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Abstract

In this article, analysis and investigation have been conducted on the peri-
odic nature as well as the type of the solutions of the subsequent schemes of
rational difference equations

xn+1 =
1± zn
yn−1

, yn+1 =
1± xn
zn−1

, zn+1 =
1± yn
xn−1

,

with a nonzero real numbers initial conditions.

Keywords: difference equation, periodic solutions, system of difference equations.
Mathematics Subject Classification: 39A10.
–––––––––––––––––––

1 Introduction

Difference equations have normally been shown as discrete analogues as well as numer-
ical solutions of differential and delay differential equations having some important
uses in scientific areas such as, ecology, physics, economy, biology, etc. Currently,
expanding concern has obviously been conducted on the study of qualitative analysis
of rational difference equations and systems of difference equations. Even though,
in form, difference equations look like to be elementary, it is quit complicated to be
analyzed and understood thoroughly the nature of their solutions. see [1]—[23] and
the references cited therein.
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A great number of researchers have examined periodic solutions of a difference
equations , and different approaches have been provided for the existence and quali-
tative properties of the solutions.

xn+1 =
m

yn
, yn+1 =

pyn
xn−1yn−1

,

was studied by Cinar in [5].
Elsayed [12] has got the solutions of the following systems of the difference equations

xn+1 =
xn−1

±1 + xn−1yn
, yn+1 =

yn−1
∓1 + yn−1xn

.

Liu et al. [24] obtained the solution of particular cases of the following general system
of difference equations

xn+1 =
xn−1

ynxn−1−1 , yn+1 =
yn−1

xnyn−1−1 , zn+1 =
1

ynzn−1
.

Özban [25] has investigated the positive solutions of the system of rational difference
equations

xn+1 =
a

yn−3
, yn+1 =

byn−3
xn−qyn−q

.

In [29] Yalçınkaya investigated the sufficient condition for the global asymptotic sta-
bility of the following system of difference equations

zn+1 =
tnzn−1 + a

tn + zn−1
, tn+1 =

zntn−1 + a

zn + tn−1
.

Also, Yalçınkaya [30] has obtained the sufficient conditions for the global asymptotic
stability of the system of two nonlinear difference equations

xn+1 =
xn + yn−1
xnyn−1 − 1

, yn+1 =
yn + xn−1
ynxn−1 − 1

.

Zhang et al.[36] has investigated the positive solutions of the systems

xn+1 = A+
yn−k
yn

, yn+1 = A+
xn−k
xn

.

Similar nonlinear systems of rational difference equations were investigated see [24]-
[34].
Our aim in this paper is to investigate the periodic nature and get the form of the

solutions of the following systems of rational difference equations

xn+1 =
1± zn
yn−1

, yn+1 =
1± xn
zn−1

, zn+1 =
1± yn
xn−1

.

with a nonzero real numbers initial conditions.
Definition (Periodicity)
A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for all

n ≥ −k.
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2 First System: xn+1 =
1 + zn
yn−1

, yn+1 =
1 + xn
zn−1

, zn+1 =

1 + yn
xn−1

.

In this part, the solutions of the system of two difference equations have been studied

xn+1 =
1 + zn
yn−1

, yn+1 =
1 + xn
zn−1

, zn+1 =
1 + yn
xn−1

, n = 0, 1, ..., (1)

with nonzero real initials conditions x−1, x0, y−1, y0, z−1, z0.

Theorem 1 Suppose that {xn, yn, zn} are solutions of system (1), then the following
statements are true:-

1. xn+5 = yn, yn+5 = zn, zn+5 = xn for n ≥ −1.
2.xn+10 = zn, yn+10 = xn, zn+10 = yn for n ≥ −1.
3. {xn}+∞n=−1 , {yn}+∞n=−1and {zn}+∞n=−1 are periodic with period ten i.e., xn+15 =

xn, yn+15 = yn, zn+15 = zn for n ≥ −1.
4. We have

x10n−1 = x−1, x10n = x0, x10n+1 =
1 + z0
y−1

, x10n+2 =
1 + y0 + x−1

y0x−1
,

x10n+3 =
1 + z−1

x0
, x10n+4 = y−1 , x10n+5 = y0, x10n+6 =

1 + x0
z−1

,

x10n+7 =
1 + z0 + y−1

z0y−1
, x10n+8 =

1 + x−1
y0

, x10n+9 = z−1, x10n+10 = z0,

x10n+11 =
1 + y0
x−1

, x10n+12 =
1 + x0 + z−1

x0z−1
, x10n+13 =

1 + y−1
z0

.

and

y10n−1 = y−1, y10n = y0, y10n+1 =
1 + x0
z−1

, y10n+2 =
1 + z0 + y−1

z0y−1
,

y10n+3 =
1 + x−1

y0
, y10n+4 = z−1, y10n+5 = z0, y10n+6 =

1 + y0
x−1

,

y10n+7 =
1 + x0 + z−1

x0z−1
, y10n+8 =

1 + y−1
z0

, y10n+9 = x−1 , y10n+10 = x0,

y10n+11 =
1 + z0
y−1

, y10n+12 =
1 + y0 + x−1

y0x−1
, y10n+13 =

1 + z−1
x0

.

as well
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z10n−1 = z−1, z10n = z0, z10n+1 =
1 + y0
x−1

, z10n+2 =
1 + x0 + z−1

x0z−1
,

z10n+3 =
1 + y−1

z0
, z10n+4 = x−1 , z10n+5 = x0, z10n+6 =

1 + z0
y−1

,

z10n+7 =
1 + y0 + x−1

y0x−1
, z10n+8 =

1 + z−1
x0

, z10n+9 = y−1, z10n+10 = y0,

z10n+11 =
1 + x0
z−1

, z10n+12 =
1 + z0 + y−1

z0y−1
, z10n+13 =

1 + x−1
y0

.

Or equivalently

{xn}+∞n=−1 =

(
x−1, x0,

1+z0
y−1

, 1+y0+x−1
y0x−1

, 1+z−1
x0

, y−1 , y0,
1+x0
z−1

, 1+z0+y−1
z0y−1

,
1+x−1
y0

, z−1 , z0,
1+y0
x−1

, 1+x0+z−1
x0z−1

, 1+y−1
z0

, x−1, x0, ...

)
,

{yn}+∞n=−1 =

(
y−1, y−1,

1+x0
z−1

, 1+z0+y−1
z0y−1

, 1+x−1
y0

, z−1, z0,
1+y0
x−1

, 1+x0+z−1
x0z−1

,
1+y−1
z0

, x−1, x0,
1+z0
y−1

, 1+y0+x−1
y0x−1

, 1+z−1
x0

, y−1, y0, ...

)
,

{zn}+∞n=−1 =

(
z−1, z0,

1+y0
x−1

, 1+x0+z−1
x0z−1

, 1+y−1
z0

, x−1 , x0,
1+z0
y−1

, 1+y0+x−1
y0x−1

,
1+z−1
x0

, y−1, y0,
1+x0
z−1

, 1+z0+y−1
z0y−1

1+x−1
y0

, z−1, z0, ...

)
.

Proof: 1. From Eq.(1) we see that

xn+5 =
1 + zn+4
yn+3

, yn+5 =
1 + xn+4
zn+3

, zn+5 =
1 + yn+4
xn+3

xn+5 =

1 +

µ
1 + yn+3
xn+2

¶
µ
1 + xn+2
zn+1

¶ , yn+5 =

1 +

µ
1 + zn+3
yn+2

¶
µ
1 + yn+2
xn+1

¶ , yn+5 =

1 +

µ
1 + xn+3
zn+2

¶
µ
1 + zn+2
yn+1

¶

xn+5 =
1 + zn+1
xn+2

, yn+5 =
1 + xn+1
yn+2

, zn+5 =
1 + yn+1
zn+2

,

xn+5 =
1 + zn+1
1+zn+1

yn

, yn+5 =
1 + xn+1
1+xn+1

zn

, zn+5 =
1 + yn+1
1+yn+1

xn

.

Therefore
xn+5 = yn, yn+5 = zn, zn+5 = xn.

2. Also, we get
xn+10 = yn+5 = zn,

yn+10 = zn+5 = xn,
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zn+10 = xn+5 = yn.

3. Ditto,
xn+15 = yn+10 = zn+5 = xn,

yn+15 = zn+10 = xn+5 = yn,

zn+10 = xn+10 = yn+5 = zn.

3. For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n− 1. That is;

x15n−16 = x−1, x15n−15 = x0, x15n−14 =
1 + z0
y−1

, x15n−13 =
1 + y0 + x−1

y0x−1
,

x15n−12 =
1 + z−1

x0
, x15n−11 = y−1 , x15n−10 = y0, x15n−9 =

1 + x0
z−1

,

x15n−8 =
1 + z0 + y−1

z0y−1
, x15n−7 =

1 + x−1
y0

, x15n−6 = z−1 , x15n−5 = z0,

x15n−4 =
1 + y0
x−1

, x15n−3 =
1 + x0 + z−1

x0z−1
, x15n−2 =

1 + y−1
z0

.

and

y15n−16 = y−1, y15n−15 = y0, y15n−14 =
1 + x0
z−1

, y15n−13 =
1 + z0 + y−1

z0y−1
,

y15n−12 =
1 + x−1

y0
, y15n−11 = z−1, y15n−10 = z0, y15n−9 =

1 + y0
x−1

,

y15n−8 =
1 + x0 + z−1

x0z−1
, y15n−7 =

1 + y−1
z0

, y15n−6 = x−1 , y15n−5 = x0,

y15n−4 =
1 + z0
y−1

, y15n−3 =
1 + y0 + x−1

y0x−1
, y15n−2 =

1 + z−1
x0

.

and the result of Z

z15n−16 = z−1, z15n−15 = z0, z15n−14 =
1 + y0
x−1

, z15n−13 =
1 + x0 + z−1

x0z−1
,

z15n−12 =
1 + y−1

z0
, z15n−11 = x−1, z15n−10 = x0, z15n−9 =

1 + z0
y−1

,

z15n−8 =
1 + y0 + x−1

y0x−1
, z15n−7 =

1 + z−1
x0

, z15n−6 = y−1, z15n−5 = y0,

z15n−4 =
1 + x0
z−1

, z15n−3 =
1 + z0 + y−1

z0y−1
, z15n−2 =

1 + x−1
y0

.
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Now, it follows from Eq.(1) that

x15n−1 =
1 + z15n−2
y15n−3

=
1 +

³
1+x−1
y0

´
³
1+y0+x−1
y0x−1

´ =
(1 + y0 + x−1)x−1
1 + y0 + x−1

= x−1,

y15n−1 =
1 + x15n−2
z15n−3

=
1 +

³
1+y−1
z0

´
³
1+z0+y−1
z0y−1

´ =
(1 + z0 + y−1) y−1
1 + z0 + y−1

= y−1,

z15n−1 =
1 + y15n−2
x15n−3

=
1 +

³
1+z−1
x0

´
³
1+x0+z−1
x0z−1

´ =
(1 + x0 + z−1) z−1
1 + x0 + z−1

= z−1,

x15n =
1 + z15n−1
y15n−2

=
1 + z−1³
1+z−1
x0

´ = x0,

y15n =
1 + x15n−1
z15n−2

=
1 + x−1³
1+x−1
y0

´ = y0,

y15n =
1 + y15n−1
x15n−2

=
1 + y−1³
1+y−1
z0

´ = z0.

x15n+1 =
1 + z15n
y15n−1

=
1 + z0
y−1

, y15n+1 =
1 + x15n
z15n−1

=
1 + x0
z−1

, , z15n+1 =
1 + y15n
x15n−1

=
1 + y0
x−1

,

also

x15n+2 =
1 + z15n+1

y15n
=
1 +

³
1+y0
x−1

´
y0

=
1 + y0 + x−1

y0x−1
,

y15n+2 =
1 + x15n+1

z15n
=
1 +

³
1+z0
y−1

´
z0

=
1 + z0 + y−1

z0y−1
,

z15n+2 =
1 + y15n+1

x15n
=
1 +

³
1+x0
z−1

´
x0

=
1 + x0 + z−1

x0z−1

x15n+3 =
1 + z15n+2
y15n+1

=
1 +

³
1+x0+z−1
x0z−1

´
1+x0
z−1

=
x0 (z−1 + 1) + (1 + z−1)

x0 (1 + x0)
=
1 + z−1

x0
,

y15n+3 =
1 + x15n+2
z15n+1

=
1 +

³
1+y0+x−1
y0x−1

´
1+y0
x−1

=
y0 (x−1 + 1) + (1 + x−1)

y0 (1 + y0)
=
1 + x−1

y0
,

z15n+3 =
1 + y15n+2
x15n+1

=
1 +

³
1+z0+y−1
z0y−1

´
1+z0
y−1

=
z0 (y−1 + 1) + (1 + y−1)

z0 (1 + z0)
=
1 + y−1

z0
.
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Identically, other relations may easily be proven. The proof is done.
The following theorem can be proves similarly.

3 Second System: xn+1 =
1− zn
yn−1

, yn+1 =
1− xn
zn−1

, zn+1 =

1− yn
xn−1

.

In this part, the solutions of the system of two difference equations have been exam-
ined

xn+1 =
1− zn
yn−1

, yn+1 =
1− xn
zn−1

, zn+1 =
1− yn
xn−1

, n = 0, 1, ..., (2)

with a nonzero real numbers initial conditions.

Theorem 2 Suppose that {xn, yn,zn} are solutions of system (2). Then

1. xn+5 = yn, yn+5 = zn, zn+5 = xn for n ≥ −1.
2.xn+10 = zn, yn+10 = xn, zn+10 = yn for n ≥ −1.
3. {xn}+∞n=−1 and {yn}+∞n=−1 and {zn}+∞n=−1 are periodic with period ten. i.e., xn+15 =

xn, yn+15 = yn, zn+15 = zn for n ≥ −1 and the solutions takes the form

x10n−1 = x−1, x10n = x0, x10n+1 =
1− z0
y−1

, x10n+2 =
−1 + y0 + x−1

y0x−1
,

x10n+3 =
1− z−1

x0
, x10n+4 = y−1, x10n+5 = y0, x10n+6 =

1− x0
z−1

,

x10n+7 =
−1 + z0 + y−1

z0y−1
, x10n+8 =

1− x−1
y0

, x10n+9 = z−1, x10n+10 = z0,

x10n+11 =
1− y0
x−1

, x10n+12 =
−1 + x0 + z−1

x0z−1
, x10n+13 =

1− y−1
z0

.

y10n−1 = y−1, y10n = y0, y10n+1 =
1− x0
z−1

, y10n+2 =
−1 + z0 + y−1

z0y−1
,

y10n+3 =
1− x−1

y0
, y10n+4 = z−1 , y10n+5 = z0, y10n+6 =

1− y0
x−1

,

y10n+7 =
−1 + x0 + z−1

x0z−1
, y10n+8 =

1− y−1
z0

, y10n+9 = x−1 , y10n+10 = x0,

y10n+11 =
1− z0
y−1

, y10n+12 =
−1 + y0 + x−1

y0x−1
, y10n+13 =

1− z−1
x0

.

and
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z10n−1 = z−1, z10n = z0, z10n+1 =
1− y0
x−1

, z10n+2 =
−1 + x0 + z−1

x0z−1
,

z10n+3 =
1− y−1

z0
, z10n+4 = x−1 , z10n+5 = x0, z10n+6 =

1− z0
y−1

,

z10n+7 =
−1 + y0 + x−1

y0x−1
, z10n+8 =

1− z−1
x0

, z10n+9 = y−1, z10n+10 = y0,

z10n+11 =
1− x0
z−1

, z10n+12 =
−1 + z0 + y−1

z0y−1
, z10n+13 =

1− x−1
y0

.

Or equivalently

{xn}+∞n=−1 =

(
x−1, x0,

1−z0
y−1

, −1+y0+x−1
y0x−1

, 1−z−1
x0

, y−1 , y0,
1−x0
z−1

, −1+z0+y−1
z0y−1

,
1−x−1
y0

, z−1 , z0,
1−y0
x−1

, −1+x0+z−1
x0z−1

, 1−y−1
z0

, x−1, x0, ...

)
,

{yn}+∞n=−1 =

(
y−1, y−1,

1−x0
z−1

, −1+z0+y−1
z0y−1

, 1−x−1
y0

, z−1, z0,
1−y0
x−1

, −1+x0+z−1
x0z−1

,
1−y−1
z0

, x−1, x0,
1−z0
y−1

, −1+y0+x−1
y0x−1

, 1−z−1
x0

, y−1, y0, ...

)
,

{zn}+∞n=−1 =

(
z−1, z0,

1−y0
x−1

, −1+x0+z−1
x0z−1

, 1−y−1
z0

, x−1 , x0,
1−z0
y−1

, −1+y0+x−1
y0x−1

,
1−z−1
x0

, y−1 , y0,
1−x0
z−1

, −1+z0+y−1
z0y−1

1−x−1
y0

, z−1, z0, ...

)
.

4 Numerical Examples

Significant numerical examples have been considered in this part in order to show the
results obtained earlier, and also to enhance our theoretical discussion.
Example 1. Consider the difference system equation (1) with the initial conditions
x−1 = 0.2, x0 = 0.6, y−1 = 3, y0 = 7, z−1 = −5 and z0 = −1.6. (See Fig. 1).
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Figure 1. This figure shows the solutions of the system

xn+1 =
1 + zn
yn−1

, yn+1 =
1 + xn
zn−1

, zn+1 =
1 + yn
xn−1

,

where x−1 = 0.2, x0 = 0.6, y−1 = 3, y0 = 7, z−1 = −5 and z0 = −1.6.

Example 2. For the initial conditions x−1 = 9, x0 = −0.2, y−1 = 2, y0 = 0.7,
z−1 = 6 and z0 = 1.6. when we take the system (1). (See Fig. 2).
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Figure 2. This figure shows the periodicity of system (1)
where x−1 = 9, x0 = −0.2, y−1 = 2, y0 = 0.7, z−1 = 6 and z0 = 1.6.

Example 3. Take the initial conditions as follows x−1 = 9, x0 = −0.2, y−1 = 2,
y0 = 0.7, z−1 = 6 and z0 = 1.6 for the difference system equation (2). See Fig. 3.
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Figure 3. This figure shows the periodicity of the solutions of the system

xn+1 =
1− zn
yn−1

, yn+1 =
1− xn
zn−1

, zn+1 =
1− yn
xn−1

,

where x−1 = 9, x0 = −0.2, y−1 = 2, y0 = 0.7, z−1 = 6 and z0 = 1.6.

Example 4. Put the initial conditions x−1 = 9, x0 = 2, y−1 = 0.2, y0 = −3,
z−1 = −1.4 and z0 = 4 in the system (2). (See Fig. 4).
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Figure 4. This figure shows the solutions of the system (2),
where x−1 = 9, x0 = 2, y−1 = 0.2, y0 = −3, z−1 = −1.4 and z0 = 4.
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