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Abstract  In this paper we describe a method to solve the linear non-homogeneous fractional differential equations 
(FDE), composed with Jumarie type fractional derivative, and describe this method developed by us, to find out 
particular integrals, for several types of forcing functions. The solutions are obtained in terms of Mittag-Leffler 
functions, fractional sine and cosine functions. We have used our earlier developed method of finding solution to 
homogeneous FDE composed via Jumarie fractional derivative, and extended this to non-homogeneous FDE. We 
have demonstrated these developed methods with few examples of FDE, and also applied in fractional damped 
forced differential equation. The short cut rules, that are developed here in this paper to replace the operator Dα or 
operator 2D α as were used in classical calculus, gives ease in evaluating particular integrals. Therefore this method 
proposed by us is useful and advantageous as it is having conjugation with the classical methods of solving non-
homogeneous linear differential equations, and also useful in understanding physical systems described by FDE. 
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1. Introduction 
The fractional differential equations and its solutions 

arises in different branches of applied science, engineering, 
applied mathematics and biology [1-9]. The solutions of 
fractional difference equations are obtained by different 
methods which includes Exponential-Function Method 
[10], Homotopy Perturbation Method [11], Variation 
Iteration Method [12], Differential transform Method [13] 
and Fractional Sub-equation Method [14], Analytical 
Solutions in terms of Mittag-Leffler function [15]. In 
developing those methods the usually used fractional 
derivative is Riemann-Liouvellie (R-L) [6], Caputo 
derivative [6], Jumarie’s left handed modification of R-L 
fractional derivative [16,17]. In [15] we have developed 
an algorithm to solve the homogeneous fractional order 
differential equations in terms of Mittag-Leffler function 
and fractional sine and cosine functions. However, there 
are no standard methods to find solutions of non-
homogeneous fractional differential equations. In this 
paper we describe a method to solve the fractional order 
non-homogeneous differential equations. Organizations of 
the paper are as follows; in section 2.0 we describe the 
different definitions of fractional derivatives and 

properties of Mittag-Leffler function. In section-3.0 we 
describe the solutions of α − order fractional differential 
equations. In section 4.0 the solutions of 2α − order 
fractional differential equations is described, with several 
types of forcing functions. In section 5.0 this methods has 
been applied to solve both un-damped and damped 
fractional order forced oscillator equations. In this paper 
the fractional derivative operator J Dυ  will be of Jumarie 
type fractional derivative. 

2. Definition of Fractional Derivatives  
The useful definitions of the fractional derivatives are 

the Grunwald-Letinikov (G-L) definition and Riemann-
Liouville(R-L) definition [6] and Modified R-L-
definitions [16,17].  
• Grunwald-Letinikov definition  
Let ( )f t  be any function then the α -th order 

derivativeα ∈  of ( )f t  is defined by  
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Where α is any arbitrary number real or complex; and the 
generalized binomial coefficients are described as follows 
[1,16,17] 
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The above formula becomes fractional order integration 
if we replace α by α− which is Riemann fractional 
integration formula 
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In above we have noted several notations used for 
fractional integration. 
• Riemann-Liouville fractional derivative definition 
Let the function ( )f t is one time integrable then the 

integro-differential expression as following defines 
Riemann-Liouvelli fractional derivative [1,6]  
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Here the n  is a positive integer number just greater than 
real number α  The above expression is known as the 
Riemann-Liouville definition of fractional derivative [6] 
with ( 1)n nα− < <  

In the above definition fractional derivative of a 
constant is non-zero. 
• Modified Riemann-Liouville definition 
To overcome the shortcoming fractional derivative of a 

constant, as non-zero, another modification of the 
definition of left R-L type fractional derivative of the 
function ( ), in the interval [ , ]f x a b was proposed by 
Jumarie [16] in the form described below 
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Here we state that ( ) 0f x = for x a< and x b> . 
However in this paper we will be using this left-Jumarie 
fractional derivative that is [ ]0 ( )J

tD f tα , for 0 1α< < and 
with condition ( ) 0f t = for all 0t < . We will simplify the 
symbol and drop 0a = and differentiating variable t and 
simply write [ ]( )J D f tα .Using the above definition 
Jumarie [16] proved the following 
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We have recently modified the right R-L definition of 
fractional derivative of the function ( ),f x  
in the interval[ , ]a b in the following form [17],  
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Using both the modified definition we investigate the 

characteristics of the non-differentiable points of some 
continuous functions in [17]. The above defined all the 
derivatives are non-local type, and obtained solution to 
homogeneous FDE, with Jumarie derivative [15]. 
Subsequently we will be using J Dυ as fractional 
derivative operator of Jumarie type, with start point 0a = , 
and stating the function ( ) 0f x =  for all 0x < in 
following sections. 

2.1. The Mittag-Leffler Function 
The Mittag-Leffler function was introduced by Gösta 

Mittag-Leffler [18] in 1903. The one-parameter Mittag-
Leffler function is denoted by ( )E tαα and defined by 
following series 
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Again from the Jumarie definition of fractional 
derivative we have [ ]C 0J

a xDα =  we apply this property to 
get α order Jumarie Derivative of the Mittag-Leffler 
function ( )E axαα  as follows 
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Therefore the fractional differential equation 

[ ]0
J

xD y ayα = has solution in the form 

( ),y AE axαα= where A is an arbitrary constant. 

2.2. Non-Homogeneous Fractional 
Differential Equations and Some Basic 
Solutions 

The general format of the fractional linear differential 
equation is  

 ( ) ( )Jf D y g tα α=  (2.1) 

Where ( ) is a linear differential operator 0 1Jf Dα α< < , 

of Jumarie type. The above differential equation is said to 
be linear non-homogeneous fractional differential 
equation when ( ) 0g tα ≠ , otherwise it is homogeneous. 
Solution of the linear fractional differential equations 
(composed via Jumarie derivative) can be easily obtained 
in terms of Mittag-Leffler function and fractional sine and 
cosine functions [15].  

The function ( )g tα is forcing function. We have 

written this as function of tα purposely for ease. For 
example we will use in this paper ( )E ctαα , sin ( )ctαα , 

tα etc. are taken as forcing functions. There will be other 
functions in the derivations like ( )V tα , ( )V tα all 

functions described with scaled variable that is tα . 
Nevertheless the forcing functions can be written as 
simple ( )h t though. 

In that paper [15] we found the following (theorems) 
which we will be using in this paper 

(i) The fractional differential equation 

( )( )0 0 ( ) 0J J
t tD a D b y tα α− − = has solution of the form 

( ) ( )y AE at BE btα α
α α= + where A and B are constants,  

(ii) The fractional differential equation 

[ ] [ ]( )2 2
0 02 0J J

tD y a D y a yα α− + = has solution of the 

form ( ) ( )y At B E atα α
α= + where A and B are constants 

and 
(iii) Solution of the fractional differential equation 

[ ] [ ]( )2 2 2
0 02 ( ) 0J J

t tD y a D y a b yα α− + + =  is of the form 

( )[ cos ( ) sin ( )]y E at A bt B btα α α
α α α= +  where A and B 

are constants.  
From now we indicate Jumarie fractional derivative 

with start point of differentiation as 0 as J Dα instead 

0
J Dα . 
Theorem 1: If 1y and 2y are two solutions of the 

fractional differential equation ( ) 0Jf D yα = then 

1 1 2 2c y c y+  is also a solution, where c1 and c2 are 
arbitrary constants.  

Proof: Since ( ) 0f D yα =  has solutions 1y y= and 

2y y=   
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Hence 1 1 2 2c y c y+  is also a solution of the given 
fractional differential equation. 

Hence the theorem is proved. 
Similarly, we can prove if 1 2, ,..., ny y y  are solutions of 

the fractional differential equation ( ) 0Jf D yα =  then 

1 1 2 2 ... n nc y c y c y+ + + is also a solution of it.  
Theorem 2: If 
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and all ka are distinct. 
Proof: Since Jumarie type fractional derivative of Mittag-
Leffler function ( )y E atαα=  with a as a constant is 

[ ] ( ) , 0 1.J D y aE at ayα α
α α= = < ≤ Thus solution of 

the differential equation , 0 1J D y ayα α= < ≤  is 

( )y AE atαα= where A is a constant [15]. 

Let ( ) 0y AE mtαα= ≠ be a non-trivial trial solution of 

the differential equation ( ) 0Jf D yα =  then J D y myα = or 
we write the following after subtracting ia y from both the 
sides as demonstrated below 
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We apply the above result sequentially as demonstrated 
below  
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Since ( ) 0Jf D yα = we get  

 1( ) 0n
ii m a y= − =∏  (2.2) 
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Implying that 1 2, ,... nm a a a=

 
 

Hence the general solution is  
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Hence the theorem is proved. 
The above theorem implies principal of superposition 

holds for the linear fractional differential equations 
(composed via Jumarie fractional derivative) also.  

Note: In the above theorem if two or more roots of the 
equation (2.2) are equal or roots are complex then the 
solution [15] form is given below.  

For 1 2a a= and 3 4 .... na a a≠ ≠ ≠ then solution of the is 
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For 1 2 3a a a= = and 4 5 .... na a a≠ ≠ ≠  then the 
solution is 
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where Ak’s are arbitrary constants.  
For 1 2,a a a ib= ± and other are 3 4 .... na a a≠ ≠ ≠  then 

the solution is 
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Thus solutions of linear homogeneous fractional 
differential equation with Jumarie fractional derivative is 
express in terms of Mittag-Leffler functions and fractional 
type sine and cosine series.  

Now the question arises what will be solution of linear 
non-homogeneous fractional differential equations. The 
solution corresponding to the homogeneous equation will 
be called as the complementary function, it contains the 
arbitrary constants and this solution will be denoted by cy . 
The other part, that is a solution which is free from 
integral constant, and depending on the forcing function 
will be called as Particular Integral (PI) and will be 
denoted by py . Thus the general solution will be 

c py y y= + . We will develop simple method to evaluate 
Particular Integral. 

3. α − order Non-Homogeneous 
Fractional Differential Equations 

Consider the linear α −  order non-homogeneous 
fractional differential equation with 0 1α< <  for 

0y = for 0t <  of the following form,  

 ( ) ( ) 0 1J D a y g tα α α− = < <  (3.1) 

The solution of the corresponding homogeneous part is 
[15]  

 1 1( ),  is arbitary constant.cy A E mt Aα
α=  

Multiply both side of equation (3.1) by ( )E atαα −  as 
demonstrated below  
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In the above steps we have used 

0 ( ) ( )J
tD E at aE atα α α

α α − = − −  . Now operating 

J D α− on both the sides of the obtained last expression in 
above derivation i.e.  

 ( ) ( ) ( )J D yE at g t E atα α α α
α α − = −  . 

Also we add a constant A  since Jumarie type 
derivative of a constant is zero and from here we get the 
following 
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the first part corresponds to solution of corresponding 
homogeneous equation, that is ( )cy AE atαα=  and the 

other part ( )( ) ( ) ( )J
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−  = −    

 

corresponds to the effect of non-homogeneous part and 
free from integral constant, but depending on the nature of 
forcing function, this part is named as Particular Integral 
(PI) as in case of classical differential equations. Now we 
take several forms of forcing function. 

3.1. Particular Integral for ( ) ( )g t E ctα α
α=   

Here consider the linear first order non-homogeneous 
fractional differential equation of order with 0 1α α< ≤  
with 0y = for 0t <   

 ( ) ( ) ( ) ( ) ,  .J D a y g t g t E ct c aα α α α
α− = = ≠  

then the particular integral (PI) described in the previous 
section is 

 ( )( ) ( ) ( )J
py E at D g t E atα α α α

α α
−  = −    
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Putting ( ) ( )g t E ctα α
α= in above we get the following 
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For ,c a=  P.I. is 
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• Short procedure for calculating Particular Integral 
for ( ) ( ).g t E ctα α

α=   
This procedure is similar and in conjugation with 

classical integer order calculus. In classical order calculus 
1α = . Hence the forced function reduce to 

( ) exp( ).g t ct= Therefore the particular integral will be 
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Here we observe that the derivative operator D is 
replaced by c in the first case, i.e. for c a≠ . In the second 
case the derivative operator D  is replaced by D a+ . We 
can replace the fractional Jumarie derivative operator 
J Dα by c for the first case c a≠ and by ( )J D aα + for 

second case c a= The short procedure as follows for 
Particular Integral that is,  
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Hence the general solution of equation (3.1) is 
c py y y= +  
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3.2. Particular Integral for ( )g t tα α=   

Again when ( )g t tα α= then the differential equation 
(3.1) becomes  

 ( )J D a y tα α− =  (3.3) 

The solution of the homogeneous part [15] that is 
( ) 0J D a yα − =  is 1 ( )cy A E atαα= . 

Let ( ) ( )y V t E atα α
α=  the solution of the 

corresponding non-homogeneous equation where ( )V tα  

is an unknown function of tα . Then using the definition 
by Jumarie [16] that is 
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putting this in (3.3) we get 
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Therefore we get  
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We now apply fractional integration by parts by 
Jumarie formula [16] as depicted below  
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Here we mention that the symbol 
( )( ) ( )Jf x dx D f xα α−≡∫  implies Jumarie fractional 

integration as defined in section-2. We will use also [15] 
derived expression that is 
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J

J
x

t t

V t A D t E at

A E a d

A D d

E a
A

a

E a
D d

a

D x

E a E a
A

a a

α α α α
α

α α α
α

ατα α αα

α
α α

α
α α αα
τ

α α

α α
α α α

τ τ τ

τ τ

τ
τ

τ
τ τ

α

τ τ
τ α

−

−
−

 = + − 

= + −

  
= +      

−
= + 

− 

−  −  −

  = Γ + 

− −
= + − Γ +

− −

∫

∫

∫

∫

0 0

2

( )

( ) ( )(1 )

( ) (1 ) ( ) 1

constant.

t t

d

E a E a
A

a a a

E at
A t E at

a a
A

α

α α
α α α

α
α αα

α

τ

τ τατ

α

  − −Γ +
= + +  

− −    

− Γ +  = − − − − 

=

 

Hence the general solution is  

2

1

1 2

( ) ( )

1 (1 ) (1 ) ( )

1 (1 )( )

Γ(1+α)where = +

y V t E at

t A E at
a a a

A E at t
a a

A A
a

α α
α

α α
α

α α
α

α α

α

   =    
Γ + Γ +  = − + + +  

   
Γ + = − + 

 
 

1 ( )cy A E atαα= the first part in above expression is 
solution of homogeneous equation and the second part of 

the above that is ( )(1 )1
p a ay t αα Γ += − + is particular 

integral. 
• Short procedure for Calculating Particular Integral 
for ( )g t tα α=   

This procedure is similar and in conjugation with 
classical integer order calculus. Here for 1,α =  and 

( )g t t= , and the corresponding particular integral is  

 

1

2

2

1 1 1

1 1 11 ...

p
Dy t t

D a a a

D D t t
a a a aa

−
 = = − − −  

    = − + + + = − +   
   

 

In the same way we can have a short procedure as 
follows for Particular Integral that is,  

 

1

2

2

1 1 1

1 1 (1 )1 ...

J

p J

J J

Dy t t
a aD a

D D t t
a a a aa

α
α α

α

α α
α α α

−
 

= = − −  −  
  Γ + = − + + + = − +       

 

In the above derivation  

[ ] [ ]2 ( ) (1 ) C 0J J JD t D D t D Dα α α α α α αα= = Γ + = =   
     

is used. Thus all the Jumarie derivatives 

0J kD tα α  =  for 1k > , where k is Natural number. 

Therefore we have discussed the solutions of non-
homogeneous α − order differential equations for 
different forcing functions ( )g tα . 

3.3. Evaluation of 1
2 2 sin ( ),p J D a

y ctααα −
=  

( ) sin ( )g t ctα α
α=  where 2 2 0c a+ ≠  

1
2 2J D aα −

can be factorized as 

1 1 1 1 1
2 2 2( )( )J J J a J JD a D a D a D a D aα α α α α− − + − +

 −  
= = ,an

d we use this in following derivation.  
As in section 3.1 here we replace J Dα by ic and by 

ic− for the operations 
1 ( )J D a

E ictααα −
and 1 ( )J D a

E ictααα −
− respectively, as 

is demonstrated below. 

 

2 2

def
1
2

1 sin ( )

1 1 1 sin ( )
2

1 1 1sin ( ) sin ( )
2

sin ( ) ( ) ( )

p J

J J

J J

i

y ct
D a

ct
a D a D a

ct ct
a D a D a

ct E ict E ict

α
αα

α
αα α

α α
α αα α

α α α
α α α

=
−

 
= − 

− + 
 

= − 
− + 

 = − − 
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1 ( )
1 1sin ( )

12 ( )

1 1 1( ) ( )
2

1 ( )
1 1sin ( )

12 ( )

1 1 1( ) ( )
2

J

J

J

J

J

J

E ict
D act

iD a E ict
D a

E ict E ict
i ic a ic a

E ict
D act

iD a E ict
D a

E ict E ict
i ic a ic a

α
ααα

αα α
αα

α α
α α

α
ααα

αα α
αα

α α
α α

 
 − =
 − − − − 

 = − − − − − 
 
 + =
 + − − + 

 = − − + − + 

 

Therefore 

2 2

2 2 2 2

1 sin ( )

1 1( ) ( )
1

1 14 ( ) ( )

1 1 ( )
1

4 1 1 ( )

1 1 1( ) ( )
2

J ct
D a

E it E ict
ic a ic a

ai E ict E ict
ic a ic a

E ict
ic a ic a

ai
E ict

ic a ic a

E ict E ict
i c a c a

α
αα

α α
α α

α α
α α

α
α

α
α

α α
α α

−
 − − +=  
 − − + − − − − + 
  −  − +  =
  − − −  − − − +  

= − −
− − − −

2 2

2 2

1 1 ( ) ( )
2

sin ( )

E ict E ict
ic a

ct
c a

α α
α α

α
α

 
 
 

   = − −    − − 

=
− −

 

Similarly we get by following above procedure 

 2 2 2 2
cos ( )1 cos ( )J

ct
ct

D a c a

α
α α

αα =
− − −

 

Thus to find the particular integral 
1

2 2 sin ( )J D a
ctααα −

replace 2 2by -J D cα . 

This procedure is similar and in conjugation with 
classical integer order calculus. In classical order calculus 

1α =  hence the forced function reduce to 
( ) sin( ).g t ct= Therefore the particular integral will be  

 

[ ]

2 2

1
2

1 sin( )

1 1 1 sin( )
2

1 1 1sin( ) sin( )
2

sin( ) exp( ) exp( )

p J

J J

J J

i

y ct
D a

ct
a D a D a

ct ct
a D a D a

ct ict ict

=
−

 
= − 

− + 
 

= − 
− + 

= − −
 

 

1 exp( )
1 1sin( )

12 exp( )

1 1 1exp( ) exp( )
2

1 exp( )
1 1sin( )

12 exp( )

1 1 1exp( ) exp( )
2

J

J

J

J

J

J

ict
D act

iD a ict
D a

ict ict
i ic a ic a

ict
D act

iD a ict
D a

ict ict
i ic a ic a

 
 − =
 − − − − 

 = − − − − − 
 
 + =
 + − − + 

 = − − + − + 

 

Therefore

 
2 2

2 2 2 2

1  sin( )

1 1exp( ) exp( )
1

1 14 exp( ) exp( )

1 1 exp( )
1

4 1 1 exp( )

1 1 1exp( ) exp( )
2

J ct
D a

ict ict
ic a ic a

ai ict ict
ic a ic a

ict
ic a ic a

ai
ict

ic a ic a

ict ict
i c a c a

−
 − − +=  
 − − + − − − − + 
  −  − +  =
  − −  − − − +  


= − −

− − − −

[ ]2 2

2 2

1 1 exp( ) exp( )
2

sin( )

ict ict
ic a

ct
c a


 


  = − −  

 − − 

=
− −

 

4. 2α −  order Non-Homogeneous 
Fractional differential equations 

General formulation of non-homogeneous fractional 
differential equation of 

[ ] [ ]( )22 order is  ( )

0 1 ( ) 0 for 0

J JD y p D y qy g t

y t t

α α αα

α

− + + =

< < = <
 

where p and q are constant here. Consider the 2α −  order 
non-homogeneous fractional differential equation  

 ( ) ( )Jf D y g tα α=  

where ( ) ( )( )J J Jf D D a D bα α α= − −  then solution of 

the non-homogeneous part that is ( ) 0Jf Dα =  given 

by ( ) ( )cy AE at BE btα α
α α= +  [15]. 

4.1. Use of Method of Un-determinant 
Coefficient Method to Calculate the 
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Particular Integrals for Different Functional 
Forms of ( )g tα  

For ( ) ( )g t E ctα α
α= we have the given equation is 

 ( )2

( ) ( )( )

( ) ( )

( ) for

J J J

J J

f D y D a D b y

D a b D ab y

E ct c a b

α α α

α α

α
α

= − −

 = − + +  

= ≠ ≠

 (4.1) 

Here let the particular integral be ( )py PE ctαα=  
where P is constant.  

Then  

 2 2( ) ( )J J
p pD y PcE ct D y Pc E ctα α α α

α α   = =     

and putting in the given equation (4.1) we get the 
following 

 

( )
( )

[ ]

2

2

2

2

2

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) 1

( ) 1

( )( ) 1

J J
p

J J
p p p

D a b D ab y E ct

D y a b D y aby E ct

Pc E ct a b PcE ct

abPE ct E ct

Pc a b Pc abP

P c a b c ab

P c a c b

α α α
α

α α α
α

α α
α α

α α
α α

 − + + =  

   − + + =   

− +

+ =

− + + =

 − + + = 
− − =

 

Therefore 

 1
( )( )

P
c a c b

=
− −

 

and consequently the Particular integral is  

 1 ( )
( )( )py E ct
c a c b

α
α=

− −
 

Hence the general solution is 

 1( ) ( ) ( )
( )( )

y AE at BE bt E ct
c a c b

α α α
α α α= + +

− −
(4.2) 

For implying ( )( ) 0c a b c a c b= ≠ − − = then the 
solution (4.2) does not exists. In this case the fractional 
differential equation is  

 ( )2

( ) ( )( )

( ) ( )

J J J

J J

f D y D a D b y

D a b D ab y E at

α α α

α α α
α

= − −

 = − + + =  

 (4.3) 

If we consider ( )py PE atαα= in this case also then 

putting in (4.3) we get 0 ( )E atαα= which is free from P 
i.e. P is non-determinable. This form of PI is not suitable 
here; consider the modified form as following 

 ( )py Pt E atα α
α=  

Then 

 
2 2

( ) (1 ) ( )

( ) 2 (1 ) ( )

J
p

J
p

D y P at E at E at

D y P a t E at a E at

α α α α
α α

α α α α
α α

α

α

   = + Γ +   
   = + Γ +   

 

and putting in (4.3) we get the following 

 

2 2 (1 ) ( )

( ) (1 ) 1
1

( ) (1 )

( )
( ) (1 )p

Pa t aP a b Pat

a b P Pabt

P
a b

ty E at
a b

α α

α

α
α

α

α

α

α

α

+ Γ + − +

− + Γ + + =

=
− Γ +

=
− Γ +

 

In this case the general solution of the fractional 
differential equation is of following form 

 ( ) ( ) ( )
( ) (1 )

ty AE at BE bt E at
a b

α
α α α

α α αα
= + +

− Γ +  

When c a b= = then  

 2( ) ( ) ( )J Jf D y D a y E atα α α
α= − =  (4.4) 

and take the particular integral in the form  

 
2 ( )py Pt E atα α

α=  
then  

 2 (1 2 )( ) ( )
(1 )pD y Pat E at Pt E atα α α α α

α α
α
α

Γ +
= +

Γ +
  

 

2 2 2 ( )

(1 2 )2 ( ) (1 2 ) ( )
(1 )

J
pD y Pa t E at

aPt E at P E at

α α α
α

α α α
α α

α α
α

  = 
Γ +

+ + Γ +
Γ +

 

Putting this in (4.4) and after simplification we get  

 2

1
(1 2 )

( )
(1 2 )p

P

ty E at
α

α
α

α

α

=
Γ +

=
Γ +

 

In this case the general solution will be of following 
form 

 
2

( ) ( ) ( )
(1 2 )

ty At B E at E at
α

α α α
α αα

= + +
Γ +

 

Thus we can summarize the result as a theorem in the 
following form  
Theorem: The differential equation the 

( ) ( )Jf D y E ctα α
α=  has particular integral 

 1 ( ) for ( ) 0
( )

E ct f c
f c

α
α ≠  

(i) When ( ) ( )( )J J Jf D D a D bα α α= − −  for c a b≠ ≠  
then solution of the fractional differential equation will be  

 1( ) ( ) ( )
( )( )

y AE at BE bt E ct
c a c b

α α α
α α α= + +

− −
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(ii) When ( ) ( )( )J J Jf D D a D bα α α= − −  for c a b= ≠  
then solution of the fractional differential equation will be  

 ( ) ( ) ( )
( ) (1 )

ty AE at BE bt E at
a b

α
α α α

α α αα
= + +

− Γ +
 

(iii) When ( ) ( )( )J J Jf D D a D bα α α= − −  for 
c a b= =  then solution of the fractional differential 

equation will be  

 
2

( ) ( ) ( )
(1 2 )

ty At B E at E at
α

α α α
α αα

= + +
Γ +

 

4.2. Use of Direct Method to Calculate the 
Particular Integrals for Different Functional 
Format of ( )g tα  

Using the direct method as describe in section 3.1 we 
can easily calculate the Particular integrals for different 
functional format of ( )g tα . 

• For ( ) ( )g t E ctα α
α= we have  

1 ( )
( )

1 ( )
( )( )

1 1 1 ( )
( ) ( )

1 1 1 ( ) for
( ) ( )

1 ( ) for .
( )( )

p J

J J

J J

y E ct
f D

E ct
D a D b

E ct
a b D a D b

E ct c a b
a b c a c b

E ct c a b
c b c a

α
αα

α
αα α

α
αα α

α
α

α
α

=

=
− −

 
= − 

− − −  
 

= − ≠ ≠ − − − 

= ≠ ≠
− −

 

In this case the general solution is  

 
1( ) ( ) ( )

( )( )
for

y AE at BE bt E ct
c b c a

c a

α α α
α α α= + +

− −
≠

 

• For c a=  

 

1 ( )
( )

1 ( )
( )( )

1 1 1 ( )
( ) ( )

( )1 1 ( )
(1 ) ( )

p J

J J

J J

y E at
f D

E at
D a D b

E at
a b D a D b

t E at
E at

a b a b

α
αα

α
αα α

α
αα α

α α
αα

αα

=

=
− −

 
= − 

− − −  
 

= − 
− Γ + −  

 

In this case the second part will be adjusted in the 
complementary function and hence the general solution is 

 ( ) ( ) ( )
( ) (1 )

ty AE at BE bt E at
a b

α
α α α

α α αα
= + +

− Γ +
 

• For c a b= =  

 

( )

( )

( )
[ ]

2

2

2

2

1 ( )
( )

1 ( )

1 ( )

1( ) 1

( )
.

(1 2 )

p J

J

J

J

y E at
f D

E at
D a

E at
D a

E at
D a a

t E at

α
αα

α
α

α

α
α

α

α
α

α

α α
α

α

=

=
−

 
 

=  
 −
 

=
+ −

=
Γ +

 

In this case the general solution will be  

 
2

( ) ( ) ( )
(1 2 )

ty At B E at E at
α

α α α
α αα

= + +
Γ +

 

• In generalized case for any polynomial type function 
( )Jf Dα the particular integral is  

 1 1( ) ( ) for ( ) 0.
( )( )

py E ct E ct f c
f cf D

α α
α αα= = ≠  

For ( ) 0 ( )Jf c f Dα= must contain a factor of the 

form ( ) ,
kJ D cα −  -positive integerk  i.e.  

 ( )( ) ( ) with ( ) 0
kJ J Jf D D c D cα α αφ φ= − ≠  

then  

 
( )

[ ]

1 ( )
( ) ( )

( ) 1 1
( )

( )
( ) (1 )

p J k J

kJ

k

y E ct
D c D

E ct
c D c

E ct t
c k

α
αα α

α
α

α

α α
α

φ

φ

φ α

=
−

=
−

=
Γ +

 

• Again if ( ) ( ) ( )Jf D v t E ctα α α
α=  Here using 

Leibnitz rule of fractional derivative on (Jumarie type 
fractional derivative) we get the following steps 

 

( )
( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

operate on both sides

( ) ( ) ( ) ( ) ( )

Let ( ) ( ) ( )

J

J

J

J

J J

J

D v t E ct

D v t E ct cv t E ct

D c v t E ct

D

v t E ct D D c v t E ct

V t D c v t

α α α
α

α α α α α
α α

α α α
α

α

α α α α α α
α α

α α α

−

−

   = +   

= +

 = + 

= +
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1then ( ) ( )

( )
( ) ( ) ( )

J

J
J

v t V t
D c

E ct
D V t E ct V t

D c

α α
α

α
α α α αα

α α
−

=
+

  =  +

 

 

Thus weobtain

( )
( ) ( ) ( )

( )1 ( ) ( ) ( )

J

J J

E ct
D V t E ct V t

D c
E ct

V t E ct V t
D D c

α
α α α αα

α α

α
α α αα

αα α

−   =  +

=
+

 

Thus in generalized case we have  

 

( )1 ( ) ( ) ( )
( ) ( )J J

E ct
V t E ct V t

f D f D c

α
α α αα

αα α=
+  

5. Solution the Fractional Differential-
Application of Method Derived 
Example 1: We take the following fractional differential 
equation ( ) 0y t = for 0t <  

 [ ] [ ]
2 1 23 35 6J D y D y y t   

− + =   
   

 

Solution: Solution of the corresponding homogeneous 
equation is [15] 

 
1 1

3 31 1
3 3

(2 ) (3 )cy AE t BE t= +  

The particular integral calculation is done in following 
steps 

 

6
3

1 1
3 3

6
3

1 1
3 3

1 11 1
3 3 6

3

31 2
3 3 3 6

3

31 2
3 3 3 6

3

26
3

1

( 2)( 3)

1 1

( 3) ( 2)

1 1
1 1

3 3 2 2

1
1 ....

3 3 9 27

1
1 ....

2 2 4 8

1 3
6

p
J J

J J

J J

J J J

J J J

y t
D D

t
D D

D D
t

D D D
t

D D D
t

t

− −

=

− −

= −

− −

= − − + −

= − − + − +

+ − + − +

−
= +

 
 
 
 
        
    
     

 
 
  
 

 
 
  
 

( ) ( )

( ) ( )

( )

2 3 35 4
3 3

2 2 3 35 4
3 3

4 4 5 53 2
3 3

4 4 5 53 2
3 3

6 6 7 71
3

6 6 7 71
3

2 (1 2) 3 2 (1 2)

1 13 .2 3 .2

3 2 (1 2) 3 2 (1 2)

1 13 .2 3 .2

3 2 (1 2) 3 2 (1 2)
(1)13 .2 3 .2

t t

t t

t

Γ + − Γ +
−

Γ + Γ +

− Γ + − Γ +
+ +

Γ + Γ +

− Γ + − Γ +
+ +

ΓΓ +

 

Hence the general solution is  

 ( ) ( ) ( )

( ) ( )

61 1
3 3 31 1

3 3
5 34

3 3 3
2 3 48 7 6

3 3 3
2 1

3 3
5 6 75 4

3 3

1(2 ) (3 )
6

10 38 130
6 6 6

422 1330 4118
6 6 6

Where and arearbitary constants.

y AE t BE t t

t t t

t t

A B

= + +

+ − +
Γ Γ Γ

+ + +
Γ Γ

 

Example 2: Consider the fractional order forced 
differential equation ( ) 0y t = for 0t <   

 [ ]( )2 2 cos ( )J D y y F atα α
αω+ =  a ω≠  

Solution: Here solution of the corresponding 

homogeneous equation [ ]( )2 2 0J D y yα ω+ = is [15] 

 cos ( ) sin ( )cy A t B tα α
α αω ω= +  

The particular integral is 

 2 2 2 2
1 1cos ( ) cos ( )py F at F at

D a
α α

α αα ω ω
= =

+ − +
 

Hence the general solution is 

2 2
1cos ( ) sin ( ) cos ( )y A t B t F at

a
α α α

α α αω ω
ω

= + +
− +  

For particular integral we replaced J D iaα ≡  so 
2 2 2( )J D ia aα ≡ = −  

Example 3: Take the fractional order damped-forced 
differential equation ( ) 0y t = for 0t <   

 
[ ]( ) [ ]( )2 2 22 ( )

cos ( )

J D y c D y c y

F at a

α α

α
α

ω

ω

+ + +

= ≠
 

Solution: Here solution of the corresponding 
homogeneous equation [15] 

 [ ]( ) [ ]( )2 2 22 ( ) 0J D y c D y c yα α ω+ + + =  

is  

 ( ) cos ( ) sin ( )cy E ct A t B tα α α
α α αω ω   = +     

The particular integral is  

 
( )

( )

2 2 2

2 2 2

1 cos ( )
2 ( )

1 cos ( ),
2 ( )

p J J

J

y F at
D c D c

F at
c D c a

α
αα α

α
αα

ω

ω

=
+ + +

=
+ − +

 

here replace 2α 2by -J D a  
multiply the number pr and denominator by  

 ( )2 2 2( ) 2 Jc a c Dαω− + −  
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( )
( )

2 2 2

2 2 2 2 2 2

2α 2

2 2 2

2 2 2 2 2 2

( ) 2
cos ( ),

( ) 4

here again replace by -

( ) cos ( ) 2 sin ( )
( ) 4

J

p J

J

c a c D
y F at

c a c D

D a

c a at ca at
F

c a c a

α
α

αα

α α
α α

ω

ω

ω

ω

− + −
=

− + −

− + −
=

− + +

 

Hence the general solution is  

 
( )

2 2 2

2 2 2 2 2 2

cos ( ) sin ( ) ( )

( ) cos ( ) 2 sin ( )
( ) 4

y A t B t E ct

c a at ca at
F

c a c a

α α α
α α α

α α
α α

ω ω

ω

ω

 = +  

− + −
+

− + +

 

6. Conclusions  
In this paper we have developed a method to solve the 

linear fractional non-homogeneous fractional differential 
equations, composed by Jumarie type derivative. The 
solutions are obtained here in terms of Mittag-Leffler 
function and fractional sine fractional cosine functions. 
Here we have proved via usage of Jumarie fractional 
derivative operator that for obtaining the particular 
integrals for several forcing functions scaled in function of 
variable tα  eases the method, and we obtain conjugation 
with classical method to solve classical non-homogeneous 
differential equations. The short cut rules, that are 
developed here in this paper to replace the operator Dα or 
operator 2D α as were used in classical calculus, gives 
ease and advantage in evaluating particular integrals. 
These techniques obtained herein this paper is remarkable 
to study fractional dynamic systems, and eases to get 
solution in terms of Mittag-Leffler, and fractional-
trigonometric functions as in conjugation with exponential 
and normal trigonometric function for normal integer 
order calculus. Therefore this developed method is useful 
and advantageous as it is having conjugation with the 
classical methods of solving non-homogeneous fractional 
linear differential equations composed via Jumarie 
fractional derivative, and is also useful in understanding 
physical systems described by FDE. 
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