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SOLUTIONS OF THE HELMHOLTZ EQUATION FOR A CLASS OF
NON-SEPARABLE CYLINDRICAL AND ROTATIONAL COORDINATE

SYSTEMS*

BY

VAUGHAN H. WESTON '

University of Toronto

Abstract. In cylindrical and rotational coordinate systems, one of the variables

can be separated out of the Helmholtz equation, leaving a second order partial differential

equation in two variables. For a class of the coordinate systems, this equation is reducible

to a recurrence set of ordinary differential equations in one variable, which are solvable

by ordinary methods.

1. Introduction. The usual method of solving the Helmholtz equation

VV + k2^ = 0 (1)

in three dimensions is the method of separation of variables, in which the equation is

separated into three ordinary differential equations, each of which can be solved. How-

ever, it is shown by Eisenhart [1] that the method of separation of variables in euclidean

space is applicable to only eleven coordinate systems, generated by confocal quadrics

or their degenerate forms. Exact solutions of the Helmholtz equation have thus hitherto

been limited to separable coordinate systems.

In this article a method is presented for solving (1) for a class of non-separable

cylindrical and rotational coordinate systems.

2. Cylindrical and rotational coordinate systems. The definitions of cylindrical

and rotational coordinate systems are those given by P. Moon and D. Spencer [2],

Let z — F(w), where z = .r, + iy, , and F is any analytic function. Separating real and

imaginary parts, one obtains

.fi = £.(«, v), yx = f2(u, v). (2)

The curves u = constant, and v = constant give rise to an orthogonal family of curves

in the a-plane. For each function F, a cylindrical coordinate system and one or two

rotational coordinate systems can be formed.

The cylindrical system (iti , u., , ?<3) is given by the equations

•r = fi(«i , »2),

y = kO'i , u2), (3)

z = u 3 ,

and the rotational coordinate systems (u, , u2 , n3 = <j>) by

•r = fiO'i , m^) eostf>,

V — l,("i 7 "a) sin <t>, (4)

z = £,>0'i , m2),
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and

x = £2(wi i ui) cos <t>,

2/= &(wi , "a) sintf, (5)

2 = fi(Ui , u2).

System (4) is found by rotation about the yi-axis and system (5) about the a;,-axis.

The z-axis is then taken as the axis of rotation. The metric coefficients for the cylindrical

coordinate systems have the property that

«-«-(£)"+(£)■■ »■-> «

and for the rotational coordinate system (4)

* - « " (0 + (£)'
/i3 = £i(Ui , u2)

and rotational coordinate system (5)

«"«- &' + (0
h3 = Uui , u2).

Also since F is an analytic function £,(«, , u2) has the property

(7)

(8)

^4-^ = 0
du\ + dul '

dgi _ d£s d£i _ d£2

du-i dll2 ' du2 dUi

(9)

Now rotational and cylindrical coordinates have the property that one of the variables

(0 and u3 respectively) can be separated out of (1) leaving a second order partial differ-

ential equation in the two variables ux and u2 . We shall show that there exists a class of

coordinate systems for which this equation can be reduced to a recurrence set of ordinary

differential equations in one variable.

3. Solutions of the Helmholtz equation for rotational coordinate systems.

Theorem I. If for a rotational coordinate system there is a w, (i ^ 3) such that

h3(Ui , u2) has the property that

p.i Jl/j

77 = Z) /.(«,■) Uhfai ,W2)]*, (10)
OUi s-\\

where Ni , Mx are integers, and Nx < Mx and if the metric coefficient h\ has the form

3/,

h\ = Yl , w2)]', (11)
8 = .V2

where N2 , M2 are integers and N2 < M2 then

, u2 , <t>) = e""" ar(Mi)Uhhd , u2)]r (12)
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is a solution of the equation VV + &V = 0, where ar(«,) satisfies the set of recurrence

relations

j2 r + 1 -Mi j r+ 2-M t

|x+ E Is (2ff + D/,+l-.(u.) + £ (q2-S)
UUi q^r + i—NlllUi a„r+ 2- AT» (13)

r-Af,

•aa(M,)cr+2-,(M.) + A;2 23 a,(w,)<:,._,,(«,) - 0.
Q-r —N i

Proof. The operator V2 in rotational coordinate systems has the form

_I_/jL /, JL\,J_(h AS , M ill
h\h3 law, V 3 duj ^ du2 V 3 W i~ h3 d<t>2/'

Hence using the expression for ^ given by (12), Eq. (1) reduces to

•"is [s (»• si) + s; (»• s;)] - £ + 4 £ «'<•"»«' - »■ <»>
Multiplying (14) by hi exp (—in<t>) one obtains the following

V /d2 , , 1 dh3 d . 1 dh3 d 2 h\ . j. 2. zl / \/. \r n
/ . Sr-2 1 T~2 + I- 7— 7 T 7~ H— "3 M T5 + « "I f'®r(W,)(«3) = 0,
r [dUj ^3 d"Mi d'Wi /I3 dil2 ^^2 ^3 J

? K §■+2 % £+(«•■ - '■ I)«-w
+ rW-a,[fr - »{£)' + fr - «(0 + », $ + fc g*]

I r(h y-> <L dfh dih dh3 | (^aV dfcj <*flr\ = n
3 h3 \_diii du, dw2 3w2J h3 3m, dw,/

Using relations (7), (8) and (9) one obtains

? {("■)• S1 + (2r + " t^
/ f>2\ 1 ^ '

+ - M2 |jOr(W| = 0.

Use relations (10) and (11), and arrange (15) in power series in h3(u, , u2) to obtain

H wfer + Z (2? + l)/r+i-,(w.) + Z (92 - M2)a«(Wi)cr+2-„(M.)
r ^CrWt a-r + l-iVx UWj j»r+2-A'2

+ £ ^2a<,(Mi)Cr-«(Mi)l = 0.
o-r-Af, )

Hence equate coefficients of (h3)r to zero. A recurrence set of ordinary differential equa-

tions is then obtained relating the functions ar(u,)

7-r + X) T* (25 + l)/r+1-,(M.) + k2 Z a0(M,)cr_a(M,)
aW, a-r + l-ATi a-r-iST,

r + 2-.U, (16)

+ H (52 - M2)aq(w,)cr+2-o(w<) = 0.
a-r-i-2-.Va



1958] SOLUTIONS OF THE HELMHOLTZ EQUATION 423

Thus provided that the ordinary differential equations given by (16) can be solved for

the ar(Ui), the Helmholtz equation has the solution

<K«, ,u2 ,<t>) = ar(Wi)[Wwi ,u2)]r. (17)
r

Here the summation over r represents a power series in the function (h3).

There are two cases of practical importance, (i) lower termination of series (17) when

M2 > N2 > 2 and M, > Ar, > 1 and (ii) upper termination when N2 < M2 < 0 and

Ni < Mt < 1.
For the case of lower termination the differential equation (16) is an inhomogeneous

equation, the homogeneous part involving ar and the inhomogeneous involving

ar_! , cir—2 , ■ • • i-e. terms a„ such that n < r. Thus, if ar_, , ar-2 , • • • are known then

ar can be found. Now there is some number p such that a0_! = a„_2 = a„_3 = 0. Hence

the inhomogeneous portion of (16) for r = p, is zero. Thus av is a solution of the homo-

geneous equation and can be found. Since Eq. (16) for r — p + 1 involves only av and

av+1 and a„ is now known, then aB+l can be found. Hence if ap, aB+l , • • ■ , ar_, are known,

then ar can be found.

Hence one has a solution of the form

,u2 ,4) = e"* X) ar(.Ui)(h3y
r-p.p+1

= e'"*{h3)v £ av+N(h,)".

(18)

Similarly it can be shown for the case of upper termination that if q is such that a,+l =

aa+2 = — 0, the expression (17) becomes

VM , ui , <*>) = e"* ' £ ' aXud(h3y

= e'"\h3y £ a-N+.(u,)(h3rN.

(19)

The numbers p and q are determined from boundary conditions. In addition to the

solutions of the form (17) there may exist other solutions described in the following

theorem.

Theorem II. If for a rotational coordinate system there is a u^i 3) such that

h3(u, , u2) and h\ have the properties given by (10) and (11) respectively, and if there

is a function B(Uj) where i ^ j ^ 3; such that

= B(u,) £ d.(u.)(h3y, (20)
(TUj OUj t-N,

where N3 and M■, are integers and N3 < M3 and

L.WW (21)
dUj ,-N*

where JV4 and Mt are integers and A74 < Mt then

,u2 ,<f) = e'"*B(Uj) £ briud[h(ut , u2)]r (22)
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is a solution of the Helmholtz equation VV + &V = 0 where br(u,) must satisfy the

set of recurrence relations

J2l. r+l-Mt Jl, r+2-.V,

~j7~2~ + 2^ X7 + l)/r+1_a + X) (?" — n2)bacr+2-t
Ul( i Q = r + l-Ni WUj o-r + 2—A'a

+ fc2 bacr-Q + S ba(2q + 1) ^r+i-o = 0.
Q = r — N 2 r — N t, qt— A/j + 1

The proof is similar to that of Theorem 1. As before, there are two cases of practical

importance for (22); upper termination and lower termination of the series.

When M2 > N2 > 2, Mi > Nx > 1, il/4 > N4 > 0 and N3 > Na > 1 there are

solutions of the Helmholtz equation of the form

VAui ,u2 ,4>) = £ bXu,)[h3(ih , u2)]r (23)
r-p'

and when N2 < M2 < 0, < il/t < 1, N4 < Mt < 0 and N3 < M3 < 1 there are

solutions of the form

VA*h ,<t>) = e'^BiUj) 4,(«<)1».(«, ,m2)]'. (24)

The second type of solutions given by (23) and (24) are essential if h3 is an even function

of the variable u,- . Then the first type of solution given by (17) are even functions of it,-,

and if odd solutions in the variable u,- are required, then this B(u,) is chosen such that

B(u,) is an odd function of w, .

4. Solutions of the Helmholtz equation for cylindrical coordinate systems. In a

similar manner as for the rotational case, solutions of the Helmholtz equation can be

obtained and are stated in the following theorem (where to simplify presentation the

two cases corresponding to Theorem I and Theorem II are combined):

Theorem III. If for a cylindrical coordinate system there is a w, (i ^ 3) and £,.(«,, n2)

(k ^ 3) such that

T7 = 23 &.(«<)[£*(«■i >«2)]*, (25)
« = .Vi

where JV, and M\ are integers and 2Vi < M, and if the metric coefficient hi has the prop-

erty that

u.

h] = c.(u,)[^(ui , w2)]', (26)
a = -V a

where N2 and il/2 are integers and N2 < M2 and there exists a function B(u,) where

i 7* j 5^ 3 such that

-fr1 = B(Uj) Z e.O, «.)]' (27)

and

— ^ = B(,0 Z d.OOMiU , »2)]*, (28)
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where -V3 , , N4 and -1/., are integers anil .V:! < J/:i , A% < M, . Then

^(«i , »_• , ".0 = , «s)]' (29)
r

is a solution of the Helmholtz equation VV + = 0 and ar(?/,) satisfies the set of

recurrence relations

J2_ r + l-.l/, » r + 2-,V„

IT + E IT (2g)/>r+,-,(«,) + £ 9(® - l)a.(«,K+»-.(M,)
UU i (J»r + 1-A'i W"| q - r + 2—A' -

+ (Af - M2) E aa(n,)cr-Q(u,) + £ a,(w,)Cr-,(w.) (30)
Q — r- A"a Q-r-X i

r - 1-.V,

+ £ 2qaQ(u,) rfr-,+I = o.

A special case of the expression given by (29) corresponding to (17) for rotational coordi-

nates, is given when B(m;) = 1 and d,(u,) = 0 for s = Ar3 , AT3 + 1, • • • , il/3 and

e,(?(,) = 0 for s = Ar4, AT4 + 1 , • • • , Mt . There are two cases of practical importance:

(i) Lower termination, J/, > N2 > 2, il/, > AT, > 1, Mt > AT, > 0, ^l/3 > Ar3 > 1

(ii) Upper termination, N-, < -V2 < 0, Nt < il/i < 1, A^ < il/4 < 0, N3 < il/3 < 1.

For lower termination the expression given by (29) reduces to

tf(«. , u. , m3) = e"""J3(w/) f) ar(w.)fe(«i , «s)]' (31)
r -p

and for upper termination

tf(M, , Ms , m3) = e"""B(M,) £ a,(u,<)[|t(tt1 , w2)]r. (32)

5. Particular coordinate systems. The question of practicability of the above

method of solving Eq. (1) for the particular' non-separable coordinate systems under

consideration is answered by the application of the method to the toroidal coordinate

system. The author has obtained a complete set of solutions of Eq. (1) in toroidal coor-

dinates, which satisfy the radiation condition and possess a ring singularity [3]. Besides

toroidal coordinates, Eq. (I) can be solved for other well-known coordinate systems, as

is shown in Table 1. The solutions given there, are independent of prescribed boundary

conditions. The expressions given are in terms of power series of /(«,) hs(ul , u2) and

g(u,-) £t(ul , Wo) instead of , u-2) and £<(m, , m*) according to whether the system is

rotational or cylindrical. An appropriate choice of /(«,•) or g(u,) simplifies the differential

equations (13) and (30), transforming the homogeneous part into a recognizable form.

Acknowledgement. The author wishes to thank the National Research Council
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