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'is paper involves extended b−metric versions of a fractional differential equation, a system of fractional differential equations
and two-dimensional (2D) linear Fredholm integral equations. By various given hypotheses, exciting results are established in the
setting of an extended b−metric space.'ereafter, by making consequent use of the fixed point technique, short and simple proofs
are obtained for solutions of a fractional differential equation, a system of fractional differential equations and a two-dimensional
linear Fredholm integral equation.

1. Introduction and Preliminaries

In the last years, the fractional calculus branch [1, 2] has
attracted great interest. 'ere exist many kinds of proposed
fractional operators, for instance, we have the well-known
Caputo, Riemann–Liouville, Grunwald–Letnikov derivative
etc. Among all the papers dealing with fractional derivatives,
fractional differential equations as an important research
field have attained great deal of attention from many re-
searchers (see [3–8]).

'ere are many applications of the fractional topic in
complex analysis, such as, in the sense of conformable
derivatives and integrals, interesting results for fractional
formulations of complex-valued functions of a real variable
have been successfully introduced, which in turn open the
door to the researchers to construct the theory of con-
formable integration by studying functions of a complex
variable [9]. On the other hand, the standard definition for
the Atangana–Baleanu fractional derivative involves an
integral transform with a Mittag–Leffler function, where the

kernel can be rewritten as a complex contour integral, which
can be used to provide an analytic continuation of the
definition to complex orders of differentiation [10]. 'ese
lines are very important due to their applications in the field
of natural science or engineering.

In the last few decades and in the branch of fractional
differential equations, Riemann–Liouville and Caputo
derivative ones are the mostly used. Note that several
fractional differential equations have been resolved by
using fixed point techniques. 'is paper is concerned with
this fact when considering the class of extended b-metric
spaces.

Let (R,ϖ) be a metric space. Denote by CB(R) a set of
nonempty closed bounded subsets ofR. Define the function
¥: CB(R) × CB(R)⟶ R

+ by

¥ [1,[2( ) � max sup
ξ∈[1

ϖ ξ,[2( ), sup
ζ∈[2

ϖ ζ,[1( ) , (1)

where ϖ(ξ,[2) � inf ϖ(ξ, ζ): ζ ∈ [2{ }, for[1,[2 ∈ CB(R).

Hindawi
Complexity
Volume 2021, Article ID 5730853, 13 pages
https://doi.org/10.1155/2021/5730853

mailto:hassen.aydi@isima.rnu.tn
https://orcid.org/0000-0001-8724-9367
https://orcid.org/0000-0003-4606-7211
https://orcid.org/0000-0001-9320-9433
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5730853


'en, ¥ is called the Hausdorff–Pompeiu metric.
Consider

δ [1,[2( ) � sup ϖ(ξ, ζ): ξ ∈ [1, ζ ∈ [2{ },
D [1,[2( ) � inf ϖ(ξ, ζ): ξ ∈ [1, ζ ∈ [2{ }. (2)

'e following can be deduced from the definition of δ.
For all [1,[2,[3 ∈ CB(R), we have the following:

(a) δ([1,[2) � δ([2,[1)
(b) δ([1,[2) � 0 iff [1 � [2 � ξ{ }
(c) δ([1,[3)≤ δ([1,[2) + δ([2,[3)
(d) δ([1,[1) � diam[1

In 2017, the concept of extended b-metric spaces has
been initiated by Kamran et al. [11], by considering a control
function at the right-hand side of the triangular inequality.

Definition 1 (see [11]). LetR be a nonempty set and θ: R ×
R ⟶ [1,∞) be a given function. An extended b-metric is a
function ϖθ: R ×R ⟶ [0,∞) such that, for all η, ξ, σ ∈ R,
we have the following:

(1) ϖθ(η, ξ) � 0⟺ η � ξ
(2) ϖθ(η, ξ) � ϖθ(ξ, η)
(3) ϖθ(η, ξ)≤ θ(η, ξ)[ϖθ(η, σ) + ϖθ(σ, ξ)]
'is (generalized) metric space has attracted many re-

searchers where many real applications have been resolved.
For more details, see [12–15]. Some of the related topological
concepts are as follows.

Definition 2 Let (R,ϖθ) be an extended b−metric space. Let
ξm{ }m≥0 be a sequence in R.

(1) ξm{ } converges to some ξ inR, if for each ε> 0, there
is M �M(ε) ∈ N so that ϖθ(ξm, ξ)< ε for each
m≥M

(2) ξm{ } is Cauchy, if for each ε> 0, there is
M �M(ε) ∈ N so that ϖθ(ξm, ξn)< ε for allm, n≥M

(3) (R,ϖθ) is called complete if each Cauchy sequence is
convergent

Lemma 1 (see [12]). Let (R,ϖθ) be an extended b−metric
space. If the sequence ξn{ } in R is such that
limn,m⟶∞ϖθ(ξn, ξm)≤ (1/∇), where ∇∈ [0, 1) and
0≤ϖθ(ξn, ξn+1)≤∇ϖθ(ξn−1, ξn), then ξn{ } is Cauchy.
Example 1 (see [16]). Take R � [0, 1]. Given
θ: R ×R ⟶ [1,∞) as θ(], μ) � ((]μ + 1)/(] + μ)). Con-
sider the extended b-metric ϖθ: R ×R ⟶ [0,∞) so that

ϖθ(], μ) �

1

]μ
, for ], μ ∈ (0, 1], ]≠ μ,

0, for ] � μ,

 (3)

and ϖθ(0, μ) � ϖθ(μ, 0) � (1/μ) for μ ∈ (0, 1].

Definition 3 (see [17]). Denote by Ξ the set of functions
Υ: R+ ⟶ (0, 1] such that

(i) R+ � η ∈ R: η> 0{ }
(ii) For any sequence ηn{ }∞n�0, Υ(ηn)⟶ 1 implies that

ηn ⟶ 0 as n⟶∞

Example 2. Given Υ: R+ ⟶ (0, 1] as

Υ(Z) �
1 − Z

3

2
, if Z≤ 1,

τ < 1, if Z> 1.

 (4)

Clearly, Υ ∈ Ξ.
'e manuscript is organized as follows. In Section 2,

some fixed point results in the class of extended b-metric
spaces have been provided. We also present some useful
examples. By using fixed point techniques, we solve in
Section 3 a fractional nonlinear differential equation, we
ensure in Section 4 the existence of a unique solution of a
system of nonlinear fractional differential equations, and in
Section 5, we establish that a two-dimensional linear
Fredholm integral equation has a unique solution. At the
end, in Section 6, we give a conclusion.

2. Main Theorems

In this section, R refers to an extended b−metric space
equipped with the distance ϖθ. We begin with the following
lemmas.

Lemma 2. Let (R,ϖθ) be an extended b−metric space with
the function θ: R ×R ⟶ [1,∞). For any
[1,[2,[3 ∈ CB(R) and ξ, ζ ∈ R, the following assertions
are valid:

(i) ϖθ(ξ,[2)≤ϖθ(ξ, ζ) for ζ ∈ [2

(ii) δ([1,[2)≤ ¥([1,[2)
(iii) ϖθ(ξ,[2)≤ ¥([1,[2)
(iv) ¥([1,[1) � 0

(v) ¥([1,[2) � ¥([2,[1)
(vi) ¥([1,[3)≤ θ([1,[3)[¥([1,[2) + ¥([2,[3)]
(vii) ϖθ(ξ,[1)≤ θ(ξ,[1)[ϖθ(ξ, ζ) + ϖθ(ζ,[1)]

Proof. 'e assertions (i)–(v) follow immediately by Czerwik
[18] in b−metric spaces and (vi)-(vii) follow immediately by
the definition of an extended b− metric space and (1) with
(2). □

Lemma 3. Let (R,ϖθ) be an extended b−metric space. Een,
for all [1,[2 ∈ CB(R), μ ∈ [1 and Z≥ 1, there exists
η(μ) ∈ [2 such that ϖθ(μ, η)≤ Z¥([1,[2).

Proof. By a similar way as in the proof of Lemma 4 in [19],
we get the result.

Now, we state and prove our main theorems. □
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Theorem 1. Let (R,ϖθ) be a complete extended b−metric
space and ℘,I: R ⟶ CB(R) be multivalued mappings
satisfying, for all ξ, ℓ ∈ R,

Ω(κ¥(℘ξ,Iℓ))≤Ω(Δ(ξ, ℓ)) − Λ(Π(ξ, ℓ)), (5)

where

Δ(ξ, ℓ) � max ϖθ(ξ, ℓ),
ϖθ(ξ,℘ξ) 1 + ϖθ(ℓ,Iℓ)[ ]

1 + ϖθ(℘ξ,Iℓ)
,
ϖθ(ℓ,℘ξ) 1 + ϖθ(ξ,℘ξ)[ ]

1 + ϖθ(ξ, ℓ)
{ },

Π(ξ, ℓ) � min ϖθ(ξ, ℓ)ϖθ(ξ,℘ξ),ϖθ(ξ,℘ξ)ϖθ(ℓ,Iℓ),ϖθ(ℓ,℘ξ)ϖθ(ξ,Iℓ){ }.
(6)

(1) Ω: R+ ⟶ R
+ is continuous and nondecreasing

function so that Ω(τ) � 0 iff τ � 0

(2) Λ: R+ ⟶ R
+ is a continuous function so that

Λ(τ) � 0 iff τ � 0

If limn,m⟶∞ϖθ(ξn, ξm)≤ (1/k) for k> 1, then ℘ and I

have a unique common fixed point (cfp).

Proof. Let ξ ∈ R be a fixed element. Define ξ° � ξ, and let
ξ1 ∈ ℘ξ° , by Lemma 3, there exists ξ2 ∈ Iξ1 such that
ϖθ(ξ1, ξ2)≤ κ¥(℘ξ° ,Iξ1). For ξ2 ∈ Iξ1, there is ξ3 ∈ ℘ξ1
such that ϖθ(ξ2, ξ3)≤ κ¥(℘ξ1,Iξ2).

Continuing with the same manner, we have ξ2n+1 ∈ ℘ξ2n,
ξ2n+2 ∈ Iξ2n+1. If ξ2n+1 � ξ2n+2, then the sequence ξn{ } is
Cauchy. Suppose that ξ2n+1 ≠ ξ2n+2. 'en, by (3), we have

Ω κϖθ ξ2n+1, ξ2n+2( )( )≤Ω κ¥ ℘ξ2n,Iξ2n+1( )( )≤Ω Δ ξ2n, ξ2n+1( )( ) − Λ Π ξ2n, ξ2n+1( )( ), (7)

where

Δ ξ2n, ξ2n+1( ) � max

ϖθ ξ2n, ξ2n+1( ),ϖθ ξ2n,℘ξ2n( ) 1 + ϖθ ξ2n+1,Iξ2n+1( )[ ]
1 + ϖθ ℘ξ2n,Iξ2n+1( ) ,

ϖθ ξ2n+1,℘ξ2n( ) 1 + ϖθ ξ2n,℘ξ2n( )[ ]
1 + ϖθ ξ2n, ξ2n+1( )





� max

ϖθ ξ2n, ξ2n+1( ),ϖθ ξ2n, ξ2n+1( ) 1 + ϖθ ξ2n+1, ξ2n+2( )[ ]
1 + ϖθ ξ2n+1, ξ2n+2( ) ,

ϖθ ξ2n+1, ξ2n+1( ) 1 + ϖθ ξ2n, ξ2n+1( )[ ]
1 + ϖθ ξ2n, ξ2n+1( )




� max ϖθ ξ2n, ξ2n+1( ),ϖθ ξ2n, ξ2n+1( ), 0{ }
� ϖθ ξ2n, ξ2n+1( ),

(8)

and

Π ξ2n, ξ2n+1( ) � min ϖθ ξ2n, ξ2n+1( )ϖθ ξ2n,℘ξ2n( ),ϖθ ξ2n,℘ξ2n( )ϖθ ξ2n+1,Iξ2n+1( ),ϖθ ξ2n+1,℘ξ2n( )ϖθ ξ2n,Iξ2n+1( ){ }
≤min ϖθ ξ2n, ξ2n+1( )ϖθ ξ2n, ξ2n+1( ),ϖθ ξ2n, ξ2n+1( )ϖθ ξ2n+1, ξ2n+2( ),ϖθ ξ2n+1, ξ2n+1( )ϖθ ξ2n, ξ2n+2( ){ } � 0.

(9)

Applying (8) and (9) in (7), one can write
Ω(κϖθ(ξ2n+1, ξ2n+2))≤Ω(ϖθ(ξ2n, ξ2n+1)), By definition of Ω,
we conclude that

κϖθ ξ2n+1, ξ2n+2( )≤ϖθ ξ2n, ξ2n+1( ), for all n ∈ N. (10)

Similarly, if we replace ξ with ξ2n+2 and ℓ with ξ2n+3, we
have
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κϖθ ξ2n+2, ξ2n+3( )≤ϖθ ξ2n+1, ξ2n+2( ), for all n ∈ N. (11)

From (10) and (11), we get

ϖθ ξn, ξn+1( )≤∇ϖθ ξn−1, ξn( ), ∇ � 1

κ
< 1 for all n ∈ N.

(12)

Now, by Lemma 1, we observe that ξn{ } is Cauchy se-
quence. Since R is complete, then there is φ ∈ R such that
limsupn⟶∞ξn � φ. Assume that φ ∉ I(φ), then we have

Ω κϖθ ξ2n+1,Iφ( )( )≤Ω κ¥ ℘ξ2n,Iφ( )( )≤Ω Δ ξ2n,φ( )( ) − Λ Π ξ2n,φ( )( ), (13)

where

Δ ξ2n,φ( ) � max ϖθ ξ2n,φ( ),ϖθ ξ2n,℘ξ2n( ) 1 + ϖθ(φ,Iφ)[ ]
1 + ϖθ ℘ξ2n,Iφ( ) ,

ϖθ φ,℘ξ2n( ) 1 + ϖθ ξ2n,℘ξ2n( )[ ]
1 + ϖθ ξ2n,φ( ){ },

≤max ϖθ ξ2n,φ( ),ϖθ ξ2n, ξ2n+1( ) 1 + ϖθ(φ,Iφ)[ ]
1 + ϖθ ξ2n+1,Iφ( ) ,

ϖθ φ, ξ2n+1( ) 1 + ϖθ ξ2n, ξ2n+1( )[ ]
1 + ϖθ ξ2n,φ( ){ }

≤max ϖθ ξ2n,φ( ),ϖθ ξ2n, ξ2n+1( ) 1 + ϖθ(φ,Iφ)[ ],ϖθ φ, ξ2n+1( ) 1 + ϖθ ξ2n, ξ2n+1( )[ ]{ }.
(14)

Taking limsup as n⟶∞ in the above inequalities, we
conclude that

limsupn⟶∞Δ ξ2n,φ( ) � 0 and limsupn⟶∞Π ξ2n,φ( ) � 0.

(15)
It follows from definition of Δ,Π and (11) that

limsupn⟶∞Ω(κϖθ(ξ2n+1,Iφ)) � 0 or limsupn⟶∞ϖθ

(ξ2n+1,Iφ) � 0.
Using Lemma 2, we get

ϖθ(φ,Iφ)≤ θ(φ,Iφ) ϖθ φ, ξ2n+1( ) + ϖθ ξ2n+1,Iφ( )( ).
(16)

At the limit, we have ϖθ(φ,Iφ)⟶ 0. 'us, φ ∈ Iφ.
Similarly, we can show that φ ∈ ℘φ. Hence, φ is a cfp of the
two mappings ℘ and I. For the uniqueness, let ]≠φ be
another cfp of ℘ and I, then, by our contractive condition,
one can write

Ω κϖθ(φ, ])( )≤Ω(κ¥(℘φ,I]))

≤Ω max ϖθ(φ, ]),
ϖθ(φ,℘φ) 1 + ϖθ(],I])[ ]

1 + ϖθ(℘φ,I]) ,
ϖθ(],℘φ) 1 + ϖθ(φ,℘φ)[ ]

1 + ϖθ(φ, ])
{ }( )

− Λ min
ϖθ(φ, ])ϖθ(φ,℘φ),ϖθ(φ,℘φ)ϖθ(],I]),

ϖθ(],℘φ)ϖθ(φ,I])


 

≤Ω max ϖθ(φ, ]),
ϖθ(φ,φ) 1 + ϖθ(], ])[ ]

1 + ϖθ(φ, ])
,
ϖθ(],φ) 1 + ϖθ(φ,φ)[ ]

1 + ϖθ(φ, ])
{ }( )

− Λ min
ϖθ(φ, ])ϖθ(φ,φ),ϖθ(φ,φ)ϖθ(], ]),

ϖθ(],φ)ϖθ(φ, ])


 

� Ω ϖθ(φ, ])( ) − Λ(0) � Ω ϖθ(φ, ])( ).

(17)

'is leads to Ω(κϖθ(φ, ]))≤Ω(ϖθ(φ, ])), or
(1 − κ)ϖθ(φ, ])≤ 0; since (1 − κ)≰0, thenϖθ(φ, ]) � 0.'us,

φ � ], i.e., the uniqueness holds. 'en, the proof is
completed.
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If we consider ℘ � I in the above theorem, we get the
important below result. □

Corollary 1. Let (R,ϖθ) be a complete extended b−metric
space and ℘: R ⟶ CB(R) be a multivalued mapping such
that, for all ξ, ℓ ∈ R, the following hypothesis is fulfilled:

Ω(κ¥(℘ξ,℘ℓ))≤Ω(Δ(ξ, ℓ)) − Λ(Π(ξ, ℓ)), (18)

where

Δ(ξ, ℓ) � max ϖθ(ξ, ℓ),
ϖθ(ξ,℘ξ) 1 + ϖθ(ℓ,℘ℓ)[ ]

1 + ϖθ(℘ξ,℘ℓ)
,
ϖθ(ℓ,℘ξ) 1 + ϖθ(ξ,℘ξ)[ ]

1 + ϖθ(ξ, ℓ)
{ },

Π(ξ, ℓ) � min ϖθ(ξ, ℓ)ϖθ(ξ,℘ξ),ϖθ(ξ,℘ξ)ϖθ(ℓ,℘ℓ),ϖθ(ℓ,℘ξ)ϖθ(ξ,℘ℓ){ },
(19)

(i) Ω: R+ ⟶ R
+ is a nondecreasing and continuous

function such that Ω(τ) � 0 if τ � 0

(ii) Λ: R+ ⟶ R
+ is a continuous function such that

Λ(τ) � 0 if τ � 0

If limn,m⟶∞ϖθ(ξn, ξm)≤ (1/κ) with κ> 1, then ℘ has a
unique fixed point.

Example 3. Assume that R � [0, 1] and 1< e<∞. Define
ϖθ: R ×R ⟶ R

+ by ϖθ(ξ, ℓ) � |ξ − ℓ|e for all ξ, ℓ ∈ R,
then the pair (R,ϖθ) is an extended b−metric space with the
function θ: R ×R ⟶ [1,∞) defined by

θ(ξ, ℓ) � 2e−1 + ((|ξ| + |ℓ|)/2), see [20]. Define
℘,I: R ⟶ CB(R) and Ω,Λ: R+ ⟶ R

+ by

℘ξ � 0,

�
ξe

√�
ξe

√
κ(μ + 5)

[ ],
℘ℓ � 0,

�
ℓe

√�������
κ(μ + 5)e

√[ ], for all μ≥ κ,
(20)

and Ω(ω) � ω and Λ(ω) � ((μ + 4)/(μ + 5))ω, for any
ω ∈ R.

Now, we have

κ¥(℘ξ,Iℓ) � κ¥ 0,

�������
ξ

κ(μ + 5)
e

√ , 0,

�������
ℓ

κ(μ + 5)
e

√  ,

≤ κ
�������

ξ

κ(μ + 5)
e

√
−

�������
ξ

κ(μ + 5)
e

√∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
e

� κ 1

κ(μ + 5)|ξ − ℓ|
e

� 1

μ + 5
ϖθ(ξ, ℓ)

≤ 1

μ + 5
Δ(ξ, ℓ)

� 1 − μ + 4

μ + 5
( )Δ(ξ, ℓ)

� Δ(ξ, ℓ) − μ + 4

μ + 5
( )Δ(ξ, ℓ)

≤Ω(Δ(ξ, ℓ)) − Λ(Π(ξ, ℓ)).

(21)
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'us, all required conditions of 'eorem 1 are fulfilled.
Hence, ℘ and I have a unique cfp, which is 0.

Theorem 2. Suppose that ℘,I: R ⟶ CB(R) are multi-
valued mappings defined on a complete extended b−metric
space (R,ϖθ). Let for all ξ, ℓ ∈ R,

κ¥(℘ξ,Iℓ)≤ σ ϖθ(ξ, ℓ)( )Δ(ξ, ℓ) + ρ ϖθ(ξ, ℓ)( )Π(ξ, ℓ),
(22)

where Δ(ξ, ℓ) and Π(ξ, ℓ) are defined in the above theorem
and σ(ξ), ρ(ξ) ∈ Ξ such that σ(ξ) + ρ(ξ)< 1. If

limn,m⟶∞ϖθ(ξn, ξm)≤ (1/k), k> 1, then ℘ and have a
unique cfp.

Proof. For a fixed element ξ ∈ R, define ξ° � ξ and let
ξ1 ∈ ℘ξ° , by Lemma 3 (for Z � 1), there exists ξ2 ∈ Iξ1 such
that ϖθ(ξ1, ξ2)≤ ¥(℘ξ° ,Iξ1). For ξ2 ∈ Iξ1, there exists
ξ3 ∈ ℘ξ1 such that ϖθ(ξ2, ξ3)≤ ¥(℘ξ1,Iξ2).

With the same scenario, we obtain that ξ2n+1 ∈ ℘ξ2n,
ξ2n+2 ∈ Iξ2n+1. If for some n, ξ2n+1 � ξ2n+2, then ξn{ } is a
Cauchy sequence. Assume that, for each n, ξ2n+1 ≠ ξ2n+2.
'en, by (22), we get

κϖθ ξ2n+1, ξ2n+2( )≤ κ¥ ℘ξ2n,Iξ2n+1( ),
≤ σ ϖθ ξ2n, ξ2n+1( )( )Δ ξ2n, ξ2n+1( ) + ρ ϖθ ξ2n, ξ2n+1( )( )Π ξ2n, ξ2n+1( ), (23)

where Δ(ξ2n, ξ2n+1) � ϖθ(ξ2n, ξ2n+1) and Π(ξ2n, ξ2n+1) � 0
according to the above theorem.

It follows from (23) that

κϖθ ξ2n+1, ξ2n+2( )≤ σ ϖθ ξ2n, ξ2n+1( )( )ϖθ ξ2n, ξ2n+1( ). (24)

Similarly, replacing ξ with ξ2n+2 and ℓ with ξ2n+3, we can
write

κϖθ ξ2n+2, ξ2n+3( )≤ σ ϖθ ξ2n+1, ξ2n+2( )( )ϖθ ξ2n+1, ξ2n+2( ).
(25)

From (24) and (25), we have

ϖθ ξn, ξn+1( )≤ 1

κ
ϖθ ξn−1, ξn( ). (26)

From Lemma 1, we obtain that ξn{ } is a Cauchy se-
quence. 'e completeness of R leads to the conclusion that
there is φ ∈ R such that limsupn⟶∞ξn � φ. Let φ ∉ I(φ),
then, by 'eorem 1, one can write

ϖθ ξ2n+1,Iφ( )≤ϖθ ℘ξ2n,Iφ( ),
≤ σ ϖθ ξ2n,φ( )( )Δ ξ2n,φ( ) + ρ ϖθ ξ2n,φ( )( )Π ξ2n,φ( ). (27)

Passing to the upper limit, we can get

limsupn⟶∞ϖθ ξ2n+1,Iφ( )≤ 0. (28)

By the fact ϖθ(ξ2n+1,Iφ)≥ 0, one can see
limsupn⟶∞ϖθ(ξ2n+1,Iφ)≥ 0. 'us, we conclude that

limsupn⟶∞ϖθ ξ2n+1,Iφ( ) � 0. (29)

From Lemma 2,

ϖθ(φ,Iφ)≤ θ(φ,Iφ) ϖθ φ, ξ2n+1( ) + ϖθ ξ2n+1,Iφ( )( ).
(30)

By taking the upper limit, we have ϖθ(φ,Iφ)⟶ 0.
'us, φ ∈ Iφ. Similarly, we can show that φ ∈ ℘φ. Hence, φ
is a cfp of ℘ and I. 'e uniqueness comes immediately in a
similar way as in 'eorem 1.

If we put ℘ � I in 'eorem 2, we have the following
result. □

Corollary 2. let ℘: R ⟶ CB(R) be a multivalued map-
ping defined on a complete extended b−metric space (R,ϖθ).
Let for all ξ, ℓ ∈ R,

κ¥(℘ξ,℘ℓ) ≤ σ ϖθ(ξ, ℓ)( )Δ(ξ, ℓ) + ρ ϖθ(ξ, ℓ)( )Π(ξ, ℓ),
(31)

where Δ(ξ, ℓ) and Π(ξ, ℓ) are defined in Corollary 1 and
σ(ξ), ρ(ξ) ∈ Ξ such that σ(ξ) + ρ(ξ)< 1. If
limn,m⟶∞ϖθ(ξn, ξm)≤ (1/κ), κ> 1, then ℘ has a unique fixed
point.

Example 4. Suppose that R � [0, 1]. Define
ϖθ: R ×R ⟶ R

+ by ϖθ(ξ, ℓ) � |ξ − ℓ|2 for all ξ, ℓ ∈ R,
then the pair (R,ϖθ) is an extended b−metric space with the
function θ: R ×R ⟶ [1,∞), which takes the form
θ(ξ, ℓ) � 2 + ((|ξ| + |ℓ|)/2). Define ℘,I: R ⟶ CB(R) and
σ, ρ: R+ ⟶ [0, 1) as follows:

℘ξ � ξ

5κ
,
ξ

3κ
[ ],

Iℓ � ℓ

5κ
,
ℓ

3κ
[ ], for all ξ, ℓ ∈ R, κ> 1.

(32)

and σ(ω) � ρ(ω) � (1/9)< 1, for all ω ∈ R. Consider
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κ¥(℘ξ,Iℓ) � κmax supξ∈℘ξϖθ(ξ,Iℓ), supℓ∈Iℓϖθ(℘ξ, ℓ){ },
� κmax supξ∈℘ξϖθ ξ,

ℓ

5κ
,
ℓ

3κ
[ ]( ), supℓ∈Iℓϖθ

ξ

5κ
,
ξ

3κ
[ ], ℓ( ){ }

� κmax
ξ

5κ
− ℓ

5κ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

,
ξ

3κ
− ℓ

3κ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2{ }

≤ κ

9κ2
max |ξ − ℓ|2, |ξ − ℓ|2{ }

≤ 1

9
max |ξ − ℓ|2, |ξ − ℓ|2{ }, since

1

κ
< 1( )

≤ 1

9
ϖθ(ξ, ℓ)

≤ σ ϖθ(ξ, ℓ)( )Δ(ξ, ℓ)
≤ σ ϖθ(ξ, ℓ)( )Δ(ξ, ℓ) + ρ ϖθ(ξ, ℓ)( )Π(ξ, ℓ).

(33)

Hence, the conditions managed by 'eorem 2 are ful-
filled, thereby concluding 0 ∈ R is the unique cfp of ℘ andI.

Example 5. Suppose that all data of Example 4 are fulfilled.
Define the multivalued mappings ℘,I: R ⟶ CB(R) and
σ, ρ: R+ ⟶ [0, 1) by

℘ξ � 0,
ξ��
8κ

√[ ],
Iℓ � ℓ��

8κ
√{ }, ∀ ξ, ℓ ∈ R, κ> 1,

(34)

and σ(ω) � ρ(ω) � (1/8)< 1, for all ω ∈ R. Consider

κ¥(℘ξ,Iℓ) � κmax supξ∈℘ξϖθ(ξ,Iℓ), supℓ∈Iℓϖθ(℘ξ, ℓ){ },
� κmax supξ∈℘ξϖθ ξ,

ℓ��
8κ

√( ), supℓ∈Iℓϖθ 0,
ξ��
8κ

√[ ], ℓ( ){ }

� κmax
ξ��
8κ

√ − ℓ��
8κ

√
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
2

,
ℓ��
8κ

√
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣2{ }
� κ

8κ
max |ξ − ℓ|2, |ℓ|2{ }

≤ 1

8
max |ξ − ℓ|2, ℓ − ℓ��

8κ
√

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣2{ },

≤ 1

8
max ϖθ(ξ, ℓ),ϖθ(ℓ,Iℓ){ }

≤ σ ϖθ(ξ, ℓ)( )Δ(ξ, ℓ)
≤ σ ϖθ(ξ, ℓ)( )Δ(ξ, ℓ) + ρ ϖθ(ξ, ℓ)( )Π(ξ, ℓ).

(35)
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Hence, the conditions managed by 'eorem 2 are ful-
filled, thereby concluding 0 ∈ R is the unique cfp of ℘ andI.

3. Solving a Fractional Nonlinear
Differential Equation

Recently, by the technique of nonlinear analysis such as
fixed-point results, the Leray–Schauder theorem and sta-
bility, there are some papers dealing with the existence of
solutions of nonlinear initial-value problems of fractional
differential equations (see [21–23]). 'e main advantage of
using fractional nonlinear differential equations is to de-
scribe the dynamics of complex nonlocal systems with
memory. 'is part is devoted to obtain an existence solution
of the subsequent nonlinear differential equation of frac-
tional order:

∁
D

ϑ
ξ(τ) � Θ(τ, ξ(τ)), τ ∈ (0, 1), ϑ ∈ (1, 2], (36)

with boundary conditions

ξ(0) � 0,

ξ(1) � ∫α
0

ξ(μ)dμ, α ∈ (0, 1).
(37)

'e Caputo fractional derivative ∁D
ϑ
with ordered ϑ is

defined as follows:

∁D
ϑΘ(τ) � 1

Γ(υ − ϑ) ∫
τ

0
(τ − μ)υ− ϑ− 1Θυ(μ)dμ, (38)

where υ − 1≤ ϑ< υ, υ � [ϑ] + 1, and Θ: [0, 1] × R ⟶ R
+ is

a continuous function. Let R � C[0, 1] be the set of all real-
valued continuous functions on [0, 1]. Define
ϖθ: R ×R ⟶ R and θ: R ×R ⟶ [1,∞) by

ϖθ(ξ, ℓ) � supτ∈[0,1]|ξ(τ) − ℓ(τ)|( )e and θ(ξ, ℓ)� 2e− 1 + |ξ(τ)| +|ℓ(τ)|
1 +|ξ(τ)| +|ℓ(τ)|,

(39)

for all ξ, ℓ ∈ R, e> 1. 'en, the pair (R,ϖθ) is a complete
extended b−metric space [20]. Here, we need to be reminded
that the Riemann–Liouville fractional integral of order ϑ is as
follows:

IϑΘ(τ) � 1

Γ(ϑ) ∫
τ

0
(τ − μ)ϑ− 1Θ(μ)dμ. (40)

Now, our main theorem of this section is.

Theorem 3. Ee problem (36) with boundary conditions (37)
has a unique solution if the following assumptions are
fulfilled:

(i) Θ: [0, 1] × R ⟶ R
+ is a continuous function

satisfying

|Θ(τ, ξ) − Θ(τ, ℓ)|≤
���
[e]

√
ϕ|ξ − ℓ|, for all τ ∈ [0, 1], ξ, ℓ ∈ R, e> 1. (41)

(ii) Eere is a constant ϕ such that ϕG< 1, where

G � 2 − α2( )(1 + ϑ) + 2τ ϑ + 1 + αϑ+1( )
2 − α2( )Γ(ϑ + 2)( )e, α ∈ (0, 1).

(42)

(iii) limn,m⟶∞ϖθ(ξn, ξm)≤ (1/κ), where κ � 2e− 1.

Proof. Define the mapping ℘: R ⟶ R by

℘ξ(τ) � 2τ

2 − α2( )Γ(ϑ) ∫
α

0
∫μ

0
(μ − σ)ϑ− 1Θ(σ, ξ(σ))dσdμ − 2τ

2 − α2( )Γ(ϑ) ∫
1

0
(1 − μ)ϑ− 1Θ(μ, ξ(μ))dμ + 1

Γ(ϑ)

∫τ
0

(τ − μ)ϑ− 1Θ(μ, ξ(μ))dμ,

(43)

For τ ∈ [0, 1]. 'e function ξ ∈ R is a unique solution of
problem (36) if ξ ∈ ℘ξ, i.e., ξ is a unique fixed point of the

multivalued mapping ℘. To get that, we shall prove that ℘
satisfies the contractive condition of Corollary 1. Consider
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2e− 1ϖθ(℘ξ(τ),℘ℓ(τ)) � 2e− 1 sup
τ∈[0,1]

|℘ξ(τ) − ℘ℓ(τ)|e( )
� 2e− 1 sup

τ∈[0,1]
| 2τ

2 − α2( )Γ(ϑ) ∫
α

0
∫μ

0
(μ − σ)ϑ− 1Θ(σ, ξ(σ))dσdμ − 2τ

2 − α2( )Γ(ϑ) ∫
1

0
(1 − μ)ϑ− 1Θ(μ, ξ(μ))dμ

+ 1

Γ(ϑ) ∫
τ

0
(τ − μ)ϑ− 1Θ(μ, ξ(μ))dμ − 2τ

2 − α2( )Γ(ϑ) ∫
α

0
∫μ

0
(μ − σ)ϑ− 1Θ(σ, ℓ(σ))dσdμ

+ 2τ

2 − α2( )Γ(ϑ) ∫
1

0
(1 − μ)ϑ− 1Θ(μ, ℓ(μ))dμ − 1

Γ(ϑ)∫
τ

0
(τ − μ)ϑ− 1Θ(μ, ℓ(μ))dμ|e

≤ 2e− 1 sup
τ∈[0,1]

2τ

2 − α2( )Γ(ϑ) ∫
α

0
∫μ

0
(μ − σ)ϑ− 1|Θ(σ, ξ(σ)) − Θ(σ, ℓ(σ))|dσdμ

+ 2τ

2 − α2( )Γ(ϑ) ∫
1

0
(1 − μ)ϑ− 1|Θ(μ, ℓ(μ)) − Θ(μ, ξ(μ))|dμ

+ 1

Γ(ϑ) ∫
τ

0
(τ − μ)ϑ− 1|Θ(μ, ξ(μ)) − Θ(μ, ℓ(μ))|dμ)e)

≤ 2e− 1 sup
τ∈[0,1]

2τ

2 − α2( )Γ(ϑ) ∫
α

0
∫μ

0
(μ − σ)ϑ− 1dσdμ((

+ 2τ

2 − α2( )Γ(ϑ) ∫
1

0
(1 − μ)ϑ− 1dμ + 1

Γ(ϑ) ∫
τ

0
(τ − μ)ϑ− 1dμ)eϕ|ξ − ℓ|e)

≤ 2e− 1ϕ
2 − α2( )(1 + ϑ) + 2τ ϑ + 1 + αϑ+1( )

2 − α2( )Γ(ϑ + 2){ }e × sup
τ∈[0,1]

|ξ(τ) − ℓ(τ)|( )e

� 2e− 1ϕGϖθ(ξ(τ), ℓ(τ))

≤ 2e− 1ϖθ(ξ(τ), ℓ(τ)).
(44)

'is implies that

2e− 1ϖθ(℘ξ(τ),℘ℓ(τ))≤ 2e− 1ϖθ(ξ(τ), ℓ(τ)),

≤ 2e− 1Δ(ξ, ℓ)
≤Ω(Δ(ξ, ℓ)) − Λ(Π(ξ, ℓ)),

(45)

where κ � 2e− 1, Ω(ϰ) � 4e− 1ϰ, and Λ(ϰ) � (ϰ/16e− 1). 'en,
by Corollary 1, there exists a unique fixed point of the
mapping (43), which is the unique solution of problem (36)
in R. □

4. Solving a System of Nonlinear Fractional
Differential Equations

Differential equations of fractional order have been the focus
of many studies due to their frequent appearance in various
applications in fluid mechanics, viscoelasticity, physics,
engineering, and biology. Recently, a large amount of lit-
erature studies developed concerning the application of
fractional differential equations in nonlinear dynamics
[24–29]. In this part, we shall find the existence of a solution
to the following system of nonlinear fractional ordered
differential equations:

∁D
ϑ ℷ(τ) + ℘(ℶ(τ)) � 0, τ ∈ [0, 1], ϑ ∈ (1, 2], ∁Dϑℶ(τ) +I(ℷ(τ)) � 0, τ ∈ [0, 1], ϑ ∈ (1, 2], ℷ(0) � ℶ(0) � Ω, ℷ(1) � ℶ(1) � Ω∗,{

(46)

where Ω andΩ∗ are constants, ℘,I: [0, 1] ×R
+ ⟶ R

+, and
∁D

ϑ
refers to the Caputo fractional derivative. If we apply

Green’s (continuous) function Υ(τ, μ) on [0, 1] × [0, 1], (18) is
equivalent to the following system:
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ℷ(τ) � ℵ(τ) + ∫1
0

Υ(τ, μ)℘(ℷ(μ))dμ, τ ∈ [0, 1],

ℶ(τ) � ℵ(τ) + ∫1
0

Υ(τ, μ)I(ℷ(μ))dμ, τ ∈ [0, 1],


(47)

where Υ(τ, μ) is defined by

Υ(τ, μ) �

(τ, μ)ϑ− 1 − τ(1 − μ)ϑ− 1

Γ(ϑ) , 0≤ μ≤ τ ≤ 1,

−τ(1 − μ)ϑ− 1

Γ(ϑ) , 0≤ τ ≤ μ≤ 1.


(48)

Moreover, supτ∈[0,1] ∫10 |Υ(τ, μ)|dμ≤ 1. Now, put
ϕ1(τ, μ, ξ(μ)) � Υ(τ, μ)℘(ℶ(μ)) and ϕ2(τ, μ, ℓ(μ)) �
Υ(τ, μ)I(ℶ(μ)), then system (19) turns into

ξ(τ) � ℵ(τ) + ∫1
0

ϕ1(τ, μ, ξ(μ))dμ, τ ∈ [0, 1],

ℓ(τ) � ℵ(τ) + ∫1
0

ϕ2(τ, μ, ℓ(μ))dμ, τ ∈ [0, 1].


(49)

Let R � C[0, 1] be the set of all real-valued continuous
functions on [0, 1]. Define ϖθ: R ×R ⟶ R and θ: R ×
R ⟶ [1,∞) by

ϖθ(ξ, ℓ) � supτ∈[0,1]|ξ(τ) − ℓ(τ)|( )e and θ(ξ, ℓ)� 2e− 1 + |ξ(τ)| +|ℓ(τ)|
1 +|ξ(τ)| +|ℓ(τ)|,

(50)

for all ξ, ℓ ∈ R, e> 1. 'en, the pair (R,ϖθ) is a complete
extended b−metric space.

Now, we provide the following theorem to derive an
existence result for the solution of problem (49).

Theorem 4. Consider system (49) under the following
hypotheses:

(i) ϕ1,ϕ2: [0, 1] × [0, 1] × R
+ ⟶ R

+ and
ℵ: [0, 1]⟶ R

+ is continuous.

(ii) Eere is a continuous functionΨ: [0, 1] × [0, 1]⟶
R
+ such that

ϕ1(τ, μ, p) − ϕ2(τ, μ, p)
∣∣∣∣ ∣∣∣∣≤Ψ(τ, μ)|p − q|, for all τ, μ ∈ [0, 1], p, q ∈ R. (51)

(iii) supτ∈[0,1] ∫10 |Ψ(τ, μ)|edμ≤ 1.

(iv) limn,m⟶∞ϖθ(ξn, ξm)≤ (1/κ), where κ � 2e− 1.

Een, problem (49) has a unique solution on R, which is
considered as the unique solution to system (46).

Proof. Consider two multivalued mappings ℘,I: R ⟶ R

having the form

℘ξ(τ) � ℵ(τ) + ∫1
0

ϕ1(τ, μ, ξ(μ))dμ, τ ∈ [0, 1],

Iℓ(τ) � ℵ(τ) + ∫1
0

ϕ2(τ, μ, ℓ(μ))dμ, τ ∈ [0, 1].

(52)
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Hence, the unique cfp of the mappings ℘ and I defined
in (52) is considered as the unique solution of problem (49),

which leads to the solution of problem (47) and from it to the
solution of system (46).

Consider

2e− 1ϖθ(℘ξ(τ),Iℓ(τ)) � 2e− 1 supτ∈[0,1]|℘ξ(τ) −Iℓ(τ)|e( ),
� 2e− 1 supτ∈[0,1] ℵ(τ) + ∫1

0
ϕ1(τ, μ, ξ(μ))dμ −ℵ(τ) − ∫1

0
ϕ2(τ, μ, ℓ(μ))dμ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
e( )

≤ 2e− 1 supτ∈[0,1] ∫1

0
ϕ1(τ, μ, ξ(μ)) − ϕ2(τ, μ, ℓ(μ))
∣∣∣∣ ∣∣∣∣dμ( )e

≤ 2e− 1 supτ∈[0,1] ∫1

0
Ψ(τ, μ)|ξ(μ) − ℓ(μ)|dμ( )e

≤ 2e− 1 supτ∈[0,1] ∫1

0
Ψ(τ, μ)dμ( )e supτ∈[0,1]|ξ(τ) − ℓ(τ)|( )e

≤ 2e− 1ϖθ(ξ(τ), ℓ(τ))

≤ 2e− 1Δ(ξ, ℓ)
≤Ω(Δ(ξ, ℓ)) − Λ(Π(ξ, ℓ))),

(53)

where κ � 2e− 1, Ω(ϰ) � 4e− 1ϰ, and Λ(ϰ) � (ϰ/16e− 1). 'us,
by'eorem 1, there exists a unique cfp of the mappings (52),
which is the unique solution of system (46) in R. □

5. Solving a Two-Dimensional Linear Fredholm
Integral Equation

Two-dimensional Fredholm integral equations of the second
kind arise from many problems in engineering and

mechanics by a suitable transformation. For example, in the
calculation of plasma physics, it is usually required to solve
Fredholm integral equations (see [30]).

In this section, we consider the two-dimensional
Fredholm integral equation of the form:

ξ(τ, μ) � ¥(τ, μ) + ∫1

0
∫1

0
G(τ, μ, h, g)Φ(τ, μ, ξ(h, g))dhdg; (τ, μ) ∈ [0, 1]2, (54)

where ¥ and G andΦ are given continuous functions defined
on L2(C([0, 1] × [0, 1])) and ξ(h, g) is unknown on
L2(C([0, 1] × [0, 1])).

Assume that R � C[0, 1] is the set of all real-valued
continuous functions on [0, 1]. Define ϖθ: R ×R ⟶ R

and θ: R ×R ⟶ [1,∞) by

ϖθ(ξ, ℓ) � maxτ∈[0,1]|ξ(τ) − ℓ(τ)|( )2 and θ(ξ, ℓ) � 2 + |ξ(τ)| +|ℓ(τ)|
1 +|ξ(τ)| +|ℓ(τ)|,

(55)

for all ξ, ℓ ∈ R. 'en, the pair (R,ϖθ) is a complete ex-
tended b−metric space.

Now, we consider problem (46) under the following
assumptions:

(i) G: [0, 1]4 ⟶ R
+, and Φ: [0, 1]2 × R

+ ⟶ R
+ and

¥: [0, 1]2 ⟶ R
+ are continuous functions.

(ii) For all ξ, ℓ ∈ R,

|Φ(τ, μ, ξ(h, g)) −Φ(τ, μ, ℓ(h, g))|≤ σ
(1/2) ϖθ(ξ(h, g), ℓ(h, g))( )�

2
√ (|ξ(h, g) − ℓ(h, g)|). (56)
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(iii) 'ere is a constant z ∈ (0, 1) such that∫1
0
∫1
0
G(τ, μ, h, g)dhdg≤ z.

(iv) limn,m⟶∞ϖθ(ξn, ξm)≤ (1/2).
Our main theorem in this section is presented as follows.

Theorem 5. Problem (54) has a unique solution on
L2(C([0, 1] × [0, 1])) if the hypotheses (i1 − iv4) hold.

Proof. As usual, define the multivalued operator
℘: R ⟶ R by

℘(ξ(τ, μ)) � ¥(τ, μ) + ∫1

0
∫1

0
G(τ, μ, h, g)Φ(τ, μ, ξ(h, g))dhdg; (τ, μ) ∈ [0, 1] ×[0, 1]. (57)

'en, we have

2|℘(ξ(τ, μ)) − ℘(ℓ(τ, μ))|2 � 2 ∫1

0
∫1

0
G(τ, μ, h, g)Φ(τ, μ, ξ(h, g))dhdg( ) − ∫1

0
∫1

0
G(τ, μ, h, g)Φ(τ, μ, ℓ(h, g))dhdg( )∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
2

,

≤ 2 ∫1

0
∫1

0
G(τ, μ, h, g)|Φ(τ, μ, ξ(h, g)) −Φ(τ, μ, ℓ(h, g))|dhdg( )2

≤ 2 ∫1

0
∫1

0
G(τ, μ, h, g)dhdg( )2

(|Φ(τ, μ, ξ(h, g)) −Φ(τ, μ, ℓ(h, g))|)2

≤ 2z2
σ(1/2) ϖθ(ξ(h, g), ℓ(h, g))( )�

2
√ (|ξ(h, g) − ℓ(h, g)|)( )2

≤ σ ϖθ(ξ(h, g), ℓ(h, g))( )|ξ(h, g) − ℓ(h, g)|2.
(58)

Taking the maximum, we have

2 max|℘(ξ(τ, μ)) − ℘(ℓ(τ, μ))|2( )≤ σ ϖθ(ξ(h, g), ℓ(h, g))( )max |ξ(h, g) − ℓ(h, g)|2{ },
� σ ϖθ(ξ(h, g), ℓ(h, g))( )ϖθ(ξ(h, g), ℓ(h, g))
≤ σ ϖθ(ξ, ℓ)( )Δ(ξ, ℓ) + ρ ϖθ(ξ, ℓ)( )Π(ξ, ℓ).

(59)

By taking κ � 2, from Corollary 2, operator (57) has a
unique fixed point in L2(C([0, 1] × [0, 1])), which is con-
sidered the unique solution of problem (54). □

6. Conclusion

In this manuscript, we gave some common fixed point
theorems involving generalized multivalued contraction
mappings in the class of extended b-metric spaces. Applying
our obtained results, we ensure the existence of (unique)
solutions of a fractional differential equation, a system of
fractional differential equations and a two-dimensional
linear Fredholm integral equation. 'is affirms the utility of
fixed point theory in the framework of fractional calculus.
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