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1. INTRODUCTION
IN THE present paper we develop in some details an existence analysis for nonlinear abstract
operator equations of the form

Ex=Nx, x€X, (1.1)
particularly in view of applications to quasi-linear hyperbolic problems at resonance. Thus,
if E above is an unbounded linear operator E : dom(E) — Y, dom(E) C X, where X and Y

are real Banach spaces, and N: X — Y is a continuous nonnecessarily linear operator, we
shall assume that the kernel of E is not trivial and possibly infinite dimensional, 1 < dim ker E
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< +o, and that the partial inverse operator H of E, or H : Range E — X/ker E, is bounded,
but not necessarily compact. Indeed, this is the difficult situation which actually may occur
(dim ker E = «, H bounded but not necessarily compact) in hyperbolic problems. We shall
call this the “hyperbolic case”.

In this paper we shall see that the theorems we proved earlier (Cesari and Kannan [10, 11],
Cesari [5, 6]) for the “elliptic” case (1 < dim ker E < +o, H compact) have a natural
extension to hyperbolic problems.

Of course, it may occur that for a given hyperbolic problem we have dim ker E < « and
H compact. the latter may simply occur because of a suitable choice of spaces X and Y and
their topologies. In this case, the theorems we proved earlier apply with no change.

Our analysis centers on suitable decompositions X = X, X X, Y = Yy X Y,of Xand Y,
Xo = ker E, Y; = range E, and the study of certain transformations 7: Q* — Q*, Q* =
So X 81, So C X, S; T Xy, or (x*, x;) — (£, %), of the form x; = Kyx, ¥* = x* — Kopx, x =
(x*, x1), £ = (£*, X;), so that their fixed points x = (x*, x;), x = Tx, satisfy the equations
x; = Kyx (auxiliary equation), and Kox = 0 (bifurcation equation). When needed, the map
T:Q*— Q* is replaced by maps T, : Q; — Q., Q; finite dimensional, in such a way that the
sequence [x,] of fixed elements x, = T,x, is weakly convergent. The existence of at least a
fixed point for T, (or for each T,), is proved either by the Leray-Schauder topological
argument, or by Schauder’s fixed point theorem, based on the study of the inequality
(Kox, x*) = 0 (or =0) for Px = x*.

In the elliptic case, as well as in ordinary differential equations, the inequality (Kyx, x*)
= 0 (or =<0) (condition (*)) has been shown to include the Landesman and Lazer type
conditions, and a number of other statements. We shall see the relevance of the same inequality
in the hyperbolic case.

In Sections 2~-5 we discuss some abstract theorems, in Sections 6-9 we summarize and
briefly prove a number of statements concerning certain classes of Sobolev-type periodic
functions and the Fourier series. In Section 10 we compare condition (*) with Landesman-
Lazer type conditions.

In Sections 11-14 we show that our uniform approach applies to problems in the large which
had been previously discussed by Petzeltova, Hall, and others only in the perturbation case.

In [7] we shall see that a direct application of Schauder’s fixed point theorem enables us
to prove existence for some hyperbolic problems with sc-dimensional kernel.

Some points of this paper have been presented at the May 1978 Conference in Florence,
Italy, and distributed to the audience there in provisional form, and more points have been
presented at the October 1979 Conference at Oklahoma State University, Stillwater (Differ-
ential Equations, pp. 1-21, Academic Press, New York, 1980).

AN ABSTRACT EXISTENCE ANALYSIS

2. FIXED POINT THEOREMS

Let X = X; +X; be a decomposition of a real Hilbert space X, with inner product ( , )
norm || ||, and projection operator P: X — X such that PX = X, (I — P)X = X,.

(2.)) Let X be a real Hilbert space, and X, finite dimensional. Let R, r be positive numbers,
let S = [X* S X0| “X*” = R], S5 = [X1 c X1| ”X]” = r] and Q =53 X §;. Let K;: Q — X, be a
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compact map, let Ky:Q — X,be a continuous map, and assume that (a) |K x| <r for all x
€ Q; (b) (Kox, x*) <0 [or =0] for all x =x* +x,, |x*| = R, |x)J| <r. Then, there is at least
one point x = x* + x; €Q with x; = Kx, Kox =0.

Proof. Assume that (Kox, x*) <0 holds in (b). Let T:Q — X denote the map defined by
Tx = Px +Kx + Kox, and note that, if x is a fixed point of 7, or x = Tx, then, by writing
x = Px + (I — P)x, we derive (I — P)x — Kix = Kox, where (] - P)x —Kx € X, and
—Kox € Xy Hence (I —P)x — Kix = 0, Kox= 0, thatis, x; = Kix, Kox = 0.

Now we note that T is a compact map, since K is compact, and P + K has finite dimensional
range X,. Thus, by the theory of Leray and Schauder, to prove that 7 has some fixed point
in Q, it is enough to prove that (/ —AT)x # 0 forall x € Q and 0 < A < 1. Indeed, for x =
x* + xq, |x; 1 = r, |Ix*|| = R we have

(= A1) x,x1) = [P = (AK1x, 1) = {x|P = A[K x| [l
=7~ Ar>0.
For x = x* +x, |[xi| <r,||x*| = R we have analogously

((I = AT)x, x*) = ¥} = A = A(Kox, x*) >0,
In any case (/ - AT)x #0forx€9Q, 0<A<1.

A statement similar to (2./) was proved by Cesari and Kannan [10] by a different proof
based on Schauder’s fixed point theorem. Statement (2.7) was proved by Kannan and McKenna
[19] by the argument given above. For extensions of (2./) to Banach spaces, again based on
Schauder’s fixed point theorem, see Cesari [5, 6]. Here is another version of (2.i) for Banach
spaces, based on Schauder’s fixed point theorem, and whose proof is particularly elementary
and transparent.

Let us assume that there is a bilinear operator X, X Xp— reals, or (u, v), such that

Ku, v)| < |lull||lv]] forallu, v € Xo; (2.1
(u,uy=0 forallu, and {(u,u)=0 ifandonlyifu =0. (2.2)

If X is a real Hilbert space then we can take for ( , ) the inner product. The existence of such
operators (u, v) is a rather common occurrence (cf. Cesari [4]). Obviously, the linear
operator (u, v) is continuous as an operator X X Xy— reals.

Let X = Xy X X; be a decomposition of a real Banach space X with projection operator
P:X — X such that PX = X,, (/ — P)X = X,. Here, by a projection operator P we mean any
linear bounded idempotent operator, and thus X, and X; are necessarily closed subspaces of
the Banach space X in the topology generated by the norm || || of X.

Let Ry, r be positive numbers, let S = [x* € Xo|lx*|| <R¢], $1 = [x1 € Xi}|x)| < 7], and Q
= Sy X 8.

(2.if) Let X be a real Banach space, let X = X, + X; be a decomposition of X into closed
subspaces of which X, is finite dimensional, and P, Ry > 0, r > 0, Sy, 5;, Q be as above. Let
Ky: Q — Xybe a continuous map, K;: Q — X, be a compact continuous map, and assume
that ||Koxl| < Jo, |Kixl| < J, for all x € Q, Jy,J; constants, withJ, < r,Jy < Ro. Let us also
assume that (Kox, x*) < 0 [or =0] for all x € Q, x* = Px, Ry <|x*| <Ry, for some R, <
Ry — Jo. Then there is at least one point x € Q, x = x* + x;, with x; = Kux, Kox=0.
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Proof of (2.i). Let us assume we always have (Kox, x*) < 0. We take now positive numbers
Ry, Ry, R, a, Bsatisfying the relations

Ry<R,<R,<R=<Ry,, a>0, >0,
R1+.’0$R, R2+JQ$R, &]0R+w0$2,

(2.3)

which we shall prove below to be compatible with the hypotheses of the theorem. Let us
consider the transformation T: x — x, or Q — X, defined by

T:flzle, f*=x*+g(x*,x1). xz(x*axl) EQv x_=(f*,x_l)9 (24)

where

glx*,x)) = Kex for |x*| <R,

gx*, x1) = [a(Kox, x*) = BKox[lx* forR,<[k*|<R, (2.5)

g(x*, xy) = AKox + (1 — A) [afKox, x*) — BKox|]x* forR, = |x*| <R,
and

A=(R,— R) 'R -[kx*), 0sAs1.

Let us prove that 7 maps Q into itself. First, we note that |[¥,]| = || Kix]| <J, < r in any case.

Now we note that, for |[x*|| < R;, we have * = x* + Kyx, hence
[ <l + | Kox| < Ry + Jo< R.
For R, <|x*|| < R, we have
aloR + fly<2, x*=[1+ a{Kyx,x*) — BlIKox|Jx*,
—1=<1-alR - Blo=<1+ alKox,x*) - f|Kex| <1,

and again [[*[| < fb*].
For R; < |x*|| < R,, we have

*=[1+(1-2) (elKox, x*) — BIKoxDIx* + AK x,

where again the bracket is between —1 and 1, and |AKpx|| <Jo. Hence, |¢* <
lx*|| +Jo < R; + Jo< R . We have proved that T: Q — Q.

Now we have to prove that we have£* = x*ifand only ifKor = 0. Certainly,£* = x*ifand only
ifg = 0, and, for ||x*|| < R, certainly g = Oif and only if Kox =0.

For R; < |x*|| < R, we have

g = [a(Kox, x*) — BKox|]x*, x*#0,
and afKox, x*) —B||Kox| < —Bl|Kox||. Thus, g = 0 if and only if |Kex| = 0. For R, <|x*| <
R,, we have
g = AKgx + (1 — A) [a{Kox, x*) — BIKox||]x*,
hence
(g, x*)y = MKox,x*) + (1 ~ A) [a(Kox, x*) = BIKox[] (x* x*),

where now A > 0, 1~ 4> 0, (Kox, x*) <0, x* # 0, hence (x*, x*) > 0. Thus, (g, x*) <0 for
Kox # 0, and finally g = 0 if and only if ||Kox|| = 0.
In any case, that is, for any x*, |[x*|| < R, we have #* = x* if and only if K¢x = 0.
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Here, K, is compact by hypothesis, and K, is continuous and bounded, and has finite
dimensional range. Thus, T: Q — € is a continuous compact map and 2 is closed and convex.
By Schauder’s fixed point theorem, there is a fixed point x = Tx, x = (x*, x,) € Q, and then
x; = Kixand #* = x*, hence Kyx = 0.

Relations (2.3) are compatible with the hypotheses of the theorem. Indeed, Ry — Jo > R,
and we can take for instance R = Ry, R; = Ry — Jo, and R, any number Ry < R, < Ry —
Jo.Finally, we can choose arbitrary numbers o > 0, § > 0, sufficiently small, so that
aRoJy + By < 2.

Remark 1. Instead of considering the transformation 7 defined by (2.4-2.5), we could have
considered the transformation T defined by

T:% =Kix, ¥*=x*+ glx* + X1, x%), (2.6)

where as before x =x* +x;,%=%*+ %, x*, ¥* € Xy, x1,% €X1,|x*| <Ro, x| =r, and
where P% = x*. This transformation has been already used in (Cesari [6]).

Remark 2. 1t is clear that the inequality (Kox, x*) <0 [or =0] is only a devise to guarantee
that 7:%f = Kix, #* =x* — Kox,x €Q, maps Q into itself with / — AT having a constant
topological degree as A describes [0, 1] and hence—under compactness hypotheses and by
Leray-Schauder’s theory—T has a fixed point in Q. Often, we shall be able to prove directly
that 7 maps Q into itself, and then the existence of a fixed point under the same compactness
hypotheses follow from Schauder’s fixed point theorem.

3. THE OPERATIONAL EQUATION
Let X, Y be real Hilbert spaces. Let E : D(E) — Y be a linear operator with domain D(E)
C X, let N: X — Y be an operator nonnecessarily linear, and let us consider the equation
Ex=Nx, x€X. (3.1)

Let ker E denote the kernel of E, that is, the subspace of X of all x € X with Ex = 0, and
let Y; denote the range of E. Let us assume that there are projection operators P: X — X
and Q: Y — Y such that

PX=X0:)kCI'E, (I—P)XzXl,

QY =Y, (I-Q)Y=Y,=rangekE.
The map E : D(E) N X; — Y is one—one and onto, and the inverse map H: Y, — D(E) N
X, is, therefore, one-one and onto, and H is linear. We need only to assume that £, H, P,
Q satisfy the relations (a) H(I — Q)Ex = (I — P)x, (b) QEx = EPx, (c) EH(I — Q) =
(I — Q)x. Then, it is easy to verify that equation (3.1) is equivalent to the following system
of auxiliary and bifurcation equations
x=Px+ H(I - Q) Nx, (3.2)
O(E-N)x=0. 3.3)
If Xy = ker E, then (b) reduces to QEx = EPx = 0, and by writing x = x* + x;, x* = Px
€ Xy, x; = (I — P)x € X,, auxiliary and bifurcation equations reduce to

x=H{ - Q)N(x* + xy), (3.4)



756 L. Cesar1 and R. KANNAN

ON(x* +x) =0. (3.5)

Let L = |H|. Also, let S: Yo— X, by any continuous operator for which we only require here
that $7!(0) = 0. Then, equation (3.3) can be replaced by SQ(E ~ N)x = 0 and equation (3.5)
by SONx = 0. Moreover, equation (3.3) can be replaced by S(EP — ON)x = 0.

(3.)) (An abstract theorem for the case dim ker E < « and H compact).

Let X, = ker E be nontrivial and finite dimensional, let H be compact, let N and S be
continuous operators. Let us assume that there are numbers R, r positive such that (a) for all
x* € Xo, X1 € Xy, ¥ <R, |l < r we have [N(x* +x)[<L7'r, (b) for all x* €Xy,x €
X1, |x*||= R, |lx)|| < r we have (SON(x* + x,), x*) = 0 [or <0], then equation Ex = Nx has
at least one solution x = x* +x;, x* € X, x, € X\, [|x*| s R, x| = r, ||x]| < (R* + r* )~

We need only apply (2.i) with K\x = H({ — Q)Nx and Kox = SONx.

Remark. If Xy O ker E, if X, is finite dimensional, and we assume E to be continuous on
Xo, then both SEP and SON are continuous maps on X, and (3.i) still holds with the inequality
in (b) replaced by (S(EP — ON) (x* + x;), x*) = 0 [or <0]. The proof is the same.

The following corollaries for X = Y, P = Q, § = I, are worth noting.
COROLLARY 1. If we know that there are constants J, >0, K = LJ, such that (A) ||Nx|| < J,
for all x€X; (B) (Nx*+x),x*)=0 J[or =<0] for all x*€X,x €X;, with
lx*]l < Ry, ;|| < K, then conditions (a), (b) of (3.i) hold.

Indeed we can take any R = Ry and r = K, so that |[Nx|| < Jy=L"(LJy) s L"'K=L"'r.

COROLLARY 2. If we know that there are constants/y =0,J;, >0, 0<k<1,Ry) =0, Ky =
LJy, K > LJ; such that:

(A0 |INx| < Jo+ Jilx|f* for all x € X;

(Bk) (N(x* +x,),x*) ?O[OT SO] for all x* EX(),X]EX1
with [lx*]| = Ro, [l < Ko + Killell;

then conditions (a), (b) of (3.i) hold.

Indeed, first choose a constant a > 0 such that J, + J;(1 + &A)*°R§ = L™ 'aR, and
LJi(1 +a®)*? < K, then take r = aR and take R=R, so that J, +J,(1 +a?)*?R* =
L™2aR. Now for |lx)| < r, |x*|| = R, we have

LINx|| < L(Jo + Ji(1 + 6»)*?R*) = aR = r.
On the other hand, for |lx)|| < r, |x*|| = R, we also have
el < r = aR = L(Jo + J,(1 + a®)*R¥)
< Ko+ (LJ)) (1 + A)¥*R* < Ko+ K\R* < Ko + K4 |x|*
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COROLLARY 3. If we know that there are constants Jy =0, J; >0, k=1,R, =0, Ky >
LJy, Ko > L]y, such that (As), (Bi) hold (for fixed k = 1), and (Cy)J; € y where y>0 is a
constant which depends only on Ry, L, K;, then the conditions (a), (b) of (3.i) hold.

The proof is similar to the one for 0<k<1. First we choose a>0 so that
LJ;(1 + &A)** = Kj, hence a = ((K;L™Y7")* = 1)"2. Now we take 7 = aR and R = R, so
as to satisfy

Jo+ (1 + A*R¥ = L™ 'aR.

If we can find such an R = R, the argument is the same as before. To verify that such an
R = Ry exists we write the equation for R in the form

JoR™' + JW(K\L™UTHR P = L7\((K,L7UTH* =1)

where kK — 1 = 0. Thus, all we have to require is that j, > 0 is sufficiently smail, namely so
that
172

JoR7' + K\L7'RE™ < L™ (KiL™YTH % - 1)

4. PRELIMINARY CONSIDERATIONS CONCERNING THE HYPERBOLIC CASE

Let E, N be operators from their domains D(E), D(N) in a space ¥ with ranges in a space
%, both &€ and ¥ real Banach spaces or Hilbert spaces. Let us consider the operator equation
Ex = Nx as in Section 2. Its solution x in ¥ may be expected to be usual solutions, or
generalized solutions, according to the choice of Z. We shall consider first smaller spaces X
and Y, say X C ¥, Y C %, both real Hilbert spaces, and we shall assume that the inclusion
map j: X — % is compact.

We shall then construct a sequence of elements [x,], x, € X, which is bounded in X, or
|eell < M. Then, there is a subsequence, say still [k] for the sake of simplicity, such that [jx]
converges strongly in ¥ toward some element {. On the other hand, X is Hilbert. hence
reflexive, and we can take the subsequence, say still [k], in such a way that x, — x weakly in
X. Actually, { = jx, that is, { is the same element x € X thought of as an element in ¥. In
other words:

(4.1) IHfx;— x weakly in X and jx, — { strongly in &, then { = jx.

Indeed, j : X — ¥ is a linear compact map, hence continuous (see, e.g., [3, p. 285, Theorem
17.1]). As a consequence, x;— x weakly in X implies that jx, — jx weakly in ¥ (see, e.g..
{3, p. 295, Proposition 12]). Since jx; — ¢ strongly in &, we have ¢ = jx.

We shall assume that X, and X, contain finite dimensional subspaces X,, Xo. such that
Xl,,CXl‘,,+|CX1,X0n CXU.,,+1 CXo,n=1,2,... . with U,,Xl,, =le U,,X(),, =X(), and
assume that there are projection operators R, : X; =X, S,:Xo—X,, with R, X, =X,
S.Xo = Xo, (cf. similar assumptions in Rothe [23]). Since X is a real Hilbert space, we may
think of R, and S, as orthogonal projections and then |[R.x|lx < |[x|lx, |S.*|lx < |lx*|lx for all
x € X;and x* € X

Thus, we see that in the process of limit just mentioned, x, —x weakly in X, jx;, — jx
strongly in &, and the limit element can still be thought of as belonging to the smaller space
X. This situation is well known in the important case X =WY(G), £ =W3(G), 0 < n < N,
X C &, G any open set in some R’, v=1. Then, the weak convergence x; — x in W5(G)
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implies the strong convergence jx; — jx in W4(G), and § = jx is still an element of the smaller
space X = WY(G).
Concerning the subspaces X, of Xy it is not restrictive to assume that there is a complete

orthonormal system [vy, v3,..., Vs, . . .} in Xpand that Xy, =sp(vy, 02, . . ., 0,), n=1, 2,
We shall further assume that there is a complete orthonormal system (w,
W2, ..., W, .. .)in Y, we take Yy, =sp(w;,...,w,), and denote by S, the orthogonal

projection of Y, onto Yg,.
We consider now the coupled system of operator equations

x = S,Px + R,H(I — Q)Nx, (4.1)
0 = S,ONx. (4.2)

We shall now define a map &, : Yy, = Xp, by taking o,y = Z}(y, wi)v;. Then, we have 0 =
@,S,QONx if and only if 0 = S,QNx, that is, a;'0 = 0. We conclude that system (4.1-4.2) is
equivalent to system

x=S8,Px + R.H(I — Q)Nx, (4.3)
0= &,SLONx. (4.4)

(4.ii) (LEMMA). Under the hypotheses above, let us assume that there are constants R,
r > 0 such that

(a) for all x* € Xo, x; € Xy, [k*| <R, || < r, we have [[N(x* + x))| <L"'r;
(b) for all |x*|| = R, |Ix,{| < r we have (a,S,ON(x* + x|),x*) = 0 [or <0].

Then, for every n, system (4.1), (4.2) has at least a solution x, = x§, +x1., x, ED(E) N
(Xon X X1n), SnPx, = x,, with |ix,]|< M = (R* +7)"?, M independent of n.

Proof. If we consider the subset C, of X, X X, made up of all x = x* + xy, x* EXy, x; €
X\, with |x*|| < R, |Ix;|| <r, we see that

|IR.H(I - Q)Nx|<r forallx € C,,
(0ShONx, x*) = 0[or <0] forallx € C,with |x*|| = R.

Now the assumptions actually used in the proof of (3.i) are satisfied. In particular, the
compactness of the bounded operator R,H follows from the fact that R,H has a finite
dimensional range, and the finite dimensionality of the kernel of E is now replaced by the fact
that the range of a,S,QN is certainly finite dimensional. The bound M = (R? + r?)'?
is independent of n.

5. AN ABSTRACT EXISTENCE THEOREM FOR THE HYPERBOLIC CASE

In order to solve the equation Ex = Nx we now adopt a “passage to the limit argument”.
We assume that both the Hilbert spaces X and Y are contained in the real Banach (or Hilbert)
spaces & and ¥ with compact injections j : X — &, j' : Y — . Actually, we can limit ourselves
to the consideration of the spaces ¥ and @ made up of limit elements from sequences in X
and Y respectively as mentioned in Section 4. Hence, & is identical to X and % is identical
to Y, though they may have different topologies. We shall write & = jX, @ =Y.
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Analogously, we take &y = jXo, Yy = j'Yy, &; = jX;, Y, = j'Y), and the linear operators
P:Z— %, Q:% — %Y, are then defined by Px = x* in ¥ if Px = xoin X; Qy = y* in ¥ if
Qy =y*in%.

We now assume the following:

(c) x, — x weakly in X and jx, — jx strongly in ¥ implies that Nx, — Nx strongly in %, S, Px,
— Px strongly in %, and R,x, — x strongly in &.

Under the hypotheses of (4.ii) there are elements x, € X, such that
X, = S8,Px, + R.H(I — Q)Nx,, (5.1)
0= a,S,ONx,, (5.2)

where x| < M for all n. Hence, there exists a subsequence, say still [x,], such that x, —
x weakly in X and jx, — jx strongly in €. Then, by (5.1), (5.2), proceeding to the limit, we
have

x=Px+H(I-Q)Nx, 0=0QNx, x—%.

Indeed, as n — o, S, converges to the identity /:Y,—Y,and a, converges to a homeo-
morphism «: Yo—Xj in the sense that S,y -y, a,y —yasn— . _

We now remark that, in ¥ the operator E may have no meaning and thus the concept of
solution of Ex = Nx has to be properly understood. However, x € & and thus, by Section
4, x is still an element of X on which E is defined. Furthermore, as a consequence of the
hypotheses on P and H, we have QF = EP = 0 and EH(I — Q) = I — Q. Thus, from the
above limit equation we have

Ex = EPx + EH(I — Q)Nx + QNx
= EPx + (I - Q)Nx + ONx = Nx.

We sumnmarize now the hypotheses and the conclusions concerning the operator equation Ex
= Nx. We have obtained:

(5.i)) THEOREM. Let DE:D(E)—Y,D(E)C X C %, E a linear operator, N: X— Y a non-
necessarily linear operator, X, Y real Hilbert spaces, ¥, ¥ real Banach or Hilbert spaces with
compact injections j: X — &, j' : Y — Y, with projection operators P: X — X, Q:Y— Y, and
decompositions X =Xy + X, Y=Y+ Y1, Xy =PX=kerE, Y, =(I - Q)Y =range E, X,
infinitely dimensional, and bounded partial inverse H:Y; — X|. Let L = |H], let N: X - Y
be a continuous operator, and let P, O, H, E, N satisfy (a), (b), (c) of Section 2. Let
Xon, Xin, Yo, be finite dimensional subspaces of X, X,, Y, with orthogonal projection operators
Ry X1— X, 8, i Xo = Xo, $,:Yy— Y, with RX) = Xy, $,.X0 = Xon, $2Y0 =Yy, satisfying
(c) of the present section with dim X;, = dim Yy,. Let a,: Y, — X, be the operator defined
in Section 4.

If there are constants Ry, r > 0 such that (a) for all x* € Xy, x; EX;, |k*|| <Ry, |xif| <r, we
have |[N(x* +x)|<L7'; and (b) for all |x*|=Ry|xj<r we have
(anSAON(x* + x1),x*) =0 [or =<0], then equation Ex = Nx has at least one solution

bl <R3+ )=

In this theorem (5.7) no requirement is made concerning the behavior of N(x* + x,) outside
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the set S = [(x*, x) EX, |x*|| < Ry, [xi]| = r]. and thus it allows for an arbitrary growth for N(x)
as x| - .

However, it is easy to see that, if (a) [|[Nx|| < J, for some constant J; and all x € X; and
(b) for some R, the inequality (b) in (5.7) holds for all|lx*|| = Ry and ||lx;|| < LJ,, then (a), (b)
certainly hold for Ry as stated in (b) and r = K = LJy, where K is the constant of Corollary
1 of Section 3. We have seen in Section 3 that an analogous determination of Ry and r can
be made in cases of slow growth |Nx| < Jy + Ji||x|, 0 < k < 1, and even in the case that
|Nx|| < Jo + Jilx|[* for some k = 1 provided J, is sufficiently small (cf. [5, 6] for cases of
arbitrary growth).

Remark 1. Note that the modified bifurcation equation (5.2), or o, S,QNx = 0, can always be
replaced by the equation

J.a,S,ONx = 0, (5.3)

where J, : Xo» — Xon is an invertible operator. When this is done, we shall require that (b)
holds with the inequality replaced by

(JnSnONx, x*) =0 [or <0]. (5.4)
The following corollary of (5.i) is of interest. Again L = ||H].

(5.i)) Let N: X — Y be a continuous map, and let there be monotone nondecreasing
nonnegative functions {R), B(R), R > 0, such that:

(i) x € X, |lx| = R implies |Nx|| < o(R);
(ii) x1,x2 € X, |pall, k2l < R implies |[Nx; — Nxjl|< B(R)llx; —x||. Let us assume further
that
(iii) there are numbers Ry, r > 0 such that LB((R§ + )?) < 1, La{(R* +)"?) < r; and
(iv) (@Sn ON(x* + x1), x*) = 0 [or <0} for all |lx*||= Ryand |lx,|| <r.

Then the equation Ex = Nx has at least one solution x = x* + x|, |x*| < Ry, ||l <r.

Proof. We proceed as for (5.i) where now we first follow ([12], no. 5). Let B denote the
set of all x =x* + x;,x* €By = [x* € X,, |x*]| < Ry], xy € By = [x; € Xy, |Ix|| <r]. For every
n, let B, denote the set of all x = x* + X, x* €By, = §,PB,x, € By, =R,(I —P)B. Then, the
truncated auxiliary equation x = S,Px + R,H(I — Q)Nx, for each arbitrary but fixed x; €
€ By, =S,PB, becomes x, = R,H(I —Q) N(x; + x|), x; € B,,, whose second member is a
contraction map of By, into itself. Hence, the same auxiliary equation has a unique solution
Xm = T(x}) € By, or x = x¢ + ©(x}) =T(xy), where now T is a continuous map from By, into
By, % Bj,. The truncated bifurcation equation is now reduced to «,$;,ONT(x;) =0, x; €
By, and the inequality in (iv) can be used to obtain the existence of a solution x, of this
equation. Then, system (5.1), (5.2) has a solution x, =x8, +t(x,). Since |x,| < Rolx.|| =
ITxg)l < (R3+r*)Y2 = R, and these bounds are independent of n, we can proceed as for
(5.i) to obtain the existence of a solution x € B = By X B; of the equation Ex = Nx, x =
x* + xi, ¥ <Rg, [l < 7.
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6. THE SPACES A,

We discuss here in detail the class A,,, of periodic functions. For the sake of completeness
we prefer to present here the boundary value problem which has motivated the study of this
class. Indeed, we consider the problem of existence of solutions u(z, x), periodic in ¢ of period
2, for the differential equation and boundary conditions.

Diu+ (=1yD¥ =f(t,x,u,...), 0<x<m —-o<t<+ox, (6.1)
u(t,0) =u(t,m1)=0, —wo<t<+oo, (6.2)

DZu(t,0) = D¥u(t, 1y =0, s=1,2,...,p —1, (6.3)
u(t+2m,x) =u(t,x), 0<x<m, —-oo<t<—om (6.4)

Thus, for p = 1, we have the wave problem u, — u,, = 0 with the condition u(t, 0) =
u(t, m) = 0 and 2x-periodicity in ¢.

Let G = [0, 2n] x [0, n]. Let D denote the set of all real valued functions u(z, x), 2x-
periodic in ¢, of class C” in G, and such that D*u(t,0) = D¥*u(t,m) =0,k =0, 1,. ... Let
Apm denote the completion of D under the norm

Jedom = ( f fG ((DIwy + (DE™w)?) dr dx)”z.

Then, A, is a real Hilbert space with inner product
(u, v)pm = (D{"'u, D™v) + (D5¥™u, D¥™), u,v EApp

where in the second member the inner products are in L,(G).

Let E denote the operator defined by Eu =D?u + (—1)’D*. Thus, for m=p =1, Eu
= Uy — U, (U, V)11 = (s, ;) + (U, Ux). For any g(t, x) € A,,, we may consider the linear
problem Eu = g. We say that u is a weak solution of this problem with boundary conditions
(6.2-6.4) provided u € A, and (u, Ey);, = (g, )., for all y € D. Then, both equation Eu
= g and boundary conditions (6.2-6.4) are understood in the weak sense. A complete
orthonormal system in A,y = L2(G) is

{ex} = {2277 sin kt sin Ix, 22771 cos kt sin Ix, 77" sin Ix}

whose elements are naturally indexed by /=1, 2,..., k=0, =1, £2,.... For every
element u € A,,, u has a Fourier development u = Z;aey, where X, ranges over all / =
1,2,...,k=0, £1, £2, . . . . The Lyintegrable functions D7"u, D?™u have Fourier series
which can be obtained by formal differentiation, and thus

2 ah (K + Py = [l < + oo,

(6.1) If u € A,, then DFDu is continuous if m > a + p~!8 + (2p)~'(p + 1) and then
ID#D4u|| < cllullpm, where the constant ¢ depends only on @, B, m, p. Moreover, for given
&, B, p,m, C,withm > a+ p~'f+ (2p)"!(p + 1), and C > 0, the functions u with u € Apm,
lullpm < C are uniformly continuous. '
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Proof If ue Apm then u(t X) Zk,ak,ek, with Ek,ak,(kz’" + lsz) = Hu” m <+, or
a(k¥™ + PP™)\2 = by and b < +oo. Note that (k* + )" < 2m~ (k¥ + 12”'") From distri-
bution theory then

D{Dfey
(kZm + lme)l/Z

112 D*Dbe 27112 k228 N\ 12
= 2 txCk = 2(m=1)2
=(30)"[3 (@emm) | =2 Wil 3 )
The sum in the series in parenthesis is, up to a multiplicative constant, less than the value of

the following double integral, on which we perform the elementary substitution y = z'7,
y =1, z = 1, and then we use polar coordinates x = p cos 8, z = p sin 6,

' ff (x? +y2”)’" b= ff (2+7ﬂ;[;m(1/1?)2(””)'1dxdz

_ (l/p)J; (COS 9)201 (sin 9)(2ﬁ+ 1-p)ip dBJ; p2a+(2ﬂ/p)+(1/p)—2m dp.

|DeDBu(t, x)| = l% b

This integral has a finite value for 2ae + (28/p) + (I/p) —2m < —lorm > a + p~'f +
(2p)7'(1 + p). Thus for p = 2, we obtain the requirement m > & + 27?8 + 3/4, which is
certainly satisfied if m = a + 27! + 1. The same series above

2 bk + P™) DDl
converges uniformly. To prove this we have only to show that it is uniformly Cauchy. Indeed,
any partial sum =’ with indices, say M < |k| + [ < P, is in absolute value
< (2 B)VHE (k¥ + IP™) V2D EDbe ) D) 12
< [ullom(Z' (k> + ) 712D D)) ',
where the first factor in the last term in bounded, and the second factor approaches zero as

M, P — +, independently of ¢, x and u. This proves (6.i).

(6.ii) If u € A, then DfDPu € L, provided o + p~'f + (2p) '(p + 1) 2 mand 2 < g <
(2p + 2)/(p + 1 + 2ap + 28 — 2mp). Then |D,D,ul|., < cllu|l,.. where the constant ¢ depends
only on a, 8, m, p, q.
Proof. As before
“DBu(t, x) = % bik>™ + Py -V2DaDbe .
Let us find a number {, 1 < { < 2, such that
S= % |bia(k?™ + 12Pm) V2B < 4 o0, (6.5)

This series can be majorized by
g2

(2(1bk,|¢)”¢> (2 (((k? + 1Py ~mi2gcgB) by 22 D) e (6.6)
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Thus, it is enough to prove that the series inside the last parenthesis is convergent. For this,
it is enough to show the convergence of the following double integral, on which we perform
as before the substitution y = z7, y = 1, z = 1, and the change into polar coordinates x =
pcos 8,z = psin 6

jl. J; (xayﬁ(xz + y2p)—m/2)2§'(2—§) dx dy
- J'wfm (xazﬂ/p(xZ + zZ)—m/2)2§/(2—C)(Up)z(llp)-l dx dz
17

/2 Y
- (1/P)fn (COS 6)2‘”5’(2‘5)(sin 9)2ﬂ0(2-§)p+(1—p)/p de- f p(a+ﬁ/p—M)(2C/(2—C))+ lip dp.
0 1

This integral has a finite value for (a + Blp — m) QY2 - )+ lp< -l,or {> & =
Qr +2)2mp + p+ 1 — 2ap — 2B)7}, provided 2mp + p + 1 — 2ap — 28 > 0. This
condition is satisfied and we have 1 < § < 2if 2mp — p — 1 < 2ap + 28 < 2mp. Now, for
any such ¢, series (6.5) is convergent, and by the Young-Hausdorff theorem (cf. [18, Vol. 2,
p. 600)), DfD8u is L, integrable for ¢ = £(& — 1), that is, DfDfu € L, for all ¢ < &(&
-1 or

g<Q2p+2)(p+1+2ap+28-2mp)~},

and |DFD%ull, < S. Under the assumptions of (6.ii) the inequalities above are all satisfied.
(6.iii) If u € Apm, then DfDfu € L, if a + p™'f < m, and then |DfDul|,, < c|ju|,, where
c is a constant depending only on a, 8, p, m.

Proof. As before we have
DEDEu(t, x) = % bilk™™ + [2™)~12DeDby

where ||ulf?, =Zbk < +=. We have to prove that

ff (D*DPu(t, x))* dr dx = % bi k™™ + PPy T2 < 4 oo,
G

Indeed, for all real numbers A, b = 0 and integers m = 1, we have A™ + B™ < (A + B)"
< 2" }(A™ + B™). Hence, for a + p~'8 < m, we also have

228 = J2eg2p(Bp) (kz + 12p)a(k2 + 12p)(B/p)
< (kZ + Iz'”)"’*ﬁ”’ = (k2 + PPym < 2m (k2 4 12”'").

In other words, the last series is majorized by 2™ 'X,b},.

As an immediate application of the above statements we note the following:

Forp =2, m = 0, then Ay = L,.

For p=2, m=1, |ulls, =lulf, + lu.li,, and for u € 4;, then u€ C, u, € L, for any
g <6, u, u,; € L,, and there are constants yo, u;, 4y, (1 depending on gq) such that |jull. <

l“O“u“sz ”uxui.q = lu'luuHAZI for any g < 6, ““IHLZ = ““nﬁzp H“xx” S“u”/‘zv ”ul L= ﬂ(')”uHAm (Wlth
u < (meas G)"uy).
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Forp=2,m=2, |ulls, = lludli, + ltxxxell,, and for u € Az, then u, w,, uy, uy € C, usy, Uy
€ L, for any g < 6, and uy, Uy, € L, for any g < 6, and uy, upy, U € L;. Thus, u,, u,
Uy, Uyy € Ay also. Moreover, there are constants as above such that [lull. < pollulla,, |ltde,
”u»\’”mv ”uxx” = .uluu”Azz’ ”ulx”l-q’ “uxxx”Lq = .""2||u“z422’ 2 = q < 6’ ”utf”Lz’ ”uux”Lza ”uxxxx“Lz =
“3“"‘”.422'

For p=2, m =3, lul},, =i, + leenli, and for u € Ay, thenu, u, uy, uy, e, Uy,
U Urrrx € C, Uy, Unexxy € Ly for all g < 6, and wgy, Uier, Urexex € Lo, and there are constants
as above relating the norms L., L,, L, to the norm in Ay;.

For p=1, m=1, [, = lulf, + |ulli,, and for u€ Ay, then u€ L, for any ¢, 1<
g <%, u, u, € Ly, and [lull,, < mgltlla, ludl, <llella,,> lhedle, < Julla,, for a suitable constant
g > 0.

Forp=1,m=2,|ul}, =ludi, + lluxdli,, and for u € Ay, then u € C, u,, u, € L, for any
q, = q < ®, Uy € LZ’ Usx € L27 Uy S LZ’ and ”u”=’° SAu()”u”An’ ”ur“Lq = .ulq”u“A\l .
“uu” = .uIHu“Au’ “ulr“Lz = ”u"Am u””S ”u”Au for suitable constants Ui, Hig, H >0.

Remark 2. The imbedding theorems proved above have corresponding compact imbedding
statements. We do not develop this point here. However, the following case will be needed
below. If u € Ay, then u, u, u, € C,and u, € L, uy € Ly forany2 < g <6, u,, € C, as
stated in the third example above. In particular u,, u,, u,, € L,, and

el Hoedlo, Netales Ntz Nl o ot sl < Hiodl

for some absolute constant y. Thus, u,, u, both belong to the Sobolev space WI'Z(G), G a two
dimensional interval. By the Rellich-Kondrashov theorem (cf. [1, (6.2), Part 1, p. 144]) the
embedding W'}(G) — W*9(G) is compact for every 1 < g < . In other words, if [u,, s =
1,2, .. .]is a sequence of elements u;, € Ay, with |ugls,, < M for all s, then the functidns u,
are equi-Lipschitzian, and for a suitable subsequence, say still [s], then u; — u uniformly to
a Lipschitz function u, and (i), = w, (u)x = u, strongly in L,(G) for any 1 < g < «, and
even pointwise almost everywhere.

Remark 3. Some of the above results can be seen also in {16, 17, 20}. Our proofs are not
always the same, but we cover this material for the sake of completeness.

7. SERIES SOLUTIONS FOR THE WAVE EQUATION

In connection with the previous considerations, the following precise estimates will be
needed in Section 14.

Let [ew, k, I = 0, =1, =2, . . .] denote the system generated by exp(ikt) exp(ilt) in R?, and
orthogonal in G = [0, 2x] x [0, 27]. Let u(t, 1) =2 ,2.pbyer, be any function in Ay, 27-
periodic in ¢ and 7, thus u, u,, u;, € L,(G), and

K2 = kgﬂ bU(k* + B) = ull, + ludi, < + .

We shall consider the function
- ~12+ )
o(t, ) = 2 b=k + ) ey,
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and for every A > 1, also the function
wit, )= X bu(—k*+ ) ey

-k +EBi=A
(7.i) For u as above, v and w have Lound'ed first order partial derivatives and
lodt, D, [vdt, 7)) < (WV6)K = 12826K,
[wdt, D, wdt, D| <2K(A¥?-1)717,
lo(t, 1) < 3-06126K.
Proof. Let ciy = by(k* + )2, so that Zc}; =K* < +co, where X denotes a sum ranging over
allk,!=0, %1, 2, ..., k* # 2. Then
v =Zby(—k*+ ) ley = Zc(k? + BT~k + 1) ey,
v, = Zewk(K2 + BY (k2 + 1) le),

where ej; is derived from ey by replacing sin kz, cos kt by cos ktz, —sin kt. Then, since lew| =
27!, we have
lvft, 7)) < (S (SkHK* + B (—k* + ) 2n )12

< n"‘K<4 > KRR+ By Nk + D)7k - 1)-2)”2

k,1=z0,k#1

< n'lK(4 > (k+ Dk - 1)-2) "

k,120,k#!

o 12
< Jr"K<4 21 s (2k - s)‘2>

where the inner sum is extended to all k = 0, 1, . . . , 5 with 2k # s. Thus, the inner sum is
<2(1+37%+524...)<2(«/8)ifsis odd, and <2(272 + 42 + . . ) if 5 is even. Since
1422+ 3%+ .. = 7%6, we have in any case

lodt, D < 27K(#2) (Esz) i

< n7IK(n2) 2 V6) = (W V6)K = 12826K,

and analogously for v.. The computations for w are the same, where the sum with respect to

s ranges over all integers =A'?, and
+ o
s> s-zsf s2ds = (AV2 = 1)1,
s=AR INZEST
Analogously, we have

lo(t, D} < (SR AW + B~k + 1) 21

sn"K<4 > (k2+12)-‘(k+1)'2>”2

kd=0.k=#1

< 12
<V2 n"‘K(4 2}1 5T (2k - s)-2>



766 ' L. Cesart and R. KANNAN
where 1 + 27* + 374 + | . . = 1-08232. Thus

lo(t, 7)| < 2\/5n“‘K(n/2) (1.08232) = 1.53063K,
with

K=Ech"*= ( f L (u? + ud) dt dt) "

Now let u(t, t) = Zbyey be any function in A,,, where now the sum ranges over all k, / =0,
+1, £2,..., and let U(s, 7) denote the function U(z, T) =Z42-,2bye; , where now the sum
ranges over all k, I = 0, £1, 2, . . . with K = |2, or k = =/. Let K, denote the constant
K= Zja_pbiy (K +1%).

(7.if) For u € Ay, then U is a Lipschitz function satisfying
|U(t + h, 1) — U(t, 1)| < miKolh|, UG, T+ k) — UL, 9| < nKolkl, |U(t, D] =< vK,
where v, is an absolute constant.
Proof. Using Fourier series we have
u= 2 . Amn(@mn €OS mt cOs nT + b, sin mt cos T + ¢, COSME SinNT
mn=

+ dpmp, sin mt sin n1),

where A =4, Amn =3ifm=0,n=landifm=1,n =0, A,, = 1 otherwise, and we denote
by M the constant

= 12
M= [.,21 (a2, + b2y + 2 + dﬁ,,)nz] .

Then we have

o

Ut, 1) = Baw + 21 (anncosntcosnt + b,,sinnt cOSnT + c pcosnt sinnt
=

+ d,, sin nt sin n1),
S (2 2, 2 2y,2]"
UG D1 < Blawl + | 2, (@ + 20+ cha+ din’]
- . 2 . . 1/2
x [2 n~*((cos’ nt + sin’ nt) cos’ nt + (cos’ nt + sin® nt) 51n2m:)]
n=1

x 127 — 12
= (4)|ac| + [z,l (@2, + b2, + ¢, + dﬁ,,)nz] [2} n'z]

= ()laoo| + M(El n~2> " = (1)lace| + M(/V6).



Solutions of nonlinear hyperbolic equations at resonance 767

Analogously

Ut+h,1)-Ult 1= 2_:1 [an{(cosn(t + h) cosnt — cosnt cosnt)

+ bp(sin n(t + k) cos nt — sin nt cos nt)
+ cpn(cos n(t + h) sin nt — cos nt sin nt)

+ dya(sin n(t + k) sinnt — sin nt sin n7)]
= (h12) 5:‘,1 [@nn cOs nT( =2 sin n(t + h/2))

+ b cos n™(2 cos n(t + h/2))

+ Cpn sin n7(—2 sin n(t + /2))

+ dpn sin n7(2 cos n(t + h/2))|no.(h),
where o,(h) = sin(nh/2)/(nh/2). Since |o,(h)| < 1, we have

ad 112
UG+ ) = UG, D] < (WD)] | 2, @ + B+ i+ din?]

X [ 21 n~*(cos? nt + sin? nt) (4 sin® n(r + h/2))
12
+ (cos? nt + sin? n7) (4 cos?n(t + h/z))]

< |;1|M(§1n‘2)”2 = (WVe)M|h|,

with
V6 =1282 55, M =, (@3, + b2y + iy + d2)n’ < JT—ZJ:( uldedr.
n=1 Iei

Also
U@t + h, 1) = Ut, D] < 67h [lu]L.

IU(I’ t) = ”u”Lz + 6—1/2”ul“L:9
with 6712 = 0-408 25.

8. COMPLEMENTARY REMARKS

In the already quoted work by Petzeltova [20] of the boundary value problem of Section
12, an unnecessary restriction was made on the data (cf. [20]) which will be eliminated in our
analysis in Section 12. To do this the following remarks will be relevant.

First let us note the following elementary solutions to the linear equations below:

(i) uy + Upur = 1, or equivalently

Uy + Upere = (4/7) 121 (2! — 1)~ 'sin(2! — x,
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with boundary conditions
u(t, 0) = u(t, @) = u(t,0) = u,lt, 1) =0, (8.1)
u(t + 2m) = u(t, 7),

has the solution
u(t, x) =247 % — 127w + 24 '

= (4/m) gl (21 - 1) 3sin(2! - 1)x;
(il) Ux + Upeee = sin kt for K2 # (2] — 1)*, any [, or equivalently
Uy + Useey = (4/7) 121 (2 — 1) sin kt sin(2! — 1)x,
with boundary conditions (8.1), has the solution
u(t, x) = (4/m) gl (21 - 1)7(2 - 1)* = k7 'sinkt sin(2] — D)x.

Analogous series hold for cos k¢ replacing sin &r.

(iii) up + Uy = X, OF equivalently
Up + Uppey = 2 é (=D U tsinlx,
with boundary conditions (8.1) has the solution
u(t, x) = 12073 — 36" + (360) T a'x
=2 12 (=D YU 3 sinx,
(iV) Uy + Upe = x sin kt for K2 # I, any I, or
Up + Upgry = 2 gl (—1)"* 41 sin kt sin Ix
with boundary conditions (8.1) has the solution
u(t,x) =2 I;il (D" U (=K% + 1% Vsinkt sinlx.

Analogous series hold for cos kt replacing sin kt.

Let us consider now a slightly more general situation. Let f(z), f2(f) be periodic functions
of period 2z and class C', and let f(t, x), —% < t <+, 0 < x < 7, be the function linear
in x with

f(t’ 0) =f1(t)’f(t’ .7[) =f2(t)’
fit, x) = fit) + xa7 () = fu(D))

or
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If ®
fily =27"ag + 1;1 (ay cos kt + by sin kt),
A () — filt)) =27¢o + ’(2_11 (cx coskt + dy sin k),
then

f(t,x) =27"ag + k}_)l (ai cos kt + by sin ki)

+ [2 3 (-1 sin lx} [2%0 + 2 (cecoskt +dsin kt)].

Let f*(¢, x) denote the same function f written as a double Fourier series with all terms with
k* = I* removed. Then, the equation

Uy + Uparx = f*(1, %) (8.2)

with boundary conditions (8.1) has the solution
u(t, x) = (2 ao) (4/70) 121 21 —1)5sin(2l - 1)x

+ (417) ; @1 — 1)7Y(2 - 1)* — k?] Y[ay coskt + by sin k] sin(2] — 1)x

+2(27'¢g) 121 (-1)"* 15 sinx
+2 ; (=1 Y — k) Y[cy cos kt + dy sinkt) sin Ix, (8.3)

where I ranges over all k, [ = 1,2, ..., k* # (2l — 1)* in the second series, and k* # I*
in the fourth series.

(8.0) For fi(t), f»(t) of class C' and 2sz-periodic, the solution (8.3) of equation (8.2) is of
class Ay

Proof. To prove this it is enough to show that for the functions u(¢, x) defined by the second
and fourth series (8.3), both u, and ., are of class L%. For the second series we have

Upex = (4/77) %: (21 - 1)’[(21 - 1)* = kY Yai coskt + by sinkt] sin(2] — 1)x,
Uy = —(4/m) %‘, (21 - 1)"%2l - 1)* — k% a, coskt + b sinkt] sin(2l - 1)x,
where =¢-1k%(ai + b}) < +. Thus, it is enough to show that

® ©

> kZai[ S @ - -1)- kz]‘zk'z] < 4o,

kzai[ 12,1 -7 - 1)* - k7 ‘Zkz] <+,

(2= 1)4% &2
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We shall actually prove that there is a constant B > 0 such that, for any k, we have

gl 21— 1)9(2 - 1)* - k32 < BK?,

Ms

(2= D)@~ 1) - K < B,

where the terms with k* = (2/ — 1)* are omitted.
It is enough we prove that for some constant C > 0 we have

L= f x8(x* — K22 dx < Ck?,
Vk+1

J'\/k-vl

L= x¥(x* = k¥ 2 dx < Ck?

1
and

L= f xHx* - kD) P de < Ck7Y,
Vk+1

I4=

VE-1
f x Mt - k)2 dx < Ck2

1

Indeed, for k = b2, or b = Vk, we have

fxs(x'* — b%2dx = 3(16b) " log (lx — b [x + b|Y)
+ 3(8b) 'arctan(x/b) — 4 ¥t — Y1+ C
and hence
Iy = 37(16k") 7! = 3(16k'®) ' log[(1 + k)2 — 1] [(1 + k" H1? + 1)

- 38k arctan(l + k)2 + (1) 2 + k) %M1 + kY32

=3(16k") tog[1 ~ (1 — k" HY[(1 =k H¥2 +1]7!

+3(8k")larctan(l — k™) + 4712 - k7Y 7I(1 - k)2

— 3(16k") ' log(k"* = 1) (1 + k)7 = 38k} arctan k™12 + 471 — k) 7L
Analogously,

fx'z(x“ —b*"2dx = —5(16b%) 'log(Jx — b||x + b|™Y
— 5(8b%) ! arc tan(x/b) — (4b%) 7Y(5x* — 4bHx(x* — bH) 1 + C
and hence
I3 =5(16k"%) M og{(1 + k™)™ — 1][(1 + kD)2 + 1]
— 5(8k¥%)~[(#/2) — arctan(l + k™)'
+ (4K 7k + 1)72(2k + 1) iK% + 10k + 5),
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L = (4% 7k — 1)"V(2k — 1)7'(k* — 10k + 5)
+ 4k N4k - Sy (k2 - 1)7!
- 5(8k”%)! — [arc tan(1 — k~!)"? — arc tan k™17
- 5(16k°%)og[1 — (1 — k™HY[(1 — k" H2 + 1)1
+ 5(15k°%) ! log[k'? — 1] [k* + 1] 7L,

The stated estimates for I}, L, I, I are now evident. This proves (8.i).

(8.if) (LEMMA) [20]. If ¢ € L(G) and [[s ¢ dtdx = 0, then for every y € L(G) such that
m < < M, we also have

~27YM — m) ”Gwa]dtdxsﬁ oy dt dx < 27YM — m) ”G || dr dx. (8.4)

Indeed, if G* = [(¢, x) € G|¢(t, x) = 0] and G~ = G — G7, then
f ¢dtdx=—ff ¢dtdx=2‘1fj |p| dedx,
G* G~ G

”G¢wd:dx= (HG++ ”G> v drdx

<[ pasdesmf[ ou
=2-1(M—m)”0|¢1dzdx.

This is the second inequality (8.4). Analogously we can prove the first inequality (8.4).

and

9. AMEASURE THEORETICAL PROPERTY OF BOUNDED OPEN SETS

We shall denote by U(t, r) the closed ball in R” of center £, and radius r. For any open
bounded subset G of R”, let D denote the diameter of G and by a the measure of G, thus
0<D<w (<a< >,

(9.7) (LEMMA). Any open bounded subset G of R” has the following property (P): there is
a function k(r), 0 < r < D, k(0) = 0, k(r) > 0 for 0 < r < D, k(D) = a, k(r) depending on
G only, such that meas[G N U(t, r)] = k(r) forall y, € Gand all 0 < r < D.

Proof. Let us assume that this statement is not true. Then there is a set G open and
bounded, a sequence [#] of points # € G, and numbers r; > 0, r, = ry > 0, such that meas
[G N U(t, )] = 0 as k — . By an extraction and further relabeling, we may well assume
that f — £ € G, ry, — 7 = ry > 0 as k — . Then we may well assume 7 = ry, and then

tw—>HEG, r—rp>0, meas[GNU(t,r)] =0 ask— o

On the other hand t; — 1, r, = ro implies that U(%, r) — U(ty, 7o) as k — =, hence G N
U, ) = G N Ulty, ro), and meas[G N U(t, r)] — 0 = meas[G N U(ty, ry)]. But
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this is impossible, since U(ty, ro) certainly contains interior points of G and meas[G N
U(to, ro)] > 0.

10. REMARKS ON THE (LL) AND (*) CONDITIONS

The Landesman and Lazer condition (LL), in its typical form, concerns problems of the

type

Ex = ¢(1) + g(x), t€G,

in the unknown x(f), t € G, x € X, where G is a domain in R”, v = 1, say of finite measure
a = meas G, 0 < a < +o, where g : R— R is a given nonlinear real valued function with
g(—») = R™, g(+ =) = R" finite, say g continuous and therefore bounded in R, and where
¢ : G — R is a given measurable function on G, say bounded. Here, E denotes a linear
operator, say a differential operator in G with homogeneous linear boundary conditions, and
nontrivial ker E. We assume that a real Banach or Hilbert space X of functions x(1), 1t € G,
has been chosen so that D(E) C X C L,(G), in particular ker E C X C Ly(G).

Note that, for any real function v(f), t € G, v € L(G), we may denote by G* and G~
the sets G'=[E€Gl()>0], G =t€G|p(r)<0], and take v* = fg+vdt, v~ =
Jo-|v] dr.

The (LL)-condition in the space X can be expressed by requiring that (LL): for any v(¢),
t € G, v € ker E, with [u]y = 1, then

(LL) R v —R*v* <f o v()dt<R'v™ —R7v™.
G

By (LL),-condition we shall mean the same requirement with < replacing both < signs.
A slightly stronger requirement is the following condition (LL),: there is some & > 0 such
that for any v(f), t € G, v € ker E, with |[v|x = 1, then

(LL). R v —R'v"+e< f P v() E<R'v =R v’ —=&
G

In the same context, we formulate now the condition already mentioned in Sections 1 and 2
by requiring that (*): there are numbers Ry > 0, r > 0 such that, for all p = Ry, for all v(?),
t € G, v € ker E, |v|x = 1, and any function o(t), t € G, |d|x < r, we have

*) [ 6008+ [ o0 + o) ot =0 for <o)
G G

In a number of applications, all with dim ker E < «, the implications (LL) & (LL); = (*)
have been verified (cf. [4]). We shall discuss below the relationship between the conditions
above under a variety of assumptions.

Let G as before be a measurable subset of RY, v = 1, with 0 < g = meas G < +.

(10.i) (LEMMA). For any given o(t) = 0, t € G, v € Ly(G), |lvln
={t€ G, 0= v() < c], no = meas Ey, we have

vl < cmo+ (a — o)™ (10.1)

([ Jmamcmemtie ([ o) ([ 0]

<cno+ (a— o)

1, any ¢ > 0, and E,

Indeed,
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(10.i) Given € > 0 there is a number 6 > 0 such that for any v(?), t € G, v € Ly(G), |lv]>
= 1, such that, for Eq = [t € G, |v(?)| < 8], 7o = meas Ey, we have a ~ § < 1y < a, then we
also have ||vf; =< &

Indeed, ||v]; and |[v]; are also the norms of the nonnegative function |v(f)|, t € G, |v] €
L(G), with Ly-norm one. Take & > 0 so that ad + 6" < & Then, by (10.i) with ¢ = & we
also have Jluly < 6 + (a — n)? <ad + 8" < e

We shall consider below sequences (S) of functions v.(f), t € G, v, € LxG), |val: = 1,
n=1,2,..., and constants ¢, > 0, 1, = meas Eg,, Ey, = [t € G| |va(t)] < ¢4]. Then,
¢, — 0, n,—a implies |lv ]; = 0 as n — «, as immediate corollary of (10.i).

(10.ii1) A relation (LL), is impossible if ker E contains sequences (S), that is, sequences of
functions v,(t), t € G, v, € Ly(G), lvdl = 1, llodi = 0 as n — co.

Indeed, then vy, v; < |v|l;, hence vy — 0, v; =0, and, R*v;, R vy —»0 as n— . Then
a relation (LL), is not satisfied for n sufficiently large.

(10.iv) (LEMMA). Let G be a measurable subset of R”, v = 1, with finite measure 0 < g =
meas G < +o, and let 1 < m = dim ker E < o, Let us assume that there is some A4, = 0
such that v(f), t € G, v € ker E, v € Ly(G), |l = 1, implies v(f) = 0 at most in a subset
E, of G with meas Ej = Ay. Then, given € > 0 there is some constant ¢ > 0 such that meas|s
€ G| v(t)| < ¢] <= A + ¢for all v as above.

Proof. Let wy, . . . , w, denote any orthogonal basis for ker E. Then, for every v € ker
E, we have v=bw +...+bWnb=(w,w),i=1,... mb=(b,...,b,), and
|vll. =|b| where |b] is the Euclidean norm of b in R™.

If the statement above is not true, then there is a number & > 0 and sequences
¢ >0, 0,0, t € G,v, Eker E, |lv], = 1, with 9, = 4 + &, ¢c,— 0, n, =meas E,, E, = [t €

G||va(®| = c,). Then v, = byw; +. .. + byuWn, for |b,| =1,b,=(b,, ..., b)), and there is
a subsequence, say still [n], such that b,~ b, |b|=1, b=(b;,...,b,), or b, —b, i=
1,...,m,asn— o Let v(t)=byw; +... + b,w,,t €G, and certainly v € ker E. First,
assume that wy, ..., w,, are bounded in G, say |w()| <M, t€ G, i=1,..., m. Then, for

0, = |b —b,|, we have g,— 0 and |v(?)] < |v.(O)] + |v(t) — v.(8)| = ¢, + Mo, for all tEE,,
where ¢, +Mo,— 0 as n — «, and meas E, =i +& Here v,— v uniformly, and
thus v(t) = 0 in some set Eq of measure = A +&, a contradiction.

If the functions w(¢) are only in L,(G), then we take N > 0 so large that for each i =
1,...,m, the set F; = [t € G| |wi(t)| = N} has measure meas F; <gy/2m, and we take F =
FU...UF,, meas F<g/2. Now we repeat the argument above, with E, =E,—F,
meas E, = A +&/2, and N replacing M.

Here are a few examples concerning conditions (LL) and (*).

(a) Example of a problem with X = L,(G) where (LL) holds, but (LL), does not.
Consider the problem
xo = xg=ft,§) + g(x(1,8), (1,5 €ER,
x(t + 27, &) = x(¢, §) = x(t, § + 27),



774 L. Cesar1 and R. KANNAN

fe + 27, 8) = f(1, §) = f(t, § + 2),

for which ker E contains all trigonometrical polynomial generated by the usual exponentials
kB k1 =0, %1, £2,. .., k* = P, and limit elements in Ly(G), G = [0, 2x]%. Let g:
R— R, be continuous with limits R* =g(+©)>0, R =g(-x)<0, take u=
min[R*,—R~], and note that for |f(t, )] < M < y, relation (LL) certainly holds since

Rv™ = R™v" = J fodt=p(v™ +v") = Mlplh = (1 — M)|pll; >0,
G
[ fode+ Ro* = Ro™ = 0" + o) = Mol = (u = Mol >0.
F

For every n, let y,(§), —» < £ < +, be a trigonometrical polynomial with |ly,(&)|, =
(2m)712, (square norm in [0, 2x]), with 0 <y (&)< Un for I/n < & < 2m — 1ln, and
Yu(E) = Unfor0= Es 1/n,2n— 1/n < E< 2x. Note thatv,(t, §) =y.(§ — f) isatrigonometrical
polynomial in R?, is periodic of period 27 both in ¢ and &, is an element of ker E, and its
square norm in G = [0, 27), is v = 27|y.|; =27(1/27) = 1. Moreover, 0 < v, < 1/n every-
where in G but a diagonal strip G — E, where v, =1/n and meas(G — E,) =(2/n)2x =

4n/n. In other words, [v,] is a sequence (S) in G. Condition (LL), is then impossible.

This example can be modified in such a way that (*) also does not hold. Let us assume g :
R — R to be strictly increasing with a unique zero at x = 26 > 0, or g(28) = 0, 0 < g(x) <
R for x > 26, g(+») = R, r < g(x) <O0forx <28, r = g(~=), R >0, r <0. Then, ift =
—g(6), then T > 0, and g(x) < —t for x < 4. For the same functions v,(t, &) of No. 3,and 0
< p < nd, we have

0< punt, § < (nd) (Un) =6,  glovr, H) <7 (1. ¥ EE,,
0< pout, O), glooat, ®) <R (1, & €G ~E,

so that, for |f| < M and for # so large that M|, < 71, 2R/n <at, 4/n < 7, then

f fo,dedé+ j g(pvalt, £)) vat, &) dt dg
G G

= [ fonacdz+ [ glovavdrdz+ [ glov)v,arde
G E, n

< M|v,|; — Tmeas E, + Rmeas(G — E,)
< n’t ~ 1(47° ~ 4n/n) + R(27/n)
< -47%t+ AT+ ntt+ at= —a

and this holds for all n sufficiently large and all 0 < p < né.

On the other hand, for v = 27) ' in G, ||, = 1, M + € < R* for some £ > 0, and p so
large that g(p) > M + &2, we have [s[fv + g(pv)v] dt d& > (27) (g(p) —M) = (2n) (2).
This shows that there is no R, such that the (*) relation holds for all p > Ry and all v €
ker E with |jo|, =

(b) Example of problem with X = L,(G) for which (LL), holds but the problem has no
solutions.



Solutions of nonlinear hyperbolic equations at resonance 775

Take E =0 thus ker E = Ly(G), take ¢(f) = +1inaset E;C G, ¢(t) = —1in a set E, C
G, meas E, >0, meas £, >0, E\ UE, = G, E; N E, =, and take g: R — R continuous, with
g(+») =1, g(—x) = -1, =1 < g(x) < 1 for all x € R. Then for every v(t), t € G, v €
Ly(G), |lv|, = 1 we certainly have 1 — ¢(¢) sgm v(¢) = 0 in G, and

Ro* =R = [ 9o a= | [1- 60 semo(0)] (0] & =0,

However, the problem Ex = 0 = ¢(r) + g(x(¢)) has no solution, since everywhere in G we
have ¢(t) = =1, -1 < g(x(1)) < l,or ¢ + g # 0.

11. SUFFICIENT CONDITIONS FOR PROPERTY (*)

(11.{)) THEOREM. Let r > 0 be a given number. Let g : R — R be a continuous function with
finite limits R™ = g(+»), R~ = g(—=). Then, given £ > 0 there is Ry > 0 such that, for
p = Ry, for any function v(¢), t € G, v € L, (G), |jv|; = 1, and any function o(¢), t € G,
0 € Ly(G), ||dl; < r, we have

“ glov(®) + o)) v(t) dt = R*v* +R v | <e (11.1)

Proof. Let 0 < a = meas G < +, and take C such that |g(x)| < C for all x € R. Let
n > 0 be a constant such that Cna < &8.

Let N > n be a constant such that CN~'r < ¢&/8.

Let A = 0 be a constant such that |g(x) — R*| < ¢8a for all x = A and |g(x) — R7| <
¢/8a for all x = —A. .

Let Ry be any constant Ry = n~ /(A + N). Clearly R, depends only on G, g and E.

For any function v(f), t € G, v € Ly(G), |l = 1, let Ey = [t € G| |[v(¢)| < n] and E, =
G — E,. For any function o(f), t € G, 0 € Ly(G), |lol, < r let F = [r € G| |o(t)| = N]. Then
N> meas F < [po® dt < r°, or meas F < N™%7. Then

[0 + o10) 00y ae| = €[ o) &t = C(meas Fy 3
F F (11.2)

<CN 'r=<¢g8,
U glpv(r) + o(r)) v(r) dt‘ s Cnmeas Ey< Cna < &8. (11.3)
Ep

Note that

vt = fc* lv(r)| de = fc* v(f) dr

=(f +f +f )v(t)dt.
FNG*  JHG-PNENG* XG-PNENG*

and an analogous decomposition holds for v~ = [ |v(r)] df = —[s- v(¢) dt, where the
last member must be taken with a sign minus. Now forp= Randt€ (G- )N E, N G*
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we have v(r) = 7> 0, po(t) + o(f) = Ron ~ N = (A + N) = N = A, and |g(pv(?) + o(r))
— R™| < ¢/8a. Then

[ g(pv(t) + o(t)) v(f) &t — R
(G-PNENG*

[ l8(ov() + o(0) - R o) e+ R* [ w(py at
(G~FNENG* FNG*

- R*J' v(r) dr
(G-PHNENG*

< (meas G) (¢/8a) + C(meas F)"|p|, + C(meas G)n
< a(e/8a) — CN7'r + Can < ¢/8 + €/8 + €/8 = 3¢/8. (11.4)

Analogously we have, for p = Ry,

glpv(t) + o(f)) v(f) dt + R v~ | < 3¢/8. (11.5)

-[G—nnz,nc-

Combining all relations (11.2)—(11.5) we see that all p = Ry, and v and o as stated, we have

=g8+ g8 +3d8+3e8=c¢

U glpv() + o)) v(t) & ~ R*v* + Rv~
G

Remark. Statement (11.1) holds for arbitrary elements v € L,(G) in the same form with (11.1)
replaced by

= E”U"Ln (116)

H g(pv(t) + o(t)) v()dt — R*v* + R v~
G

and the analogous relation with R*v™ — R™v™ replaced by R*v™ — R™v* follows by exchanging
v with —v.

(11.ii)) COROLLARY. With D(E) C X C Ly(G), |lv|l., <c|lv|x for some constant ¢ > 0, then
condition (LL), implies (*).

Indeed, given r > 0 we choose Ry > 0 so that, for p = R, relation (11.6) holds with

27 'eq ¢! instead of €, a = meas G, 0 < g < +, hence

[ 6oo) + o) vy = R*0" + Ro0”| < @ ea e Dol
G

< (27 'ea V2 Ha"Yoll,, < (27 ea e aclv|lx = €/2
for |lv]x = 1. Then
R v"-R'v”+e< [ pvdt<R'v"~-R v —¢
G
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implies

fG [6(0) + glov() + o{0))] v(r) &t > &2 > 0.

(11.ii) IfR* >0,R™ <0, and if |¢()] = M < p = min[R*, —R7], then for any v € L(G),
|vll., > 0, we have

J; v dtl < Mjoll, < dlvll, SR v - R7v™.

Thus, if D(E) C X C L,(G) and there is a constant y > 0 such that [Jvo|x = 1, v € ker E implies
lvll., = v, then for the same v we also have

j ¢v dt, <R'v*-Rv —-¢
G
with ¢ = (u — M)y.

(11.iv) (LEMMA). Let G be a measurable subset of R*, 0 < a = meas G < +, and let ¢
be any constant, 0 < ¢ <a 2 Then for any measurable essentially bounded function v(r),
t € G, vl =1, and u = ess sup[|v(?)], ¢t € G, Ey = [t € G| |v(t)] = c], p = meas E;, we
have u = a2, and 0 < g < a — u 31 — ac?).

Indeed, 1 = ||v| < ap?, or u = a 2. On the other hand,

1 = |[vlf < noc® + (a — no)u? < ac* + (a — no)u?,

or
nw<a-p1-ac),

where now ay? = 1 > 1 — ac? implies u™%(1 - ac?) < a.

(11.v) Let G be an open bounded connected subset G with diameter D, and 0 < a = meas
G < +. Let w(£), 0 < ¢ < +, be a modulus of continuity, that is, a continuous increasing
real function, with w(0) = 0. Then, there are constants I, > 0, y; > 0, which depend only
on G and the function w, such that, if v(¢), ¢t € G, is any continuous function on G with |[v|,
= 1 and modulus of continuity w({), that is, |o(f) — v(t')] < w(|t — ¢'|) for all ¢, ¢’ € G, and
E,=[t€G||v(r)] = Ty}, n = meas E;, we have = meas E; =y, > 0.

Proof. For any ¢ > 0 let Eq =[t €G||v(1)| <c], n = meas Ey, and let 4 = max|v(r)| in G.
Let 4 be any point of G where [v(f)| = u. We know already that u = a2 For ¢ > 0 such
that 0 < ¢ <(2a)""* we know from (11.iv) that mg<a — u (1 —ac?). Thus, if a~"? < u<
[2(1 — ac’)a™']"?, theny? < 2(1 ~ ac)a™", orp™*(1 — ac®) = a/2, and 1y < a — a/2 = a/2. Hence,
for I'y=c¢, ny + 19 = a, implies 7, = a/2.

Ifu=[2(1 —ac’)a™']"?, then u = [(1 — ac?)a !> = a2 = (2a) 2> ¢ > 0. Let r > 0 be any
number such that w(p) <[2(1 —ac?)a™']"? —¢c for all 0 < p < r. Then, for t€GN
U(ty, r) we have

lo()] = |v(to)| — w(lt = tol) = pu = w(r)

=[2(1 - acha ]2 — {2(1 — acP)a"]? - ¢c] =¢ >0,
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that is, G NU(t, r) C E;, and meas E, = meas[G N U(1, r)] = k(r) > 0 where k(r) is the
function defined in (9.i) for the open set G.
In either case we have |v(f)| = ¢ =T in a set E, with meas E;= min[a/2, k(r)]= y > 0.

(11.vi) THEOREM. Let G be a measurable subset of R” with 0 <a =meas G < + . Let f(t, x)
be a continuous function on G X R such that for suitable constants b, ¢, A, B, C, 0<b <c,
0 < B < (C, we have

Ift,x)|<C forallt€G, xeR;

fit,x)|sA forlx|<sb, tE€G;

ft,xy=0 forx=b, fle.x) <0 forx < -b, 1€G;
fe,x)=B forx=c, ft,x)y=-B forx<-¢, t€G.

Let {v} be a collection of functions v(t), t € G, v € LA(G), |jv]; =1, with the following property

(Q): for given y> 0, I >0, and any v € {v}, if E, = [t € G||v(t)| = T], then meas E; = y.
Let € be a given number, and assume 0 < £ < y/3, A <a "?Be. Then there are numbers

r>0, Rp > 0 such that for any p = Ry, v € {v}, and any o(t), 0 € Ly(G), ||d|, < r, we have

[ 7, 006) + 0t0)) v(0) = By = 36 > 0.
G
For £ = /3, we have [ fv de = 0.

Proof. For any N > 0 let F=[t€ G||o(t)| = N]. Then N* meas F <|o|} </, or meas
F< N7 Let us assume that
CN"'r<Be, N¥<g N<bR (11.7)
Then
Uf(t, po(t) + o(t)) v(r) dtl < CI lv(1)] df < C(meas F)"p|,
F ! F

< CN 'r< Be.

Let K; = [t € G||pv(t) +o(t)| < b, |v(r)| <T]. Then, for t €K, —F we have |pv(t) + o(t)| <
b, |f(1, pv(t) + o(t))| < A, and

[ oo+ oyoi | <a] ool <A(meas 6l
Ki-F K, -F

Il
< Aa'? < Be.

LetK; = [t €G||pv(t) + o(t)| = b, |v(t)] < T]. Then, fort € K, —F we have |pv(f) +o(t)| = b,
lo(H)] = N =< b/2. Hence plv(t)! = b — b/2 = b/2. Consequently, pv(f) +o(f) and pv(¢), that
is v(f), have the same sign and f(¢, pu(r) + o(t)) has the same sign as v(¢). Then

f f(t, pu(t) + o(t)) v(r) dt = 0.
K>-F

Let E; = [t € G, |v(r)| = ]. Then, meas(E,, — F) = meas E,, — meas F = y— &. Take Ry =
I!(c+N), and note that, for p<R,t€FE,~F, we have plv()] 2RI =c + N,
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lo()] < N, |pv(f) +o(t)| = c + N — N =c. pv(t) +oft) hasthe same sign as v(¢) . and the same
sign as f(t, pv(t) +o(t)). Also, f=Bifv=T>0, and f< —-Bif v < -T <0. Then

J; _Ff(t, pv(t) + o(t)) v(t) dt = B meas(E; — F) = B(y — ¢€).

qu dr= <L+ fKI—F+ «[KZ—F+ L‘.—-F) fod

= —Be— Be+ 0+ B(y— &)= B(y — 3¢).
Relations (11.7) can easily be satisfied by taking N < b/2, and r < min[e'?N, BeC™'N].

Now

Remark. Let G be any bounded open subset of R”, v = 1. Then property (P) of (9.i) holds.
Let the linear operator E be given in G, and let us assume that the Hilbert spaces X, Y have
been selected so that [|x||,, < clx|lx for x € X, and so that the elements x of the unit ball in

X are continuous on G with modulus of continuity w({). Then, by (11.0), numbers Iy, > 0,
%> 0 can be determined so that v € Ly(G), [v|. =1, E; = [t EG]|v(t)] = T], n = meas E;,

implies 7, = y. Finally, by (11.vi) with 0 < ¢ <yy/3, A <a "B, we can determine Ry, r > 0
so that relation (*) holds for [} = 1, p= Ry, |of. < r.

In the case f(z, x) = ¢(t) + g(x) with g continuous in R and

lg(x)| = C' forallx €RR,

lgx)| < B for|x|<b,
gx)=v forx=b, gx)<-v forxs-b,
g(x) = B' forx =c, gx)<s-B" forx<—c,

lp()|<v forallr€G,
then
ft,x)] = |o(r) + gx)| s v+ C'=C forall(r.x) €EG X R,

Ift.x)] =|p(t) +gx)|<v+B=A forlx|sb, 1€G,
flt,xy=¢(t) + gx)=B —v=B forxzc¢, 1€G,
fit.x)=¢(t) +glx)<-B' + v=~B forx<—c, tE€G,
flt.x)y=0 forx=b, f(t,x) <0 forx < —b,

and the requirements of (11.vi) are satisfied provided v< B’, A <a™'?Be for some 0 < e <
/3. Hence, we require 0< e < y/3, B< a B'e,v< B, (1 + a e}y <= a?B'e - 4.

12. ANALYSIS IN THE LARGE OF THE EQUATION u, + uxy.. = f(t, x, u)

We consider here the existence of solutions u(t, x), periodic in ¢ of period 2z, of the

hyperbolic problem
Up T Upeee = fl, X, 4), —0<t<+oo, (<x<um, (12.1)

u(, 0) = u(t, 1) = uy(t,0) = u,{t, 1)y =0, (12.2)

u(t+2m,x) =u(t,x), —o<t<+o, O<x<m (12.3)
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We initiated the discussion of this problem in [12, No. 6] for f(z, x, u, u,, u,) depending also
on u, and u,. For the sake of simplicity we limit ourselves here to f depending only on ¢, x,
u. The problem had been considered by Petzeltova [20] solely in the perturbation case f =
&fy, € small.

Let G = [0, n] x [0, 27], let a = meas G = 27, and let [u]|.,, (u, v),, denote the usual
square norm and inner product in G.

Let D denote the set of all functions y(¢, x) of class C* in R x [0, 7], 2-periodic in ¢ and
satisfying y(¢t, 0) = y(t, m) as well as DZy(¢,0) = D¥y(t,n) =0, t€ER, s=0,1,2,.... As
in Section 6, let X= A; denote the closure of D with respect to the
norm |ullx = |ju]lr, + |4nll L,, sO that X = Ay is a real Hilbert space with inner product
(4, v)x = (U, V)1, + (Usx, Uxx)L,- The closure of D with respect to the norm |ju], will be denoted
by Y, and Y = A = L,(G) is identifiable with L,(G).

As proved in Section 6, for u € X = Ay, then u is continuous (in R x [0, n]), u, € L, for
any 1 < ¢ <6, u, u,, € L, and

ledle < pilledlxe, Noadle, < pgallsdlx,  Meedle, <N, Noaadle, < fledlx, (12.4)
for suitable absolute constants po, fy1, 1 < g < 6, (and of course |[ull., < pgpllullx for some
Ho < moa', g = 1).

Here, Eu = uy + Uy, and the equation Eu = y for y € Y = L,(G) is said to hold in the
weak sense (distributions) for u € X = Ay, provided (u, Ey)., = (¢, y)., for ally € D. This
convention is justified by the fact that, if u is smooth (say, u € Ay) and (u, Ey),;, =
(¥, y)L,, then by integration by parts we have (Eu, y) = (y, y) for all y € D, and hence Eu
= ya.e. inG.

If f(t, x, u) is continuous in R X [0, 7] X R and 2s-periodic in ¢, and if ¥ € X = A then
F(t, x) = f(t, x, u(t, x)) is continuous in R X [0, z], 2n-periodic in ¢, and there is a monotone
function y(s), 0 < s < +, such that ||Fll. < y{lullx) for any u € Ay, where y{s) depends
solely on f. Then, certainly ||Fl|., < a"?y{|ullx). Alternatively, if f(t, x, u) = ¢(z, x) + g(u),
where ¢ is 27-periodic in ¢, ¢ € Ly(G), and g : R — R is continuous, then for u € X = A,
g(u(t, x)) is continuous in R x [0, x} and 2n-periodic in ¢, |lg(u(t, x))l» =< ¥,(jluilx) and
AL, =< li@llz, +a"*¥,(||luflx), where the monotone function y,(s), 0 < s < +, depends only on
g. We shall denote by y(s) any function such that|Nul., =|If(z, x, u(t, x))|., < ¥(R) whenever
u € X and |jux < R.

Let ex(t, x), k =0, x1, *2,...,1=1,2,..., denote all elements of the form ™! sin Ix,
22771 cos kt sin Ix, 2'277! sin kt sin Ix. These elements e, are orthonormal in Y, and any u
€ Y = Ay = L,(G) has Fourier series u(f, x) = Shyey with by < +®, by = (4, ew)y =
(u, ekl)Lz-

Now let Ey(t,x), k=0, =1, =2,..., [=1,2,..., denote all elements of the form
AU 2 sin Ix, 2277 1k + 1*)72 cos ke sin Ix, 21257 (k* + I*)"" sin kt sin Ix. These elements are
orthonormal in X, and any u € X = A has Fourier series in X of the form u(t, x) = ZayEy,
aw = (u, Ex)x, and u, —u,, have Fourier series u, = Z(ayk) Ely, Uxx = S(awl?)E}, where Ely is
obtained from Ej; by changing cos kt, sin kt into sin k¢, cos kt respectively, and EY; is obtained
from Ej by changing sin Ix into —sin x. On the other hand, if by = (4, ex)L,, then

aw = (u, Ex)x = (K* + Y 2%u, ex)y = (k2 + 1912,

auEn = (4, E)Ew = (kK* + 1" (u, ex) - (k* + 1% ey = buew.
For u € X, then u, u,, u,, have Fourier series in Y = L,, u =Zbyen, u, =Zbykei, Uy =
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ZbylPe}y, where e}, is obtained from ey by changing cos .z, sin kz into sin k¢, cos kt, and ey is
obtained from ey by changing sin Ix into —sin Ix. Thus, Sh}(k* + I) < + .

Let X, denote the subspace of X generated by the elements e, with &> = . Then, for
u* € Xo, u* =Zi2-pbyey; where Z ranges over all k = 0, £1, =2,...,/=1,2, ..., with
k* = I*. By distribution theory X, is the subspace of X of all weak solutions of Ex = 0, or
(4, Yo + Yure) = O for all y € D, that is, Xy = ker E.

Note that, for u* € Xy, or (u*, yx + Y, = 0 for all y € D, we also have, by integration
by parts, —(u, y)r, + (U, Yx), =0 for all yE€ D. If v € X, and we approximate v by
elements y &€ D in such a way that y, y, approximate v}, vy, in L,, we also have
—(u}, v}, + (U, Vi), = 0. Thus,

(ur, v, = Uk, Vi) Ly letlle, = lutd =2 Yu*llx forallu*, v* € X,. (12.5)

Let P denote the natural projection of X onto X,. For u€X, =(I — P)X, then u=
Sbuew with Zby(K2 + )< +, where Z rangesoverallk =0, *1,...,/=1,2..., with
k? # I*. Let Yy, Y, denote the analogous decomposition of Y, and let Q be the natural projection
of Y onto Y,. We can now define the operator H : Y1 —X;. Foru € Yy, or u =Z2,.pbuexn
Ibi < +o, let us take v = Hu =2, pbyy (—k* + I*) ‘e As we have seen in Section 6, v =
Hu € X; = (I — P)X, thus v € Ay, and v is a weak solution of Ev = u. Moreover,
|Hullr, < lull,, |Hullx < lullz, for 4 € Y, and ||H]| is a linear bounded operator from Y; onto
X, with |H|| = L = 1. With X, Y, P, Q, H as above, axioms (a), (b), (c) of Section 3 are
certainly satisfied.

We now define the finite dimensional subspaces Xg, of X, as follows: X, is the subspace

of X, in X generated by all ey with K2 =F I=1,...,n.
Let Xj, be the subspace of X generated by all ey with B+P k=0,=1,..., *n,l =
1,..., n. Let R,, S, be the appropriate orthogonal projections R, : X; = Xi,, S, : Xo — Xon.

Let Yo, be the subspace of Yy in Y generated byey, K =F,1=1,...,n. ThusS,: Yo— Yo,
can be defined as the orthogonal projection of Y, onto Yy, in Y.
Finally, let a;, : Y;, — Xo, denote the map defined by

&y = Zoubuen, wherey = Zo.brer, bu=(y, €Ly,

where 2, ranges over all k = 0, *1,..., *n,l=1,2,...,n, with k¥ = I*, (hence |k| = 1).
Clearly «;'(0)=0 that is, ,5:QNu=0 is equivalent to S,ONu =0, and moreover
S, QNu = 0 if and only if ($;QNu, v*) =0 for all v* € X,,.

However, we note that here, for y € Yy,, a,y = y € Xy, but a,y in X has a norm in X which
is quite different from the norm of y in Y = L,, namely

leole = bl = (T 62062+ 19)", ol = (8) "

We may note that, for any element x € Xj, then x is a bounded function on G, and R,x is also
a bounded function on G, [|Rux]l., <|lx[l.,, but |[R.x]l. may by much larger than [jx|.., a well
known phenomenon in Fourier series. Analogously, if y € Y, and y happens to be bounded
in G, then S,y €Y is also bounded in G, |S;yll., < |ly|l.,, but the norm ||S;y|l= may be much
larger then |ly|..

Finally, let J, : Xo, — Xy, be the linear operator defined as follows. Let &, 8 = 0 be constants
with &+ B> 0, for the moment arbitrary. For any 4 € X; we have u = 3byen, where T
ranges over all k, [ with k2 = I, k = 0, 1, 2,...,1=1,2,..., n, (hence [k| = 1). We
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take Ju = Zk'bye}, where ef; is obtained from ey, by replacing cos ks by sin k¢, and sin kt by
—cos kt. Then, J is a isomorphism, and further (Ju), = u. Let us take in (5.3), (5.4). J,=
—aJ? + BI, where [ is the identity operator. Then, for u € Xy, u =Zbyey, the sum ranging
over all k, { with k* = I*, and J,u = (ak™* + B)bues, and J, is a isomorphism.

The original equations (12.1-12.3), are now written in the abstract form Ex = Nx, or in the
equivalent form of auxiliary and bifurcation equations

uy=H{I-Q)Nu, ONu=0, u=u*+u X

For every integer n, we have then the reduced equations
u, = RH(I - Q)Nu, S,ONu=0, u=u*"+u €X,

and, for each n, we apply Theorem (4.i) (actually, Lemma (3.i), or statement (2.i)), to the
reduced equations

uy = R,H(I - Q)Nu, J,a,S,ONu =0, =u*+u €X, =X X X (12.6)

Below, we shall show that there are numbers Ro. r > 0 such that, for every integer n, there
is at least one solution u,€ X,, u, =u’ +u,, w' € Xos, Un € Xin. hence, u, €KX,
uf € Xo, uh € Xy n=1,2,. .., with [}y < Ro luallx < 7. |l = (R§ +7)" for all n.

Proceeding as in Section 5, we now introduce the space . For & we choose C, the space
of continuous functions on R X [0, x], 2a-periodic in ¢. Then |u,lx is bounded, and the
sequence u,(t, x), (t, x) € R x [0, 7], is equicontinuous. By applying Ascoli’s theorem we
see that any weak limit element of [u,] in X is a strong limit in ¥. Moreover, as we have seen
in the Remark at the end of Section 5, there is a subsequence, say still [#] such that u, — u
uniformly to a continuous function u. Then the functions Nu, are equibounded and converge
pointwise and uniformly to the bounded functions Nu as n — . Proceeding to the limit in
the coupled system of equations (12.6), we obtain that ¥ € ¥ is a solution in the weak sense
of the original problem.

Here the solution u is continuous with given modulus of continuity, u,, u,, u,, exist in L,
U x €Xist in the distributional sense, and they satisfy the original equation in the weak sense.

(12.i) Let f(t, x, 5) be of class C' in R x [0, 7] x R, and let ¥{(s) be the function defined
above. Let us assume that there are constants Ry, r such that LY{R)<r with R=
(R§+ )"2, and such that, for all u* € Xy, u; € X\, |u*llx =Rp. Juillx <r, X = Az,

aff f(t, x, wyu* drdx + ﬂf (ft.x,u))u; dtdx =0 [or <0]. (12.7)
G G

Then the hyperbolic problem (12.1-12.3) has at least one solution u(t, x) € X = Ay with
llullx < R.

Proof. We shall only show that (5.i) applies. Thus, we have to verify hypotheses (a) and
(b) of (5.i). Actually, (a) is satisfied, and, by Remark 1 of Section 5, it is enough to verify
that

(V10 SiONu, u*)x =0  for <0]
for all u* € Xon, |u*|x = Ro, u =u* + uy, u; € Xy, jusll < r. Note that, because of the choice
of J,,, by integration by parts we have
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(JnauSnONu, u*)x = 2((J, S, QNu),, u?), .
= = 20((J2a,S,ONu),, u),, + 2B((anS:ONU) 1Y), .
== 2a(Ja'nS;IQN“’ ui*)L: + Zﬂ((af,,S,’,QNu),, ut*)Ll
= 20(0S,ONu, u*) 1, + 2B((auS,ONU). 1) 1.

Now we have

Nu = Z(Nuv ek[)Lgek[v
ONu = kgl“ (Nu, ex)€u
nSpQNu = Z*(Nu, ex) £

where Z* ranges over all k, / with k> = I*, [ = 1,..., n. Thus,

(J2 05, S, ONu, u*)x = 20( 0, S,ONu, u*) 1, + 2K anS,Q(Nu),, u) ..

=2a| f(t,x, u)u* drdx + Zﬁf (fle, x, w))u} dr dx,
G G

where (f(z, x, u)), = fi + ful..

A set of inequalities implying relation (12.7)

Note that, for x = A;, the elements u € X with |july = 1 are functions u(t x) in G with
a common modulus of contmulty wy(§),0 < E< +x. Let a=meas G =27, and let . ug,
1<¢g<6, and pgp < wa'¥,1<q < =, be the constants for which relations (12.4) hold.

Let Ry, r, I, n be posmve numbers which we shall determine later.

If v* € Xy, |v*lx = 1, 0 € Xy, |lo]lx <r are given elements, then for 0 < p < Ry, pv*
has modulus of continuity Rewy({), and |of- < por. Let G' = [(1, x) € G| [v*(t, x)| = I,
G'=G-G.

Let k(s), 0 < s < Dy = diam G, denote the function defined in (9.), so that k(s) > 0 for
0 <s = Dy, k(O) = 0, and for every point P € G and U(P, s) = [Q € R*| |Q — P| < s]. we
also have meas[U(P, s) N G] = k(s), 0 < s < Dy. We have seen that it is not restrictive to
assume k = k(s) continuous in [0, D]. Actually, because of the periodicity, in the present
situation, we can take k = k(s) = 27as?, with inverse function s = s(k) = (227'k)"?, and
meas[U(P, s) N G] = 27 as? for all s = 0.

(12.ii) Let f(z, x, u) = ¢(t, x) + g(u), where ¢ is of class C' and 2n-periodic in ¢, and g : R
— R is of class C'. Let us assume that:

ugw) =0, lgw)|<C, luw)|<D, -d'<gfu)=<d. ueR
gu)=B foruzb, gu)s-B forus-b,
g u)=d>0 forlu|=<3i,

for suitable positive constants B, C, d, d’, d",  with b < §, B < C, D = max[d’, d"].
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Let [, n, r, Ry, &, B be positive constants such that
0O<n<a=27%, RL=pg+b, R+ RwdV2r)+ uor<s,
M, = aBR'n — aCuyor ~ Bd"(27'RE+ ) ~ BD(27'R}+ r)Vyr > 0,
M, = d(27'RE) — BDQ2'R§+ r')r — aCRquio > 0,
Ro( ol lle, + B2 H\pdle,) < min[M,, M;).
Then, for p = Ry, v* € Xy, Jo*lly = 1, 0 € X3, oy =< 7, we have

af [8(0.3) + g(po" + )] (po*) s + B fG [641,%) + (gl
+ o)) (pvf) dedx =0.

(12.8)

If, in addition,

I, + 23 2C =<, (12.9)

then problem (12.1~12.3) with f = ¢ + g(u) has at least one solution uEX = Ay,
u= u*+ i, u* EXOa u EXI’ “u*ux s‘ROs w‘lux =r, “u{lx <R= (R(z) + r2)1/2.

Proof. Note that, for u € X = Ay, [ullx < R, F(t, x) = f(r, x, u(t, x)) = @@, x) + g(u(s,
x)) we certainly have |Flly = |Fll., < ||¢]., + C(meas G)'? =g, + 2/*2C, and we can take
#s) = |@llL, + 2"2nC, a constant function. Analogously, we have |[Fle <udFll., < (I, +
2'27C), and we take y(s) = uo(||@|L, + 2'?nC), also a constant function. Finally, since L =
[|H] = 1, requirement Ly(R) < r of (12.i) reduces to the inequality (12.9).

Note that, for v* € Xy, [[v*]lx = 1, we have, from (12.5), o, =lloxli, =2 "lv*|k and
ol = lotlle, = 272 For u = pvt, v = a,, p= Ry, v* € Xo, 0€ X,, [v*[lx =1, |jollx <7, not
only v* and o are orthogonal in L,, but also v* and o,. Hence

RR2 < lpor + ol = [pvtlf + loff < RR2™ + 7.

As stated, let G’ = [(¢, x) € G| [v*(t, )| =T], G"= G ~ G".

First, let us assume that meas G” < n. For P € G we have meas(U(P, s) N G) > k(s) and
thus for s = s(n) we also have meas(U(P, s) N G) > k(s) = n, that is, the ball U(P, s) is not
filled by points of G”, or U(P, 5s) N G' # &. In other words, any points P € G is at a distance
<s = s(n) from points Q of G'. Hence, |pv*(P) — pv*(Q)| = Rown(s) with v*(Q) < T, and
finally

lpv*(P)| < Rl + Rowo(s(n))) forallP €G.
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Now s(n) = 2"227V2y'2 and the third relation (12.8) becomes
Rol" + Rowo(s(n)) + por < 8,

and, for p = Ry and meas G” < 7, we have

lpv* + o] < RoT + Rowo(s(n)) + por < 6.

Hence, g, = d, |g] < C, and
[ (o0 + 0) (v + ) (ot dx = Lg,,(pv* +0) (v + o) dr de
G

- f g.(pv* + 0) (pv! + 0))o,dr dx
G
= dllpv} + ofli, — Dllov? + ol foll,
= d(27'R§) - DQ27'RE + rH)"r;
[ (o0 + o) (o) arx = = CRfo*e, > — CRouo
G
Let us assume now that meas G” = 7. Then, for p = Ry, t € G", we have [v*| =T,
pv*+o=R—upr=5b ifv*=T,
pv*+ o< —R +pupr<->b ifv*<-T,
and in any case g(pv* + 0) (ov*) = BRyI'. Then
f g(pv* + 0) (po*) dr dx = BRIy,
-

| 8o+ o) (o) e = | glov* + 0) (o + o) ar e — [ gloo* + oo
G’ G' G'
20— Cllol., = — Cuor,

[ 8u(po* + 0) (por + @) (pot) drdx = [ g0+ 0) (o7 + )Pt

- [ aulov* + o) (oo + ooy drax
G

= _d,“pvl* + Ul”iz - D||pu,* + ol”Lz"at”Lz’

=-d'(27'R§+ r*) - DQ27'R} + r)Vr.
We have now in any case

o] glov* + 0) (o0*) drdx + B gpv” + 0) (07 + o) (o) &
G G

= min{Bd(27'R) - BD(27'R§ + r)’r — aARguo;
aBR[n — aCuor — Bd'(27'Ri+ 1Y) — BD(27'RE+ )%},

785
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Finally, for f = ¢ + g, relation (12.7) is satisfied, since by (12.8), we have

of fit,x, po* + 0) (o) drdx + § [ (f.x. po* + 0) o) s
G G
= af [0+ glo0® + A oy e + B o+ gulpo” + 0) (oo + 0] pv7) at
= min{M,, M,] + o ¢pv*drdx + /_‘;f ¢pvf drdx
G G

= min[M;, M;] — Ro( ool ], — B2 4l¢dlL) = 0.
This concludes the proof of (12.ii).

(12.iif) Let f(r, x, u) = ¢(t, x) + g(u), where ¢ is of class C' and 2n-periodic in ¢, and
g : R— Ris of class C'. Let us assume that

ug(u) =0, |gw)|<C forallju|<S,

gw)y=B foru=b, gu)=—-B foru=-b,
-dsgfu)<d" forall|u|l<S$, D = max(d', d"),
glu)y=d forall|u|<,

for some positive constants B, C, b, 8, S, d, B < C, b < § < §. We shall also assume that,
for given numbers 0 < e < 1, 8 > 0 we have B = (1 — &)db, C = (1 + 6)d§, and that d’
=k'd, d" = k'd, D = kd, k = max(k', k).
Then, for any given b, d, ¢, 6, k, k" = k, there are numbers d, X, , Ao, By such that for d
< d,, k' <k, and all ¢ € C! with
@)L, + Adledl, < Bo

problem (12.1-12.3) has at least a solution u € A, with ||uly < R, where R depends only on
the constants above, and then S = yy R.

Proof. We shall apply statement (12.i7). First we rewrite inequalities (12.8-12.9) in a slightly
stronger form

0<n<2m?, RIU=uy+b, RI+w(V2nn)+uy<sy,
(bd) (RD)n > (1 + 6) () + (B/a)d’ (27'RE+ r?) + (Ba)D(2 'R+ r) 1%,
2—]dR(2) > D(2“1R(2) + rz)mr + (a/[j’) (l + 9) (M)Roﬂm

If p1, p» denote the differences between first and second members in the last two inequalities,
then M, = ap;, M; = Bp,, and we shall further require that

il + 222C =<7, (12.11)

aRoioll¢ll, + BRo2™VH|pllL, < min (M, M,].
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First we take r so small, say r < ry, that 2upr < 8 — b, or 2upr < 2uer; < 8 ~ b, and we
can take RoI' = b + por. If we assume Ry = 2", then R} =27'Rj +r* = 27'R} , and relations
(12.10-12.11) become, in a stronger form,

0<n<2m, RI=pr+b, Re=2"%,

Row(V20/m) <8—b—2uy, 0<r<r, 2ug:<d-b,

(1 — &) (bd) (ur + b)n> (1 + 6) (8d)r + (B )d'Ri+ (B ®) DR, (12.12)
27'dR} > DRy + (alf) (1 + 6) (6d)R oo,

Il +2¥2a(1 + 6) (8d) <7,

aRopil|PllL, + BR2™|@pd|L, < min[M;, M,].

Let us assume now C < Cy = 2777 !y, so that 2"22C < 277, and d < d, with (1 + 6)8d,
=237l hence d < 27¥x7Y(1 + 6)7167'r.
Relations (12.12) take now the stronger form

0<n<2x? R =ur+b, Ry=2"r,
Roo(V2nim) < 8—b = 2uqr, 0<r<ry, 2ugri<6—b,
(1 — &)b%dn+ (1 — e)buedr> (1 + 0) (6d)r + (Bla)d'Ri+ (Bla)DR,r, (12.13)
27'dRy > Dr + (a/B) (1 + 6)8d uyo,
[ oll, <2,
ligll, + 272 (Blayuzllpll < & 'Ro 'uz! min[M,, My).
We take now
d=k'd, d"=k'd, D=kd, k= maxk' k"],
so that relations (12.13) take the form
d<27"g71+ 6)"167r,
0<n<2a®, RIL=ug+b, Ry=2"%.
Rowo(V2im) < 8- b—2uy, 0<r<r, 2up,<6-b,
(1= e)b*n+ (1 = e)buy > (1 + 8)6r + (Bla)kR*+ (Bla)kR o,
27'Ry > kr + (&/B) (1 + 6)duy,
iz, < r/2,
Ille. + 27 (Ba)uzliol < & 'Rg'uz' min{M,, My).

First, we take 7; > 0 so small that 2ugr, < & — b, and then we take 0 < n < 27° so small and
Ry > 0 so large that

R()(,U()( V 277/.7[) =80—b— 2[10"1, 2_3R0 = (Cl//ﬂ) (1 + 9)6,“.10
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Now we can take 0 < r < r; so small that
2% <R,  kr<27°R,,
[(1 + 8)6+ (Bla)kRo~ (1 — €) bugl r <471 — £)b™.

The latter requirement is trivially satisfied if the bracket is <0. We shall now take 0 s k' <
ki with (B/a@)k{R3 = 47'(1 — €)b’n. Having so fixed Ry, r > 0 we take I' > 0 so that Ry’ =
tor + b. Finally, we may take d = 277711 + 6)7'67'r, k' = min[ky, k"], k&' = k, d’' = k'd,
d" = D = kd. Note that ¢, 0 and k are arbitrary, and so are « and f positive constants. The
first four relations (12.13) are thereby satisfied. Now

p1 = d{(1 — &)bn — [(1 + 6)8 + (Bla)kRy— (1 — €)bug)r — (B/a)k' R}
= d[(1 - e)b’n— 47'(1 — )b’ — 47Y(1 — e)b™y] = 27'(1 - £)b%dn,
Pz = dRo[27'Ro — kr — (a/B) (1 + 6)u1]
= dRo[27'Ro — 2Ry ~ 27°Ro] = 27%dR},
M, =ap=2"'a(1 — e)b*dy, M, = Bp,=27BdR},
and the last two relations (12.13) yield Ay and By:
Bo = & 'Ry min[M;, M)
= min[a 'Ry 2 a1 — €)b*dn, « 'R5'uad27*BdRY]
= min[27Y(1 — &)ux' Ry 'b%dn, 27 X(f ) ux'Rd)
= 2" 2u3'd min[2(1 — )R "'b%n, (B @)Rd],
Ag=2""(Bla)uz-
All relations (12.13) are now satisfied, if
g <72, ligll + Adlgd < Bo.

If we take By < r/2 then the first of these relations is included in the second one, and (12.iii)
is proved.

Remark. Note that in the proof above, we have treated ¢, 6, K" = k, «, 8, b,  as arbitrary
but fixed constants, and then we have determined r, so as 2uyr;, < 6 — b, then we have
determined R, and 7 so that

Ro(Vanim=6—b—2uy,,  27Ro= (alf) (1 + 6)duro
Then we have determined r so that
2% < Ry, r<ry, krs27R,
[+ 6)6+ (Bla)kRo— (1 — e)buglr <271 — €)bx.
Then we have determined kj so as
(Ba)ky <271 - e)b™y, k' = min[kp, k"],
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and I so as RyI" = ygr + b. Finally, we have
d<dy=2737"'1+6)"1677r, C=(1+6)ddé=2""g"Y,
B=(1~¢bd, d'=k'd, d'=D=kd,

and we have obtained a full set of compatible constants.

13. ESTIMATION OF wo FOR THE ELEMENTS OF Ay,

(a) First estimates
Any element u(t, x) of Ay has Fourier series

-

® -]
u(t,s) = 1=21 a lsinlx + P 1=21 [ck2"? cos kt sin Ix + di2"2n ™ sin kt sin Ix]

=1

and hence
s = [ | 1Da)? + (Do ar e

= Z Al + g; (ki + di) (K2 + 1.

Then
|ufe, x) — u(t',x")| = chﬂ-l sinlx — ' sinlx’)

+ ; ; [ex(2V%n7! cos ke sin Ix — 212" cos k¢’ sin Ix")
+ d(2Y27  sin kt sin Ix — 225 sin kt' sin Ix’).

If we denote by =y the sum of all terms in (13.1) with * < Nor k> + I* < N, and by Ry the
remaining terms, then

u(t, x) = % (t, x) + Ru(t, x),

e 0) ~ ue, )1 < |20 = B, 0) | + Rate, 9] + Rue 2],

The term |Zx(2, x) — Zn(¢, x’)| can be written as follows

— ’ 4 2 .12 1¢ s — o '
’%(r,x) %(r,x) ENCWI [7*a~(sinlx — sinlix’)

+ N cu(k? + B)V2 - (k% + 172221271 (cos kt sin Ix — cos kt' sin Ix")

K+Ps<

+ ; di(K? + P2 - (K2 + 1) Y2221 (sin kt sin Ix — sin k¢’ sinlx”) |,
kK+P=sN

where the trigonometrical expressions are in absolute value <l/|x — x’'| and <k|t — ¢'| +
llx — x’| respectively. In any case they are <I/|P — Q| and <(k + I)|P — Q| respectively,
P = (t, x), O = (¢, x'). By Schwartz inequality we have
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% (t,x) — %(t', x| = 1‘21\/ chit+ k2+§sN (ck+ di) (K2 + 192

e L 2 N12|p _
x[,gNn M 3 R+ Ba) (2K + 2D P - 0|

172
-2 -2 -2
<l B 17+ 42 3 ] 1P -0l

Since /72 = 7%/6 and the number of terms in the second sum is < the number of terms of
the sum X<y Zp<n, we have

Sen-Zen

< “u||21[6—l + 4.7[_2N1/2N1/4] 1/2 |P — Q!

< Julla[67! + 427N 2P - O,
where 67! = 0-16666, 4772 = 0-40528 and (0-571951)!* = 0-75627. Hence,
309 - S .x) | <Iula075627) NP - 0] = 5,
Concerning Ry we have analogously
|RN(x)| = ’ > col? 1727 Vsin Ix
B>N

+ ca(k? + Y2 - (k2 + V27371 cos kt sin Ix
k2+B>N

+ Ndkz(k2 + 2 (K2 + 1YY 77V sin ke sin Ix

K+P>

172
2 2 2 2 4
< (IEN (,‘0114 + k3+IZ>N (Ckl + dk[) (k +1 ))
12
~2y-4 2 a(12 4 Pyl
x (IEN:: rit 2 2m 2R+ 1) >

172
s||u||21(n-221—4+4n-2 > (k2+1“)“) = R
P>N

kK+P>N
We now have proved that, for P = (¢, x), Q = (¢', x"), we have for any N,
|u(P) — w(Q)| < Sy + 2R

(b) Evaluation of [§*(sin 6)"12d6
From [3, p. 171, No. 287.50], we have
¢
fo (sin 2a6) "2 d6 = gF(A, k)

for k = 2712, g =\V/2/a , A = arc sin((2 sin a$)"? (1 + cos d¢ + sin a¢p)™'?), where F is the
incomplete elliptic integral of the first kind. Fora=1/2, ¢ = n/2, then g = 2V2 = 2-82842,
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a = n/4, and

A = arcsin(213(2 + V2)71?) = aresin(0.765 37) = 49°, 56.372.
From [3, Table on p. 328], F = 0.927053, and

2
f (sin 8)712d@ = gF = 2.62210.
o
(c) Evaluation of Ry
ForN=1,k=2,1=2,k*+ I*> N we have
(k=1)*+(1-1)*=K(1- kY24 1% — 1) =27%2 + (5/16)1* > 27°N.

Hence, by reduction to a double integral, and usual transformations, y*=z,and x = pcos 6,
z = p sin @, we also have

KR+l f (x? + yH dx dy

x2+y*2Nid,x=0,y=2

(x*+25)7'Qz ) dx dz

kK2+14>Nk=2,1=2

-[2 +222Nid,x=0,220

2 +
=271 j (sin §)~12 f p~2dp = 21%(2.622 10)N~* = 3.708 20N 1.
0

(N1a)12
On the other hand, we have
R+Ml= X aA+H1'+ X d+kH)T!
K+F>Nk=1lorl=1 ( ) I>1L,E>N-1 ( ) k>1,k2>N-1 ( )

+ o +o

p~tdp+ f p~*dp

(N-1)2 -1

<IN+ 3k?s=s f

(N-1)14
= 3—1(N—1/4((N - 1)1/4 —- 1)3)—1N—1/4 + N1/4((N _ 1) 12 _ 1)—1)N_1/4.

For N = 10 the factors of N™"* are 1.51104 and 0.889 19 respectively. From analysis we know
that =774 =1.08232, k™2 =1.64493 . It is easy to verify that the sums of the two series
above are <(1.51104)N~"* and <(0.88919)N~ for N=1,2,...,9. Since 3.70820 + 1.51104
+0.88919 = 6.10843, we have T p-n(k2 + F) 7! < (6.10843)N~ for all N.

The same computations have also shown that

‘,2 [7* < (1.51104)N~14,
>N
so that
- 2 ~4 ~2 2 o py-112
Ry=llulz & 1+ 427 2 (K +197
< ||l 1(1.511 04 + 4 - (6.10843)) V2N 18
= |lull1(1.621 34)N 8,

(d) Estimate of the modulus of continuity
First let us assume that we have in general

}u(P)—u(Q)|$SN+2RN, SN=BN5|P—QI, RNzAN-a
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and given constants A, B, a, 3 > 0. By taking

AN"*=(&3)|P - QI',  BNPIP - Q|=(&3)|P - QI
for suitable constants £ > 0, y > 0, we derive

BNP|P — Q| = AN"*

hence N**# = (A/B)|P ~Q|™!, and by computation

AN™%= BNP|P - Q| = Aﬁ(a+ﬁ)"B«(a+ﬂ)“|P - Q‘cr(a‘rﬁ)".
Thus, y={a + f)~}, £ = 34AK**PT' gae+H™ " apd

|u(P) — u(Q)| < 34Pe*PIge=+ AT p — gedat A,

In this case above we have A = [u],(1.62134), a = 1/8, B = |jul}»,(0.75627), B = 3/8. Hence
a+ B=12, o(a+ B! = 14, Bla + B! = 3/4,

|u(P) — u(Q)] < llullu[3(1.62134)*4(0.756 27) ] |P - Q|
= |luf1(4.0196) | P — Q|

(e) Estimates for uo, po, pao
Here |u|l. is given by the same expression for Ry where the sums range over all possible

values of / and k, that is,
lu(t, x)| < |luzl (n’2 2 I+ 4n? 21‘, 2 (k* + 14)-1>

where the first sum is 1.08237 and the second one can be written as

)(k2 + 14!

( +

B+P=lkz2122  K+Balk=lori=1

and these two sums are given in (c) for N = 1. Then
il < Jjuall2172(1.08237 + 4 - 6.108 43) 12 = Jjuy|| (1.621 34).

In other words, we can take gy = 1.62134, and then we can take p = poa = 202t = 32.004.

14, ANALYSIS IN THE LARGE OF THE DOUBLY PERIODIC SOLUTIONS OF THE
WAVE EQUATION u, — u,, = f(¢, x, u)

We consider here the problem of the solutions u(¢, x), periodic in ¢ and x, of the hyperbolic
problem
Uy — uxx=f(t,x, u), (t’x) € RZ’ (141)
u(t + 2m, x) = u(t,x) = ut, x + 2x).
Let G = [0, 2n] x [0, 2x], let a = meas G = 47, and let||ufl,,, (u, v) denote the usual square
norm and inner product in L,(G).

Let [ew, k, I = 0,1, =1, 2, . . .] denote the system generated by exp(ikt) exp(ilx) in R
and orthogonal in G. Then any element u € X = A,; has Fourier series

u(t,x) = % brew, bu=(u,en),
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with
el = b0 + lleadl?, + ez, = bdo + ; bi(k* + ) < + o,

“u"X = (u’ u)zlY/'27 (u, U)X = bgeCoo + (ul’ Ul)Lz + (uxa Ux)LZ’

By the same arguments as in Section 6 we know that u € L, for any ¢, 1<q < +,
Up, ty € Ly, andfull, < pghullx, lwdlc, < ullx, i, < ||u||x Let X, denote the set of all elements
in X with Fourier series Sz - pbyew. We know from Section 7 that these elements are bounded
continuous and Lipschitzian in R? with

lell < molldle, — uaCe + A, x) = u(t, x)| < piluellxd ],
|u(t, x + k) = u(t, )| < pallulx k1,

for some constants o, y; which we estimated in Section 7.

Let E denote the operator defined by Eu = u, — u,,. Let D denote the class of all elements
u of class C* in R? and 2s-periodic in 7 and x. By a weak solution u € X = A, of (14.1) we
denote any element ¥ € X such that

(U, Yo = YL, = (f(t, x, u),y) forally €D.

Thus, the subspace X; of X can be interpreted as the set of all elements u € X for which
(4, Yu = Yxx)1, =0 for all y € D, that is, the weak kernel of E. Then, for every element u*
€ X, we also have, integrating by parts, (&}, y,) =(uy,y.). If v* € X, and we approximate
v* by elements y € D in X, thus y,, y, approximate v, v} in L,, then we also have

(ul*’ Ul*)Lz = (u:a U:)Lz’ ”ul*”Lz = “u;“LZ = 2—1[||u*||;2( - (u00)2]'
For any element u* € X, we have, therefore
(u*, v")x = udwio + (U, V)L, + (Ux, V)L, = udowdo + 2(uf’, v) 1,
lee*lx = (uo)? + 2fue?’|™.

Let P denote the natural projection of X onto X,. For u € X; = (I — P)X, then u =
Sbuen with Thy(k? +P) < +, where X ranges over all k, [ = 0, +1, =2, . . . with & # 2.
Let Yy, Y; denote the analogous decomposition of Y = L,(G), and let Q denote the natural
projection of Y onto Y,. We can now define the operator H : Y, — X,. Indeed, for u €
Y\, or u=Z24pbyey with b} <+, let v=Hu=Z4:.pby(—k* + [*) 'e. Then, v = Hu €
(I = P)X is the weak solution of Ev = u. Moreover, |Hu|,, < |jull,, and |[Hulx < |jul., for
u € Y, as we proved in Section 7. Thus for the linear operator H : Y; — X; we have [|H] =
L =1 With X, Y, P, Q, H as above, axioms (a), (b), (c) of Section 3 are satisfied. We now
define the finite dimensional subspaces Xy, of Xy, Xi, of X, Yo, of Y) as in Section 12, and
the natural projections R, : X1 — X, S, : Xo = Xon, Sn: Yo— Yo, as in Section 12. Finally,
let o, : Yo, — Xo. denote the linear map defined by a,y =Zo.brew, where y =Zg,byew, y €
Yon, where 2o, ranges over all k, [ = 0, =1, . . . , +n with k& = . Hence a;!(0) =0, and
equation @,S,ONu =0 is equivalent to S,QNu = 0. Moreover, §,QNu =0 if and only if
($.QONu, v*) = 0 for all v* € X,,. We can repeat on a, the same remarks we made in Section
12.

Let Xj, denote the subspace of all u € X,, with mean value zero. For every element
u € Xy, of mean value zero, or u € Xj,, or u = Zj,bye,y where Zj, ranges over all k, I =
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+1,..., =n, with k¥* = [, let us define J by taking
Ju =34k bel, (14.2)

where ej; is obtained by ey by replacing cos kf by sin k¢, and sin kt by —cos k. Then, (Ju),
= u. Let @, B, y be nonnegative constants with y > 0, &« + > 0. For every element u €

Xon, that is, u = Zg,bue, where S, ranges over all k, / = 0, =1,... =n with k> = P we take
Tt = Youew + 2 (k> + )bucu. (14.3)

Thus, on X}, we have J,u = —a?J* + f.
The original problem (14.1) is now written in the abstract form Ex = Nx, orin the equlvalent
form of auxiliary and bifurcation equations

uy=H(I - Q)Nu, QNu=0, u=u*+u €X.
For every integer n, we have then the reduced equations
u,=R,H(I ~ Q)Nu, J,0,5,0Nu=0, u=u*+u €X,=Xo + X,

and, for each n, we apply Theorem (5.i) and Remark 1 of Section 5.

Below, we shall show that there are numbers Ry, » > 0 such that, for every integer #n, there
is at least one solution u,€ X,, u,=u} + u,, u,, € Xon, Um € X1,, hence u, € X,
ur € Xo, un1 € X1, n=1,2,..., with |ully < (R§ +r>)"* for all n.

Proceeding as in Section 5, we now introduce the space ¥. For & we choose L,(G) for any
fixed ¢ = 2. Here |Ju,||x is bounded in X = A;, and the sequence u,(t, x), (t, x) € R*, is made
up of functions in A;; with bounded norm in X = A, a real Hilbert space. Hence, there is
a subsequence, say still [z}, which converges weakly in X = Aj; to some element u € X =
Ay Hence, by Section 5, u, converges strongly in L, to u, as we have seen in Section 5. We
could take the sequence [n] in such a way that u, — u pointwise a.e. in G. Now assume for
instance that f(t, x, u) is continuous and bounded in R, and doubly 2z-periodic in (¢, x). Then,
f(t, x, ua(t, x)) = f(t, x, u(t, x)) pointwise a.e. in G, the functions f(¢, x, u,(t, x)) are measurable
equibounded functions in G, and then f(¢, x, u.(t, x)) = f(, x, u(t, x)) in L(G), or Nu, — Nu
in L(G).

Proceeding to the limit in the coupled equations, we obtain that u € X = L,(G) is a solution
in the weak sense of the original problem (14.1). For the solution u € L,(G), u,, u, exist in
L, uy, u,, exist in the distributional sense and they satisfy the original equation in the weak
sense.

(14.i) Let f(t, x, 5) be of class C' in R®, n-periodic in ¢ and x, and bounded in R®, say
If(r, x, )| = . Let us assume that there are constants Ry, r such that Ly, < r and such that
for all u* € Xo, u € X], “u")( = RO, ||u1||x =r, X = A]l,

Y(f(t, x, u)) ooty + aJ;f(t, x, u)u* drdx

+ ﬁf (fir, x, u))ut dtdx =0 or <0. (14.4)
G
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Then the hyperbolic problem (14.1) has at least one solution u(t, x) € X = A;; with Jjul[y <
R=(R§+)".

Proof. We shall only show that (5.i) applies. Thus, we have to verify hypotheses (a) and
(b) of (5.{). Actually, (a) is satisfied, and, by Remark 1 of Section it is enough to verify that
(nuS,ONu, u*)xy =0 Jor =0],

for all u* € Xon, |u*|lx = Ro, ¥ = u* + wy, uy € Xy, |ually < r. Note that, because of the choice
of J,, and by integration by parts, we have,

(Jn@uSnQNu, u*) = (J,0,8,0Nw)ooudy + 2((J» 0, SaQNu),, u*) .,
= Y(QNw)ooudy = 2A(J2 S, ONu) . ) 1, + 2B(( S s QNU) . ) 1,
= Y(Nu)ooud — 204Ja,S,QNu, ), , + 2B(( 0, ShQNu),, ut) 1,
= y(Nu)ooudo + 20{a,S,ONu, u*),, + 2B((anS,ONU)uX) L,

Now we have, as in Section 12,
(Jn0uSiONu, u*) = Wf(t, x, w)ooudy + 2arJ’ f(t, x, u)u* dr dx
G

+ ZﬁL (f(t, x, w))utt dr dx,

where (f(t, x, u)), = f; +f.u;.
A set of inequalities implying relation (14.4)

Note that for X = A;;, the elements u* € X, with |u*|y = 1 are Lipschitzian functions
u(t, x) in R? with a Lipschitz constant, say u; > 0 which is an absolute constant.

Let Ry, r, ', n, A be positive numbers which we shall determine later.

If v* € X, [v*|lx = 1, 0 € X4, [lollx < r, are given elements, then for 0 < p < R,, pv* is
bounded and Lipschitzian with |jpv*|l. < R, and Lipschitz constant < uR,, while 0 € L,
with ”O“Lq = uquo, 1=sg <+ Let

G’ =[(t,x) EG||o*(t,x)| =T, [oft, x)| < A]
G'" =[(t,x) €G||v*(t,x)| =T, |o(t, x)| < A]
G'" =][(t,x) EG||o(t,x)| = A].
Then, |lo]., <palldlx < pyr , and
A meas G’ < fG lo(¢, x) 17 dr dx = [, < ulur.

or
meas G'"' < A7 ud,r9.

Let k(s), 0 <s =< Dy = diam G, denote the function defined in (9./), so that k(s) > 0 for
0 < s =< Dy, k(0) = 0, and for every point P € G and U(P,s) = [Q € R} |Q - P| < 5], we
also have meas[U(P, s) N G] = k(s), 0 < s < D,. We have seen that it is not restrictive to
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assume k = k(s) continuous in [0, D). Actually, because of the double periodicity, in the
present situation, we can take k = k(s) = zs?, with inverse function s = s(k) = (77 k)", and
meas[U(P, s) N G] = ns® for all s = 0.

(14.i)) Let f(t, x, u) = ¢(t, x) + g(u), where ¢ is of class C' and 2x-periodic in ¢ and x, and
g: R— Ris of class C'. Let us assume that

ugu) =0, lgw)l<C, lgw)|<D,~d'<gfu)<d', u€eR,
guy=B foru=b, gu)<-B foru=-b, (14.5)
gu)y=d>0 forju|=<3$,

for suitable positive constants B, C, d, d’, d", b, § with b < §, B < C, D = max|d’, d").
LetT, n, 7, Ro, g, &, B, v, A, A, T be positive constants such that

M, = BdRR7Y(1 = A%) ~ (d + d")R§uIA ~%uf,r? — DR27V(1 ~ A%y
— aCRuiro — YCRoA > 0,
M, = a(n — A" uLr?) BRI — aCuor — Bd R527(1 ~ A?%)
— BDR2™'2(1 = A)Y2r — y(42) "'ufo DRor > 0,
M; = yBRoe — y(4n?) "uloDRor — aCuior — Bd' R527Y(1 — A%)
— BCR2™ (1 - 22y >0,
wC<r, n>A"WA R+ RopVain+ A<,
RTL-A=b, T=uVor, 0<n<a=d4n? (14.6)
0sisl, A=au(l—-AH"+ 1, Ry=bh.
Then, for p = Ry, v* €Xy, [v*llx = 1, 0 € Xi, |ld|x < r, we have
Q= yigno + (glpv* + oaloio+ | [9+ glpv* + @) (o0°) dr d

+ ﬁfc {9+ (g(pv* + 0))Lpv*) dt dx = 0.

If, in addition gll., + 27C <, (14.8)

(14.7)

then problem (14.1) with f = ¢ + g(u) has at least a solution
UEX=Ay, u=u*+u, u*€X, u €X,
[u*lx < Ro, luwlx=<r, fulx<R=R§+r) 2

Proof. Note that, for u € X = Ay, |ullx < R, F(t, x) = f(t, x, u(, x)) = ¢, x) +
g(u(t, x)) we certainly have |Flly = |IFl., <|#ll., + C(meas G)'* = ||¢ll., + 27C, and we take
¥(s) = | @l + 27C, a constant function. Since L = |H|| = 1, requirement LY{(R) < r of (14.i)
reduces to inequality (14.8).

Let us assume |vdp| < A.
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Note that, for v* € X, |[v*||x = 1, we have
lo?lE, = lvzliE, = 27l *l& = vdo), or forlle, = lloille, = 27141 - 2%~

For p = Ry, v* € Xy, 0 € Xy, |v*[x = 1, [ldlx < r, not only v* and o are orthogonal in L,,
but also v/ and o,. Hence

R~ <lloo; + ol = lpo? + ol < R = 49 + 7

First, let us assume meas G" < 7. For P € G we have meas(U(P, s) N G) > k(s) and thus,
for s = s(n) we also have meas(U(P, s) N G) > k(s) = n > meas G'"’, that is, the ball U(P,
s) is not filled by points of G" U G'"’, that is, for s =s(n), n>A"d 1, we have U(P, s5)
N G’ # ¢. In other words, any point P € G is at a distance <s = 5(1) trom points Q of G'.
Hence |pv*(P) — pv*(Q)| < Rom|P — Q| with |v*(Q)| < T, and finally

|pv*(P)| <RI’ + Rywis(n) forall P €G.

Now s(n) = 27?52, and the third relation (14.6) becomes

Rol" + Rouus(m) + A< 4.
Thus, for p = Ry, meas G” < 1, n > A™%u{,r?, we have
lov* + o| < RoI' + RO,;IM+ A<é inG UG,
meas G''' < A~ re.

Hence, g (pv* + 0) = din G’ U G", g(pv* + 0) = —d' in G'"’, and |g| = C, |v}]| = a.e.
in G. Hence

L g.(pv* + 0) (pv! + o) (pv) dt dx
= Lgu(pv + 0) (pv})*dt dx + Lg,(m* + 0) (v} o, dr dx
= fG,UG,,gu(Pv* +0) (pvf)*drdx + ngu(pv* +0) (ov)2dr dx
+ JG g.(pv* + 0) (ov*) o, dt dx
= dfG(Pvr*)zdtdx - dJ’GW (pv?)* de dx + L”gu(pv* +0) (i) dr d

+ f gu(pv* + 0) (pv)o, dr dx
G

= dRR7(1 - #) — (d + d') R#dA ~uf, — DR27H(1 - 2)\7r.
On the other hand

fG g(pv* + 0) (po*) dr dx = —CRotro

(g(pv* + 0)w(pvo)) = —CRoA = —CR,.
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Now let us assume meas G” = n. Then, for P = Ry, and (1, x) € G” we have
pv*+o=RI~A=b ifv*=T,
pr*+os-RI+As-b ifv*=<-T,

and in any case g(pv* + o) (pv*) = BRI in G'' — G'"’. Then

| 80" + ) (")

=L g(pv* + 0) (pv* + 0) dr dx ~ f g(pv* + o)o dr dx
: 5
=0 - Cldll., = — Cuyor.

On the other hand.
[ 8iov + 0) (oot + ) (o) 6t s

= Lgu(pv* +0) (pvf)*drdx + Lgu(pv* +0)(pvf)odr dx
= - d'RR7Y(1 - 2% —~ DR2™"4(1 - A)*7r.

Finally, if we assume ' = u(D/2) =, V2m, and v*(¢, x) = T at some point of G”, then v*
= 0 everywhere in G; if v*(¢, x) = —T at some point of G”, then v* < 0 everywhere in G.
In other words, v* has constant sign, and the same holds for pv*, and for g(pv*). Thus,

(g(pv*))oo and (pv*) have the same sign. Now
(8(pv™ + ))oo (Pv*)o0 = (8(P0*)) a0 (PU*)00 + {(8(ov ™ + 0)) o0 = (80 ™)) o (1P0*) 00

>0 (4)"! | [gov" + o) = g(ov)] drdx - (@) (oo e

= (4n2)-21)f o] dt dx f plv*] dr dx
G G

= —~ (477%) 2Duyer - Ropio = — (477) “uloDRor.
Now let us assume that |vg| = A. Then
Io* = voo)dit, = I(0* = voo)ullF, <271 = 43).

Hence
0% = vl < w2 V(1 = 2)VADR2) = mue(1 — A2
IfA= J[[lo(l - 12)1/2’ then v* has constant Sign in G’ and then pU* and g(pu*) have the same

constant signs. Hence (g(pv*))w(pv*)oo = 0.
If A > mue(1 — 4212 + 7 for some 1 > 0, then either v* = 7in G, or v* < ~7in G. Hence,

for Ry > b/t and p = R, we have either pv* = b or pv* < —b, and correspondingly either
g(pv*) = B or g(pv*) = —~B. Thus, in any case

(g(pr*))m(pv*)00 = BRoT
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and as before
(g(pv* + 0))oo(pv*)o0 = BRot — (47°) "'uioDRor.
On the other hand,
[ 8utoo* + o) por + o) (por) e

= [ auloo* + 0) (1) de s + [ gulpo* + o) (po7) ok d
G G
> - d'RR7'(1 - 2) — CR27'X(1 - 2)"*r,
f glpv* + o) (pv*) dtdx = j glpv* + o) (pv* + o) dr dx — J’ glpv* + o)odr dx
G G G

=0 - (ld., = - Cuo-
Thus, summarizing, we can say that for |vd| < A, meas G” < n, we have
Q > BdRR2 (1 - A%) — B(d + d') R¥3A ~9udyr? — BDR2 ~X(1 - A)Yr
~ aCRopio ~ YCRA = ¥|oold — aRolpllL,pt202 "1 — A%
= BlpdlL.Ro2™V3(1 — 22,
For |v§| < A, meas G” > 7, we have
Q> a(n — A"ugr?) BRI — aCuy — BARR (1~ 1)
— BDR2™V2(1 = A)%r — p(4m?) "*udDRy
=~ ¥loolA — aRollllz.p027*(1 = A%)"2 — BlipdL.R27*(1 - A%~

Note that |vd] < (47°)7! [ |v*| df dx <(4n2) w27 "2, Thus, for [vd| >4, then A <|vg| <
(47 02712, and

Q > yBRyt — y(4n°) 'uiDRy — aCuyr
- ‘BdrR(Z)z—l(l - 12) — ﬁCRoz‘I/Z(l — A’Z)llzr
= |00l (27V3(47%) " '10) — aRollBllL.2 110 — Blipd|L,Ro2 V2

Thus, A, By, Cp are the maxima of the coefficients of ||, |@llL., |||, in the formulas above,
and M,, M,, M; are the parts in these formulas independent of ¢. We conclude that, for

Aol ¢w| + Boll@lle, + Colpdl, < min[M;, M,, M3),

we have Q > 0 in all cases, and (14.7) is satisfied.
If we take B = (1 — £)db, C = (1 + 6)d for some fixed constants 0 < ¢ < 1, @ > 0, and
d =k'd, d" = k'd, D = kd, k = max[k’, k"], then the relations above yield

M, = BdR27'(1 — A%) ~ B(k + k') dRBA ~ud,r? — BkdR2 V%1 — AH)"*r
= af1 + 6) ddRouro — ¥(1 + 6) d6RA,
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M>=a(n— A7) (1 — &) dbRJ ~ a(1 + 6) dduor — Bk'dRR "Y1 — A2)
~ BkdR27VX (1 — AN — y(41%) ~'ulkdRr,
M; = y(1 ~ &)Rodbt — y(47°) *ulkdRy — a1 + 6) ddu,y
— Bk'dRR27(1 — A%) — B(1 + 8) dSR2 V(1 — A3,
Thus, the inequalities (14.6) become
Myd7'RG271 = BR27I(1 — A%) — (k + k")RouiA ~9ud,rd
— k271 = 2% — a(1 + 0)Su — y(1 + 8)81> 0,

Mxd™ = o(n— Audir?) (1 — &) bR — a1 + ) duor — PE'RG27I(1 — A7)
— BkR2™V(1 = 2%)"%r ~ y(47%) "\ wigkRor > 0,
Mid™' = (1 ~ &) Rbt — (4% "*udokRor — a(1 + ) Suyer — BK'RE27'(1 — A?)
- B(1 + 6) SR27"H(1 - A1)*r>0,
21+ B)do<r, >N W,
R+ RowVnin+A<8, R —A=b,
F>/,t1\/2_3r, 0<n<a= 41

0<Ai<1, A=z=aull- i)+ 0, Ry= blo.

If we take B = (1 — &)db, C = (1 + 6)dd for some constants 0 < £ <1, 8> 0, and d' = k'd,
d" = k'"d, D = kd, K = max[k’, k"], then the relations above become

M; = BdR327'(1 — A%) — Bk + k') dR3uIA ~udir? — BkdR2 V(1 — A" — o1 + 6) dOR g 10
- y(1 + 6) d6Ry. > 0,

M = a(n— A%dr?) (1 — &) dbRT — a(1 + 6) dépgr — Bk’ dR327'(1 — A7)
— BkdR2™V2(1 = A)"*r — y(47?) ~'ulokdRor > 0,

M; = a(l — €) Rodbt — y(41%) *udokdRor — a(1 + 6) dbpyor — BK'dRT27'(1 — A7)
- B(1 + 6) dSR2 ™Y1 — AH)"r > 0.

We also have
Md 'Ri' = BR27Y(1 — A%) ~ (k + k") RopiA ™ 9ug,rd — k271 — A1) "r
—a(l+ A)du— y(1 + )64 > 0,
Myd™ ' =a(n— A u4ir?) (1 — &) bR — a(1 + 6) duor — BKRE27'(1 — A7)
— BkR2™"3(1 = 25)"r — y(4x®) "'piokRor > 0,
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Msd™! = (1 — §)Robt — (472 dokRor — a(1 + 6) duror — BK'R2 V(1 — A2)
— B(1 + 8) R2™V(1 — A)2r8 > 0,
21+ O)dd<r, 1> Aubr?,
R+ RyuVnin+ A<8, RIL—-A=b, (14.9)
I‘zm\/;r, 0<n<a=4n?
0<is<1, A=au(l-21H)"+ 1, Ro = bit.

For 7 = 0 the equation A = mug(1 —A9)"? yields A =muo(1 + (7tug)?) ™2 , 0 < A9 <1. Then,
equation A =mu(1 — A%)'? + 1 is equivalent to F(A) = (1 + (mug) A2 — 241+ 7 — (Aue)* = 0
with F(Ag) = =24t + 7* and F(1) =(7 — 1) = 0. Thus, for t # 1, certainly F has a root between
Ao and 1 provided —247 + 7 <0, or < 2A;. Let us fix 7,0 <t < min[1, 24], and let A denote
the root between A and 1 of the equation A=muy(l — 1> + 1. Now we take
k' < k hence k" = k, and

2kl - A, r? < B27Y(1 - A2). (14.10)
Then

Mid™'R5' = B27X(1 — AH)Ro ~ k271 — A% — a(1 + 8) Suyp— y(1 + B)SA,

and we take

k2721 = AV < 82741 = ADR,, (14.11)
a(1 + 6) Suyo =< B2741 — ADR,, (14.12)
(1 + 6)6=< B27%1 - ADR,, (14.13)

so that
M d™ 'Ryt = B27%1 — ADR,.
Analogously, we take
AT = /2. (14.14)
Then
Myd™' = [a(n/2) (1 — )bT — Bk27'X1 — AV — y(47%) ~‘uiokr]R,

- afl + 6) Supr — BK'RR'(1 - A3,
and we take

Bk V(1 — A9 2r < 273am(1 — €)bT, (14.15)
HA?) "\ dokr < 27%am(1 — £)bT, (14.16)
o1 + 6) Sper <27 %am(1 — €) TRy, (14.17)
BK'R27I(1 — A) <2 %am(1 — ) TR,, (14.18)
so that
Mzd_l = 2_30’0(1 - E) rR().
Analogously,

Msd™" = [{(1 — e)bt — Y41 2ok — B(1 + ) 5271%(1 - 22)"%]R,
= a1+ 6) duer — BK'R27'(1 - 4D,
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and we take

Y4n2) dokr < 2720(1 — e)br, (14.19)
B(1 + 68) 827V (1 — AHr < 2729(1 — ¢)br, (14.20)
a(l + 6) Spor < 27%9(1 — €) bR,, (14.21)
B'R2Y(1 ~ A2) < 273(1 — £) btRo, (14.22)

so that
Myd ' =271 — €) b1R,.

We think of «, B, ¥, €, 0, 1, A as fixed numbers.
We write the second relation (14.9) in the form

b+AsRIse— A~ Royu, Vyin
so that we must arrange that the first member is < the third member, or

2A + Ry V=< 6— b. (14.23)
Let us take I' >V 27 and 0 < 7 < 472 arbitrarily; in other words we have satisfied the third
relations (14.9).
Now equations (14.12) and (14.13) can be written in the form

CY(l‘I’B)H.l() Y 1+ 6

b/TSRg, Bm6$R°’ Emi(SSRO,
and these relations together with (14.23) yields
@ (1+ O e)um \[ \/ o
ﬁ2 4(1 o< = U P <6 b ...A,
Y 1+6 \/ﬂ B
ﬁ2 4(1 /12) 251 \/ o= 1231 = s6—b—2A.
Thus, we must require that
a (1+ By \/n y_1+6 \/n
ﬁ2 T /12) <1, ﬁz 1= ) ;;<1’ (14.24)

and these relations can be satisfied by taking «, 8, y > 0 with & and y sufficiently small with
respect to . Actually, we shall choose a, p, v so that, if { is the larger of the two numbers
in the first members of (14.24), we have

E< (Vim) (r+ wVm ' < 1,
hence, C(ul\/—r//_n)'l <(r +u1\/;/7t)“. Then, we take & > 0 arbitrary, and
EuVrim) 8 < Ro< (v + mVnim) 8, b=1Ry 0<A<27Y6- (x+ u,Vyir)]R,
Then, we have

(adB) (1 + 0) 2*(1 — A 716 < L(u  Vim) ™' < Ry,
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(VB (1 + 0)2* (1 = A) 76 =< {(u, Vn/m) "6 < Ry,
2A+ Ry Vpla+b<d— (1+ u Vi/a)Ro+ Rou, Vit + TRy= 6.

With the choice we have made of a, B, v, 6, Ry, b, A, relations (14.12), (14.13) and (14.23)
are satisfied.

Now relations (14.11), (14.12), (14.14), (14.15), (14.16), (14.17), (14.19), (14.20), (14.21)
and second relation in the first line of (14.9) can be used to determine > 0. Then the first
relation in the first line of (14.9) can be used to determine d > 0. Finally, equation (14.18)
can be used to determine k’'.

We have shown that the inequalities we have required are compatible.

APPENDIX

1. Let us consider the problem of the doubly 2s-periodic solutions u(z, x) of the hyperbolic problem
+ U+ Up = U = f(t, %, 1), (1, x) €ER?, (A1)

where f(t, x, u) is a double 2x-periodic in ¢, x, continuous in u for all t, x, measurable in (¢, x) for all u, and
|f(2, x, w)| < folt, x) + h(lu)),
with fo(z, x) = 0 a fixed doubly 2x-periodic function in (¢, x), fo € L2(G), and h(§) 2 0, 0 < §< +, is a monotone
nondecreasing function with A(8)/§—> 0 as §— +o=.
(i) Problem (A1) has always a weak solution u(t, x), u € L,(G), for £ > 0 sufficiently small.
Proof. By the notation of section 14, for u € L,(G), then

u(t, x) = g buew, bu=(u,en), ; bl = i,
I-Quit,x) = X buew
Kt
wit,x) =H(I - Q) = 2 (—k*+ ) 'byes,
K

w € LG), "W"Lz = ”“"Lh
and we take
Nu=f{t,x,u(t,x)) Fau(t,x), Eu=u,— ty.

We take X =Y =LyG), P=Q, I - P=1- Q. We define X, Xi, Yo, Y1 as usual, Xy =Y, Xi =Y, so that
H(I-Q):Y,— X, hasnorm L = 1.

For every n we define the spaces Xon, Xin, Yon, Yin, we take for a, : Yo, — X,, the identity, and R,, S,, S, have the
usual definition.

Now the original problem Eu = Nu with u = u* + uy, u* € X, u; € X,, becomes

w=HJI—Q)Nu, QNu=0, uelX. (A2)
For every n we have now the partial problem
w = RH(I-Q)Nu, S$,QNu=0, uelk,,
and we consider the transformation 7,,:
. = R.H(I ~ Q) N(u* + u)),
gt = Uo — ar,,S,’,QN(u‘ + U]),
u=u*+ ul,li=12' +121,u‘,12‘ EXo,ul,LZIEXl.

Now we restrict u = u* + u, to the set

Z.={u=u*+u, u* € X thy € Xin, [lu*|| < Ro, i) =7]

so that Jjul| <(R§+ r2)i2 =R forall u € 3,,.
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Because of |f(t,x,u)| <fo(t, x) + h(lu}) with A(§)/E—~>0 as §—+ =, there exists also another function k(),
0 =< §< +=, k monotone nondecreasing such that, for every u € Ly(G) we also have (see below)

I, x, || < k(llul)- (A3)
Now for u = pv + 0, v € X, vl =1, 0 € Xy, [lofl., < r, and p > 0 we have ful? =lipv + off = v + o, and
Judle, = §H(I = Q) Nu|
<[|H(I - Q) [Feu + f(t, x, u(t, ))]
< elull + k(lul)
= e(@’flvl? + floffy'? + k(oI + {lolf)*?)
< g(p? + )2 + k((p* + 7).
For p = 37", and k(2p)/2p < € we also have
il <260 + k(2p) = 2(e+ =

< 4¢p.
)=

Finally, for p < Ry, and £ <4™'Rg'r, we have [lufl <r.

It remains to prove (A3). It is enough to prove that, given 7n>0, there is N=N(n)>0 such that
It w, ut, X))o, <nllulle, for all u € Ly(G) with Jju]l = N. Let y>0 be any constant, and let N >0 be such that
h(E) < yE for all £= N. Given u€ Ly, let p=|lull;; and let X,, ¥, denote the sets of all (r,x) €G where
Ju(z, x)| < N and |u(t, x)] > N respectively. Then for a = meas G = 4x%, we have

[ (tex,ute ) ae e = [ (o (D)) ar o <2 [riar ax +2 [ W¥lu ar ax
G G G G

= 2|follts + 201 + Sz2) H¥(Ju]) dr dx
< 2folf + 2fz, AX(N) dr dx + 29 [, |uf* dt dx

< 2{foll? + 2ah*(N) + 2924
Now, for u = (2hdf? + 2ah%(N))*22- "2y} we also have
1ACe, %, u(e, W), < 47702

and for y = 7/2 we also have || fll., <nu = yllulle,
Now we have to prove that (N(pv + a), v) = 0 [or < 0] for all v € Xo, 0 € Xy, [jull = 1, |loll < r, p = Re and Ry
sufficiently large. Assume the sign minus holds in (A1). In the opposite case the argument is analogous. Then

(N(pv + 0), pv) = | [e(pv + 0) + h(t.x, pv + 0)}pu di
G

= ool ~ epllollloll - pllvllk(lov + off)

= ep*ulf’ — eploll ol — pllollk(ollvf + [loll)
where {lvf = 1, Jlof < r. If we take p = r, then

k
(N(pv + 0), pv) = €p* — epr — (22;) 20’
e K20 5 o
= (& o» 2)p* — epr.

For p = Ry and R, = 2r chosen so that k(2&)/2E < &4 for all § = Ro we have (N(pv +0), pv) = (e2)p” — gpr = 0 for
p = Ry = 2r.

This proves that for every n there is a fixed point u, = Tlén, With u, € Z,, hence|lu]l.. <(R§ + )2 independently
of n. Thus, there is a subsequence, say still n, such that u, converges weakly in L, toward a function u € L, which
is a solution of (A2) and a weak soltution of (Al).

In particular we have proved also
(i) If g2 R > R is any continuous function such that g(£)/§ — 0 as £ — «, and ¢: R? — R is any given doubly 27-
periodic function, then for £ > 0 sufficiently small, both equations

Foeu+t ug— uy = P, x) + g(u)
have at least one doubly 27-periodic solution u(r, x) € LAG).
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Recently, H. Brezis [Proc. Amer. Math. Soc. Symposium on the mathematical heritage of H. Poincaré] has investigated
the passage to the limit as € — 0, obtaining a solution u(z, x) of the equation u, — uy, = ¢(z, x) + g(u).
We shall return again to this point.

2. The same identical argument applies to, and the same conclusions (i), (ii) hold for the problem

Up = Uy = flt,x,u) [0, 7] X R,

u(t,0) =u(t,7) =0, u(t+2x,x)=u(,x),

as well as for the problem

L

15.
16.
17.

18.
19.

20.
21.
22.
23.

24

Uy + Upeer = f(L, X, 1)

u(t,0) = uy(t,0) = u(t, m) = ult, 1y =0.
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