0/δ0 such that v j → v uniformly on ω′. So for almost all j , |v j (x)| � ε

and |u j (x)| � ν0 in ω′. Then

C0

ν0
< |ω′| � |Ω j (ν0,∞)| � C0

ν0
,

a contradiction. The proof hereby is completed. ��
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In the following lemma we discuss further the (C)c-sequence (u j ) ⊂ E . By
Lemma 3.9 it is bounded, hence, we may assume without loss of generality that
u j ⇀ u in E , u j → u in Lq

loc for q ∈ [1, 3) and u j (x) → u(x) almost everywhere
in x . Plainly u is a critical point of Φ.

Choose p ∈ (2, 3) such that |Ru(t, u)| � |u| + C1|u|p−1 for all (x, u), and let
q stand for either 2 or p. Set Id := {x ∈ R

3 : |x | � d} for d > 0.

Lemma 3.11. Let 2 � q < 3. Under the conditions of Lemma (3.10), along a
subsequence, for any ε > 0, there exists rε > 0 such that

lim sup
n→∞

∫

In\Ir

|u jn |q � ε (3.19)

for all r � rε.

Proof. Note that, for each n ∈ N,
∫

In
|u j |q → ∫

In
|u|q as j → ∞. There exists

in ∈ N such that
∫

In

(|u j |q − |u|q)
<

1

n
for all j = in + m, m = 1, 2, 3, ....

Without loss of generality, we can assume in+1 � in . In particular, for jn = in + n
we have

∫

In

(|u jn |q − |u|q)
<

1

n
.

Observe that there is rε satisfying
∫

R3\Ir

|u|q < ε (3.20)

for all r � rε. Since

∫

In\Ir

|u jn |q =
∫

In

(|u jn |q − |u|q) +
∫

In\Ir

|u|q +
∫

Ir

(|u|q − |u jn |q
)

� 1

n
+

∫

R3\Ir

|u|q +
∫

Ir

(|u|q − |u jn |q
)
,

the lemma now follows easily. ��
Let η : [0,∞) → [0, 1] be a smooth function satisfying η(s) = 1 if s � 1,

η(s) = 0 if s � 2. Define ũn(x) = η(2|x |/n)u(x) and set hn := u − ũn . Since u
solves (P), we have, by definition, that hn ∈ H1 and

‖hn‖ → 0 and |hn|p → 0 as n → ∞ (3.21)

for p ∈ [2, 3].
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Lemma 3.12. Under the conditions of Lemma (3.10), we have

lim
n→∞

∣∣∣∣
∫

R3

(
Ru(t, u jn )− Ru(t, u jn − ũn)− Ru(t, ũn)

)
ϕ

∣∣∣∣ = 0

uniformly in ϕ ∈ E with ‖ϕ‖ � 1.

Proof. Note that (3.19), (3.21) and the compactness of Sobolev embeddings imply
that, for any r > 0,

lim
n→∞

∣∣∣∣
∫

Ir

(
Ru(t, u jn )− Ru(t, u jn − ũn)− Ru(t, ũn)

)
ϕ

∣∣∣∣ = 0

uniformly in ‖ϕ‖ � 1. For any ε > 0 let rε > 0 so large that (3.19) and (3.20)
hold. Then

lim sup
n→∞

∫

In\Ir

|ũn|q �
∫

R3\Ir

|u|q � ε

for all r � rε. Using (3.19) for q = 2, p we have

lim sup
n→∞

∣∣∣∣
∫

R3

(
Ru(x, u jn )− Ru(x, u jn − ũn)− Ru(x, ũn)

)
ϕ

∣∣∣∣

= lim sup
n→∞

∣∣∣∣
∫

In\Ir

(
Ru(x, u jn )− Ru(x, u jn − ũn)− Ru(x, ũn)

)
ϕ

∣∣∣∣

� c1 lim sup
n→∞

∫

In\Ir

(|u jn | + |ũn|) |ϕ|

+ c2 lim sup
n→∞

∫

In\Ir

(
|u jn |p−1 + |ũn|p−1

)
|ϕ|

� c1 lim sup
n→∞

(|u jn |L2(In\Ir )
+ |ũn|L2(In\Ir )

) |ϕ|2

+ c2 lim sup
n→∞

(
|u jn |p−1

L p(In\Ir )
+ |ũn|p−1

L p(In\Ir )

)
|ϕ|p

� c3ε
1/2 + c4ε

(p−1)/p,

which implies the conclusion as required. ��
Lemma 3.13. Under the conditions of Lemma (3.10), one has along a subsequence:

1) Φ(u jn − ũn) → c −Φ(u);
2) Φ ′(u jn − ũn) → 0.

Proof. One has

Φ(u jn − ũn) = Φ(u jn )−Φ(ũn)

+
∫

R3

(
R(x, u jn )− R(x, u jn − ũn)− R(x, ũn)

)
.
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Using (3.20), one can easily check that

∫

R3

(
R(x, u jn )− R(x, u jn − ũn)− R(x, ũn)

) → 0.

This, together with the facts Φ(u jn ) → c and Φ(ũn) → Φ(u), gives 1).
To verify 2), observe that, for any ϕ ∈ E ,

Φ ′(u jn − ũn)ϕ = Φ ′(u jn )ϕ −Φ ′(ũn)ϕ

+
∫

R3

(
Ru(x, u jn )− Ru(x, u jn − ũn)− Ru(x, ũn)

)
ϕ.

By Lemma 3.12 we get

lim
n→∞

∫

R3

(
Ru(x, u jn )− Ru(x, u jn − ũn)− Ru(x, ũn)

)
ϕ = 0

uniformly in ‖ϕ‖ � 1, proving 2). ��

Lemma 3.14. Under the conditions of Lemma (3.10), Φ satisfies the (C)c condi-
tion.

Proof. In the following we will utilize the decomposition E = Ed ⊕ Ee. Recall
that dim(Ed) < ∞. Write

yn := u jn − ũn = yd
n + ye

n .

Then yd
n = (ud

jn
− ud) + (ud − ũd

n) → 0 and, by Lemma 3.13, Φ(yn) →
c −Φ(u), Φ ′(yn) → 0. Set ȳe

n = ye+
n − ye−. Observe that

o(1) = Φ ′(yn)ȳ
e
n = ‖ye

n‖2 −
∫

R3
Ru(x, yn)ȳ

e
n . (3.22)

It follows from (3.22) that

‖ye
n‖2 � o(1)+

∫

I0

|Ru(x, yn)|
|yn| |yn||ȳe

n| +
∫

I c
0

|Ru(x, yn)|
|yn| |yn||ȳe

n|

� o(1)+ c1

∫

I0

|yn||ȳe
n| + γ0

∫

I c
0

|yn||ȳe
n|

� o(1)+ γ0|ye
n|22 � o(1)+ γ0

γ
‖ye

n‖2,

hence (1 − γ0/γ )‖yn‖ � o(1) that is, yn → 0, finishing the proof. ��
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3.5. Proof of Theorem 3.1

In order to prove Theorem 3.1 we set X = E− ⊕ E0 and Y = E+ with
u = x + y, x = u− + u0, y = u+ for u ∈ E . Then X is separable and reflexive
and so is X∗. We may assume S is countable and dense in X∗. Therefore, TS is
metrizable so its convergence is equivalent to sequential convergence.

Proof of Theorem 3.1 (Existence). Observe that if c > 0 and un ∈ Φc with
un = xn + yn → u = x + y in TS then yn → y in norm. (3.9) then implies
‖un‖ is bounded, consequently, un ⇀ u. Thus by Lemma 3.6

c � lim
n→∞Φ(un) � 1

2
‖y‖2 − 1

2
‖u−‖2 − Ψ (u) = Φ(u)

which proves thatΦc is TS closed. Lemma 3.6 implies also thatΦ ′(un)v → Φ ′(u)v
for all v ∈ E that is, Φ ′ : (Φc, TS) → (E∗, w∗) is continuous. Thus Φ verifies
(Φ0). Remark that (3.4) is nothing but the condition (Φ1). Lemma 3.7 implies (Φ2).
Lemma 3.9 shows that Φ possesses the linking structure of Theorem 3.4. Finally,
Φ satisfies the (C)c-condition by virtue of Lemma 3.14. Therefore, Φ has at least
one critical point u with Φ(u) � ν > 0.

(Multiplicity). Assume, moreover, that R(x, u) is even in u. Then Φ is even.
Lemma 3.8 says that Φ satisfies (Φ3) with dim Y = �. Therefore, Φ has at least �
pairs of nontrivial critical points by Theorem 3.5. ��

4. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Assume (M1) holds. Then one hasµ−
e = −a andµ+

e = a.
Now Theorem 3.1 applies. ��
Remark 4.1. Similarly, one can get existence and multiplicity results of solutions
to (P) if the Coulomb potential is replaced by the electrostatic potential M(x) =
γφel I4, where γ is a positive constant and φel is a real function satisfying, for
example,

(M̂1) φel ∈ L3(R3) ∩ L3/2(R3), φel(x) � 0

(see [29]). Another typical example is

H = H0 + γ

1 + |x |2
which has finitely many eigenvalues in (−mc2,mc2) if γ < 1/8m, and infinitely
many eigenvalues for γ > 1/8m.

For proving Theorem 2.2, we recall that the operator A is selfadjoint in L2

([12]). Additionally, we have the following result:

Lemma 4.2. Assume that (M2) is satisfied. Then D(A) ⊂ H1 and

σe(A) ⊂ R \ (−(a + bmax), (a + bmax)),

that is, µ−
e � −(a + bmax) and µ+

e � (a + bmax).
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Proof. Note that |H0u|22 = ∫
R3(|∇u|2 +a2|u|2), hence the norms ‖u‖H1 , ||H̃0|u|2

and |H0u|2 are equivalent on H1. Since M ∈ L∞,

|H0u|2 = |Au − Mu|2 � |Au|2 + |M |∞|u|2 � (1 + |M |∞)|u|A, (4.1)

one sees ‖u‖H1 � c1|u|A for all u ∈ D(A), hence D(A) ⊂ H1.
Let b > 0 be such that |Ωb| < ∞. Set

(βM(x)− b)+ :=
{
βM(x)− b if βM(x)− b � 0

0 if βM(x)− b < 0

and (βM(x) − b)− := (βM(x) − b) − (βM(x) − b)+. We have A = A1 +
β(βM(x)− b)− where

A1 = −i
3∑

k=1

αk∂k + (a + b)β + β(βM(x)− b)+.

Since β2 = I and βα j = −α jβ, we have, for u ∈ D(A),

(A1u, A1u)2

=
∣∣∣
(
−i

∑
αk∂k + β(βM − b)+ + (a + b)β

)
u
∣∣∣
2

2

=
∣∣∣
(
−i

∑
αk∂k + β(βM − b)+

)
u
∣∣∣
2

2
+ (a + b)2|u|22

+
(
−i

∑
αk∂ku, (a + b)βu

)

2
+

(
(a + b)βu, −i

∑
αk∂ku

)

2

+ (
β(βM − b)+u, (a + b)βu

)
2 + (

(a + b)βu, β(βM − b)+u
)

2

=
∣∣∣
(
−i

∑
αk∂k + β(βM − b)+

)
u
∣∣∣
2

2
+ (a + b)2|u|22

+ 2(a + b)
(
(βM − b)+u, u

)
2

� (a + b)2|u|22 .
Thus σ(A1) ⊂ R \ (−(a + b), (a + b)).

We claim that σe(A) ∩ (−(a + b), (a + b)) = ∅. Assume by contradiction
that there is µ ∈ σe(A) with |µ| < a + b. Let un ∈ D(A) with |un|2 = 1,
un ⇀ 0 in L2 and |(A − µ)un|2 → 0. It follows from (4.1) that ‖un‖H1 �
c1|un|A = c1(|Aun|22 + |un|22)1/2 � c2(|(A − µ)un|22 + µ2 + 1)1/2 � c3. Thus
|β(βM − b)−un|2 → 0. We get

o(1) = |(A − µ)un|2 = |A1un − µun + β(βM − b)−un|2
� |A1un|2 − |µ| − o(1)

� (a + b)− |µ| − o(1)

which implies that 0 < (a + b)− |µ| � 0, a contradiction.
Since the claim holds true for any b > 0 with |Ωb| < ∞, one sees that

σe(A) ⊂ R \ (−(a + bmax), (a + bmax)). ��
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Remark 4.3. From the proof of Lemma 4.2, one sees that if (M2) is replaced by
the stronger one

(M̂2) |Ωb| < ∞ for any b > 0,

then σ(A) = σd(A), that is, the Dirac operator A has only eigenvalues of finite
multiplicity.

Proof of Theorem 2.2. Lemma 4.2 implies (A0), hence Theorem 3.1 applies and
yields the desired conclusions. ��

5. Semi-classical solutions

Observe that by dividing by ε2 and setting λ = 1/ε2 in the equation (Pε), we
have the following equivalent problem:

− i
3∑

k=1

αk∂ku + λ(a + V (x))βu = λRu(x, u). (Pλ)

We are led to study the existence and multiplicity of solutions of (Pλ) for λ → ∞.
For distinguishability we will write Aλ = −i

∑3
k=1 αk∂k + λ(a + V )β instead of

A, ‖ ·‖λ instead of ‖ ·‖, E±
λ instead of E±, etc. Note that the assumption (V )

implies that the matrix λβV satisfies (M2). Therefore D(Aλ) ⊂ H1 and we have
the following result by Lemma 4.2.

Lemma 5.1. Assume that (V ) holds. Then

σe(Aλ) ⊂ R \ (−λ(a + bmax), λ(a + bmax)) .

Next, we prove

Lemma 5.2. Assume that (V ) holds. Then for any m ∈ N there is Λm > 0 such
that Aλ has at least m eigenvalues (counted with multiplicity) lying in (0, λq0) for
each λ ∈ [Λm, ∞).

We will establish this lemma constructively. Observe that since σe(Aλ) ⊂ R \
(−λ(a + bmax), λ(a + bmax)), it is sufficient to show that there are m linearly
independent elements ϕ ∈ E+

λ with |ϕ|2 = 1 and ‖ϕ‖λ < λq0. By assumption,
q0 > a. Given

0 < θ < min

{
q0 − a

2q0
,

1

2

}

set

Dθ := {x ∈ R
3 : θq0

2
� V (x) � θq0} and Ωθ := int Dθ .

For each m ∈ N, we choose m real functions ω j ∈ C∞
0 (Ωθ ,R), j = 1, . . . ,m,

satisfying

|ω j |2 = 1 and supp ω j ∩ supp ωk = ∅ if j �= k.
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Set

ϕ j = (ω j , 0, 0, 0) ∈ C∞
0 (Ωθ ,C

4) for j = 1, . . . . ,m.

Clearly ϕ1, . . . , ϕm are linearly independent,

Aλϕ j = (0, 0,−i∂3ω
j ,−i∂1ω

j + ∂2ω
j )+ (λ(a + V )ω j , 0, 0, 0)

= (λ(a + V )ω j , 0,−i∂3ω
j ,−i∂1ω

j + ∂2ω
j ),

(
−i

3∑

k=1

αk∂kϕ j , ϕ j

)

2

= 0,

and

λ

(
a + θq0

2

)
� (Aλϕ j , ϕ j )2 = λ

∫

R3
(a + V )|ω j |2 � λ (a + θq0) ,

|Aλϕ j |22 = (A2
λϕ j , ϕ j )2 = |∇ω j |22 + λ2

∫

R3
(a + V )2|ω j |2

so

|∇ω j |22 + λ2
(

a + θq0

2

)2

� |Aλϕ j |22 � |∇ω j |22 + λ2 (a + θq0)
2 .

For eachλ > 0 we have the representationϕ j = ϕ−
λ j +ϕ0

λ j +ϕ+
λ j ( j = 1, . . . ,m).

Set

Zm := span{ϕ1, . . . , ϕm}, Zλm := span{ϕ+
λ1, . . . , ϕ

+
λm}.

Lemma 5.3. For each λ > 0 and m ∈ N, dim(Zλm) = m.

Proof. See [7, Lemma 4.7]. ��
In the following, we set

α := max
{
|∇ω j |22 : j = 1, . . . ,m

}

which depends on m and the choice of ω j , but is independent of λ. Denote

û :=
m∑

j=1

c jϕ j ∈ Zm for u =
m∑

j=1

c jϕ
+
λ j ∈ Zλm .

It is clear that

û+ = u and |û|22 =
m∑

j=1

c2
j .
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Lemma 5.4. We have:

(i) for each λ � 1, ζ |û|2 � |u|2 � |û|2 for all u ∈ Zλm, where ζ > 0 is
independent of λ;

(ii) for each λ � 1 and all u ∈ Zλm,

λ

(
a + θq0

2

)
|û|22 � ‖u‖2

λ � λ
( α
λ2 + (a + θq0)

2
)1/2 |û|2|u|2 ;

(iii) there is Λm > 0 such that for each λ � Λm and all u ∈ Zλm,

‖u‖2
λ − λq0|u|22 � −λq0ξθ |û|2|u|2

where

ξθ = 2a (q0 − a − 2θq0)+ (1 − 2θ)θq2
0

4q0(a + θq0)

Proof. Let u ∈ Zλm . Observe that

‖u‖2
λ − ‖û−‖2

λ = (Aλû, û)2 =
m∑

j=1

|c j |2(Aλϕ j , ϕ j )2

� λ

(
a + θq0

2

)
|û|22,

|Aλû|22 =
m∑

j=1

|c j |2|Aλϕ j |22 �
m∑

j=1

|c j |2
(
|∇ω j |22 + λ2 (a + θq0)

2
)

�
(
α + λ2 (a + θq0)

2
)

|û|22,

‖u‖2
λ = (Aλû, u)2 � |Aλû|2|u|2 �

(
α + λ2 (a + θq0)

2
)1/2 |û|2|u|2.

Hence

λ

(
a + θq0

2

)
|û|22 � ‖u‖2

λ � λ
( α
λ2 + (a + θq0)

2
)1/2 |û|2|u|2 (5.1)

which proves i i).
Obviously, |u|2 � |û|2. In order to check the first inequality of (i), we note that

by (5.1)

|u|2 � f (λ)|û|2 where f (λ) := λ(2a + θq0)

2
(
λ2(a + θq0)2 + α

)1/2 . (5.2)

It is clear that f (λ) is strictly increasing and

lim
λ→∞ f (λ) = 2a + θq0

2(a + θq0)
.
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Hence

2a + θq0

2
(
α + (a + θq0)2

)1/2 � f (λ) <
2a + θq0

2(a + θq0)
for all λ � 1

and (i) follows.
Using (5.1) and (5.2) one sees

‖u‖2
λ − λq0|u|22

= (Aλû, u)2 − λq0|u|22
�

(|Aλû|2 − λq0|u|2
) |u|2

�
((
α + λ2(a + θq0)

2
)1/2 − λq0

λ(2a + θq0)

2
(
λ2(a + θq0)2 + α

)1/2

)
|û|2|u|2

= −λq0h(λ)|û|2|u|2 (5.3)

where

h(λ) = 2a + θq0

2
(
α
λ2 + (a + θq0)2

)1/2 −
(
α
λ2 + (a + θq0)

2
)1/2

q0
.

Note that

lim
λ→∞ h(λ) = 2a + θq0

2(a + θq0)
− a + θq0

q0

= 2a (q0 − a − 2θq0)+ (1 − 2θ)θq2
0

2q0(a + θq0)

= 2ξθ . (5.4)

Now (iii) follows from (5.3) and (5.4). ��
Proof of Lemma 5.2. From (iii) of Lemma 5.4 we obtain for λ � Λm

µm

(
Aλ|L+

λ

)
: = inf

F⊂E+
λ

dim(F)=m

sup
ϕ∈E−

λ ⊕F
|ϕ|2=1

(Aλϕ, ϕ)2

� sup
u∈Zλm|u|2=1

(Aλu, u)2

� sup
u∈Zλm|u|2=1

λq0
(
1 − ξθ |û|2

)

< λq0

as required. ��
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Proof of Theorem 2.3. By Lemma 5.1, we see that (A0) is satisfied, and we have,
additionally, µe � λ(a + bmax) which, jointly with (R̂5), implies λq∞ < µe, that
is, (R0) holds. By Lemma 5.2, for any m ∈ N, there is Λm > 0 such that the
number #[(0, λq0) ∩ σ(Aλ)] � m for all λ � Λm . This implies, in particular, that
(R4) holds, therefore, Theorem 3.1 applies. ��
Remark 5.5. Let γ > 0 be a parameter and consider the supersymmetric Dirac
operator Hγ := H0 +γ Vβ, where H0 is the free Dirac operator and the scalar field
γ V (x)β satisfies the condition (V ). Checking the proof of Lemma 5.2, we have,
as a by-product, the following asymptotic estimate on the number of eigenvalues
of Hγ .

Lemma 5.6. Let (V ) be satisfied. Then

σe(Hγ ) ⊂ R \ (−(a + γ bmax), a + γ bmax)

and the number N (γ ) := #[(0, a + γ bmax) ∩ σd(Hγ )] → ∞ as γ → ∞.
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