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1. INTRODUCTION 

IN THE present paper we develop in some details an existence analysis for nonlinear abstract 

operator equations of the form 

Ex=Nx, xEX, (1.1) 

particularly in view of applications to quasi-linear hyperbolic problems at resonance. Thus, 

if E above is an unbounded linear operator E : dam(E) -+ Y, dam(E) C X, where X and Y 
are real Banach spaces, and N: X + Y is a continuous nonnecessarily linear operator, we 

shall assume that the kernel of E is not trivial and possibly infinite dimensional, 1 s dim ker E 
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c + ~0, and that the partial inverse operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH of E, or H : Range E -+ X/ker E, is bounded, 

but not necessarily compact. Indeed, this is the difficult situation which actually may occur 

(dim ker E = ~0, H bounded but not necessarily compact) in hyperbolic problems. We shall 

call this the “hyperbolic case”. 

In this paper we shall see that the theorems we proved earlier (Cesari and Kannan [lo, 111, 

Cesari [5, 61) for the “elliptic” case (1 c dim ker E < +m, H compact) have a natural 

extension to hyperbolic problems. 

Of course, it may occur that for a given hyperbolic problem we have dim ker E < w and 

H compact. the latter may simply occur because of a suitable choice of spaces X and Y and 

their topologies. In this case, the theorems we proved earlier apply with no change. 

Our analysis centers on suitable decompositions X = X0 x Xi, Y = Y, x Yi of X and Y, 

X0 = ker E, Y, = range E, and the study of certain transformations T: Q* -- ;, Q*, Q* = 

So x S1, So C X0, Si C Xi, or (x*, xi) -+ (a*, Zi), of the form Xl = Kix, j* = x* - Kg, x = 

(x*, Xi), R = (f*, ii), so that their fixed points x = (x*, xi), x = TX, satisfy the equations 

x1 = Kix (auxiliary equation), and KG = 0 (bifurcation equation). When needed, the map 

T : Q* + 51* is replaced by maps T,, : 52: + S2,* , S2,* finite dimensional, in such a way that the 

sequence [x,] of fixed elements x, = T,,x,, is weakly convergent. The existence of at least a 

fixed point for T, (or for each T,), is proved either by the Leray-Schauder topological 

argument, or by Schauder’s fixed point theorem, based on the study of the inequality 

(&x, x*) 2 0 (or GO) for Px = x*. 

In the elliptic case, as well as in ordinary differential equations, the inequality (&x, x*) 

2 0 (or ~0) (condition (*)) has been shown to include the Landesman and Lazer type 

conditions, and a number of other statements. We shall see the relevance of the same inequality 

in the hyperbolic case. 

In Sections 2-5 we discuss some abstract theorems, in Sections 6-9 we summarize and 

briefly prove a number of statements concerning certain classes of Sobolev-type periodic 

functions and the Fourier series. In Section 10 we compare condition (*) with Landesman- 

Lazer type conditions. 

In Sections 11-14 we show that our uniform approach applies to problems in the large which 

had been previously discussed by Petzeltova, Hall, and others only in the perturbation case. 

In [7] we shall see that a direct application of Schauder’s fixed point theorem enables us 

to prove existence for some hyperbolic problems with =-dimensional kernel. 

Some points of this paper have been presented at the May 1978 Conference in Florence, 

Italy, and distributed to the audience there in provisional form, and more points have been 

presented at the October 1979 Conference at Oklahoma State University, Stillwater (Differ- 

ential Equations, pp. 1-21, Academic Press, New York, 1980). 

AN ABSTRACT EXISTENCE ANALYSIS 

2. FIXED POINT THEOREMS 

Let X = X0 +X1 be a decomposition of a real Hilbert space X, with inner product ( , ) 

norm ]I 11, and projection operator P: X + X such that PX = X0, (I -  P)X = X1. 

(2.i) Let X be a real Hilbert space, and X0 finite dimensional. Let R, I be positive numbers, 

let So = [x* E X0( ]~*I\ s R], S1 = [x1 E X1( lblll c r] and Q =SO x Si. Let Ki: R + Xi be a 
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compact map, let KC,: R + X0 be a continuous map, and assume that (a) jjK,xll s r for all x 

E Q; (b) (Kdr,x*) G 0 [or >O] for all x = x* + xi, i/x*\1 = R, l/xl\\ cr. Then, there is at least 

one point x = xc + xi EQ with xi = KIX, KG ~0. 

Proof Assume that (Kdc,x*) G 0 holds in (b). Let T : R * X denote the map defined by 

TX = Px +K,x + K,g, and note that, if x is a fixed point of T, or x = TX, then, by writing 

x = Px + (I - P)x, we derive (I - P)x - Klx = KG, where (I - P)x - Klx E X1 and 

-KG E X0. Hence (I -P)x - Klx = 0, KG = 0, that is, xl = Klx, K,g = 0. 

Now we note that T is a compact map, since K1 is compact, and P + KO has finite dimensional 

range X0. Thus, by the theory of Leray and Schauder, to prove that T has some fixed point 

in Q, it is enough to prove that (I -0’)~ # 0 for all x E 52 and 0 < A < 1. Indeed, for x = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X* + xl, ((x11(\ = r, ((x*(( =s R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe have 

((I - AZ-)x, x1) = IGc*ll’ - (=1x, Xl) ;ibj$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-$~;xII Il~~ll 

For x = x* +x1, JIxi]( c r, JJx*fl = R we have analogously- . 

((I - AT)x,x*) = [(x*1/* - A[lx*I(* - h(Kox,x*) > 0. 

In any case (I - U)x # 0 for x E a&, 0 < A < 1. 

A statement similar to (2.i) was proved by Cesari and Kannan [lo] by a different proof 

based on Schauder’s fixed point theorem. Statement (2. i) was proved by Kannan and McKenna 

[19] by the argument given above. For extensions of (2.i) to Banach spaces, again based on 

Schauder’s fixed point theorem, see Cesari [5, 61. Here is another version of (2.i) for Banach 

spaces, based on Schauder’s fixed point theorem, and whose proof is particularly elementary 

and transparent. 

Let us assume that there is a bilinear operator XO X X0+ reals, or (u, u), such that 

I&, u>l s II4 II4 fo r a ll u, u E X0; (2.1) 

(u,u)aO forallu, and (u, u) = 0 if and only if u = 0. (2.2) 

If X is a real Hilbert space then we can take for ( , > the inner product. The existence of such 

operators (u, U) is a~ rather common occurrence (cf. Cesari [4]). Obviously, the linear 

operator (u, U) is continuous as an operator X0 X X0-’ reals. 

Let X = X0 x X1 be a decomposition of a real Banach space X with projection operator 

P : X+ X such that PX = X0, (I - P)X = X1. Here, by a projection operator P we mean any 

linear bounded idempotent operator, and thus XO and Xi are necessarily closed subspaces of 

the Banach space X in the topology generated by the norm I( ]I of X. 

Let Ro, r be positive numbers, let SO = [x* E X0] ]~*]I sRo], S1 = [x1 E X1/ jlxl/J c r], and SJ 

= soxsi. 

(2.ii) Let X be a real Banach space, let X =X0 + Xi be a decomposition of X into closed 

subspaces of which X0 is finite dimensional, and P, RO > 0, r > 0, SO, &, S2 be as above. Let 

K. : 52 + X0 be a continuous map, KI : R --, X1 be a compact continuous map, and assume 

that (JKdr(l c Jo, llKlxll s J 1 f or all x E &, Jo,Ji constants, with Ji G r, JO < Ro. Let us also 

assume that (K@,x*) s 0 [or 301 for all x E 52, x* = Px, & s IIx*ll SRO, for some Z?o < 

R. - lo_ Then there is at least one point x E Q, x = x* + xi, with xi = Klx, KG= 0. 



754 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. CESARI and R. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKANNAN 

Proof of (2.ii). Let us assume we always have (KG, x ) * c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. We take now positive numbers 

RI, Rz, R, LX, psatisfying the relations 

&sR,-cR~cR=sR~, 00, po, 
(2.3) 

R,+JosR, R2+JosR, aJ,,R+,!iIos2, 

which we shall prove below to be compatible with the hypotheses of the theorem. Let us 

consider the transformation T: x + X, or Q --, X, defined by 

T:xl = K,x, X* =x* +g(x*,x& x=(x*,x1) EQ, X=(X*,X& (2.4) 

where 

g(x*, xi) = KG for lb*11 6 Ri, 

g(x*,xd = [cu(Kox,x*) - PllicdOx* forRz< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlk*ll~R (25) 

g(x*,x]) =AKox+(l -A)[~(Kox,x*)-Pllr(~lO~* forRi~lix*li~R~, 

and 
A = (R2 - RI)-‘(R2 - &x*11), 0 s A =Z 1. 

Let us prove that T maps 52 into itself. First, we note that lki/ = l/Kixll cJ1 =S r in any case. 

Now we note that, for l/x*11 G RI, we have f* = x* +KG, hence 

IjX*ll s /Ix*H + j\Kox/ s RI + Jo s R. 

For Rz c Ib*ll s R, we have 

u&R+pI,S2, x*= [l + 4Kc&x”) - PIIKa YInX*, 

-l~l-~~-~BJo~l+a(Kox,x*)-BIIK~ll~l, 

and again Ipll s Ib*ll. 

For R, s lb*]] s Rz, we have 

x* = [l + (1 - A) (cu(K&x*) - fiIIK@xl~]x* + A&K, 

where again the bracket is between -1 and 1, and I(A&xI( s JO. Hence, ll~*(l s 

IIx*ll +Jo s R2 + Jo c R . We have proved that T: Q-, R. 

Now we have to prove that we havef* = x* if and only ifK$ = 0. Certainly,P* = x* if and only 

if g = 0, and, for IIx*[l s RI, certainlyg = 0 if and only if KG =O. 

For R2 =S IIx*ll s R, we have 

g = [@(KG, x*) - BIh+*, x* + 0, 

and a(Kx, x*) -PIIKd;ll c -fllKd;ll. Thus, g = 0 if and only if IlKgIl = 0. For RI </x*/l < 

Rz, we have 

hence 

g = %x + (1 - 4 [4Knx,x*) - iollKn,+*, 

(g, x*) = A(K,,x, x*> + (1 - A) [a(K,$x, x*> - PllKdll ix*, x*)9 

where now A > 0, 1 - A > 0, (K@,x*) c 0, x* # 0, hence (x*,x*) > 0. Thus, (g,x*) < 0 for 

Kg Z: 0, and finally g = 0 if and only if JI&xJI = 0. 

In any case, that is, for any x*, IIx*ll s R, we have 1* = x* if and only if K,,x = 0. 
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Here, K, is compact by hypothesis, and KO is continuous and bounded, and has finite 

dimensional range. Thus, T: &2 + 52 is a continuous compact map and 52 is closed and convex. 

By Schauder’s fixed point theorem, there is a fixed point x = TX, x = (x*, x1) E $2, and then 

xi = Kixand z* = x*, hence Z&,x = 0. 

Relations (2.3) are compatible with the hypotheses of the theorem. Indeed, R. - Jo > f?, 

and we can take for instance R = Ro, RI = Ro - JO, and RI any number & < R, < R. - 

J,,.Finally, we can choose arbitrary numbers (Y > 0, p > 0, sufficiently small, so that 

cuR,+fo + ,&I,, 6 2. 

Remark 1. Instead of considering the transformation T defined by (2.4-2.5), we could have 

considered the transformation T defined by 

T: Xi = Kix, X* =x* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ g(x* + Xl, x*j, (2.6) 

where as before x =x* txi, 2 = R* + Pi, x*, j* E XII, xi, ii EXi, IG;*ll PRO, lixdl sr, and 
where Pf = f*. This transformation has been already used in (Cesari [6]). 

Remark 2. It is clear that the inequality (KG, x*) G 0 [or 201 is only a devise to guarantee 

that T: .f,* = Klx, R* =x* - K&,x E 52, maps & into itself with I - AT having a constant 

topological degree as A describes [0, 11 and hence-under compactness hypotheses and by 

Leray-Schauder’s theory-T has a fixed point in SL. Often, we shall be able to prove directly 

that T maps & into itself, and then the existence of a fixed point under the same compactness 

hypotheses follow from Schauder’s fixed point theorem. 

3. THE OPERATIONAL EQUATION 

Let X, Y be real Hilbert spaces. Let E : D(E) + Y be a linear operator with domain D(E) 

C X, let N : X + Y be an operator nonnecessarily linear, and let us consider the equation 

Ex=Nx, XCSX. (3.1) 

Let ker E denote the kernel of E, that is, the subspace of X of all x E X with Ex = 0 , and 
let Yi denote the range of E. Let us assume that there are projection operators P : X + X 

and Q : Y -+ Y such that 

PX=Xo>kerE, (I - ZJ)X = xi, 

QY = Yo, (I - Q)Y = Yi = range E. 

The map E : D(E) f~ XI --, Y, is one-one and onto, and the inverse map H : Yi -+ D(E) n 

X, is, therefore, one-one and onto, and H is linear. We need only to assume that E, H, P, 

Q satisfy the relations (a) H(Z - Q)Ex = (I - P)x, (b) QEx = EPx, (c) EH(Z - Q)x = 

(I - Q)x. Then, it is easy to verify that equation (3.1) is equivalent to the following system 

of auxiliary and bifurcation equations 

x=Z=x+H(Z-Q)Nx, (3.2) 

Q(E-N)x=O. (3.3) 

If X0 = ker E, then (b) reduces to QEx = EPx = 0, and by writing x = x* + x1, x* = Px 

E X0, x1 = (I - P)x E X1, auxiliary and bifurcation equations reduce to 

x=H(Z-Q)N(x*+xi), (3.4) 
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QN(x* + x1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. (3.5) 

Let L = 111111. Also, let S : YO ---) X0 by any continuous operator for which we only require here 

that S-‘(O) = 0. Then, equation (3.3) can be replaced by SQ(E - N)x = 0 and equation (3.5) 

by SQNx = 0. Moreover, equation (3.3) can be replaced by S(EP - QN)x = 0. 

(3.i) (An abstract theorem for the case dim ker E < ~4 and H compact). 

Let X0 = ker E be nontrivial and finite dimensional, let H be compact, let N and S be 

continuous operators. Let us assume that there are numbers R, I positive such that (a) for all 

x* E Xo, xi E Xi, ICr*ll CR, llxil] c r we have ]]N(x* + xi)]l G L-‘r, (b) for all x* EXU, xi E 

Xi, ICr*ll= R, ]Gcill < r we have (SQN(x* + xi), x*) 2 0 [or GO], then equation Ex = Nx has 

at least one solution x = x* +x1,x* E X0, xi E Xi, IJx*ll c R, l/xlll c r, I/XII G (R’ + r2 )I”. 

We need only apply (2.i) with Klx = H(Z - Q)Nx and Kdc = SQNx. 

Remark. If X0 > ker E, if X0 is finite dimensional, and we assume E to be continuous on 

X0, then both SEP and SQN are continuous maps on X, and (3.i) still holds with the inequality 

in (b) replaced by (S(EP - QN) (x* + xl), x*) 2 0 [or ~01. The proof is the same. 

The following corollaries for X = Y, P = (2, S = I, are worth noting. 

COROLLARY 1. If we know that there are constants Jo > 0, K 2 LJo such that (A) JINX]] s JO 

for all x E X; (B) (N(x* +x1),x*) 30 [or ~01 for all x* EX”. xi EXi, with 

IG;*]ls Ro, ]Gci]] s K, th en conditions (a), (b) of (3.i) hold. 

Indeed we can take any R > R. and r = K, so that l]Nxll< Jo = L-‘(L.lo) c L-‘K = L-‘r. 

COROLLARY 2. If we know that there are constantsJo 2 O,J1 > 0, 0 < k < 1, R. 2 0, Ku 3 

Wo, K, > WI such that: 

(Ak) l\Nxllc JO + J$$ for all x E X; 

(4) (N(x* + xi), x*) 2 0 [ or SO] for all x* E X0, x 1 E Xi 

with ]/x*ll 2 Ro, 16;111 s Ko + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKIIW; 

then conditions (a), (b) of (3.i) hold. 

Indeed, first choose a constant (Y > 0 such that JO + Ji(1 + ~?)“‘~Rfr 2 L-‘(uRI, and 

LJ,(l +~y’)~” c K,, then take r = aR and take R *Ro SO that 1,~ +Ji(l +d)k’2Rk = 

L-‘aR. Now for /xi]] G r, ]Jx*II s R, we have 

LJINxll s L(Jo + Jl(1 + d)k’2Rk) = CUR = r. 

On the other hand, for ]jxll] 6 r, IG;*ll = R, we also have 

llxlll s r = CUR = L(Jo + Jl(l + .)“‘R’) 

c K. + (w,) (1 + a?)k’2Rk s Ko + K,Rk c Ko + K~lbcll~. 
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COROLLARY 3. If we know that there are constants Jo 2 0, Ji > 0, k 31, R. 2 0, KU > 

Wa, K0 > Wi, such that (Ak), (Bk) hold (for fixed k 2 l), and (Ck) Ji E y where y > 0 is a 

constant which depends only on Ro, L, K,, then the conditions (a), (b) of (3.i) hold. 

The proof is similar to the one for 0 < k < 1. First we choose (Y> 0 so that 

LJ1(1 + a?) k’2 = K1, hence LY = ((KIL-‘J;‘)2’k - 1)“2. Now we take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = LYR and R 3 R,, so 

as to satisfy 

Jo + Jr(1 + d)k’2Rk = L-‘&R. 

If we can find such an R > R. the argument is the same as before. To verify that such an 

R a R. exists we write the equation for R in the form 

&R-l + J,(K,L-‘J;‘)Rk-’ = L-‘((KIL-‘J;‘)2’k - $, 

where k - 1 2 0. Thus, ail we have to require is that Jo > 0 is sufficiently small, namely so 

that 

J&o’ + K,L-‘R;-’ < L-1((K1L-‘J;‘)2k - 1)‘“. 

4. PRELIMINARY CONSIDERATIONS CONCERNING THE HYPERBOLIC CASE 

Let E, N be operators from their domains D(E), D(N) m a space ‘% with ranges in a space 

3, both % and 3 real Banach spaces or Hilbert spaces. Let us consider the operator equation 

Ex = Nx as in Section 2. Its solution x in % may be expected to be usual solutions, or 

generalized solutions, according to the choice of %‘. We shall consider first smaller spaces X 

and Y, say X C %‘, Y C ‘?J, both real Hilbert spaces, and we shall assume that the inclusion 
map j: X + 2 is compact. 

We shall then construct a sequence of elements [xk], xk E X, which is bounded in X, or 

]bk]l c M. Then, there is a subsequence, say still [k] for the sake of simplicity, such that bxk] 

converges strongly in 2 toward some element t. On the other hand, X is Hilbert. hence 

reflexive, and we can take the subsequence, say still [k], in such a way that xk --, x weakly in 

X. Actually, c = jx, that is, c is the same element x E X thought of as an element in %‘. In 

other words: 

(4.~) If xk-f x weakly in X and jxk + c StrOngly in %, then < = jx. 

Indeed, j : X+ % is a linear compact map, hence continuous (see, e.g., [3, p. 285, Theorem 

17.11). As a consequence, xk+ x weakly in X implies that jxk+ jx weakly in %? (see, e.g.. 

[3, p. 295, Proposition 121). Since jxk+ f strongly in %‘, we have c = jx. 

We shall assume that Xi and X0 contain finite dimensional subspaces X1,, X0, such that 

Xl, cxl,. +1 C XI, XU, CX”. n + I C X0, n =l, 2,. . . , with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,,X,, =X1, U,,X”,, =X0, and 

assume that there are projection operators R, : XI *Xl,,, S, : X0-+X,,, with R,X, = Xlnr 

&X0 = X0, (cf. similar assumptions in Rothe [23]). Since X is a real Hilbert space, we may 

think of R, and S, as orthogonal projections and then jlR,,xllx s Ikllx, &_r*llx 5 j~*llx for all 

xEX, andx*EXO. 

Thus, we see that in the process of limit just mentioned, xk+x weakly in X, jxk + jx 

strongly in %, and the limit element can still be thought of as belonging to the smaller space 

X. This situation is well known in the important case X =M$‘(G), Z =w;(G), 0 c n < N, 

X C b, G any open set in some R”, v 21. Then, the weak convergence xk ---, x in W?(G) 



758 L. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACESARI and R. KANNAN 

implies the strong convergence jxk --, jx in w;(G), and 5; = jx is still an element of the smaller 

space X = WY(G). 

Concerning the subspaces X,, of& it is not restrictive to assume that there is a complete 

orthonormal system [ui, u2,. . . , un, . . .] in X0 and that Xan =sp(ul, v2, . . , u,,), n = 1, 2, 

. . . . We shall further assume that there is a complete orthonormal system (w,, 

w2, . . . ) w,, . . .) in YO, we take Yen = sp(w,, . . . , wn), and denote by SA the orthogonal 

projection of Y0 onto Yen. 

We consider now the coupled system of operator equations 

x = S,i’x + R,H(Z - Q)Nx, (4.1) 

0 = S;QNx. (4.2) 

We shall now define a map a;, : Y,, +X0,, by taking any = Z(y, W&J;. Then, we have 0 = 

o$,QNx if and only if 0 = SLQNx, that is, cu;;‘O = 0. We conclude that system (4.1-4.2) is 

equivalent to system 

x = S,Px + R,H(I - Q)Nx, (4.3) 

0 = a&QNx. (4.4) 

(4.i) (LEMMA). Under the hypotheses above, let us assume that there are constants R, 

r > 0 such that 

(a) for all x* E X0, x1 E Xi, &x*1] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACR, 1k111 s r, we have ]IN(x* + xl)]1 s-L-‘~; 

(b) for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAllx*ll = R, l/41 6 r we have (u$,QN(x* + x,),x*) 2 0 [or SO]. 

Then, for every n, system (4.1), (4.2) has at least a solution xn = x0*;, + xin, x, E D(E) r-l 

(X0” x Xln), &Px, = x &, with ]]xn]] =S M = (R’ +?)“2. M independent of n. 

Proof. If we consider the subset C,, of X0,, x X1, made up of all x = x* + x1, x* EXo, xl E 

Xi, with Ip*]l s R, ljx,ll or, we see that 

\IR,H(z - Q)Nx(( c r for allx E C,, 

(o$S~QNx, x*) 2 0 [or SO] for allx E C,, with ]k*]l = R. 

Now the assumptions actually used in the proof of (3.9 are satisfied. In particular, the 

compactness of the bounded operator R,H follows from the fact that R,H has a finite 

dimensional range, and the finite dimensionality of the kernel of E is now replaced by the fact 

that the range of a,$,QN is certainly finite dimensional. The bound M = (R’ + r’)“* 

is independent of n. 

5. AN ABSTRACT EXISTENCE THEOREM FOR THE HYPERBOLIC CASE 

In order to solve the equation Ex = Nx we now adopt a “passage to the limit argument”. 

We assume that both the Hilbert spaces X and Y are contained in the real Banach (or Hilbert) 

spaces % and 9 with compact injections j : X + %:, j’ : Y+ 9. Actually, we can limit ourselves 

to the consideration of the spaces Z and 5 made up of limit elements from sequences in X 

and Y respectively as mentioned in Section 4. Hence, 2 is identical to X and 5 is identical 

to Y, though they may have different topologies. We shall write Z? = jX, 5 = j’Y. 
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Analogously, we take %$ = ZX,, ‘30 = Z’Yo, %i = ZXi, 94, = Z’Yi, and the linear operators 

P:%&&,, Q:% -+ 30 are then defined by Px = x” in %J if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPx = x0 in X; Qy = y* in 5 if 

Qy = y* in 3. 

We now assume the following: 

(c) x, + x weakly in X and jx, + Zx strongly in % implies that Nx, + Nx strongly in 3, S,Px, 

+ Px strongly in 3, and R,,x,, --, x strongly in 5%. 

Under the hypotheses of (4.ii) there are elements x, E X,, such that 

x, = S,Px, + R,H(Z - Q)Nxn, (5.1) 

0 = a&,QNx,, (54 

where l/x,$ G M f or all n. Hence, there exists a subsequence, say still [x,], such that x, --, 

x weakly in X and jx, + jx strongly in 2. Then, by (S.l), (5.2), proceeding to the limit, we 

have 

x=Px+H(Z-Q)Nx, O=QNx, x-+%. 

Indeed, as n + m, .SA converges to the identity I : Yo+Yo and a;, converges to a homeo- 

morphism LY : Y. --‘X0 in the sense that &y +y, CY;LV --, y as n + ~4. 

We now remark that, in 2 the operator E may have no meaning and thus the concept of 

solution of Ex = Nx has to be properly understood. However, x E %’ and thus, by Section 

4, x is still an element of X on which E is defined. Furthermore, as a consequence of the 

hypotheses on P and H, we have QE = EP = 0 and EH(Z - Q) = I - Q. Thus, from the 

above limit equation we have 

Ex = EPx + EH(Z - Q)Nx + QNx 

= EPx + (I - Q)Nx + QNx = Nx. 

We summarize now the hypotheses and the conclusions concerning the operator equation Ex 

= Nx. We have obtained: 

(5. i) THEOREM. Let DE :D(E) +Y, D(E) C XC %, E a linear operator, N :X+ Y a non- 

necessarily linear operator, X, Y real Hilbert spaces, %‘, 9~ real Banach or Hilbert spaces with 

compact injections Z :X+ 2, Z’ : Y+ 3, with projection operators P :X-, X, Q : Y + Y, and 

decompositions X =X0 + Xi, Y = Y. + Yi, X0 =PX=kerE,Yi=(Z-Q)Y =range E, X,, 

infinitely dimensional, and bounded partial inverse H : Yi --+X1. Let L = /[Hj/, let N :X + Y 

be a continuous operator, and let P, Q, H, E, N satisfy (a), (b), (c) of Section 2. Let 

X0,, Xi,,, Yen be finite dimensional subspaces ofX0. Xi, YO with orthogonal projection operators 

R,:X,-, X,, S, :X,, -+ X0, SA :Yo + YO with R,X, = Xlnr S,Xo = X0,,, SAY,, =Y”,, , satisfying 
(c) of the present section with dim Xon = dim Yo,. Let on : Y, --, X,, be the operator defined 

in Section 4. 

If there are constants Ro, r > Oa;ih $;)(a) E: all X,; EXO, XI EXi, lk*[l CR,, llxlll c r, we 

have llN(x* +x1)/l c L-‘r; [(x*/J = Ro, IG;l/l c r we have 

(a;ls,:~~(x* + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx l), x* ) 3 0 [or ~01, then equation Ex = Nx has at least one solution 
lbll c (R; + ?)I”. 

In this theorem (5.i) no requirement is made concerning the behavior ofN(x* + xi) outside 
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and thus it allows for an arbitrary growth for N(x) 

How:ve”r: it is easy to see that, if (a) (]Nx]l 6 J 0 f or some constant J0 and all x E X; and 

(b) for some R0 the inequality (b) in (5.i) holds for all ]k*]] zRo and ICyrIl c WO, then (a), (b) 

certainly hold for Ro as stated in (b) and r = K = LJo, where K is the constant of Corollary 

1 of Section 3. We have seen in Section 3 that an analogous determination of Ro and r can 

be made in cases of slow growth ]]Nx(] s JO + J$#, 0 < k < 1, and even in the case that 

]]Nx]] s Ja + ~r(j_x]]~ for some k 3 1 provided Jr is sufficiently small (cf. [5, 61 for cases of 

arbitrary growth). 

Remark 1. Note that the modified bifurcation equation (5.2), or CYJ~QNX = 0, can always be 

replaced by the equation 

J,a,&QNx = 0, (5.3) 

where J, : X0,, + XO, is an invertible operator. When this is done, we shall require that (b) 

holds with the inequality replaced by 

(J,p,&QNx, x*) 2 0 [or CO]. (5.4) 

The following corollary of (5.~) is of interest. Again L = ll~jl. 

(5.4 Let N: X + Y be a continuous map, and let there be monotone nondecreasing 

nonnegative functions a(R), /3(R), R > 0, such that: 

(i) x E X, ]k]] < R implies ]]Nx]] s a(R); 

(ii) x1, x2 E X, I~& lb211 s R implies ]]Nxr - Nxz]] c /3(R)Ibl -x4 Let us assume further 

that 

(iii) there are numbers R o, r > 0 such that L/3((Ra + ?)I”) < 1, La((R2 +?)1’2) =Z r; and 

(iv) (cK&, QN(x* + XI), x*) 2 0 [or GO] for all ]bz*]] = Ro and ]~r]] s r. 

Then the equation Ex = Nx has at least one solution x = x* + XI, ICY*]] c Ro, lklll cr. 

Proof. We proceed as for (5.9 where now we first follow ([12], no. 5). Let B denote the 

set of all x = x* +x1,x* EBo = [x* E X0, lb*11 s R”], XI E BI = [XI E XI, /.x,1\ c r]. For every 
n, let B, denote the set of all x = x* +X1,x* EBo,, = S,PB,xl E BI, = R,(Z -P)B. Then, the 

truncated auxiliary equation x = S,,Px + R,H(Z - Q)Nx, for each arbitrary but fixed x,* E 

E Bon =S,PB, becomes x1 = R,H(Z -Q) N(x,* + x1), x1 E B,,, whose second member is a 

contraction map of B,,, into itself. Hence, the same auxiliary equation has a unique solution 

xnl = <xi) E B1,, or x = xx + r(xi) =T(xn*) , where now T is a continuous map from Bon into 
Bon x B1,. The truncated bifurcation equation is now reduced to a;$AQNT(xX) = 0, x,* E 

Bo,, and the inequality in (iv) can be used to obtain the existence of a solution x0,, of this 

equation. Then, system (5.1), (5.2) has a solution x, =x& + r(x&). Since ]~&]l G R&,,ll = 

IIT(x&)ll s (R: +?)I” = R, and these bounds are independent of n, we can proceed as for 

(5.i) to obtain the existence of a solution x E B = Bo X Bl of the equation EX = Nx, x = 

x* + xl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIk*lI <Ro, IMI s r. 
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6. THE SPACES A,, 

We discuss here in detail the class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,, of periodic functions. For the sake of completeness 

we prefer to present here the boundary value problem which has motivated the study of this 

class. Indeed, we consider the problem of existence of solutions u(t, x), periodic in f of period 

2n, for the differential equation and boundary conditions. 

D:u+(-l)PD;p=f(t,x,u )... ), o<x<n, --co<t< +w, (6. I) 

u(t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) = u(t, n) = 0, - ce < t < + m, (64 

D~u(t,O)=D~U(t,~)=o, s=1,2 )..., p-l, (6.3) 

u(t + 27c, x) = u(t, x), 0 <X < Jr, - 00 < t < - 03. (6.4) 

Thus, for p = 1, we have the wave problem un - u,, = 0 with the condition u(t, 0) = 

u(t, X) = 0 and 23c-periodicity in t. 

Let G = [0, 2n] x [0, n]. Let D denote the set of all real valued functions u(t, x), 2n- 

periodic in t, of class C” in G, and such that Dz%(t, 0) = D:%(t, n) = 0, k = 0, 1, . . , . Let 

A,, denote the completion of D under the norm 

lbllpm = (il, ((DW2 + W’W2) dt h) 1’2. 

Then, A,, is a real Hilbert space with inner product 

(u, ~&,,j = (DTu, DYv) + (DP”‘u, D$“‘u), u, u EA,, 

where in the second member the inner products are in &(G). 

Let E denote the operator defined by Eu = Dfu + (-l)pD&. Thus, for m = p = 1, EM 

= ufl - r&0 (u, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0)l.l = ( ut, u,) + (u,, u,). For any g(t, x) E Apm, we may consider the linear 

problem Eu = g. We say that u is a weak solution of this problem with boundary conditions 

(6.2-6.4) provided u E A,, and (u, EY)L, = (g,y)~~ for all y E D. Then, both equation Eu 

= g and boundary conditions (6.2-6.4) are understood in the weak sense. A complete 

orthonormal system in A,0 = &(G) is 

{ekl} = {2”2~G-1 sin kt sin Ix, 2”‘~-’ cos kt sin Ix, Ed-’ sin Ix} 

whose elements are naturally indexed by I = 1, 2, . . ., k = 0, 51, +2,. . . . For every 

element u E Apmr u has a Fourier development u = &QQ, where & ranges over all I = 
1, 2, . . . ) k = 0, 51, 22, . . . . The .&-integrable functions DFu , Emu have Fourier series 

which can be obtained by formal differentiation, and thus 

z a:,(k2” + l2”“) = I/u&,, < + 03. 

(6.i) If u E A,, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADPDfu is continuous if m > a + p-‘p + (2~)~‘(p + 1) and then 

]lDPD!ullm c cIl~]lprnr where the constant c depends only on a, /3, m, p. Moreover, for given 
(Y, /3, p, m, C, with m > a + p-‘/3 + (2~)~‘(p + l), and C > 0, the functions u with u E A,,, 

llu[lprn S C are uniformly continuous. 
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Proof If u E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,, then u(t, x) = &rklekl with &,ai,(k2m + /*f’“) = IIul/& < + CC, or 
Uk,(k2” + Py = bkland %$< +m. Note that (k’ + I@)” G 2”-‘(k*” + f2pm). From distri- 

bution theory then 

The sum in the series in parenthesis is, up to a multiplicative constant, less than the value of 

the following double integral, on which we perform the elementary substitution y = z”‘p, 

y 5 1, z 2 1, and then we use polar coordinates x = p cos 8, z = p sin 8, 

0: x*“*2BiP 

(x2 + z*)m 
(l/P)2 

(l/P) -  1 & & 

cos @*@(sin 69(28+ l-~)@ de m $~+(&%‘)+(ik)-2m dp. 

This integral has a finite value for 2a + (2plp) + (l/p) - 2m < -1 or m > (Y + p-‘/3 + 

(2~)~‘(1 + p). Thus for p = 2, we obtain the requirement m > CY + 2-*/3 + 3/4, which is 

certainly satisfied if m 2 a + 2-l/3 + 1. The same series above 

z b/&2m + lPm)-1’2DPD!e~, 

converges uniformly. To prove this we have only to show that it is uniformly Cauchy. Indeed, 

any partial sum C’ with indices, say M s Ikl + I s P, is in absolute value 

s (X’ b&)1’2(C’((kh + I~m)-1’2D~D~e~,)2)1’2 

6 IIullpm(X’((k2m + ZPm)-1’2D~D~e~~)2)1’2, 

where the first factor in the last term in bounded, and the second factor approaches zero as 

M, P + + ~0, independently of t, x and U. This proves (6.9. 

(6.ii) If u E A,, then DUD& E L, provided LY + p-‘/3 + (2~)~‘@ + 1) 3 m and 2 < q < 

(2~ + 2)l(p + 1 + 2q + 2/3 -  2mp). Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~JD,D,L& ~ c cl lul lpm where the constant c depends 

only on a; P, m, p, 4. 

Proof. As before 

DpD$(t, x) = z bkXk2” + 1*m)-1’2D~D~e~l. 

Let us find a number I;, 1 < 5 < 2, such that 

S = z Ibk,(k2m + /@ m)-“2kal~(5 < + 03. 

This series can be majorized by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k2 + I”) -ml*/&) 9242 - t) ’ - ‘*. 

(6.5) 

(6.6) 
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Thus, it is enough to prove that the series inside the last parenthesis is convergent. For this, 

it is enough to show the convergence of the following double integral, on which we perform 

as before the substitution y = z’@, y 5 1, z 3 1, and the change into polar coordinates x = 

p cos 8, 2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp sin 8: 

= II lm 1_ (x5&7(,2 + 22)-mi2)2U(2-S)(l/p)Z(1’P)-1 & & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= (l/ p)c ’2 (~0s e )2&(2_c )(sin @&3~(2- 5)P+(1- P)‘P de . lx p(n+BiP- m)(Zji(Z- i))+ l/ P dp. 

This integral has a finite value for ((u + p/p - m) (2W(2 - c)) + l/p < - 1, or c > & = 

(2p + 2) (2mp + p + 1 - 2ap - 2/3)-l, provided 2mp + p + 1 - 2ap - Z/3 > 0. This 

condition is satisfied and we have 1 S 5,~ < 2 if 2mp - p - 1 s 2crp + 20 < 2mp. Now, for 

any such <, series (6.5) is convergent, and by the Young-Hausdorff theorem (cf. [18, Vol. 2, 

p. 600]), Dp&?u is L, integrable for q = iJ(;(f - 1)-l, that is, DPD$ E L, for all q < &(& 

- 1)-l, or 

q < (2p + 2) (p + 1 + 2ep + 2p - 2mp)-‘, 

and llDPD&j1, s S. Under the assumptions of (6.ii) the inequalities above are all satisfied. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(6.iii) If u Apm, then E LZ (Y + s m, then /IDPD$IjL2 s cljullmp where 

is a depending only on 6, p, 

Proof. As we have 

D:D$(t, = 2 bk,(k2” lqm) -1’2DPD& 

where ]]u]]$, =&bj$ C cQ. We have to prove 

II 
(D@ Dh(t, x))’ dt dx = z b:,(k2” + < m. 

Indeed, A, and integers m 1, we have B” C B)” 

s + B”). Hence, (Y p-‘/3 S we also have 

= ,!&%J@‘P) < (kr + + /@)(BiP) 

c (k2 + p),+@P s (k2 + f@)” s 2m-‘(k2m + 12P”). 

In other words, the last series is majorized by 2m-1&b$. 

As an immediate application of the above statements we note the following: 

For p = 2, m = 0, then A2a = L2. 

For p = 2, m = 1, llu]& = llu& + JJu,]&~, and for u E AZ,, then u E C, u, E L, for any 

q < 6, ut, u, E Lz, and there are constants b, pl, &, (pr depending on q) such that ]]uII_ s 

~0ll4lr~,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII~IL c  ALLIS, fo r a ny 4 < 6, 
& c  (meas Gj”*&. 

II4 z c  Il4/ ~~,~ IMI =S II&~,~ lI4L s ~+4k2, (with 
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For P = 2, m = 2, lb&22 = I~u$.~ + lluxxxx1/i2, and for u E AD, then u, u,, ux, u,, E C, u,~, u,,, 

E L, for any q < 6, and ufr, u, E L, for any q < 6, and urr, u=,, U, E Lz. Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,, u,, 

u,, u, E A2l also. Moreover, there are constants as above such that ]]r.& c ~,,(Iu]]~~~, ]]u&,, 

k$ ]]uxx]l c CLI]]U]]A~~, ]IUU]~L,, ]]UXXX]/L, s &&v 2 c 4 < 6, ]/U&z, I/n&,, ]I&& s 

;or*L = 2, m = 3, ]Iu$I,, = ll~,llt~ + ]t&xxxxxllt2, and for u E A23, then u, h, u,, uIt, uxx, ulXr, 

4.W uxm E c, uru 7 u.rnxx E L, for al i  q < 6, and uffl , uIrx,, u,,,, E Lz, and there are constants 

as above relating the norms L,, L,, L2 to the norm in A23. 

For p = 1, m = 1, ]]u]li,, = ]lc&, + ll~,(l~~, and for u E All, then u E L, for any q, 1 s 

q < ~0, uf, u, E Lz, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII&, 6 P&~IA,,, l14L2 c  II&,,y IIu,II~~ s lb ll~,, fo r a  suita b le  c o nsta nt 
Plq ’ 0. 

For  P = 1, m = 2, 1141~,2 = 114li, + II~xxlli2, and for u E All, then u E C, u,, u, E L, for any 

and II& s ~0ll4b  ,, T IML, s ~~q l14k,, . 
or suitable constants ,u~, plq, p1 > 0. 

Remark 2. The imbedding theorems proved above have corresponding compact imbedding 

statements. We do not develop this point here. However, the following case will be needed 

below. If u E A21, then u, ut, u, E C, and u,, E Lz, uu E L, for any 2 c q s 6, u,, E C, as 

stated in the third example above. In particular ut,, u,, u,, E L2, and 

for some absolute constant y. Thus, u,, u, both belong to the Sobolev space W’,‘(G), G a two 

dimensional interval. By the Rellich-Kondrashov theorem (cf. [l, (6.2), Part I, p. 1441) the 

embedding W’,*(G) + l@“(G) is compact for every 1 c q < 03. In other words, if [us, s = 

1, 2, . . .] is a sequence of elements u, E A22 with I(u,JIA~~ c M for all s, then the functions u, 

are equi-Lipschitzian, and for a suitable subsequence, say still [s], then u, --, u uniformly to 

a Lipschitz function u, and (u,), ---, ur, (u,), + u, strongly in L,(G) for any 1 c q < a, and 

even pointwise almost everywhere. 

Remark 3. Some of the above results can be seen also in [16, 17, 201. Our proofs are not 

always the same, but we cover this material for the sake of completeness. 

7. SERIES SOLUTIONS FOR THE WAVE EQUATION 

In connection with the previous considerations, the following precise estimates will be 

needed in Section 14. 

Let [ekl, k, 1 = 0, 21, 52, . . .] denote the system generated by exp(ikt) exp(ilr) in R*, and 

orthogonal in G = [0, ~JC] X [0, 27r]. Let u(t, r) =Ck:+&ekl be any function in All, 2n- 

periodic in r and t, thus u, u,, u,, E L2(G), and 

K2 = ,zp %(k* + I’) = t1r&, + b&2 < + CQ. 

We shall consider the function 

u(t, t) = kzpbkA-k2 + 12)-lek,, 
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and for every A > 1, also the function 

(7.9 For u as above, u and w have bounded first order partial derivatives and 

lu,(t, r)l, IuXt, r)l c (X&K = 1.2826K, 

IW,(& r)], Iw& $1 <2K(A1” - 1)-l”, 

IL+, r) j s 3.06126K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Proof. Let ckl = bkf(k2 + P)‘“, so that%& =K* < + 

all k, I = 0, +l, +2, . . . , k2 # P. Then 
03, where Z denotes a sum ranging over 

u = Z&(-k* + l*)- ‘ekl= ZckXk* + 12)-1R(-k2 + 12)- ‘ekh 

ut = &k(k* + l*)- ‘“( -k* + l*) - ‘& 

where e;, is derived from ekl by replacing sin kt, cos kt by cos kt, -sin kt. Then, since lekll c 

IG-~, we have 

I u,(t, t) / d (Xc:)“‘*(Zk*(k* + lz> -*( -k* + lz) -*n-2) “*. 

c n-‘K(4 ,,,zk,, k*(k2 + P)- ‘(k + l)-*(k -  I)*)“* 

s 7~-‘K(4~/~~+, (k + l)-*(k -  l)-*)l’* 
1 7 

4 x,1 s-*Y(2k -  s)-* 
> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

112 

E 

where the inner sum is extended to all k = 0, 1, . . . , s with 2k # s. Thus, the inner sum is 
G2(1 + 3-2 + 5-2 + . . 

1 + 2-2 + 3-2 + 
.) =S 2(~&8) ifs is odd, and 92(2-* + 4-* + . . .) ifs is even. Since 

. . . = 216, we have in any case 

[u&, $1 c JY’K(Yr/2) $s-* l’* 
( 1 

G n-‘K(nf2) 2(ir/ti) = (di)K = 1.2826K, 

and analogously for u,. The computations for w are the same, where the sum with respect to 

s ranges over all integers sA’“, and 

&-*<j+m s-*&=(fP-l)-? 
AIR-1 

Analogously, we have 

iu(t, $1 =z (~c~,)1’2(Z(k2 + I*) - ‘( -k* + l’, -*n-2) l’* 

in-‘K 4 
( 

/Tk+, (k* + l*)- ‘(k + 0-*)I” 

c l’b1K(4~s-4Z’(2k -s)- ‘)“* 
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where 1 + 2-4 + 3-4 + . . . = 1.08232. Thus 

with 

/u(t, r)l c 2&-rK(ti2) (1.08232) = 1.53063K, 

K = (CC:)"~ = (11 (uf + u:)dr dr)? 
G 

Now let u(t, r) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACbkrek, be any function in A 11, where now the sum ranges over all k, 1 = 0, 

+1, k2,. . .) and let u(t, r) denote the function u(t, r) =&=pbklekl , where now the sum 

ranges over all k, 1 = 0, 21, 52, . . . with kz = I’, or k = *f. Let K. denote the constant 

K:, = &=,zb;,(k2 +12). 

(7. ii) For u E AlI, then U is a Lipschitz function satisfying 

Iw + k t) - w, @I s v~Ko[hl, lU(t, t+ k) - U(t, 41 c vlKolkI, IW, t) I s Go 

where v1 is an absolute constant. 

Proof, Using Fourier series we have 

cos mf cos nt + b,, sin mt cos nt + c,, cos mt sin nt 

+ d,, sin mt sin n r) , 

where A,,,, = 4, A,,,, = 4 if m = 0, n 3 1 and if m 2 1, n = 0, A,,,,, = 1 otherwise, and we denote 

by M the constant 

n$, (& + b?,, + cfin + df,)n2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
112 

Then we have 

W, r) = Woo + 5, ( a,,,, cos nt cos n r + b,, sin nt cos n t + c,, cos nt sin n t 

+ d,, sin nt sin nr), 

[ 

(r 

X “?I K2((cos2 nt + sin2 nt) co2 nz + (cos2 nt + sin2 nt) sin2 nr) 1 
l/2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= WlmJ + p 1 (4 + b$, + c$, + d$Jn2]1’2[$,n-2]“2 

= (t)laool + M(n$l na2)"* = 0) le d  + Wd 6 
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Analogously 

U(t + h, t) - U(t, t) = =?I [a,,( cosn(t + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh) cosrzt- cosnt cosnt) 

+ b,,(sin n(t + h) cos nt -  sin nt cos nr) 

+ c,,(cos n(t + h) sin nt - cos nt sin nr) 

+ d,,(sin n(t + h) sin nt - sin nt sin nr)] 

= (h/2) $l [an,, cos nr(-2 sin n(t + h/2)) 

+ b,, cos nr(2 cos n(t + h/2)) 

+ c,, sin nr(-2 sin n(t + h/2)) 

+ d,, sin nr(2 cos n(t + h/2))]na,(h), 

where a,(h) = sin(nh/2)l(nh/2). Since [u,(h)/ c 1, we have 

1 U(t + h) -  U(t, r)l s [(h/2)1 [sl (a:,, + b!m + cfn + d:,)n2]1’2 

x n$i n-2(cos2 nt + sin* nr) (4 sin’n(t -t- h/2)) 

+ (cos* nr + sin* nr) (4 cos* n(t + h/2))]“* 

s ,,,M(j$ rz-2)1’2 = (dti)MJhl, 

with 

Also 

(U(f + h, t> - W, r) I c 6-“% 1 J(~L.~, 

1 Vt, 4 s Ibb,> + 6-1’21141~,, 

with 6-l” = 0.40825. 

8. COMPLEMENTARY REMARKS 

In the already quoted work by Petzeltova [20] of the boundary value problem of Section 

12, an unnecessary restriction was made on the data (cf. [20]) which will be eliminated in our 

analysis in Section 12. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo do this the following remarks will be relevant. 

First let us note the following elementary solutions to the linear equations below: 

(i) u, + u, = 1, or equivalently 

UN + &axx = (4/n) ,g, (2f- 1)-l sin(21- 1)x. 
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with boundary conditions 

u(t, 0) = u(t, n) = u,(t, 0) = z&At, n) = 0, 

U(f + 2Jr) = u(t, Jr), 

has the solution 

u(t, x) = 24-‘x4 - 12-‘nx3 + 24%‘~ 

(8.1) 

= (4/n) $r (21- 1)-5 sin(21- 1)x; 

(ii) un + u,, = sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkt for k2 # (21 - 1)4, any 1, or equivalently 

Uff + 4xxx = (4/n) ,z (21- l)-’ sin kt sin(21 - 1)x, 

with boundary conditions (8.1), has the solution 

u(t, x) = (41~9 ,zr (21 - l)-‘[(21 - 1)” - k2]-’ sin kt sin(21 - 1)x. 

Analogous series hold for cos kt replacing sin kt. 

(iii) un + u,, = x, or equivalently 

urf + WCXXX = 2 /%I (-l)‘+V’sinlx, 

with boundary conditions (8.1) has the solution 

u(t, x) = 120-‘x5 - 36-‘$x3 + (360)-‘7dx 

= 2,& (-l)‘+‘P sinIx. 

(iv) un + u, = x sin kt for k2 Z p, any 1, or 

& + %X.U = 2,$r(-l)‘t’/-1sinkrsinlx 

with boundary conditions (8.1) has the solution 

4) 

u(t, x) = 2 ,zr (-l)‘+‘I-‘( -k2 + I’)- ’ sin kt sin Ix. 

Analogous series hold for cos kt replacing sin kt. 

Let us consider now a slightly more general situation. Let fr(r), A(r) be periodic functions 

of period 2~r and class C’, and let f(t, x), - CO < t C+ ~0, 0 s x s JT, be the function linear 

in x with 

or 
f(& 0) = flW, m, 4 = f2W, 

f(t, x) = f*(t) + x0M) -f&N. 
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If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f~(t) = 2-h + k$l (uk cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkt + 6k sin kt), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ck cos kt + dk sin kt), 

then 

f(t, x) = 2-‘a1j + k$i (&- cos kt + bk sin kt) 

21$1 (-I)‘+‘[-‘sink I[ 2-'CO i- k$l(Ckcos kt -I-  dk sin kt) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 . 
Let f*(t, x) denote the same function f written as a double Fourier series with all terms with 

k2 = P removed. Then, the equation 

nff + %rx.x = f*(t, x) (8.2) 

with boundary conditions (8.1) has the solution 

u(t, x) = (2-1uo) (4/x) [$i (21 - l)-’ sin(21 - 1)x 

+ (4/x) z (21- 1)-‘[(2I - 1)4 - k2]-‘[uk cos kt + bk sin kr] sin(2f - 1)x 

+ 2(2-‘co) /$I (-1)‘+‘ZS5 sinfx 

+ 2; (-l)‘+if-i(P - k2)- ‘[Ck cos kt + dk sin kt] sin Lx, (8.3) 

where &[ ranges over all k, 1 = 1, 2, . . . , k2 # (21 - 1)4 in the second series, and k2 # ? 

in the fourth series. 

(8.9 For fi(t), f2(t) of class C’ and 2Jr-periodic, the solution (8.3) of equation (8.2) is of 

class AZ. 

Proof. To prove this it is enough to show that for the functions u(t, x) defined by the second 

and fourth series (8.3), both un and u, are of class L2. For the second series we have 

u,, = (4/n) z (21- 1)3[(21 - 1)4 - kq-‘[uk coskt + bk sinkt] sin(21 - 1)x, 

un = -(4/n) z (21- l)-‘k*[21- 1)” - k)-‘[uk coskr + bk sinkf] sin(2l - 1)x, 

where Xkm=iti(u: + bi) < + a. Thus, it is enough to show that 

j$ k2u;[ 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(U- ? &k2 

(21 -  1)6[(2l -  1)4 -  k)-2k-2] < + ~0, 

k$l kza ;[ ,$ 

(21- l)‘# k2 

(21- l)-‘[(2r - 1)4 - kq-‘k’] < + 00. 
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We shall actually prove that there is a constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB > 0 such that, for any k, we have 

5 (21 - 1)7(21 - 1)” - k2]-’ < Bk’, 
I=1 

,$ (21 - l)-‘[(21 - 1)” - k2]-2 < Bk-2, 

where the terms with k2 = (21 - 1)4 are omitted. 

It is enough we prove that for some constant C > 0 we have 

m I, = I m 
x6(x4 - k2)-2 dx < Ck2, 

I 
vii7 

12 = x6(x4 - k2)-2 du < Ck2 
1 

and 

- z, = 
f VGi 

x-2(x” - k2)-’ dx < Ck-*, 

I 
VKi 

I4 = Y2(x4 - k2)-’ dx < Ck-? 
1 

Indeed, for k = b2, or b = fi, we have 

c 

I x6(x4 - b4)-2dx = 3(16b)-‘log(lx - bl Jx + b/-l) 

+ 3(86)-l arc tan(x/b) - 4-‘x3(x4 - b3-l + C 

and hence 

I, = 3Jr(16k1”)-* - 3(16k”*)-‘log[(l + k-1)1’2 -  l] [(l + k-1)1’2 + l]-’ 

- 3(8k”‘)- ’ arc tan(1 + k-1)1’2 + (4) (2 + k-1)-1k1’2(1 + k-1)3’2 

Z2 = 3(16k1’2)-110g[l - (1 - k-1)1’2] [(l - k-1)1’2 + 11-l 

+ 3(8k’“)- ’ arc tan(1 - k-1)1’2 + 4- ‘(2 -  k-‘)-‘(1 - k-1)3’2 

-  3(16k1’2)-110g(k1’2 - 1) (1 + k”‘)-  -  3(8k1’2)-1 arc tan k-1’2 + 4-‘(1 - kq-‘. 

Analogously, 

I 
x-~(x~ - b4)-* dx = -5(16bq-‘log(\x - bj Ix + bl- ‘) 

-  5(8bg)-’ arc tan(xlb) - (4b8)- ‘(5x4 -  463x-‘(x4 -  b4)- ’ + C 

and hence 

Zj = 5(16kg’2)-1 log[(l + k-1)1’2 -  l] [(l + k-1)1’2 + 11-l 

- 5(8kg’2)-1[(n/2) -  arc tan(1 + k-‘)“2] 

+ (4k4)- ‘(k + 1)-1’2(2k + l)-‘(k2 + 10k + 5), 
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I, = (4k4)-'(k - 1)_“2(2k - l))‘(k2 - 10k + 5) 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4k4)- ‘(4k2 -  5) (k2 -  l)-’ 

- 5(8k9”)- ’ -  [arc tam1 - k-l)“’ -  arc tan k-“q 

-  5(16k9”)- ’ log[l - (1 - k-‘)‘“I [(l - k-‘)“2 + 11-l 

+ 5(15k9’2)-1 log[k1’2 - l] [kin + 11-l. 

The stated estimates for Zr, Z2, Z3, Z4 are now evident. This proves (8.i). 

(8.3 (LEMMA) [20]. If @ E L(G) and _fJo $dtcb = 0, then for every w E L(G) such that 

m s rj~ c M, we also have 

-2-‘(M - m) jlc191drdr~119~dr~~2-1(M-m)Il,t~1df~. (8.4) 

Indeed, if G+ = [(t, x) E G/$(t, x) 3 0] and G- = G - G+, then 

jj-+ @dth = -/I,_ @dtd-x = 2-1/1,1@i drd-x, 

and 

= 2-‘(M - m) 

This is the second inequality (8.4). Analogously we can prove the first inequality (8.4). 

9.AMEASURETHEORETICALPROPERTYOFBOUNDEDOPENSETS 

We shall denote by U(fo, r) the closed ball in ll?’ of center to and radius r. For any open 

bounded subset G of R”, let D denote the diameter of G and by u the measure of G, thus 

O<D<m.O<a<m. 

(9.i) (LEM~~A). Any open bounded subset zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG of R” has the following property (P): there is 

a function k(r), 0 s r d D, k(0) = 0, k(r) > 0 for 0 < r c D, k(D) = a, k(r) depending on 

G only, such that meas[G fl U(fo, r)] L k(r) for all to E G and all 0 6 r s D. 

Proof. Let us assume that this statement is not true. Then there is a set G open and 

bounded, a sequence [fk] of points fk E G, and numbers ro > 0, rk 3 ro > 0, such that meas 

[G n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(tk, rk)]_ - - , 0 as k --- , 03. By an extraction and further relabeling, we may well assume 

that tk + to E G, rk ---, P L ro > 0 as k --* 00. Then we may well assume ? = ro, and then 

fk+ to E ??, rk+ ro > 0, meas[G fl U(?k, rk)] + 0 ask + 03. 

On the other hand rk + to, rk + ro iI@ieS that u(fk, rk) + u(fo, ro) as k + 03, hence G n 

u(tk, rk) + G  n u(tO, ro), and meas[G n u(fk, rk)] --, 0 = meas[G n U(to, ro)]. But 
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this is impossible, since U(fo, ro) certainly contains interior points of G and meas[G II 

U(fo, ro)] > 0. 

10. REMARKS ON THE (LL) AND (*) CONDITIONS 

The Landesman and Lazer condition (LL), in its typical form, concerns problems of the 

type 
Ex = #(I) + g(x), t E G, 

in the unknown x(t), f E G, x E X, where G is a domain in R”, v 3 1, say of finite measure 

a = meas G, 0 < a < + 03, where g : R + R is a given nonlinear real valued function with 

g(--0~)) = R-, g(+ a) = R+ finite, say g continuous and therefore bounded in R, and where 

$J : G --$ Iw is a given measurable function on G, say bounded. Here, E denotes a linear 

operator, say a differential operator in G with homogeneous linear boundary conditions, and 

nontrivial ker E. We assume that a real Banach or Hilbert space X of functions x(t), t f G, 

has been chosen so that D(E) C X C Lz(G), in particular ker E C X C L*(G). 

Note that, for any real function u(t), t E G, u E Li(G), we may denote by G+ and G- 

the sets G+ = [f E G]u(t) > 01, G- = [t E G]u(t) < 01, and take u+ = Jo+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu dt, u- = 

SG- bl dt. 

The (LL)-condition in the space X can be expressed by requiring that (LL): for any u(t), 

t E G, u E ker E, with ]]u]]x = 1, then 

P-L) R-u- - R+u+ < I G H(t) u(t) dt < R+u- - R-u+. 

By (LL),-condition we shall mean the same requirement with s replacing both < signs. 

A slightly stronger requirement is the following condition (LL),: there is some E > 0 such 

that for any v(t), t E G, u E ker E, with ((u((x = 1, then 

(LL)E R-u- - R+u+ + E< 

I 
c@(t) u(t) dt < R+u- - R-u+ - E. 

G 

In the same context, we formulate now the condition already mentioned in Sections 1 and 2 

by requiring that (*): there are numbers Ro > 0, r > 0 such that, for all p 3 Ro, for all u(t), 

t E G, u E ker E, 11ujl~ = 1, and any function o(t), t E G, ]I& 6 r, we have 

(*> $(t) u(t) dt + Gg(pu(t) + a(t)) u(t) dt 3 0 
I 

[or SO]. 

In a number of applications, all with dim ker E < a, the implications (LL) * (LL), $ (*) 

have been verified (cf. [4]). We shall discuss below the relationship between the conditions 

above under a variety of assumptions. 

Let G as before be a measurable subset of R”, v 2 1, with 0 < a = meas G < + co. 

(lO.i) (LEMMA). For any given u(t) 5 0, f E G, u E IQ(G), IIuj1~ = 1, any c > 0, and E. 

= [t E 6, 0 s u(t) s c], QC, = meas Eo, we have 

Indeed, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
II41 c  c q o  + (a  - q o y2. (10.1) 

llull~ = (/ Eo +/ G _,) luld t~c me a s&+ (i,_,,d f)1’ 2(l,_Enu2d f)1’ 2 

s cqo + (a - 7]o)“2, 
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(lO.ii) Given E > 0 there is a number 6 > 0 such that for any u(t), t E G, u E L*(G), /lull1 

= 1, such that, for Es = [t E G, Iv(f)] S 61, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqo = meas Eo, we have a - 6 =Z r,% s a, then we 

also have ((~((i s E. 
Indeed, ]]u]]i and ]lu]]z are also the norms of the nonnegative function ]u(t)l, t E G, Iu] E 

L*(G), with &-norm one. Take 6 > 0 so that a8 + 13~‘~ s E. Then, by (lO.i) with c = 6 we 

also have ]]u]]i s 6~ + (a - ~0)‘~ S a6 + 61’2 s E. 

We shall consider below sequences (S) of functions u,(t), t E G, u, E L2( G), )Iu,]]~ = 1, 

n =‘l, 2,..., and constants c, > 0, q,, = meas Eon, Eon = [t E G) ]u,(r)l < c,]. Then, 

cn + 0, rjn+f2 implies ]]uJi + 0 as n + CO, as immediate corollary of (lO.i). 

(lO.iii) A relation (LL), is impossible if ker E contains sequences (S), that is, sequences of 

functions u,(t), t E G, u, E L*(G), JJu,JIz = 1, JJu,& + 0 as n -+ ~0. 

Indeed, then uf, vi s ]]u,&, hence u,’ ---f 0, u; --, 0, and, R+vz, R-u; +O as n-t 03. Then 

a relation (LL), is not satisfied for n sufficiently large. 

(10. iu) (LEMMA). Let G be a measurable subset of KY, v 3 1, with finite measure 0 < a = 

meas G < + m, and let 1 s m = dim ker E c m. Let us assume that there is some ;io 5 0 

such that u(t), t E G, u E ker E, u E &(G), IIvll2 = 1, implies u(t) = 0 at most in a subset 

E. of G with meas E. s &. Then, given E > 0 there is some constant c > 0 such that meas[t 

E G( Iv(t)] s c] s &, + E for all u as above. 

Proof Let wi, . . . , w,,, denote any orthogonal basis for ker E. Then, for every u E ker 

E, we have u = blwl +. . . + b,w,, bi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(v, Wi), i = 1,. . . , m, b = (b,, . . . , b,), and 

]]u]]~ =(bl where lb/ is the Euclidean norm of b in R”. 

If the statement above is not true, then there is a number e,, > 0 and sequences 

c,, > 0, u,(t), t E G, u, E ker E, llu,& = 1, with Q 5: & + 6, c,---, 0, rln = meas E,, E, = [t E 

GI luJt)l c c,]. Then vn = bnlwl +. . . + b,,w,,, for lb,,/ = 1, b, =(b,,l,. . . , b,,), and there is 

a subsequence, say still [n], such that b,+b, ]b]=l, b=(bl,...,b,), orb,;+b;,i= 

1 ,..* 7 m, as n -P m. Let u(t) =blwl +. . . + b,w,, t E G, and certainly u E ker E. First, 

assume that wi, . . . , w, are bounded in G, say I Wi(t)l c M, t E G, i = 1, . . . , m. Then, for 

a, = )b -b,l, w e h ave an--, 0 and ]u(t)j c lu,,(t)l -I- lu(f) - u,(t)\ 4 cn +McJ, for all t E E,, 

where c, +Mu,+O as n ---* m, and meas E,, a& +Q. Here u,,--, u uniformly, and 

thus u(t) = 0 in some set E0 of measure 3 A,, +~g, a contradiction. 

If the functions wi(t) are only in L*(G), then we take N > 0 so large that for each i = 

1 , m, the set F; = [t E GI /w,(t)1 3 Nj h 

Fyu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: . . 
as measure meas F; <aj2m, and we take F = 

U F,,,, meas F <42. Now we repeat the argument above, with E,!, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEn -F, 

meas EA 3 & + c+J2, and N replacing M. 

Here are a few examples concerning conditions (LL) and (*). 

(a) Example of a problem with X = &(G) where (LL) holds, but (LL), does not. 

Consider the problem 

xfl - x55 = f(t7 n + g(x(t, n), (t, n E Iw*, 

x(t + 2% E) = x(r, E) = x(t, 5 + 24, 
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for which ker E contains all trigonometrical polynomial generated by the usual exponentials 

ei(k’+‘c), k, 1 = 0, 21, +2, . . . , kz = 12, and limit elements in L2(G), G = [0, 2n12. Let g : 

R+ R, be continuous with limits R+ =g(+m) >O, R- = g(--03) CO, take p = 

min[R+ , -R-l, and note that for If(t, E)j =S M < p, relation (LL) certainly holds since 

R+u- - R-v+ - /z df 2 Au- + v+) - Mllvjll = (Jo - M)llvlll> 0, 
i 

I fvdt+ Rv’ - R-v- 5 p(u+ + v-) - Mllu/l = (y - M)llv\l, > 0. 
F 

For every n, let r&,(E), --03 < 5 < +m, be a trigonometrical polynomial with l~&(Ql12 = 

(2x)-‘“, (square norm in [0, 2x]), with 0 c&(g) s l/n for l/n S I;’ S 2n - l/n, and 

t+Vn( g) 2 l/n for 0 S 5 S l/ n, 2n - l/n < 5 c 21r. Note that vn(t, 6) = vn( g - 1) is a trigonometrical 

polynomial in R2, is periodic of period 21r both in f and E, is an element of ker E, and its 

square norm in G = [0, 2~d], is ]]v,# = 2Jcl(1&]]: =2~(1/2n) = 1. Moreover, 0 < v, s l/n every- 

where in G but a diagonal strip G -E, where un P l/n and meas( G - E,) = (2/n)2n = 

41rln. In other words, [v,] is a sequence (S) in G. Condition (LL), is then impossible. 

This example can be modified in such a way that (*) also does not hold. Let us assume g : 

R 3 R to be strictly increasing with a unique zero at x = 26 > 0, or g(26) = 0, 0 < g(x) < 

R for x > 26, g( + w) = R, r < g(x) < 0 for x < 26, r = g(-a), R > 0, r < 0. Then, ift = 

-g(6), then t > 0, and g(x) s --t for x s 6. For the same functions v,(t, Zj) of No. 3,and 0 
<p. < n6, we have 

0 -=z PVn(f, 5) S (n6) (l/n) = 6, g(pu.(& Q) c --t if(t, E) EE,, 

0 < ,ou,(t, 0, g(ou,(t, $7) s R if (6 c) E G - E,, 

so that, for Ifl 6 M and for n so large that M((v,J/~ < &, 2Rln <XT, 4/n < n, then 

~llv,& - tmeas E, + R meas(G - E,) 

n% - ~(42 - 4rc/n) -t R(2.h) 

-4&+ J&+ n2t+ Jr%= -Jr% 

and this holds for all n sufficiently large and all 0 =S p s n& 

On the other hand, for o = (215)-i in G, ]]v]12 = 1, M + E < R+ for some E > 0, and p so 

large that g(p) > M + c/2, we have _fclfu + g(pv)v] dt d6 > (2~r) (g(p) -M) 3 (27~) (d2). 

This shows that there is no R. such that the (*) relation holds for all p > Ro and all v E 

ker E with ]I~]12 = 1. 

(b) Example of problem with X = &(G) for which (LL), holds but the problem has no 

solutions. 
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Take E = 0 thus ker E = Ll(G), take 4(t) = +l in a set EI C G, r$(t) = -1 in a set Ez C 

G, meas El > 0, meas EI > 0, El UE2 = G, El n EJ = 0, and take g: (w + R continuous, with 

g(+m) = 1, g(-a) = -1, -1 < g(x) < 1 for all x E R. Then for every u(t), t E G, u E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~52(G), lb112 = 1 w e certainly have 1 - @(t) sgm u(t) 2 0 in G, and 

RCU+ _ R-*- _ 
i, 4W u(t) dt = i, [l - +(t) sgm 401 l*(t) I dt 2 0. 

However, the problem Ex = 0 = e(t) + g(x(t)) has no solution, since everywhere in G we 

have G(t) = +-1, -1 < g(x(t)) < 1, or # + g # 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

11. SUFFICIENT CONDITIONS FOR PROPERTY (*) 

(1l.i) THEOREM. Let r > 0 be a given number. Let g : R + R be a continuous function with 

finite limits R+ = g(+ m), R- = g(-a). Then, given E > 0 there is Ro > 0 such that, for 

p 3 Ro, for any function u(t), t E G, u E LI (G), /IL& = 1, and any function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(t), t E G , 

u E Lz(G), 1loj12 s r, we have 

+ u(t)) u(t) dt - R+u+ + R-u- s E. (11.1) 

Proof. Let 0 < a = meas G < + cQ, and take C such that [g(x)/ 6 C for all x E R. Let 

q > 0 be a constant such that Cva s c/8. 

Let N > q be a constant such that CW’r s e/8. 

Let A > 0 be a constant such that (g(x) - R’I 6 d8a for all x 2 A and [g(x) - R-1 s 

.c/8a for all x s -A. 

Let R. be any constant Ro 5 q-‘(A + N). Clearly R. depends only on G, g and’E. 

For any function u(t), t E G, u E Lz(G), I(uI/? = 1, let Eo = [t E GI [u(t)/ s q] and E, = 

G - Eo. For any function o (t), t E G , u E Lz(G), llc$ c r let F = [t E GI /u(t)1 1 N]. Then 

N* meas F s JF~ dt s r’, or meas F s N-*2. Then 

ll FdP*(t) + tit>) u(t) ~3 1 6 CS, lu(t) I dt C C(meas F)“‘llullz 

s CN-‘r s ~118. 

Note that 

/J-” dP(t) + tit)) w dt 1 C Cq meas E” s Cqa s E/8. 

u + = i,_ lu(r)l dt = J’,+ u(t) dr 

(11.2) 

(11.3) 

and an analogous decomposition holds for u- = j-c lu(t)l dt = -Jo u(t) dt, where the 

last member must be taken with a sign minus. Now for p 2 R and t E (G - F) II El n G+ 
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we have u(t) 5 q > 0, pu(t) + u(t) 3 Roq - N 3 (A + N) - N = A, and Ig(pu(t) + a(t)) 

- R+I < E&-J. Then 

g(pu(t) + u(t)) u(l) df - R+U+ 

= II k(wW + 40) - R+l 40 d + R+ I u(t) dt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(G-F)nE,flG+ F’n G+ 

- R+ 
i 

u(t) dt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(c-fJnEnnc+ 

s (meas G) (E/8a) + C(measF)1’211ullz + C(meas G)q 

c U(&&Z) - CN-‘r + Car] c Et8 + E/8 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE/ 8 = 3E/ 8. 

Analogously we have, for p 2 Ro, 

II (G_~)nE,nG_ &u(t) + a(t)) u(t) dr + R-u- s 3&3. 

(11.4) 

(11.5) 

Combining all relations (11.2)-(11.5) we see that all p 3 Ro, and u and o as stated, we have 

+ a(t)) u(t) dr - R+u+ + R-u - c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd8 + d8 + 3d0 + 3d8 = E. 

Remark. Statement (11. i) holds for arbitrary elements u E L2( G) in the same form with (11.1) 

replaced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

II Gg(pu(t) + a(r)) u(t) df - R+u+ + R-u- c EllI&,, (11.6) 

and the analogous relation with R+u+ - R-u- replaced by R+u- - R-u+ follows by exchanging zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u with -u. 

(ll.ii) COROLLARY. With D(E) C X C L*(G), III&, ~cll& for some constant c > 0, then 

condition (LL), implies (*). 

Indeed, given r > 0 we choose Ro > 0 so that, for p > R. relation (11.6) holds with 

2-‘EU-‘%-‘, instead of E, a = meas G, 0 < a < + 03, hence 

II 
Gg(~u(O + a(0) ~(9 d - R +u+ + R-u- < (2-‘EU-“‘C-‘)((U(\L, 

< (2-‘Ea-“2c-‘)u”2IJullL, c (2-1EU-“2C-1)U1’2C~~U~~~ = E/2 

for IJu(lx = 1. Then 

R-u+ - R+u- + E< 
J 

@ v dt < R+u+ - R-u- - E 

G 
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implies 

I 
G 1@(f) + g(P4) + a(O)1 44 df 2 EL! ’ 0. 

(lliii) If R+ > 0, R- < 0, and if I@(t)1 s M < ,U = min(R+, -R-l, then for any u E L,(G), 

]]u](~, > 0, we have 

Thus, if D(E) C X C L,(G) and there is a constant y > 0 such that ]]u]jx = 1, u E ker E implies 

]l&, 2 y, then for the same u we also have 

< R+u+ - R-u- - E 

with E = (cl - M)y. 

(ll.iu) (LEMMA). Let G be a measurable subset of VP’, 0 < a = meas G < +‘cQ, and let c 

be any constant, 0 < c < u-l/2. Then for any measurable essentially bounded function u(f), 

t C G, 11412 = 1, and p = ess sup[]u(t)], c E G], Eo = [r E GI ]u(t)] s c], ~lo = meas &, we 

have ~1 3 U-I/~, and 0 s q. s a - ,ue2(1 - ~2). 

Indeed, 1 = ]]u]]$ s a$, or p z a-‘“. On the other hand, 

1 = ]]I$ c q)c2 + (a - r]&2 S UC2 + (a - ?&2, 

or 
no S a - /A-2( 1 - UC2)) 

where now ap2 3 1 > 1 - a2 implies ~~~(1 - UC?) < a. 

(11. u) Let G be an open bounded connected subset G with diameter D, and 0 < a = meas 

G < +m. Let w(c), 0 S 5 < + co, be a modulus of continuity, that is, a continuous increasing 

real function, with w(O) = 0. Then, there are co_stants IO > 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyo > 0, which depend only 

on G and the function w, such that, if u(t), t E G, is any continuous function on G with IIuI(z 

= 1 and modulus of continuity o(Q), that is, lu(t) - u(t’)l s o(]t - t’l) for all f. t’ E G, and 

E, = [t EG( /u(t)/ Z= To], rl~ = meas El, we have ql= meas EI 2y0 > 0. 

Proof. For any c > O-let Eo = [t EGI lo(t)/ < c], T,IO = meas&, and let p = max]u(r)] in G. 

Let to be any point of G where lu(to)l = p. We know already that ~1 2 u-l/2. For c > o such 

that 0 < c < (2~)~“~ we know from (ll.iu) that no =S a - ,uV2(1 -uc2). 
[2(1 - ~c~)u-‘]“~, thenp2 

Thus, if a-l’2 s p s 

c 2(1 - ac2)a-‘, orPw2(l - ac2) 2 a/2, and 170 S a - u/2 = a/2. Hence, 
for IO = c, ql + ~0 = a, implies vl 2 u/2. 

lfp 2 [2(1 - ~c~)u-‘]“~, then p 2 [(l - UC~)U-~]“’ 3 u-“~ 3 (2~)~“~ > c > 0. Let r > 0 be any 

number such that o(p) 6 [2(1 - UC~)U-‘]‘~ -c for all 0 s p s r. Then, for t E G n 

U(r,, r) we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

140 = lu(h)l - 4lt - Ha l) 23 P - 44 

2 [2(1 - uc2)u-1]1’2 - {[2(1 - ac*)u-‘]“2 - c] = c > 0, 
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that is, G n U(to, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr) C El, and meas El 2 meas[G n U(t+ r)] 3 k(r) > 0 where k(r) is the 

function defined in (9.4 for the open set G. 

In either case we have lu(t)l 2 c =I,, in a set E, with meas El = min [a/2. k(r)] = y. > 0. 

(11. vi) THEOREM. Let G be a measurable subset of R” with 0 <a = meas G < + cu. Let f(t, x) 

be a continuous function on G X R such that for suitable constants b, c, A, B, C, 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb cc, 

0 < B -=c C, we have 

If(r,x)(~C forallrEG, x~iW; 

(f(t,x)I~A forIxl6b, LEG; 

f(r,x) 2 0 forx 3 b, f(r, x) s 0 forx s -b, r E G; 

f(r, x) 2 B forx 3 c, f(t,x) s -B forx s -c, r E G. 

Let {u} be a collection of functions u(r), r E G, u E &(G), liullz =l, with the following property 

(Q): for given y> 0, T > 0, and any u E {u}, if El = [r E GI /u(r)1 3 lJ, then meas El 3 y. 

Let E be a given number, and assume 0 < E < y/3, A ~a-“‘Bc Then there are numbers 

r > 0, R0 > 0 such that for any p a Ro, u E {u}, and any o(t), u E &(G), ]lc& s r, we have 

I 
f(r, /m(r) + u(r)) u(r) dr 3 B(y -  3~) > 0. 

G 

For E = y/3, we have Jo fu dr 3 0. 

Proof. For any N > 0 let F = [r E GI lo(r)I 2 N]. Then N’ meas F s l\c$ s ?, or meas 

F =z N-*?. Let us assume that 

Then 

CN-‘r s BE, N-‘r’ s E, N s b/2. (11.7) 

p(t) + o(t)) u(t) dt s C Flu(r)l dr s C(measF)“‘J(u]12 
! I 

s CN-'r c BE. 

Let K1 = [r E G( Ipu(r) +u(r)I c b, Iu(r)l s r]. Th en. for t E KI -F we have (pu(t) + u(t)1 s 

b, If@ , ~44 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa (O )I c  A a nd  

1 lK 
1 
+f(tT W ’(t) + a(t)) U(t) di d Ai, +Iu(f)I df ~A(measG)1’2(]u~~2 

i 

Let K2 = [r EGI Ipu(r) + a(r)1 5 b, [u(r)1 s r]. Th en, fort E K2 -F we have ]pu(t) +u(t)I 2 b, 

la(r)\ s N s b/2. Hence p]u(t) ( 3 b - b/2 = b/2. Consequently, pu(t) +o(t) and p(r), that 

is u(r), have the same sign and f(t, p(r) + a(t)) has the same sign as u(t). Then 

I 
f(r, p(r) + a(r)) u(r) dr a 0. 

K:-F 

Let E, = [r E G, lu(t)l a r]. Then, meas(Er, - F) 3 meas El, -  meas FS y- E. Take R. 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r-Q +N), and note that, for p s&, t EEI - F, we have ~lu(t)l >RJ 2c + N, 
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la(Ol 6 NY IPW +4Ql 2 c + N - N = c. pu(t) +o(t) has the same sign as u(t) , and the same 

sign as f(t, pa(t) +o(t)). Also, f>B if u *I>O, andfc-BifuG-I<O.Then 

1, 
E +f(f. pu(t) + o(t)) u(t) df 3 B meas(Ei - F) 3 B(y - E). 

Now 

I,fudr= il+ i,,_F+ i,z_F+ I,,_,)fUdl 

2 -BE- BE+ 0+ B(y- E)= B(y- 3~). 

Relations (11.7) can easily be satisfied by taking N s b/2, and r s min[c”‘N, Bd’-‘N]. 

Remark. Let G be any bounded open subset of R”, v 2 1. Then property (P) of (9.i) holds. 

Let the linear operator E be given in G, and let us assume that the Hilbert spaces X, Y have 

been selected so that jb$z c c/x/ix for x E X, and so that the elements x of the unit ball in 

X are continuous on G with modulus of continuity o(c). Then. by (ll.u), numbers IO > 0, 

y. > 0 can be determined so that u E&(G), [/U//Z = 1, El = [t E Cl lu(t)j 3 To], ql = meas E,, 

implies ql 3 yO. Finally, by (ll.ui) with 0 < E < yd3, A Sa -“‘BE, we can determine Ru, r > 0 

so that relation (*) holds for JJuj/z = 1, p 2 Ro, /Id/t s r. 

In the case f(t, x) = G(r) + g(x) with g continuous in R’ and 

Ig(x) 1 S C’ for all x E R, 

lg(x)l c B for 1x1 s 6, 

g(x)2 v forxab, g(x) S-V forxs -b, 

g(x) L B’ forx 3 c, g(x) s -B’ forx s -c, 

i@(t)I~ v forallrEG, 

then 

lf(t9 x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = I O(f) + &I I s v + C’ = C for all (t, x) E G x R, 

If03 XI I = I @ W + &> I s v+@=A forjx/Sb, LEG, 

f(t,x) = G(t) + g(x) 2 B’ - v= B forx 3 c, t E G, 

f(t,x) = 4(t) + g(x) s -B’ + v= -B forx s -c. t E G, 

f(t,x) 2 0 forx 2 b, f(t, x) i 0 forx 6 -b, 

and the requirements of (ll.ui) are satisfied provided v s B’, A <a-“‘BE for some 0 < E < 

yd3. Hence, we require 0 < E < yd3, /3 < a-IRB’&, v s B’, (1 + a-1’2&)v s a-“‘B’E -p. 

12. ANALYSIS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN THE LARGE OF THE EQUATION u,, + u,,,, = f(t. x, u) 

We consider here the existence of solutions u(f, x), periodic in f of period 2n, of the 

hyperbolic problem 

4, + %*1x = f(t, x, u), --co<<++, o<x<Jr, (12.1) 

u(t, 0) = u(t, Jr) = u,(t, 0) = u,Xt, Jr) = 0, (12.2) 

u(t + 2n, x) = u(t, x), -m < t < + tQ, 0 < x < Jr. (12.3) 
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We initiated the discussion of this problem in [12, No. 61 forf(t, x, u, uI, u,) &pending also 

on u, and u,. For the sake of simplicity we limit ourselves here to f depending only on r, X, 

u. The problem had been considered by Petzeltova [20] solely in the perturbation case f = 

Ef, E small. 

Let G = [0, n] X [0, 24, let a = meas G = 22, and let [ju;lIILZ, (u, r~)~* denote the usual 

square norm and inner product in G. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD denote the set of all functions y(t, x) of class C” in R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx [0, n], 2x-periodic in I and 

satisfying y(t, 0) = y(t, n) as well as D?y(r, 0) = D:y(t, n) =O, t E R, s = 0, 1, 2,. . . . As 

in Section 6, let X = AZI denote the closure of D with respect to the 

norm llull~ = I1411L2 + IMI Lo, so that X = A21 is a real Hilbert space with inner product 

(u, u)x = (u,, h)L2 + (Um u,)L2. The closure of D with respect to the norm]Iu]IL2 will be denoted 

by Y, and Y = AZ0 = L*(G) is identifiable with L*(G). 

As proved in Section 6, for u E X = A zl, then u is continuous (in Iw x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[0, n]), u, E L, for 

any 1 < q c 6, uI, u, E Lz, and 

ll4- s cldlullxt IMIL, c Pqlll4Ix~ IML* G II&~ IMlL2 s II& (12.4) 

for suitable absolute constants b, ~~1, 1 s q < 6, (and of course ](uJ]L, c ,u&u]ty for some 

M 6 /@a”‘q, q z 1). 

Here, Eu = un + u,,,, and the equation Eu = 111 for v E Y = L*(G) is said to hold in the 

weak sense (distributions) for u E X = AZI, provided (u, Ey)Lz = (I/J, y)~* for all y E D. This 

convention is justified by the fact that, if u is smooth (say, u E A22) and (u, Ey)L, = 

(tp, Y)~*, then by integration by parts we have (Eu, y) = (q, y) for all y E D, and hence Eu 

= I/J a.e. in G. 

If f(r, x, u) is continuous in [w x [0, x] x Iw and 2x-periodic in r, and if u E X = A21 then 

F(r, x) = fir, x, u(r, x)) is continuous in R’ x [0, n], 2x-periodic in r, and there is a monotone 

function yds), 0 c s < +CQ, such that ]]E;1]- c y~]]u]]x) for any u E Azl, where yhs) depends 

solely on f. Then, certainly ]]fl]L2 s al” y~]]u]lx). Alternatively, if f(r, x, u) = @ (r, x) + g(u), 

where $I is 2x-periodic in r, @  E L*(G), and g : [w - R is continuous, then for u E X = Azl, 

g(u(r, x)) is continuous in R x [0, n] and 2n-periodic in r, Ik(u(r, x))llm < y,(]l&) and 

llfll~.2 c ll@ll~z +u”2~,(ll~llx)~ w h ere the monotone function y&s), 0 < s < + m , depends only on 

g. We shall denote by y(s) any function such that ]INu]lL2 = Ilf(r, x, u(r, x))\k, s y(R) whenever 

u E X and ]lu]lx c R. 

Let e&r, x), k = 0, ?l, 22, . . . , I = 1, 2, . . . , denote all elements of the form rr-l sin lx, 

2%-’ cos kr sin lx, 21”n-1 sin kr sin lx. These elements ekl are orthonormal in Y, and any u 

E Y = AZ0 = L*(G) has Fourier series u(r, x) = Cbklekl with Zb$, C +a, bkl = (u, e& = 

(& ekl)Lz. 

Now let Ek,(t, x), k = 0, 51, 22, . . . , 1= 1,2, . . . , denote all elements of the form 

nil-* sin IX, 2%-l(k2 + [4)-l’* cos kr sin lx, 21’2n-‘(k2 + [4)-l’* sin kr sin Ix. These elements are 

orthonormal in X, and any u E X = A21 has Fourier series in X of the form u(t, X) = EUkrEkr, 

akl = (u, Ekdx, and Ur -u, have Fourier series u, = C(mk) EL, u, = Z(Ukf)E!, where EL is 

obtained from Ekl by changing cos kr, sin kr into sin kr, cos kr respectively, and GI is obtained 

from Ekl by changing sin lx into -sin fx. On the other hand, if bk, = (u, ek[)L2r then 

‘&I = (U, Ekl)x = (k* + 14)1’2(U, ekl)Y = (k2 + /‘)lnbkl, 

Uk[Ek, = (U, Ek,)Ek, = (k* + 14)“2(U, ek[) . (k* + I”> -“*ek, = bk,ekl. 

For u E X, then u, uI, u,, have Fourier series in Y = L2, u =Xbk,ek,, uI =Zbkrkeir, u, = 
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&&$,, where e;, is obtained from ekl by changing cos kt, sin kt into sin kt, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkt, andeh is 

obtained from ekl by changing sin Lx into -sin lx. Thus, Cb&(kz + p) < +m. 

Let XO denote the subspace of X generated by the elements ek/ with k2 = p. Then, for 

u* E x0, u* = &=pb@k, where 2 ranges over all k = 0, 51, 22, . . . , 1 = 1, 2, . . . , with 

k2 = Z4. By distribution theory XO is the subspace of X of all weak solutions of Eu = 0, or 

(u, yn + y_) = 0 for all y E D, that is, X0 = ker E. 

Note that, for u* E X0, or (u*, yn + yurJL2 = 0 for all y E D, we also have, by integration 

by parts, -(UT, ylht + @A, yuL2 =O f or all y E D. If v E X0 and we approximate u by 

elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy E D in such a way that y,, y, approximate r$ , u.& in Lz, we also have 

-(u:, u:)L2 + (r.&, u.TX)L~ = 0. Thus, 

(u:, a.2 = (Gr, G)L2, /u$, = Ilu&,ll = 2-94*llx for allu*, u* EXo. (12.5) 

Let P denote the natural projection of X onto X0. For u EXi =(I - P)X, then u = 

x’b&kl with Zbu(k2 + 14) < + ~0, where Z ranges over all k = 0, ?l, . . . , 1 = 1, 2 . . . , with 

k2 # P. Let Yo, Yi denote the analogous decomposition of Y, and let Q be the natural projection 

of Y onto Yo. We can now define the operator H : Yi +X1. For u E Yi, or u = &2+fibkFkl 

Zb$ < +a, let us take u = Hu =&+pbkl (-kL + p)-‘ekl. As we have seen in Section 6, u = 

Hu E XI = (I - P)X, thus u E A zl, and u is a weak solution of Eu = u. Moreover, 

lIH&2 s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII~IL.~, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIIWtY s II~IL.~ fo r u E 6, a nd  IPll is a linear bounded operator from Yi onto 

Xi with llql = L = 1. With X, Y, P, Q, H as above, axioms (a), (b), (c) of Section 3 are 

certainly satisfied. 

We now define the finite dimensional subspaces Xon of X0 as follows: X,, is the subspace 

of X0 in X generated by all ekl with k2 = p, I = 1, . . . , n. 

Let Xi, be the subspace of X generated by all ek/ with k2 + p, k = 0, -II, . . . , +n, 1 = 
1 n. Let R,, S,, be the appropriate orthogonal projections R, : Xi *Xi,, S, : X0 +.X,,,,. 

Gt ‘YOU be the subspace of YO in Y generated by ek/, /cr = 14, I = 1, . . . , n. Thus S:, : Y, + y,, 
can be defined as the orthogonal projection of Y. onto Yo, in Y. 

Finally, let a;, : Y,, + X0, denote the map defined by 

&IJ’ = Co&k&/, where y = ~onbkPklr bkl= @, ekl)L2r 

where Eon ranges over all k = 0, 21,. . . , kn, 1 = 1, 2, . . . , n, with k2 = p, (hence Jkl L 1). 

Clearly ail(O) = 0 that is, a&,QNu = 0 is equivalent to SAQNu = 0, and moreover 

S;QNu = 0 if and only if (SAQNu, u*) = 0 for all u* E X0,. 

However, we note that here, for y E Yo,, a,,y = y E XO~, but a;sr in X has a norm in X which 

is quite different from the norm of y in Y = Lz, namely 

helix = bllx = (z b%k2 + [*I) 1’2, llvll~ = (z b t) ‘ “ . 

We may note that, for any element x E Xi, then x is a bounded function on G, and R,,x is also 

a bounded function on G, I/&xIIL2 s IkllL2, but (I&$ may by much larger than lb&, a well 

known phenomenon in Fourier series. Analogously, if y E YO and y happens to be bounded 

in G, then &y E YO is also bounded in G, &s,‘&~ c I/,vllL2, but the norm Il$yll, may be much 

larger then l~llrn. 
Finally, let J,, : X0,, + Xon be the linear operator defined as follows. Let (Y, p 2 0 be constants 

with (Y + /I > 0, for the moment arbitrary. For any u E XO we have u = Zbkgk,, where 2 

ranges over all k, I with k2 = e, k = 0, *l, 22,. . . , 1 = 1, 2,. . . , n, (hence (kl 2 1). We 
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take Ju = Ck-‘bk,ek;, where et, is obtained from ek/ by replacing cos kt by sin kt, and sin kt by 

-cos kt. Then, J is a isomorphism, and further (Ju), = u. Let us take in (5.3), (5.4). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ,, = 

-ad* + /3Z, where I is the identity operator. Then, for u E X0, u =Zbklex-,, the sum ranging 

over all k, 1 with k’ = 14, and J,u = ((uke2 + @bk,ek,, and J, is a isomorphism. 

The original equations (12.1-12.3), are now written in the abstract form Ex = Nx, or in the 

equivalent form of auxiliary and bifurcation equations 

ur=H(Z-Q)Nu, QNu=O, u=u*+u,EX. 

For every integer n, we have then the reduced equations 

ur = R,,H(I - Q)Nu, S;QNu = 0, u = U* + UI EX,,, 

and, for each n, we apply Theorem (4.9 (actually, Lemma (3.i), or statement (2.i)), to the 

reduced equations 

u1 = R,H(Z - Q)Nu, J,a,,S;QNu = 0, u = u* + UI EX, = Xn,) X X,,,. (12.6) 

Below, we shall show that there are numbers &, r > 0 such that. for every integer n. there 

is at least one solution u, E X,,, U, = UX + u,,r, u,? EXo,,, U,I E XI,,, hence, uPI E X. 

u,* E X0, u,*r E X1, n = 1, 2, . . . , with ][u,*]]xG Ra [Ju,,~[[x c r, ljunll G (Ri +?)“I for all )I. 

Proceeding as in Section 5, we now introduce the space 2. For 2 we choose C, the space 

of continuous functions on [w X [0, n], 2n-periodic in t. Then llu,& is bounded, and the 

sequence u,,(t, x), (t, x) E [w X [0, JC], is equicontinuous. By applying Ascoli’s theorem we 

see that any weak limit element of [u,J in X is a strong limit in !%. Moreover, as we have seen 

in the Remark at the end of Section 5, there is a subsequence, say still [n] such that u, + u 

uniformly to a continuous function U. Then the functions Nu, are equibounded and converge 

pointwise and uniformly to the bounded functions Nu as n + 00. Proceeding to the limit in 

the coupled system of equations (12.6), we obtain that u E 2 is a solution in the weak sense 

of the original problem. 

Here the solution u is continuous with given modulus of continuity, u,, u,, u,, exist in Lz, 

u, exist in the distributional sense, and they satisfy the original equation in the weak sense. 

(12.i) Let f(t, x, s) be of class C’ in R! X [0, n] x R, and let u(s) be the function defined 

above. Let us assume that there are constants Ro, r such that Ly(R) c r with R = 

(Ri + ?)“*, and such that, for all u* E X0, u1 E Xr. I/U*]/* =Ro, llulllx c r, X = Azl, 

[orsO]. (12.7) 

Then the hyperbolic problem (12.1-12.3) has at least one solution u(t, X) E X = All with 

llu]lx 6 R. 

Proof. We shall only show that (5.i) applies. Thus, we have to verify hypotheses (a) and 

(b) of (5.i). Actually, (a) is satisfied, and, by Remark 1 of Section 5, it is enough to verify 

that 

(Jna;lS,:QNu. u*)x 2 0 [or SO] 

for all u* E X0,, ]]u*]~,Y = Ru, u =u* + ul, uI E XI,, jlu11( s r. Note that, because of the choice 

of J,, by integration by parts we have 
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= - 24J2dAQN4,, G)L: + 2/ 3((cu,XQNu),. u:)L: 

= - 24Ja;lXQN4 u:)L? + 2P((cr,XQNu),, u:)L2 

= 2a(cx,,S:,QNu, u*)L~ + 2/ 3(((y,SAQNu),. L&. 

Now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe have 

Nu = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ(Nu, e,J~?ek,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

%%QNU = z*(NU, ekl)Lgkl, 

where X* ranges over all k, I with k2 = 14, 1 = 1,. . , n. Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(J,PJ,:QNu, u*)x = ~~(GXQNU, u*)L> + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~P(G&Q(Nu),, ur*)Lz 

= 24--f(t, x, u)u* dt dx + 2pI, u(cr, x. u)),u:: dr dx, 

where (f(r, x, u>>, = f, + fuu,. 

A set of inequalities implying relation (12.7) 

Note that, for x = Azl, the elements u E X with ]]u]]x = 1 are functions u(t. x) in G with 

a common modulus of continuity CU,-,( c), 0 c 5 < + 
1 c q < 6, and k. 

m. Let a = meas G = 22, and let ,u,,. y,, 

c ,u,- ,a”9 1 sq C m, be the constants for which relations (12.4) hold. 

Let Ro, r, T, tl be posit&e numbers which we shall determine later. 

If u* EXO, IJu*IIx = 1, o E Xl, IIUII x Sr are given elements, then for 0 c p < R,,, pu* 

has modulus of continuity Row(c), and JJo]lx c or. Let G’ = [(t, x) E GJ /u*(t, x)] 6 1-1, 
G” zz G - G’. 

Let k(s), 0 6 s G DO = diam G, denote the function defined in (9.i), so that k(s) > 0 for 

0 < s c Do, k(0) = 0, and for every point P E c and U(P, s) = [Q E [W ’I IQ - PI c s], we 

also have meas[U(P, S) f~ G] 2 k(s), 0 < s s DO. We have seen that it is not restrictive to 

assume k = k(s) continuous in [0, D]. Actually, because of the periodicity, in the present 

situation, we can take k = k(s) = 2- ‘n?, with inverse function s = s(k) = (2x-‘k)“?, and 

meas[U(P, s) n G] 3 2-‘m2 for all s 5 0. 

(12.ii) Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(t, x, u) = t$(t, x) + g(u), where @ is of class C’ and 2n-periodic in t, and g : R 

-+ IF! is of class C’. Let us assume that: 

ug(u) z 0, /g(u) / c C, /g,(u) 1 s D, -d’ s g,Xu) c d”, u E $ 

g(u) 3 B for u 2 b, g(u) c -B foru s -b, 

g,(u)sd>O forJuIG6, 

for suitable positive constants B, C, d, d’, d’, 6 with b < 6, B < C, D = max[d’, d”] 
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Let I’, r), r, Ro, a, /I be positive constants such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q<rj<a=2n’, RJ 3 p,y + b, RJ + RN&% ) -t par G 6, 

Ml = c&R,,I-7 - aCp,,r - Bd”(2-‘R; + t) - @(2-‘Ri + rz)ln~> 0, 

M2 = @42-‘R,$ - /?D(2-‘Ra + ?)“ r - ~ICR&~~ > 0, 

Ro(w&# J/L.~  + P-“*b# &.,> 6 miNM1, WI. 

Then, for p = Ro, u* E X0, jlu*ll,y = 1, u E XI, /dl,~ s r, we have 

(12.8) 

a I cM(t7 x) + g(pu * + @I (PJ “) dt dx + BIG [Mr. 4 + We * 

+ o))t] (PO:) dt dx 2 0. 

If, in addition, 

lj&2 + 2”2nC =z r, (12.9) 

then problem (12.1-12.3) with f = Q, + g(u) has at least one solution u EX= Au, 

u = U* + ul, U* E x0, u1 E x,, Ib*I1y s Ro, llu& c r, 114~ c R = (Ri + g)‘“. 

Proof. Note that, for u E X = A21, [lullx == R, F(t, x) = f(r, x, 4, 4) = cP(t, x) + g(& 
x)) we certainly have II& = IIE;IjLz s IIdILz +C(meas G)ln = ll&2 + 2%C, and we can take 

u(s) = ll&2 + ~~‘*Jcc, a constant function. Analogously, we have Il&, ~~jlP’/~~2 s ~(ll@j(L, + 

2%C), and we take &) = ~o(I&/Lz + 2t’%C), also a constant function. Finally, since L = 

IId] = I, requirement Ly(R) c r of (12.i) reduces to the inequality (12.9). 

Note that, for u* E X0, (Iu*I(x = 1, we have, from (12.5), I~u,$,~ =llo~$., = 2-‘llo*IIL and 

I~u~~~~~ = I[u;fxllL2 = 2-lR. For u = PO:, u = a,, p = Ro, u* E X0, UE Xl, Ilu*lj~ = 1, I/c& 4 r, not 

only u* and a are orthogonal in L2, but also u”, and a,. Hence 

Rti-’ s 11~~: + o& = IIou:Ilt, + IId& s R&Z-'+ 32. 

As stated, let G’ = [(t, x) E Gj Iu*(t, x)1 s lJ, G”_= G - G’. 

First, let us assume that meas G” < n. For P E G we have meas(U(P, s) f~ G) > k(s) and 

thus for $ = s(v) we also have meas(U(P, s) f~ G) > k(s) = n, that is, the ball U(P, s) is not 
filled by points of G”, or U(P, s) n G’ f 0. In other words, any points P E G is at a distance 

ss = s(q) from points Q of G’. Hence, (pu*(P) - p*(Q)1 s Roe(s) with u*(Q) c r, and 

finally 

Ipv*(P)( s Ror + Rowo(s(q)) for all P E c. 
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Now s(q) = 21’2n-1’2$‘2 and the third relation (12.8) becomes 

ROT + Ro@+(q)) + I.cor s 6, 

and, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = R. and meas G” < 11, we have 

Ipu* + (~1 s R,,l-  + Row&(q)) + /ir,rs 6. 

Hence, g, a d, (gj s C, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

j--g.(pu’ + a) (pu: + 4  CPU:) df dx  = j-&w  + 4  t pu: + Rl* df  dx  

- Ggu(Pu*  + 4  (pu: + aT df  dr  
i 

2 4 lPG + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAslit, - ape: + &&~llLz 

2 d(2-‘R;) - D(2-‘R; + ?)“*r; 

I 
g(pu* + a) (pu*) dt dx 2 -  CR&*IIL, 3 -  CR@ n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G 

Let us assume now that meas G” 5 7. Then, for p = Ro, t E G”, we have (u*l 3 r, 

pu* + era R,,l--j.i,,rs b ifu*Z=l?, 

pu* + O=S -RJ + pars -b if u* G -r, 

and in any case g(pu* + a) (pu*) 2 BR&. Then 

g(Pu* + 4 (pa’) d dx  a BROW, 

I G,g(Pu* +a)(pu* )dr dr = G,g(pu*+a)(pu*+u)dtdx- 
I I 

g(pu* + a)udr dx 
G’ 

3 0 - C lla llL, 2 -c/w, 

Jc&(Pu*  + 4  (PUT + 4  (PU3 dr  b = / JLt pu*  + a) CPU: + uJ2df  dx  

- 

I 
gu(Pu*  + a) (pu: + +Jt  dt  dr  

G 

We have now in any case 

2 -4b u: + c hllt, - a lPu: + ~rll&tllLz, 

2 -d’(2-‘Ra + ?) - D(2-‘Ra + r*)l’*r. 

a Gg(Pu*  + 4  (PO* ) df dr  + B 
I I 

GgdPu*  + 4  (PUT + 6) (pu:) dt  ck  

3 min{/Id(2-‘R$ - /ID(2-‘R6 + ?)‘“r - L~AR@~,; 

aBRJq - crC,ul,y -  @ ‘(2- ‘Rg + r*) -  PD(2-‘Ri$ + r*)“*r}. 
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Finally, forf = $ + g, relation (12.7) is satisfied, since by (12.8), we have 

cuGf(t.X,pU*+a)(pv*)drdr+p G(f(t,X,pU*+a)),(pv:)drdr 
I i 

= aj-c [@ + g(P* + 41 (pu*) df dx + P/j:+ g&u* + 4 (PUP + oS1 (PUT) dz ~ 

2 min[Mi, Ml] + a 
I 

@pu* dtdx + @ 
I 

&pu? drdx 
G G 

2 min[Ml, WI - &dw20ll$4~~ - ~2-"'ll~dl~J 2 0. 

This concludes the proof of (12.ii). 

(12.4 Let f(t, x, u) = +(t, x) + g(u), where Q, is of class C’ and 2x-periodic in r, and 

g : R ---f R is of class Cr. Let us assume that 

ug(u) s 0, lg(u)( G C for all 12.4 G S, 

g(u) 2 B for u 2 b, g(u) G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-B foru s -b, 

-d s g,,(u) s d” for all 1~1 s S, D = max(d’, d”), 

gU(u) 2 d for all /uI G 6, 

for some positive constants B, C, b, 6, S, d, B < C, b < 6 < S. We shall also assume that, 

for given numbers 0 < E < 1, 8 > 0 we have B = (1 -  E)db, C = (1 + O)d& and that d’ 

= k’d, d” = K’d, D = kd, k = max(k’, k”). 

Then, for any given b, 6, E, 8, k, k” = k, there are numbers do, k:, Ao, BO such that for d 

s do, k’ s kb, and all @ E C’ with 

II& + Ao&#& =G Bo 

problem (12.1-12.3) has at least a solution u E Azl with llullx s R, where R depends only on 

the constants above, and then S = b R. 

Proof. We shall apply statement (12.ii). First we rewrite inequalities (12.8-12.9) in a slightly 

stronger form 

0 < n < 2~?, RJ 2 ,uor + b, RJ + wo(~2r$n) + par =S 6, 

(bd) (RJ)q> (1 + 13) (c5d)p,,,r + (/3/a)d’(2-‘R;+ r3 + (@ ci)D(2-‘R:,+ rq”+, 

2- ‘dR:, > D(2-‘R; + ?)“% + (a//j) (1 + 19) (Gd)Rop,(, 

If pr, m denote the differences between first and second members in the last two inequalities, 

then Mi = CYP~, A42 = /3pz, and we shall further require that 

(12.11) 
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First we take r so small, say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr c rl, that 2hr < 6 -  b, or 2p,,r 6 2y,yl < 6 -  b, and we 

can take RJ = b + pg. If we assume Ro 2 2*“r, then Ri 2 2-‘Ri +? 2 2-‘Ri , and relations 

(12.10-12.11) become, in a stronger form, 

0 < q < 212, RJ = par + b, Ro 2 2’12r, 

Roiq,(G)<6-b-2pd, O<rsrl, 2pai<6-b, 

(1 - E) (bd) (pg + b)q > (1 + 0) (6d)r + (@ a)d’Rfi + (@ a$DRg-, 

2- ‘dR; > DRN + (sip) (1 + 0) (Gd)RopIb 

/l&z + 21’2n(l + 0) (ad) G r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~ RoP~ oII~ IL~  + PW-“* b# &, c min[M1, M2J. 

(12.12) 

Let us assume now C s Co = 2-3’2n-1r, so that 2l”nC G 2-‘r, and d s do with (1 + f3)&& 

= 2-3’2n-‘r, hence d s 2-3’2n-‘(1 + 8)- ‘K’r. 

Relations (12.12) take now the stronger form 

0 < r] < 2n2, RJ = par + b, Roa 21’2r, 

R~cI@ /~~~JT) s 6 -  b -  2pg, 0 < r 6 rI, 2pgl < 6 -  6, 

(1 - e)b’dv + (1 - &)bp& > (1 + 0) (6d)r + (@ a)d’Rjj + (/3/a)DRo r, (12.13) 

2- ‘dRo > Dr + (alp) (1 + B)Mplo, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

II $hz =z r/ 2, 

ll@ llLz + 2-“ *u3wd llhll s cu-‘R{‘&’ min[M1, M2]. 

We take now 

d’ = k’d, d” = k”d, D = kd, k = max[k’, k”], 

so that relations (12.13) take the form 

d c 2-3’2n-*( 1 + 8)- ‘S-5, 

0 < q< 22, RJ = pi + 6, Roa 2l”r. 

R01~4~2~~n)~6-b-2p~, O<rcrl, 2pcll<6-b, 

(1 - &)b2q + (1 -  &)bpN > (1 + 8)6r + (p/a)kR? + (p/lcu)kRc,r, 

2- ‘Rn > kr + (d/I) (1 + 8)6pi0, 

lb ll Lo s d!, 

ML + 2-1’ 2u3wd ll~d l c  a-‘Ri&’ min[M,, MZJ. 

First, we take r1 > 0 so small that 2por, < 6 - b, and then we take 0 < q < 2n’so small and 

R. > 0 so large that 

R0oo(~2~7ln) = 6 -  b -  2p,yl, 2-3R, 2 (a/p) (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe)sp,,. 
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Now we can take 0 < I c rl so small that 

2i’=r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR - 0, kr c 2-3R~, 

[(l + 8)s + @ /oc)kRo - (1 - E) b/.&J] r G 4-71 - &)&I. 

The latter requirement is trivially satisfied if the bracket is SO. We shall now take 0 < k’ c 

ki, with (/Po()k~R~ = 4- ‘(1 -  .s)b’r]. Having so fixed Ro, I > 0 we take I > 0 so that ROT = 

,qv + b. Finally, we may take d = 2 -3’*x7d-1(1 + 8)-‘K’r, k’ = min[k& k”], K’ = k, d’ = k’d, 

d” = D = kd. Note that E, 8 and k are arbitrary, and so are LY and /3 positive constants. The 

first four relations (12.13) are thereby satisfied. Now 

pl = d{(l - c)b *rj - [(l + 6’)s + (Plcu)kRo - (1 - c)bpO]r - (Ph)k’R:} 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd[(l - E)b*q -  4-‘(1 - &)b*r] -  4-‘(1 - .z)b*q] = 2-‘(1 - &)b*dq, 

m = dRo[2-‘R. -  kr -  (d/3) (1 + ~)SpIo] 

a dRo[2-‘R. -  2-3Ro - 2-3Ro] = 2-*dR”o, 

MI = apl > 2-+x(1 -  &)b*dq, M2 = /3p, 3 2-*/3dR;, 

and the last two relations (12.13) yield A0 and Bo: 

Bo = cu-‘R<‘p$ min[Mi, M2] 

= min[a-‘R{‘&‘2-‘~1 - e)b*dr], cy-1R;1p$i2-2/3dR$] 

= min[2-‘(1 - .s)pL;dR{1b2dq, 2-*(pl(u)p:,R~] 

= 2-=&d min[2(1 - c)R-‘b2q, (/S!cr)Rgf], 

A0 = 2-1’2(/3/~)p;,. 

All relations (12.13) are now satisfied, if 

ll#ll s r/2, ll#ll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ AdMl s Bo. 

If we take B 0 S r/2 then the first of these relations is included in the second one, and (12.k) 

is proved. 

Remark. Note that in the proof above, we have treated E, 8, K’ = k, (Y, /I, b, 6 as arbitrary 

but fixed constants, and then we have determined rl so as 2p,yl s S -  b, then we have 

determined Ro and r] so that 

R,,c1&2qln = 6 -  b -  2/y,, 2-3R,, 2 (w//3) (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe)aplo 

Then we have determined r so that 

2’“r -= R - 0, rcrl, krc2-3Ro, 

[(l + f3)6 + (p/cu)kRo - (1 - E)bpo]r < 2-71 - .$b+p 

Then we have determined ki, so as 

(/3’6/cu)ki, c 2-*(l -  &)b*q k’ = min[kb, k”], 
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and I so as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARJ = or + b. Finally, we have 

d C drJ = 2-3x1(1 + q-wr, c = (1 + 8)&Y = 2-3%-‘r, 

B = (1 - c)bd, d” = k’d, d” = D = kd, 

and we have obtained a full set of compatible constants. 

13. ESTIMATION OF o0 FOR THE ELEMENTS OF AZ, 

(a) First estimates 

Any element u(t, x) of Azl has Fourier series 

u(t, s) = /%I 7r-l sin lx + $i ,$i [cj$Zl” z -l cos kt sin lx + dkj2 1’2rc-1 sin kt sin lx] 

and hence 

Then 

1141:i = II, [(W)’ + (h421 dr dx 

= T c&t + F 7 (d, + di,) (k2 + 1”). 

]u(t,x) -u(t’,x’))=Tco(n-lsinlx-n-lsinfx’) 

+ 7 7 [c42%-’ cos kt sin lx - 21’2~-1 cos kt’ sin Ix’) 

+ dk1(2?rv1 sin kt sin Ix - 2”2~-’ sin kt’ sin lx’). 

If we denote by &J the sum of all terms in (13.1) with r’ d N or k2 + I4 Q N, and by RN the 

remaining terms, then 

4~ x) = z 0, x) + Mt, x), 

I@, x) - u(t’, x’) 1 s 1; (t, x) - z (t’, x’) 1 + [RN@, x) 1 + /RN@', x’) I. 

The term ]&(t, x) - &(t’, x’)] can be written as follows 

IT (t,x) - F (I’,x’)/ = lzNcoIp *l-2n-1(sin/x - sin/x’) 

+ 
F k=+ SN 

ckr(k2 -t-  p)l’* - (k2 + 14) -1n(21’2n-1) (cos kt sin lx - cos kt’ sin Ix’) 

+ 

F k=+ SN 
dkj(k2 + p)ln * (k2 + 14))- ‘n(21’zn-1) (sinktsinlx - sinkt’sinIx’) , 

where the trigonometrical expressions are in absolute value sl(x - x’] and <kit -  t’l + 

Ilx -  x’( respectively. In any case they are 4(P - Q] and a(k + I)JP - Ql respectively, 
P = (t, x), Q = (t’, x’). By Schwartz inequality we have 
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X P n-v4 + 
SN 

kZ+ <N (I?* + I”)-‘(2x-*) (2k* + 21*)“*)P - Q ] 
?_ 

c 114121b-* ,zN l-* + ~JT-~ kl+TsN W]“ * IP - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQl. 

Since X1-* = d/6 and the number of terms in the second sum is < the number of terms of 

the sum &&N&%N, we have 

1 F (t, X) - 5 (t, X) ! s ]]1&[6-’ + ~JT*N”*N”~]~‘* IP - Q I 

s ]1~]121[6-’ + 4~-2N3’4]1’2~P - Ql, 

where 6-r = O-16666, 4~* = O-40528 and (0.571951)“* = O-75627. Hence, 

) z (t, s) - ; (t’, x’) / =Z ]]~]1~,(0+75627) N3’*]P - Q 1 = shr 

Concerning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARN we have analogously 

I RN(x) I = I,& co&* * l-*n-l sin Ix 

+ 
? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk*+ >N 

ckr(k2 + 14)1’* . (k* + 14)-1’22n-1 cos kt sin Ix 

+ 

? k*+ >N 
dk,(k* + 14)“ * * (k2 + f4)-1’22~-1 sin kt sin lx 

s 
(7 

, >N d/l”  + I; 
k’+l >N 

(&I + &I (k* + I41 
) 

l/2 

X 

P 

rr-*1r4 + 
/ >N 

k2+T,N 2~~. 2(k* + 14)- ’ “* 
) 

s ~~u~~~~(T~‘,~~ i-4 + 4x-* k2z>N (k* + 14)- ‘)“* = RN. 

We now have proved that, for P = (t, x), Q = (t’, x’), we have for any N, 

It.@) - u(Q) s SN + 2R,v. 

(b) Evaluation of _#‘(sin 0)-l’* d8 

From [3, p. 171, No. 287.501, we have 

for k = 2-l”, g =6 , A = arc sin((2 sin LI#)~‘~ (1 + cos d@ + sin a+)-‘“), where F is the 

incomplete elliptic integral of the first kind. For a = l/2, 4 = n/2, then g = 2fl = 2.82842, 
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a = n/4, and 

A = arc sin(2’“(2 + fi)-112) = arc sin(0.765 37) = 49”, 56.372. 

From [3, Table on p. 3281, F = 0.927053, and 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n/2 

(sin 8))-lR de = gF = 2.622 10. o 

(c) Evaluation of RN 

For N 2 1, k 2 2, 13 2, k2 + l4 > N we have 

(k - 1)2 + (I- 1)4 = K2(1 - k-1)2 + i4(1 - f-1)4 > 2-2k2 + (5/16)14 > 2-2N. 

Hence, by reduction to a double integral, and usual transformations, y2 = z. and x = p cos 8, 

z = p sin 8, we also have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k2+,‘>&2,,a2 (k2 + ‘)-’ < ~*+y+N,4,x~0,yz2 (x2 + y4)-1 d” dy 

= 

I 
(x2 + 2*)-1(22-“2) CIX dz 

*~+z~zN/4,xaO,z~o 

= 2-‘la (Sin w-“21;+-,n p-3’2 dp = 21’2(2.622 10)N-1’4 = 3.7082()N-“4. 

On the other hand, we have 

~~+~,&iorl~l (k2 + rJ)_’ = ,>1 &_, (1+ 13-l + k,l &, (1 + k2)-l 

< W4 + Zk-2 Q p-4 dp + 

= 3-l(N-l/4(@/ - I)‘/4 - 1)3)-lN-l/4 + N14((N - 1) l/2 - 1) -l)N-‘14. 

For N = 10 the factors of N-1’4 are 1.51104 and 0.889 19 respectively. From analysis we know 

that IZ;“le4 =1.08232 , Zrkm2 =1.64493 . It is easy to verify that the sums of the two series 

above are <(1.511 04)N-1’4 and ~(0.889 19)N-1’4 for N = 1,2,. . . ,9. Since 3.70820 + 1.51104 

+ 0.889 19 = 6.10843, we have &Z+,+N(k2 + p)-’ S (6.10843)N-1’4 for all N. 

The same computations have also shown that 

F 
>N l-4 < (1.511 04)N-1’4, 

so that 

RN = llullzl[nW 2 zN lU4 + 4~~~ ,2+T,N (k2 + 14)-1]1’2 

C ]&iJc-‘(1.51104 + 4 * (6.10843))1’2N-1’8 

= lj~](~i(l.62l34)N-“~. 

(d) Estimate of the modulus of continuity 

First let us assume that we have in general 

(u(p) - u(Q) I s SN + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAURN, SN = BN@ (P - Ql, RN = AN-” 
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and given constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, B, CX, /3 > 0. By taking 

AN-* = (iz/3)IP - Qlr, BZ@ lf’-  Ql = (E/3)IP - QI” 

for suitable constants E > 0, y > 0, we derive 

BZ@ lP - Ql = AN-” 

hence iV”+p = (AIB)IP -Ql-’ , and by computation 

AN-” = BN@lp _ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQl = A@@+@)- ‘@~+@)- ‘(p _ Q Ida+“‘-‘. 

Thus, y =a(a + p)-‘, E = 3AKa+@ )-‘B“(m+@ )-‘, and 

lu(P) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4Q>l c 3A F%~+fl)-‘B++@)-‘(P _ Qltia+@)- ‘. 

In this case above we have A = llu1j2,(1.621 34), cr = l/8, B = /z&(0.75627), /3 = 3/8. Hence 
(Y + p = l/2, a(N + p)-’ = l/4, P((Y + p)-’ = 3/4, 

(u(P) - u(Q)1 c ~~~~~~~[3(1.62134)~‘~(0.75627)~‘~] IP - Qll’” 

= llu(12i(4.0196) IP - Q11’4. 

(e) Estimates for PO, ~10, PZO 
Here llullm is given by the same expression for RN where the sums range over all possible 

values of 1 and k, that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

l4w)I c  11+-2~ l4 + 41r-~ $ $ (k2 + I”)-l)l’* 

where the first sum is 1.08237 and the second one can be written as 

2 + c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k*+Psl,k~Z.laZ k’+/4rl.k=lor/=l 

(k2 + P)- ’ 

and these two sums are given in (c) for N = 1. Then 

]]uIIp s (]uIIZln(l.08237 + 4 . 6.10843)“2 = /u2,jI (1.62134). 

In other words, we can take h = 1.62134, and then we can take plo = w = 2&4, = 32.004. 

14. ANALYSIS IN THE LARGE OF THE DOUBLY PERIODIC SOLUTIONS OF THE 
WAVE EQUATION u,, - u,, = f(t, x, u) 

We consider here the problem of the solutions u(t, x), periodic in t and x, of the hyperbolic 

problem 

utr - r&.X = f(t, x, u), (t, x) E Iw*, (14.1) 

u(t + 2n, x) = u(t, x) = u(t, x + 2X). 

Let G = [0, 2n] x [0, 2~r], let a = meas G = 412, and let]]u]lL2, (u, u) denote the usual square 

norm and inner product in Lz(G). 

Let [ek,, k, 1 = 0, 1, 51, 22, . . .] denote the system generated by exp(ikt) exp(ilx) in R2 

and orthogonal in G. Then any element u E X = AlI has Fourier series 

u(t, X) = s b&k/, bk/ = (u, e k/ h 
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with 

l/r.& = b&l + llu& + IIU& = b&l + 5 &(k2 + f2) < + 03, 

/l&C = (u, u>x*, (u, u)x = boo% + (UI, UJL* + (ux, UJLr 

By the same arguments as in Section 6 we know that u E L, for any q, 16 q < + a, 

uf, u, E Lz, andIIUIIL4 c ~&&, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlluJLz s I Iullx , I (u,[(~~ G I (u(Ix. Let XO denote the set of all elements 

in X with Fourier series &=&k,ek,. We know from Section 7 that these elements are bounded 

continuous and Lipschitzian in R* with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ilull c ~dl4lx, lu(t + h, x) - u(b x) I 4 AI4lxlhl, 

lu(t, x + k) - 4G x> I zG !4ll4lx IN7 

for some constants b, p1 which we estimated in Section 7. 

Let E denote the operator defined by Eu = utf - u,. Let D denote the class of all elements 

u of class C in lR* and 2x-periodic in t and x. By a weak solution u E X = A11 of (14.1) we 

denote any element u E X such that 

(u, Y, - YJL2 = V(c x, u), y) for ally ED. 

Thus, the subspace X0 of X can be interpreted as the set of all elements u E X for which 

(u, y, -yxJL2 =0 for all y E D, that is, the weak kernel of E. Then, for every element u* 

E X,, we also have, integrating by parts, (u:, y,) =(u:, yJ. If u* E X0 and we approximate 

u* by elements y E D in X, thus yr, y, approximate u:, uf in L2, then we also have 

(UT, U:)Lt = (UZ, r&*9 Ilu:IIL, = lML2 = 2-W*llt - hXYl. 

For any element u* E X0 we have, therefore 

(u*, u*)x = u&o&l + (u:, u:)L2 + (u?, O,*)L, = u&&o f 2(u:, UI*)L2, 

IIu*llx = (&I)* + 211kq12. 

Let P denote the natural projection of X onto X0. For u E X1 = (I - P)X, then u = 

Zbk,ekr with Zb$(kz +f) < + 00, where Z ranges over all k, 1 = 0, -cl, 52, . . . with k2 # l*. 

Let Yo, Yr denote the analogous decomposition of Y = L*(G), and let Q denote the natural 

projection of Y onto YO. We can now define the operator H : Yi + Xi. Indeed, for u E 

Yi, or u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=Zk2+,2bk,ekl with Zb$,< + ~0, let u=Hu=&2+,2bk,(-k2 + Z2)-‘ek,. Then, u = Hu E 

(I - P)X is the weak solution of Eu = u. Moreover, IJHullLz c II&2 and IlNx s II&2 for 
u E Yl as we proved in Section 7. Thus for the linear operator H : YI + X1 we have lldl = 

L = 1. With X, Y, P, Q, H as above, axioms (a), (b), (c) of Section 3 are satisfied. We now 

define the finite dimensional subspaces X0,, of X0, Xi, of X1, YO,, of Y0 as in Section 12, and 

the natural projections R, : XI + XI,,, S,, : X0 *Xon, SL : Y,+ Yo, as in Section 12. Finally, 

let a;, : YO, + X0,, denote the linear map defined by any =&,,bkgk,, where y =&,,bk,eklr y E 

Y,,, where CO,, ranges over all k, I = 0, rtl, . . . , +n with k* = P. Hence cu;‘(O) = 0, and 

equation aJAQZVu = 0 is equivalent to SAQNu = 0. Moreover, SAQiVu = 0 if and only if 

(SAQNu, u*) = 0 for all u* E X0,. We can repeat on a;, the same remarks we made in Section 
12. 

Let X&, denote the subspace of all u E X0,, with mean value zero. For every element 

u E X0, of mean value zero, or u EX&, or u = &bk,ek, where C& ranges over all k, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 
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51,. . . , tn, with k’ = I’, let us define J by taking 

Ju = C&k-‘b&,, (14.2) 

where ei, is obtained by ek[ by replacing cos kt by sin kt, and sin kt by -cos kt. Then, (Ju), 

= u. Let cry, /3, y be nonnegative constants with y > 0, & + p > 0. For every element u E 

X0,, that is, u = &,,bk~ekl where & ranges over all k, I = 0, 51, . . . ‘-n with k2 = p we take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Jnu = rbooeou + ;“ak-’ + P)bk,ek,. (14.3) 

Thus, on X& we have J,,u = -dJ’ + /3J. 

The original problem (14.1) is now written in the abstract form Ex = N.x, or in the equivalent 

form of auxiliary and bifurcation equations 

ul=H(Z--Q)Nu, QNu=O, u=u*+u,EX. 

For every integer n, we have then the reduced equations 

u1 = R,H(I - Q)Nu, J,a,,S;QNu = 0, u = u* + UI EX, = Xon +Xlnr 

and, for each n, we apply Theorem (5.9 and Remark 1 of Section 5. 

Below, we shall show that there are numbers Ro, r > 0 such that, for every integer n, there 

is at least one solution U, E X,,, u,, = UX + unl, u,* EXO,,, unl E Xln, hence U, E X, 

ul E X0, u,t E X1, n = 1, 2, . . , with I/U,& s (R: +r’)l” for all n. 

Proceeding as in Section 5, we now introduce the space 9Z. For %I! we choose L,(G) for any 

fixed 4 5 2. Here llu,& is bounded in X = A 11, and the sequence u,,(t, x), (t, x) E 5%‘. is made 
up of functions in AlI with bounded norm in X = A 1,. a real Hilbert space. Hence, there is 

a subsequence, say still [n], which converges weakly in X = AlI to some element u E X = 

AlI. Hence, by Section 5, u,, converges strongly in L, to u, as we have seen in Section 5. We 

could take the sequence [n] in such a way that U, - u pointwise a.e. in G. Now assume for 

instance thatf(t, x, u) is continuous and bounded in iw3, and doubly 2n-periodic in (t, x). Then, 

f(t, x, %(f, x)) -+ f( t, x, u(t, x)) pointwise a.e. in G, the functionsf(t, x, un(t, x)) are measurable 

equibounded functions in G, and thenf(t, x, un(t, x)) + f(t, x, u(t, x)) in L,(G), or Nu, - Nu 

in L,(G). 

Proceeding to the limit in the coupled equations, we obtain that u E X = L,(G) is a solution 

in the weak sense of the original problem (14.1). For the solution u E L,(G), u,, U, exist in 

Lz, utr, u,, exist in the distributional sense and they satisfy the original equation in the weak 

sense. 

(14.9 Let f(t, x, s) be of class C’ in lw3, n-periodic in t and x, and bounded in [w’, say 

If(r, x, s)l s yo. Let us assume that there are constants Ro, r such that Lye G r and such that 

for all u* E ~0, ur E X1, l/z& = Ro, llulllx d r, X = AI,, 

r(f(t, x, u))o(& + (Y I f(t, x, u)u* dt dx 
G 

+ /3 
I 

(f(t, x, u)),u: dt dx 2 0 or ~0. 
G 

(14.4) 
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Then the hyperbolic problem (14.1) has at least one solution u(t, x) E X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlI with /]L& c 

R = (R; +?)I’* . 

Proof. We shall only show that (5.i) applies. Thus, we have to verify hypotheses (a) and 

(b) of (5.i). Actually, (a) is satisfied, and, by Remark 1 of Section it is enough to verify that 

(J,ru,SAQNu, U*)X 2 0 [or ~01, 

for all U* E J&, ]/u*(/x = Ro, u = u* + ul, UI E XI,,, IIu& c r. Note that. because of the choice 

of J,,, and by integration by parts, we have, 

(J,G%QW  u*> = (Jna,&Q~~)oodb + 2((J,c&QNu),, ur*)L> 

= Y(Q~~~& - 2d(J’cu,XQN4,~ uI*)L? + 2/3(( a;S;QNu),. u:) L? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

where Cf(t, x, ~1)~ = fi +fuu,. 

A set of inequalities implying relation (14.4) 

Note that for X = AlI, the elements u* E XO with ]/u*]jx = 1 are Lipschitzian 

u(t, x) in (w2 with a Lipschitz constant, say ,UI > 0 which is an absolute constant. 

Let Ro, I, r, r], A be positive numbers which we shall determine later. 

functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

If u* E x0, lIULIIX = 1, 0 E Xl, II& G r, are given elements, then for 0 c p c Ro, pu* is 

bounded and Lipschitzian with JIpv*(j, c *Ro and Lipschitz constant s BIRO, while u E L, 

with ]I&, s ,+,Ro, 1 s q < +w. Let 

G’ = [(r,x) E GI (U*(t,X)I c 1-, io((t,X)/ s A] 

G” = [(t,x) E G( (u*(t,x)j F= I-, lo(t,x)/ G A] 

G”’ = [(t,x) E GI ~o((t,.x)( 2 A]. 

Then, II&., ~~~111a ll~ s ~~1’  v a nd  

A4 meas G”’ s 
I 
G ML x> I4 d r d .x = Ib Ill, c  @ 1fl-4, 

or 

meas G”’ c A-q&,+. 

Let k(s), 0 c s C DO = diam c, denote the function defined in (9.i), so that k(s) > 0 for 

0 < s c DO, k(0) = 0, and for every point P E cand U(P, s) = [Q E [w*l IQ - PI c s], we 

also have meas[U(P, s) n G ] 2 k(s), 0 < s c  DO . We have seen that it is not restrictive to 
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assume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = k(s) continuous in [0, D]. Actually, because of the double periodicity, in the 

present situation, we can take k = k(s) = ITS’, with inverse function s = s(k) = (nmlk)ln, and 

meas[U(P, s) rl G] L zs* for all s 3 0. 

(14.ii) Let f(t, x, U) = $(f, x) + g(u), where @ is of class C’ and 2x-periodic in t and x, and 

g : R + R is of class C’. Let us assume that 

ug(u) 20, \g(u)l c C, \g,(u)I +=, D, -d’ sgu(u) ad”, u E Iw, 

g(u) 3 B for u 3 b, g(u) < -B foru d -b, (14.5) 

g(u) z= d > 0 for luj s 6, 

for suitable positive constants B, C, d, d’, d”, b, S with b < 6, B < C, D = max[d’, d”]. 

Let I, n, r, R,,, 4, LY, /3, y, A, A, t be positive constants such that 

Mi = PdR@ -l(l -  A2) -  (d + d’)R;&-qpj,rq -  DRo2-“(1 -  A’)% 

- LvCRO~I,, -  yCRcJ > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 

M2 = cr(q - A-qp$rq)BRoT - a&r - /hf’Rs2-‘(l-  A*) 

-  PD&j2-‘“(1 - A2)i’2r - ~(4x7~‘p$DR,,r > 0, 

M3 = yBRo& - y(478)-$&DRgr - cuCpIor -  pd’R$2-‘(1 -  n2) 

-  ~CR&+‘*(l - A*)l’*r > 0, 

2nC < r, 7 > A-q&1.4, R& + RoplG+ A s 6, 

RJ-A>b, rap,V%, 0<q=Sa=4n2, (14.6) 

0 6 A. c 1, Iz 2 npO(l - A2)1’2 + t, R,, 3 b/t. 

Then, for p = Ro, u* EXo, I(u*~~x = 1, aE Xi, lldlx c r, we have 

Q = y[&m + (g(Pu* + ~~)ooJU& + ai, I+ + dP* + 41 CPU*) dr dx 

I 
(14.7) 

+ p [@I + (g(Pu* + @)XP*)r~ dx 3 0. 
G 

If, in addition ll@ll~~ + 2~rC s r, (14.8) 

then problem (14.1) with f = Q, + g(u) has at least a solution 

u E X = AII, u = u* + Ul, u* EXO, Ul EX,, 

((u*([x c Ro, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAllu4~ c  r, MIX s R = (Ro ’  + r? “ *. 

Proof. Note that, for u E X = All, j(u(Jx =z R, F(t, x) = f(t, x, u(t, x)) = $(t, x) f 

g(u(t, x)) we certainly have jjflly = I\&, slldlL2 + C(meas G)“2 = \I&2 + 2nC, and we take 

Y(s) = lldl2 + 2nc7 a constant function. Since L = llq-111 = 1, requirement LfiR) d r of (14.i) 

reduces to inequality (14.8). 

Let us assume \ur;Oj s A. 
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Note that, for u* E XO, I[u*/[x = 1, we have 

I/u:~&, = /Iu$,~ = 2-‘(llu*112x - &o), or IIu$., = llu$., 2 2-“*(l - nz)ln. 

For p = ~0, u* E ~0, o E Xl, IIu*llx = 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII& s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr, not only u* and o are orthogonal in L2, 

but also u: and a,. Hence 

g?-’ S jpu: + a& = IIpu:ll’ + IlC& 6 R$ql - A*) + r*. 

First, let US assume meas G” < r]. For P E G we have meas(U(P, s) fl G) > k(s) and thus, 

for s = s(q) we also have meas(U(P, S) f~ G) > k(s) = q > meas G”‘, that is, the ball U(P, 

s) is not filled by points of G” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU G”‘, that is, for s = s(q), n > A-q@ fl, we have U(P, s) 

n G’ # C#A In other words, any point P E C? is at a distance - <s = s( 7) From points Q of G' . 
Hence ]pu*(P) -  p*(Q)/ s Ropl)P - Ql with lo*(Q)\ C r, and finally zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

jpu*(P)I =s RJ + Ropls(q) for all P E c. 

Now s(q) = n-‘%j”, and the third relation (14.6) becomes 

ROT + ROpIs(q) + A =S 6. 

Thus, for p = Ro, meas G” < r,r, q > A-q$‘q~q, we have 

~~u*+~JsR~T+R~c(~ v-- q/lt+A<S inG’ UG”, 

meas G”’ =S A-qp%rq. 

Hence, g,(pu* + a) 2 d in G’ U G”, g,(pu* + CJ) L -d’ in G”‘, and lgl s C, lu:l spl a.e. 

in G. Hence 

I 
G g&u* + o) (PU: + of) (PU:) dt d.x 

= 
I G 

g&u + o) (pu:)*dth + cgu(pD* + 0) (pu:)o,d cb 
I 

= 

I 
G,UG”gdpu* + 4 (M)*dth + 

I 
gut,” + 4 (Pu:)*d dx 

G”’ 

+ 
i 
G g,(pu * + 4 (w:h dt do 

sd (pu:)*drdu-d 
i I 

G,,,(M)2dt~ + i glxpu* + a) (pv:)*~ dx 
G G”’ 

+ 
I 
G g&u* + 0) (pu:)a dr dx 

Z= dR@ -‘(1 -  A*) -  (d + d’) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR2g!A-qpqqfl - DR&2-I’*(1 - A*)“%. 

On the other hand 

I 
g(pu* + 0) (PU*) d d.x 2 -CRoclro, 

G 

(g(pu* + u),&uo)) 2 -CRol L -  CRo. 



798 L. CESARI and R. KANNAN 

Now let us assume meas G” 3 q. Then, for p = &, and (t, x) E G” we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

pu*+aaRJ-Ash if v* 3 I, 

pv* + (5s -RJ+Ac-b ifv*C-I, 

and in any case g(pv* + a) (pv*) 2 BRJ in G” - G”‘. Then 

On the other hand. 

I gdPv* + 4 (PG + 4 (pv:) dr dx 
G 

= I p(w* + 4 (pv:)*dt~ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGgu(pu* + a) (p:)u,dr dx I 
2 - d’Rfj2 - ‘( 1 - A*) - DR$ -I’*( 1 - /pyr. 

Finally, if we assume I 3 pi(D/2) = pi%&, and v*(t, x) 3 IY at some point of G”, then v* 

3 0 everywhere in G; if v*(t, x) C -I at some point of G”, then v* s 0 everywhere in G. 

In other words, v* has constant sign, and the same holds for pv*, and for g(pu*). Thus, 

(g(pv*))m and (pv*)~~ have the same sign. Now 

(g(pv* + %l(Pv*)oo= (g(Pv*))M,(Pv*)@J+ ](g(Pv* + u))oo- (g(Pv*))c&Pv*)oo 

20- (47~7-~/c[g(pu*+ u)-g(pv*)]dtd_x .(4n.)$pv*) drdx 

a - (4*)-2D/G /u( dtdx j--p\v*j dtcLx 

2 -  (4Jq2Dp lor . Rovlo = -  (4x) -$&DRf. 

Now let us assume that (v&i 2 A. Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Il(u* - mM* = Ku* - ho )xllt~ s 231 - P). 

Hence 

iv* - Vet S &P(l - P)“2(0/2) = jzluo(l - A*)? 

IfAaJqQ(l--A) * l’*, then v* has constant sign in G, and then pv* and g(pv*) have the same 

constant signs. Hence (g(pv*))&pu*)oo 3 0. 

If A > z&l - A2)l’* + t for some t > 0, then either v* 2 tin G, or v* =S --tin G. Hence, 

for R. > b/t and p = R. we have either pv* 2 b or pv* =S -b, and correspondingly either 

g(pv*) 2 B or g(pv*) s -B. Thus, in any case 

(g(pv*))&v*)oo 2 BRor 
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and as before 

(g(P* + ~)MP~*)oo - ’ BRot - (4x7~‘&,DR,y. 

On the other hand, 

f 
g&u* + c-9 (pu: + a) (pu:) dt dw 

G 

= I g&u* + a) (p~:)~dtdr + gu(,* + a) (pu:)u,dt dx 
G I G 

a - d’R&‘(l - A’) - CRo2-‘“(1 - 132)“2r, 

i 
Gg(pu*+a)(pu*)dtd_r= Gg(pu*+u)(pu++o)dtdr- g(pu*+a)adtdx 

I I G 

a 0 - CllallLl~ - ChoT. 

Thus, summarizing, we can say that for Iu&,I s A, meas G” < q, we have 

52 > ,!?dR@-‘(1 - A2) - B(d + d’) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR$.& -q&Jl - Ji?DRd -1’2(1 -  j,2)“2r 

-  ~CROPIO - yCRd - yl@ooJil - aRo~~l~~,~~,32-‘“(1- A2)“2 

- /3jJ@&,Ro2-‘“(1 - A2)‘“. 

For [u&l s A, meas G” > r], we have 

52 > cu(r] - A -q&P) BRJ - aCpa - /3d’R$2 -‘( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - A’) 

- /3DR,j2-‘“(1 - L2)“r - y(41;,-2p$DR~ 

- J+&& - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcrRo/44~~~2o2-‘“(l - A2)1’2 - k%$tihJio2-‘“(1- A2)“. 

Note that Iv&,) s (4~9)~’ JG /II*/ dfd~ ~(4~)-‘~102-‘“. Thus, for /u&l >A, then A <lo&l d 

(4$)-1p102-1n, and 

& 3 yBRot -  y(4n2)- ‘&DRg - aC,q~ 

-  /3d’R2-‘(1 - A2) - /3CR~-1’2(1 - A2)l”r 

- ~l~~l(2-“t(41t)-‘~~~) - ~Rol14h2-*%lo - ~il~diL~~-~~~. 

Thus, A,,, Bo, CO are the maxima of the coefficients of /&I, llq$2, Il$& in the formulas above, 

and Ml, M2, A43 are the parts in these formulas independent of $I. We conclude that, for 

ADI&MI + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&&~IL~ + GII~IL~ c min[Ml, M2, M31, 

we have & > 0 in all cases, and (14.7) is satisfied. 

If we take B = (1 - E)&, C = (1 -t B)d for some fixed constants 0 < E < 1, 0 > 0, and 
d’ = k’d, d” = K’d, D = kd, k = max[k’, k”], then the relations above yield 

Ml = /3dR$?-‘(1 - A2) - /3(k + k’) dR$.&-qpfqrQ - pkdR$--‘“(l - A’)‘% 

- cr(l + 0) dcYR,+lo - y(1 + 0) dr3R& 
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M? = ufq- K9&,14) (1 - E) dbR,J -  ~$1 + 0) d&r - pk’dR;G-‘(1 -  A_3 

-  /3kdRo;!-“‘(1 -  k2)“2r -  y(4n’)-1p;,,kdRor, 

MJ = y(1 -  &)R&bt -  y(4n’)-2&dR~ - cu(1 + 13) d6,u,,s 

-  /3k’dR$-‘(1 -  A2) -  p(1 + 0) d6R,j2-“2(1 -  h2)%. 

Thus, the inequalities (14.6) become 

Mid-‘Ro’2-’ = /3R,j2-‘(1 - n2) - (k + k’)Ro,u:A-qp~qrq 

- k2-1’2(1 -  A2)“% - ~(1 + 8)6pIo -  ~(1 + 0)SA > 0, 

Mzd-’ = a(~ -  A-9p4,,r9) (1 - E) bRJ - cr(l + 0) &or - fik’Ri2-‘(1 -  L2) 

_ PkR,9-1/2(1 _ j$l/? r -  y(4$)-1p$kRor > 0, 

M3d-’ = y(1 - E) R&t - r(4n2) - ‘&kR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Jr  - (~(1 + 0) 6p,g -  /3k’Ri2-‘(1 -  A2) 

-  /3(1 + 0) 6R&“2(1 -  A’)“‘r > 0, 

241-t 8)d6<r, rj > Aeqpzlrq, 

If we take B = (1 - E)db, C = (1 + 8)dh for some constants 0 < E <I, 0 > 0, and d’ = k’d, 

d” = k”d, D = kd, K = max[k’, k”], then the relations above become 

MI = pdRi2-‘(1 -  A’) -  /3(k + k’) dRi$&A- ,uqlr 9 9 9 - /3kdR$-1’2(1 -  A’)‘% - (~(1 + 0) d6Rop10 

- ~(1 + 13) dGR& > 0, 

M2 = a(~ -  Aqpz1r9) (1 - E) dbRJ - cu(l + 0) d6pg’- pk’dR$2-‘(1 -  A’) 

-  /3kdR$-1’2(1 -  L2)l”r -  y(4~)- ‘&kdRor > 0, 

M3 = cu(1 - E) Rodbt -  y(4~$~&kdRor -  a(1 + 0) d&,or -  /3k’dRG2-‘(1 -  A’) 

-  /3(1 + 0) d6R,$-1’2(1 -  A2)li2r > 0. 

We also have 

M,d-‘Ri’ = /3R$-‘(l - A’) - (k + k’) Rop!A-qpqqrq - fik2-“2(1 - A’)“‘r 

-  a(1 + h)d,&cJ - y (1 + 6)dA > 0, 

Mzd-’ = a(~ -  Amqpzlrq) (1 - E) bRJ - a~(1 + 0) 6p,,r -  /3k’R$2-‘(1 -  A2) 

-  /3kR$-“2(1 -  ;i’)““r -  y(4n2)- ‘&kRor > 0, 
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M$’ = fll - &)I?& - y(4n2)-2&okR or - Cx(1 + e) @,or - /3k’R;2-‘(1 - P) 

- /I(1 + e) R&“2(1 - A2)l’% > 0, 

801 

2til-t EJ)dC?< I, 77 ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAqP9,1rq, 

RoF+Rop, qln+AcS, v- ROT - A 3 b, (14.9) 

I- 3 p,KJr, 0 < q S a = 4x2, 

0 c A s 1, /I 3 n/.80( 1 - P)l’2 + r, R. = bit. 

For t = 0 the equation I. = nb(l -A2)‘” yields Ib =x&l + (n~b)~)-‘” , 0 < & ~1. Then, 

equation A =xh(l - A2)li2 + t is equivalent to F(A) = (1 + (x&r2)A2 - 2At + 19 - (xpo)’ = 0 

with F(b) = -2&r + 3 and F(1) =(t - 1)2 2 0. Thus, for t # 1, certainly Fhas a root between 

& and 1 provided -2&r + t? < 0, or t C 2&. Let us fix t, 0 <t < min[l, 2&l, and let 13 denote 

the root between ;b and 1 of the equation A =~tb(l - A2)“2 + t. Now we take 

k’ c k hence k” = k, and 

2kp; . A-qp$r’J s j32-2(1 - A2). (14.10) 

Then 

h&d-‘R;’ 2 pZ-2(1 - A2)Ro - k2-“2(1 - h2)1’2r - a(1 + 8) 6,ulo- ~$1 + #)Sh, 

and we take 

k2-“2(1 - A2)1’2r s /3Z4(1 - A2)Ro, 

so that 

a(1 + 0) &r. s ,B2-4(1 - A2)Ro, 

y(1 + 0)s s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2-“(1 - A2)Ro, 

Analogously, we take 

Then 

MId-‘R~’ 3 @X4(1 - A’)R,,, 

A-q&P C r$2. 

Mzd-’ 2 [a(~7/2) (1 - &)blI - pk2-“2(1 - A3”+ - y(4~9)-‘&kr]R~ 

- ~$1 + 6) &,r - /3k’R$!-‘(1 - A’), 

and we take 

/3k;‘“(l - A2)1’2, c 2-3g(l - E)br, 

y(4ny&kr c 2_3q(l - &)br, 

a(1 + e) s/&xr C 2_4aYj(l - E) TR”, 

/3k’R,$2-‘(1 - n2) s 2-4cur](l - E) l-Ro, 

so that 

Analogously, 

Mzd-’ 2 2-3~(1 - E) I-Ro. 

M3d-’ = [y(l - E)bt- y(4~d3-~p:&r - /I(1 + 0) 62-1’2(1 - A2)“+]Ro 

- a(1 + 6) &or - /3k’R$-‘(1 - A2), 

(14.11) 

(14.12) 

(14.13) 

(14.14) 

(14.15) 

(14.16) 

(14.17) 

(14.18) 
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so that 

y(41Z)-*/&$r c 2-‘y(l - .s)br, (14.19) 

p(l + 0) 62-“*(l - h’)“*r< 2-*y(l - E)bt, (14.20) 

a(1 + 0) &lor s 2-3y( 1 - E) btR,,, (14.21) 

/3,‘c’R$‘-‘(1 - A*) s 2-3y(l - E) btRo, (14.22) 

M3d-’ 2 2-‘y(l - E) btRo. 

We think of LY, p, y, E, 8, r, A as fixed numbers. 

We write the second relation (14.9) in the form 

b+AaRJa-A-RRopl~ 

so that we must arrange that the first member is s the third member, or 

2A + Rop&$i s 6 - b. (14.23) 

Let us take r >prV’?% and 0 < u < 42 arbitrarily; in other words we have satisfied the third 

relations (14.9). 

Now equations (14.12) and (14.13) can be written in the form 

b/z =z Ro, 
fz (1 + who 
3 2_4(l _ A2) 6 = Ro, 

u 
It-8 

fi2-4(1 _ A2) ‘< Ro9 

and these relations together with (14.23) yields 

(Y (1 + eho 
p 2_4(1 - F) P1 

&&,, &R.s6- b- 2A, 

I- 

J 
- 

;2_;1+_eA2)~1 +p, ;R,d- b-2A. 

Thus, we must require that - 
p2-4(1 - A2) cL1 J 

- 
a (1 + o.ho ‘I< 1, ?< 1, 

j7Y $2- ;;_eA2) p1 4 J Jr 
(14.24) 

and these relations can be satisfied by taking (Y, 0, y > 0 with IX and y sufficiently small with 

respect to /3. Actually, we shall choose cr, p, y so that, if 5 is the larger of the two numbers 

in the first members of (14.24), we have 

c=S (p&C) (r+ /&$+< 1, 

hence, @I*)-~ < (t +~lG)-r. Then, we take 6 > 0 arbitrary, and 

@rG)-‘S c R. < (t + ,u$&-‘6, b = tR,,, 0 < A < 2-‘[S - (r + 1~ ,G)]Ro 

Then, we have 
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(y//?)(l + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8)24(1 -A*)-% s;(pJhj/n)-16~ R,,, 

2A + Rop,Gn+ b s 6 -  (t+ ~1 v- +n)Ro+ RoplG+ zR~= 6. 

With the choice we have made of cu, j3, y, S, Ro, b, A, relations (14.12), (14.13) and (14.23) 

are satisfied. 

Now relations (14.11), (14.12), (14.14), (14.15), (14.16), (14.17), (14.19), (14.20), (14.21) 

and second relation in the first line of (14.9) can be used to determine T > 0. Then the first 

relation in the first line of (14.9) can be used to determine d > 0. Finally, equation (14.18) 

can be used to determine k’. 

We have shown that the inequalities we have required are compatible. 

APPENDIX 

1. Let us consider the problem of the doubly 2.n-periodic solutions u(t, x) of the hyperbolic problem 

* &U + u”- u, =f(t,*,u), (f,X) E Iwr, (Al) 

where fit, x, u) is a double 2n-periodic in f, x, continuous in u for all f, x, measurable in (t. x) for all u, and 

If(r,r, u) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ~fdh-4 ++D, 

with fo(t, x) P 0 a tixed doubly Zmperiodic function in (t. x), fo E Lr(G), and h(c) 3 0, 0 s E < + a, is a monotone 
nondecreasing function with h(@/e+ 0 as 54 + a. 

(i) Problem (Al) has always a weak solution U&X), u E L*(G), for E > 0 sufficiently small. 

Proof. By the notation of section 14, for u E Lr(G), then 

u(r, 1) = g bkeu, bnr = (u, et/), z bfr = I/u. II:r, 

(I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, u(t, x) = & buetr, 

w&x) = H(I - Q) = & (-k2 + 12)-'buck,, 

w E LdG). II&z s II&, 
and we take 

Nu =flr, x, u(t,x)) +ac(t,x), Eu = u,, - u,. 

We take X = Y = L*(G), P= Q, I-P= I - Q. We define X0, XI, Yo, YI as usual, XU = Yo, XI = YI, so that 

H(I-Q):YI+X,hasnormL=l. 
For every n we define the spaces X,,, XI”, Y,,, Yl”, we take for a;, : Y,, +X0. the identity, and R., S,, .Y, have the 

usual definition. 
Now the original problem Eu = Nu with u = u* + ur, u’ e XO, UI E XI, becomes 

u,=H(I-Q)Nu, QNu=O, uEX. 

For every n we have now the partial problem 

UI = R.H(I - Q) Nu, S,: QNu = 0, u E X,, 

and we consider the transformation 7”: 

T:y~=R.H(I-Q)N(~*+u,), 

” u* = ur, - a&QiV(u* + u,), 

u=u*+u,,li=li*+n,,u*,n* EXo,U,,li,EX,. 

Now we restrict u = u* + ur to the set 

L, = [u = u* + UI, u’ E X,,, UI E X,“, (Iu*I( S R,,, )lu,l[ c r] 

so that JIuJJ s(R?, + r2)m = R for all u E P,. 

(AZ) 
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Because of ]f(t,x, u)] sfo(t,~) + h(]u]) with h(E)/E-+O as 6++ cc, there exists also another function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk(t), 

0 G 5 s + m, k monotone nondecreasing such that, for every u E L,(G) we also have (see below) 

Ilf(r, ~3 u)ll G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4ll4). (A3) 

Now for u = po + u, u E XO, /MU = 1, oE XI, Ib% - < r, and p > 0 we have //u(/’ =(/PO + u/l’ = p’~~c# + /dl’, and 

II&z = IIW - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) WI 

c IjH(l- Q, [ +a + f(c x, 4, x))] 

s 1141 + k(llull) 

= ~(P~II~II~ + l141Z)‘R + k((p’ll4~ + ll~ii’,‘“) 

s ~(p* + ?)li2 + k((p2 + 9)“). 

For p a 3-%, and k(2p)/2p < E we also have 

l,u,lli~~2~p+k(2p)=2jc+~)p~4&p. 

Finally, for p c Ro, and c<4-‘Ro’r, we have (]uI/( s r. 
ft remains to prove (A3). It is enough to prove that, given n > 0, there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis N = N(V) > 0 such that 

llflt, U, ~(t, .x))/G~ s+JJ~~ for all u E L*(G) with Jju]] z N. Let y > 0 be any constant, and let N > 0 be such that 

/I(.$) s yE for ah EP N. Given u E L2, let P =]]r& and let 21, Z2 denote the sets of all (r,x) E G where 
]u(t, x)] s N and lu(t, x)1 > N respectively. Then for n = meas G = 412, we have 

I 
o(f(r,x,u(r,x)))‘drd==I”+h(lul))’drdr42ff:ldrdr +2@]u/)drdr 

c G 

= 2llf0lI~~ + 2(1x1 + Irz) h’(Iul) dr dx 

Now, for p 3 (2~)ho~~* + 2ah*(N))“*2-“*y-  we also have 

Ilf(b x7 a u))llL s 4lV 

and for y = $2 we also have ]& Q,-P = ~/(u((Q. 
Now we have to prove that (N(pu + a), u) ~O[or~O]foralluEX~,uEX,,~~u~~=l.~~~~~r,~~R~andR~ 

sufficiently large. Assume the sign minus holds in (Al). In the opposite case the argument is analogous. Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(N(Pu + 4 , PO) = j/ G u + a) + h(t , x , pu + u)]pu dr 

2 ~P~II~* - EPIMI II4 - plMlk(llp~ + all) 

2 d4’ - 4ull II41 - pll4k(pll4 + Ml) 
where (/u(/ = 1, //uj s r. If we take p 3 r, then 

(N(pu + a), pu) 2 ep2 - &pr - y2p’ 

=(~-%2)p~-Epr. 

For p B R. and Ro z 2r chosen so that k(25)/2t c d4 for all 6 z R” we have (N(pu +a), pu) z (rf2)$ - .t pr  L 0 for 
p 3 Ro 2 2~. 

This proves that for every n there is a fixed point u, = T.u,, with u,, E Z., henceIlu.[lL2 s(R6 + ?)“2 independenJly 
of n. Thus, there is a subsequence, say still n, such that un converges weakly in LZ toward a function u E Lz which 

is a solution of (A2) and a weak solution of (Al). 

In particular we have proved also 
(ii) If g: R -, 68 is any continuous function such that g(g)/.$ + 0 as 5 + CC, and #: R* + Iw is any given doubly 2x- 
periodic function, then for E > 0 sufficiently small, both equations 

F EU + U,, - u,, = f$(r, x) + g(u) 

have at least one doubly Zn-periodic solution 41, X) E LAG). 



Solutions of nonlinear hyperbolic equations at resonance 805 

Recently, H. Brezis [Proc. Amer. Math. Sot. Symposium on the mathematical heritage of H. Poincare] has investigated 
the passage to the limit as E-+ 0, obtaining a solution u(t, X) of the equation ur, - u,, = #(I, X) + g(u). 
We shall return again to this point. 

2. The same identical argument applies to, and the same conclusions (i), (ii) hold for the problem 

&f - u, =f(t,x, u) [O, z] x R. 

u(t, 0) = U(f, n) = 0, U(I + 2n, x) = U(I, x), 

as well as for the problem 

&I + &XXX = f(f. X, u) 

u(t, 0) = u,(t, 0) = U(f, n) = u&r, n) = 0 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 
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