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Numerical results for ground state and excited state properties (energies, double occupancies,
and Matsubara-axis self energies) of the single-orbital Hubbard model on a two-dimensional square
lattice are presented, in order to provide an assessment of our ability to compute accurate results in
the thermodynamic limit. Many methods are employed, including auxiliary field quantum Monte
Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix
embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion
Monte Carlo within a fixed node approximation, unrestricted coupled cluster theory, and multi-
reference projected Hartree-Fock. Comparison of results obtained by different methods allows for the
identification of uncertainties and systematic errors. The importance of extrapolation to converged
thermodynamic limit values is emphasized. Cases where agreement between different methods is
obtained establish benchmark results that may be useful in the validation of new approaches and
the improvement of existing methods.

I. INTRODUCTION

The “many-electron problem” of providing a useful and
sufficiently accurate calculation of the properties of sys-
tems of large numbers of interacting electrons is one of
the grand scientific challenges of the present day. Im-
proved solutions are needed both for the practical prob-
lems of materials science and chemistry and for the basic
science questions of determining the qualitative behav-
iors of interacting quantum systems.

While many problems of implementation arise, includ-
ing calculation of the multiplicity of orbitals and inter-
action matrix elements needed to characterize real mate-
rials, the fundamental difficulties are that the dimension
of the Hilbert space needed to describe an interacting
electron system grows exponentially in the system size,
so that direct diagonalization is not practical except for
small systems, and that the minus sign associated with
the Fermi statistics of electrons leads to exponentially
slow convergence of straightforward Monte Carlo calcu-

lations. It is generally accepted that a complete solu-
tion to the many-electron problem cannot be obtained in
polynomial time.

The difficulties associated with obtaining a complete
solution have motivated the development over the years
of approximate methods, and comparison of the dif-
ferent approximations remains a crucial open question.
In this paper we address this issue in the context of
the repulsive-interaction Hubbard model1–3 defined on
a two-dimensional square lattice. The Hubbard model
is one of the simplest models of interacting fermions,
but despite its simplicity exhibits a wide range of cor-
related electron behavior including interaction-driven
metal-insulator transitions, superconductivity, and mag-
netism. The precise behavior depends delicately on pa-
rameters, creating an interesting challenge for theory and
computation.

Exact solutions are available for one-dimensional4 and
infinite-dimensional cases.5,6 High temperature series ex-
pansions provide numerically exact results, but only for

ar
X

iv
:1

50
5.

02
29

0v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  1

5 
D

ec
 2

01
5



2

temperatures too high to be relevant for physically in-
teresting situations.7 In general dimensions at relevant
temperatures, only approximate solutions are available.
In some cases, these provide rigorous bounds bounds
to the ground state energies or other thermodynamic
properties.8,9 Analytical perturbative methods can pro-
vide information about the behavior at very small in-
teraction strength10–16 and at very large interaction
strength (for the special case of nearly one electron per
site),17,18 but outside of these limits obtaining results
requires numerical methods.19 Other techniques such as
diagrammatic resummation are expected to work well in
the weak coupling regime.20 The known numerical meth-
ods are based on approximation schemes. Among the
approximations employed are study of finite systems (ei-
ther directly or via embedding constructions), use of vari-
ational wave functions and evaluation of subsets of all
possible Feynman diagrams. Controlling these approx-
imations and assessing the remaining uncertainties is a
challenging but essential task, requiring analysis of re-
sults obtained from different methods. The past decade
has seen the development of interesting new methods and
substantial improvements in capabilities of previously de-
veloped approaches, suggesting that the time is ripe for
a careful comparison.

In this paper we undertake this needed task. Our aim
is to assess the state of our knowledge of the Hubbard
model, identifying parameter regimes where reliable re-
sults have been established and regimes where further
work is needed. In regimes where reliable results have
been established our results will serve as benchmarks to
aid in the development and validation of new methods.
This improved understanding of the Hubbard model will
serve as a tool to analyze methods for solving the general
many electron problem.

We take the view that the only meaningful points of
comparison between methods are results for the actual
thermodynamic limit of the Hubbard model, with the
uncertainties arising from the needed extrapolations (to
infinite system size, to all diagrams, to infinite statis-
tical precision in Monte Carlo calculations etc) quanti-
fied. However, examination of results obtained at dif-
ferent stages of the extrapolation sequence for a given
method provide considerable information. Therefore, we
present, when needed, both converged values and the in-
termediate results from which these were obtained.

The methods considered are auxiliary field quan-
tum Monte Carlo (AFQMC),21–23 bare and bold-line
diagrammatic Monte Carlo (DiagMC),24–26 the dual
fermion method (DF),27 density matrix embedding the-
ory (DMET),28,29 density matrix renormalization group
theory (DMRG),30,31 cluster dynamical mean field the-
ory in the dynamical cluster approximation (DCA),32

diffusion Monte Carlo based on a fixed node approx-
imation (FN),33–39 unrestricted coupled cluster theory
including singles and doubles (UCCSD), and in certain
cases, higher excitations,40–42 and multi-reference pro-
jected Hartree-Fock (MRPHF).43,44

We examine energies and double occupancies, which
are single numbers and can be obtained by essentially all
methods, enabling straightforward comparison. We also
consider properties related to the electron Green’s func-
tion, which at this stage are only available from a few
methods. The results obtained from different techniques
enables us to identify regimes of phase space that are
well understood, in the sense that several different meth-
ods provide results that are converged and agree within
(reasonable) errors, and regimes that are not well un-
derstood, in the sense that there is as yet no agreement
between different methods. We show excellent agreement
and small uncertainties between numerically exact tech-
niques at half filling (all coupling strengths), weak cou-
pling (all carrier concentrations) and for carrier concen-
trations far from half filling (most interaction strengths).
For carrier concentrations near to half filling and for in-
termediate interaction strength, results can be obtained,
but the resulting uncertainties are much larger in gen-
eral, and more difficult to eliminate. We surmise that at
least part of this uncertainty has a physical origin related
to the presence of several competing phases, leading to
sensitive dependence on parameters.
The rest of this paper is organized as follows. In sec-

tion II we define the model, delineate parameter regimes
and define and discuss the observables of interest in this
paper. In section III we summarize the methods, giving
brief descriptions and focusing on issues most relevant
to this paper while referring the reader to the literature
for detailed descriptions. Section IVA demonstrates the
importance of the extrapolation of results to the ther-
modynamic limit and discusses the issues involved in the
extrapolations. In sections V, VI and VII we present
static observables in the strong coupling, intermediate
coupling, and weak coupling regimes respectively. Sec-
tion VIII presents momentum and frequency dependence
at finite T . A conclusion summarizes the work, out-
lines the important areas where our present-day knowl-
edge is inadequate, and indicates directions for future
research. Supplementary material presents the thermo-
dynamic limit values obtained here. A database of results
is made available electronically.45,46

II. THE HUBBARD MODEL

The Hubbard model is defined by the Hamiltonian

H = −
∑

i,j,σ

tij

(

c†iσcjσ +H.c.
)

+ U
∑

i

ni↑ni↓, (1)

where c†iσ (ciσ) creates (annihilates) an electron with spin

σ =↑,↓ on site i, niσ = c†iσciσ is the number operator,
and tij denotes the hopping term. In this work, we will
restrict the discussion to the repulsive Hubbard model
(U > 0) defined on a two dimensional square lattice; we
further assume that the hopping contains only nearest
neighbor (tij = t) and second nearest neighbor (tij = t′)
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Parameters Parameters studied
t′/t -0.2 0 0.2
U/t 2 4 6 8 12
n 1.0 0.875 0.8 0.6 0.3
T/t 0 1/8 1/4 1/2

TABLE I. Parameters studied for the Hubbard model. t de-
notes the nearest-neighbor hopping, t′ the next nearest neigh-
bor hopping, U the interaction strength, n the density, and T
the temperature.

terms. t is used to set the scale of all energies presented
in this work.
We consider interaction strengths ranging from U/t =

2 to U/t = 12 and focus on temperatures where high-
temperature expansion methods fail.7 We give repre-
sentative results for the ground state and temperatures
T/t = 0.125, 0.25, and 0.5. Table I contains a complete
list of the parameters studied.
At zero temperature, we systematically compute the

energy per site and the double occupancy, and we present
also some data on the nature of the order and the order
parameter, where an ordered phase is found. At non-zero
temperature, we also present dynamical information, in
particular the Matsubara self-energy. We focus on val-
ues at a given density, rather than at a given chemical
potential. This implies that methods based on a grand-
canonical formulation need to adjust the chemical poten-
tial to find the right density, leading to additional uncer-
tainty in computed quantities.

III. METHODS

A. Overview

Many numerical methods provide solutions to the Hub-
bard Hamiltonian on a finite size lattice. In this work,
we restrict attention to techniques which can access sys-
tems large enough that an extrapolation to the infinite
system can be performed, and our aim is to obtain re-
sults for the thermodynamic limit. Also important to our
analysis is the assessment of uncertainties, either by pro-
viding an unbiased error bar or an error bar that contains
all errors except for a systematic contribution which may
be assessed by comparison to other methods or reference
systems.
We consider three broad classes of methods: ground

state wave function methods, embedding methods, and
Green’s function methods. The distinction between these
methods is not sharp; several of the algorithms fit into
multiple categories, but the categorization provides a use-
ful way to organize a discussion of the different kinds of
uncertainties.
Wave function methods construct an approximation to

the ground state wave function of a system. Expectation
values of observables (energies and correlation functions)
are then evaluated by applying operators to this ground

state wave function. The issues are the accuracy of the
wave function for a given system size, and the accuracy of
the extrapolation to the thermodynamic limit. AFQMC
(with and without constrained path), UCCSD, FN, MR-
PHF, and DMRG are wave function methods.
Embedding methods approximate properties of the full

system (for example the self energy or density matrix) by
the solution of a finite cluster self-consistently embedded
in an appropriately designed infinite lattice. The full so-
lution of the original problem is recovered as the cluster
size is taken to infinity. Errors in embedding methods
arise from three sources: the solution of the cluster prob-
lem, the convergence of the self-consistency loop that per-
forms the embedding, and finite cluster size, with maxi-
mum cluster sizes depending on the method and ranging
from 16 to 100. The DMET, DCA, DF are embedding
methods.
Green’s function methods are defined here as meth-

ods based on stochastic evaluations of many-body per-
turbation series. They provide many-body self-energies,
Σ(k, iωn), and Green’s functions, G(k, iωn), as functions
of momenta, k, and fermionic matsubara frequency, iωn,
from which other observables (energies and densities) can
be calculated. Techniques which produce real-frequency
(rather than matsubara frequency) information47–50 are
either restricted to small systems, molecules or impurity
models or work best at weak coupling. DiagMC is a
Green’s function method formulated directly in the in-
finite lattice; the main issues for this method are the
accuracy of the stochastic approximation to the full dia-
grammatic expansion and the systematic truncation and
extrapolation of the series. The DF and DCA techniques
use Green’s function techniques to evaluate the impu-
rity problem and the expansion around it; they therefore
are subject both to embedding uncertainties and to the
uncertainties arising from the evaluation of the diagram-
matic expansion.

B. Auxiliary-field Quantum Monte Carlo(AFQMC)

Auxiliary-field Quantum Monte Carlo (AFQMC) is a
ground-state wave-function method based on the idea
that in the limit β → ∞ the operator e−βH applied to
an initial wave function |ψ(β=0)〉 projects out the ground
state of the HamiltonianH. The projection is formulated
as an imaginary-time path integral that is stochastically
evaluated with the help of auxiliary fields introduced by
a Hubbard-Stratonovich transformation. The method is
applied to finite size lattices and an extrapolation to the
infinite lattice case is required. If the calculation is con-
verged, the exact ground state energy and wave function
for the lattice are obtained. The issues are the conver-
gence of the stochastic evaluation of the projector and,
when particle-hole symmetry is broken, the presence of
a sign problem. The sign problem is managed using a
constrained path approximation, which introduces a po-
tential systematic error that must be quantified by com-
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parison to other methods. For an introduction to the
basics of AFQMC methods, see, e.g., Ref. 21.

In this manuscript we present results obtained from
two ground-state auxiliary-field quantum Monte Carlo
(AFQMC) methods. The first22 is based on the ground-
state path integral form of AFQMC,51–53 but intro-
duces several new algorithmic ingredients including an
acceleration technique54 (with force bias21,55) in the
Metropolis sampling and control of Monte Carlo variance
divergence.22 This approach is applied to systems at half
filling with t′ = 0, where the sign problem56 is absent be-
cause of particle-hole symmetry.57 The algorithmic im-
provements allow us to reach longer imaginary time in
the calculations, achieve a higher acceptance ratio, and
greatly reduce the Monte Carlo variance.22 The second
approach we employ, to treat cases where the sign prob-
lem does occur, is referred to as the constrained path
Monte Carlo method.58,59 This approach controls the
sign problem with a constraint (implemented via a choice
of trial wave function21 |ΨT 〉) on the paths in auxiliary-
field space, which allows stable calculations for arbitrarily
long imaginary time and system size.

Both methods obtain the ground state of the Hamil-
tonian for a supercell of size L× L under twist-averaged
boundary conditions.60,61 The ground state is obtained
by use of Monte Carlo methods to estimate |ψ(β)〉 =
e−βHψ(β=0)〉. The total projection length is typically
β = 64 in the ground state projection method, al-
though test calculations with imaginary-time lengths sev-
eral times larger were performed. The convergence error
from finite values of β is negligible. In the constrained
path method, the runs are open-ended and tend to cor-
respond to much larger values of β. In both the ground
state projection and constrained path methods the sta-
tistical error from the Monte Carlo calculation can be
reliably estimated (one-standard deviation error bars re-
ported). The systematic error from the constrained path
method is not variational, but depends on |ΨT 〉 in the
sense that it vanishes if |ΨT 〉 is exact. Its magnitude will
be quantified below by comparison to other techniques.

A Trotter decomposition is used in the imaginary time
evolution. The Trotter error from the finite time step,
∆τ = β/n, must be extrapolated to zero. This extrapo-
lation can be controlled and does not make a significant
contribution to the error budget. Most calculations re-
ported here use a time-step fixed at ∆τ = 0.01 in units
of t.

Results obtained for finite L are averaged over twist-
angle, Θ, to remove one-body finite size effects. For small
systems a large number of Θ values are needed (∼ 200
for 4 × 4 or 6 × 6),59,61,62 but for larger systems, far
fewer Θ are required to reach the same level of accu-
racy (for a L × L system with L = 20, averaging over 5
twist angles is sufficient). These results are then extrap-
olated to L → ∞. The extrapolation requires care be-
cause the ground state depends on the system geometry.
For n = 0.875, we used rectangular supercells (mostly
8× 32, checked with sizes 8× 16, 16× 16 and 8× 48 for

consistency) to accommodate spin- and charge-density
wave orders. The extrapolation also requires careful at-
tention to the functional form of the leading finite volume
correction.62–66 Our final results at the thermodynamic
limit include all statistical errors, and a conservative esti-
mate of the uncertainty resulting from the extrapolation
of L→ ∞ in order to remove the two-body finite-size ef-
fects (The fit includes 1/L3 and 1/L4 terms61–63 for the
energies, and 1/L for magnetization m2). To provide a
concrete example, at n = 1, t′ = 0, T = 0, U/t = 4, the
energy per site for a 20 × 20 system after Θ-averaging
is E/t = −0.86038 ± 3 × 10−5. After a weighted least
square fitting with L = 4, 6, · · · , 18, 20, the final result in
the thermodynamic limit is E/t = −0.8603± 2× 10−4.
For n 6= 1 or t′ 6= 0, a sign problem appears. The

sign problem makes it impossible to converge the ground
state projection method for the system sizes and propa-
gation lengths β needed and an alternative method, the
constrained path (CP) approximation is used. The re-
sults reported in this paper follow Ref. 21, using a trial
wave function |ΨT 〉 to apply a boundary/gauge condi-
tion on the paths that are included in the path integral
in auxiliary field space. All results reported here used
single-determinant |ΨT 〉 with no release. In these cal-
culations, |ΨT 〉 is taken to be a mean-field solution for
the Hubbard model for given U , L and Θ with a U value
Ueff = min{U, 4t}. The order parameter in the mean-field
solution is chosen to be orthogonal to the spin quantiza-
tion axis. This choice is found to help preserve symme-
try in |ΨT 〉, improving the CP results.23,67 The accuracy
of the constrained path approach has been extensively
benchmarked.23,61,62,67 We have carried out additional
comparisons with exact diagonalization on 4×4 systems.
At U = 4t, the relative error on the energy, averaged over
60 randomly chosen Θ values, is +0.018% for n = 0.25
and -0.15% for n = 0.625. At U/t = 8 and n = 0.875
the relative error is -0.51% averaged over 20 random Θ
values. We have also verified these estimates in a few
systems of larger L, using multi-determinant trial wave
functions and constraint release.23,67

C. Fixed node Diffusion Monte Carlo (FN) with
nodes from Variational Monte Carlo (VMC)

The variational Monte Carlo method constructs a trial
wave function that approximates the exact ground state
of a correlated Hamiltonian.33–37 The wave function de-
pends on parameters that are optimized by minimizing
the expectation value of the Hamiltonian, which requires
a Monte Carlo sampling whenever the trial state is cor-
related (i.e., it is not a simple Slater determinant). We
remark that the variational Monte Carlo energy gives an
upper bound to the exact value and that, with this ap-
proach, it is possible to access quite large clusters, with
all relevant spatial symmetries (translations, rotations,
and reflections) preserved. However, it is difficult to
quantify the systematic errors introduced by the choice of
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the trial state. Moreover, while spatial correlations may
be correctly captured, dynamical properties are missed.

We generated simple variational wave functions by ap-
plying a density Jastrow factor on top of uncorrelated
states that are built from local (mean-field) Hamiltoni-
ans, containing only few parameters, where the physical
properties are reflected in a transparent way as differ-
ent terms inside the variational state.68,69 At finite dop-
ing, the uncorrelated states have been obtained from the
BCS Hamiltonian, including superconducting pairing on
top of electron hopping; in addition, collinear antiferro-
magnetism with Néel order parallel to the z spin quan-
tization axis is also included. At half filling, where the
system exhibits long-range magnetic order, the uncorre-
lated state contains only magnetism in the x − y plane;
in this case, an additional spin Jastrow factor involv-
ing the z-component of the spin operator is also taken.
This term couples spins along a direction orthogonal to
the magnetic ordering plane, reproducing the spin-wave
fluctuations above the mean-field state.70 All these vari-
ational wave functions with Jastrow factors generalize
the so-called Gutzwiller state,2 allowing a description of
metals, superconductors, and also of Mott insulators.68,69

Nevertheless, they do not give an accurate approximation
to the exact ground state in two spatial dimensions, es-
pecially close to half filling. We obtain a substantial im-
provement by including the backflow correlations inside
the uncorrelated state. On the lattice, this corresponds
to a redefinition of the single-particle orbitals and it is
particularly efficient at strong coupling.37,71

To determine the variational parameters (i.e., the ones
related to the Jastrow factors, the ones included in the
mean-field Hamiltonian, and also those of the backflow
correlations), we minimize the expectation value of the
Hamiltonian. This minimization is performed by con-
structing a Markov chain using the Metropolis algorithm,
where walkers are defined by many-body configurations
having electrons on lattice sites with given spin along
the z axis. After performing this optimization, a further
improvement can be obtained by applying the Green’s
function Monte Carlo projection technique38 to the opti-
mal trial state within a fixed-node approximation.39 This
procedure allows accurate calculations of the energy and
diagonal correlation functions, such double occupancies
or density-density correlation functions. The Ansatz on
the nodal structure given by the variational wave func-
tion induces a systematic error, which cannot be deter-
mined a priori but can be estimated from the change in
energy as the trial wave function is improved. We point
out that there is a difference between continuum and lat-
tice fixed-node approaches. In the continuum, only the
signs of the trial function are important: if the nodes
are correctly placed, the exact energy is obtained. By
contrast, on the lattice, both the signs and the relative
magnitudes of the trial function in configurations that
are connected by a sign flip must be correct in order to
have the exact energy.39 The error bars for finite systems
are given as the statistical errors of the Green’s function

Monte Carlo technique and do not include any estimates
of the systematic errors coming from the fixed-node ap-
proximation.

The finite size results are then extrapolated to the in-
finite system size by using a scaling that depends on the
carrier concentration. At half filling, we use the 1/N3/2

scaling (where N is the system size) that is appropri-
ate for two-dimensional ordered antiferromagnets.64,65 In
this regime, the error bar for the infinite system size is
given by a fitting error of the linear regression. At finite
dopings, the size scaling may suffer from shell effects: a
smooth behavior can be obtained only when a sequence
of closed-shell configurations are taken (i.e., electron fill-
ings for which the non-interacting case corresponds to a
unique ground state). In the generic case, size effects may
be dominated by the ones present at U = 0. This is the
case for large dopings (e.g., n = 0.8) and all interactions,
and intermediate dopings (e.g., n = 0.875) and small
interactions (U . 4). Here, for every available size, the
ratio between the energy at finite U and the one at U = 0
is roughly constant and the thermodynamic limit can be
assessed by fitting this ratio, namely the infinite-size en-
ergy is obtained by multiplying the aforementioned ratio
by the thermodynamic value at U = 0. The extrapolated
value is assumed to be normally distributed with an er-
ror bar taken as the difference between the estimated
thermodynamic limit and the largest available size. For
intermediate dopings (n = 0.875), the size scaling starts
to deviate from the U = 0 case around U/t = 4, and we
decided to take the point at the largest size as the infi-
nite size limit, with an uncertainty of twice the difference
to the next lowest system size. We remark that, in this
case, a linear regression with the 1/N scaling gives an
estimate of the thermodynamic limit that is compatible
(within one error bar) with the point at the largest size.

D. Multi-reference Projected Hartree–Fock
(MRPHF)

The multi-reference projected Hartree–Fock
method43,44,72 is a ground state wave function ap-
proach based on a trial wave function |Ψ〉 characterized
by the quantum numbers Θ,K that is constructed out of
a set of broken-symmetry Hartree-Fock wave functions
({|Di〉}) via projection operators. The idea is that a
broken-symmetry determinant includes the dominant
correlation physics while the projection restores the
physical symmetries. The wave function takes the form

|ΨΘ
K〉 =

n
∑

i=1

∑

K′

f i,ΘK′ P̂
Θ
KK′ |Di〉, (2)

and the parameters f i,ΘK′ are determined by minimizing

the energy. The projector P̂Θ
KK′ restores the symmetries

(characterized by the quantum numbers Θ,K) in |Ψ〉 and
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can be formally written as73,74

P̂Θ
KK′ =

h

L

∑

m

ΓΘ∗
KK′(m) R̂(m) (3)

in terms of the rotation operators R̂(m) and the irre-
ducible representation matrices ΓΘ(m) associated with
the elements m of the symmetry group of the problem.
Here, h is the dimension of the irreducible representation,
while L is the volume of the group. The character of the
broken symmetry determinant is optimized in the pres-

ence of the projection operator (i.e., a variation-after-
projection approach), which results in broken symmetry
determinants with well defined defects.44

Our expansion employs Slater determinants that break
the space group and spin (Ŝ2) symmetries of the lattice,
but preserve Sz symmetry. All the broken symmetries are
restored using the appropriate projection operators. The
series of i determinants in Eq. 2 is constructed through
a chain of variational calculations, using the FED (FEw-
Determinant) approach.43,44,74 In this procedure, after a
wave function with n− 1 intrinsic determinants is avail-
able, a wave function with n determinants is variationally
optimized by adjusting the Thouless coefficients deter-
mining the last added determinant. The full set of linear
coefficients f iΘK′ is re-adjusted. The MR-PHF approach
becomes exact as the number of determinants retained
tends to the size of the Hilbert space, i.e., as Eq. (2) be-
comes a coherent state representation of the exact ground
state wave function.
If the number of determinants is fixed at a finite, not

too large, value, these calculations can be performed for
large lattices with polynomial cost (O(N)4 or so, where
N is the number of sites in the lattice). However, the
number of determinants required to obtain results with
a given accuracy increases exponentially with increasing
system size. In this work, implementation aspects have
compelled us to keep the number of determinants roughly
constant, so that the quality of the solution decreases as
system size is increased, and, consequently, the energy in-
creases, precluding a thermodynamic limit extrapolation.
We have used expansions with 4, 24, and 32 determinants
for half-filled 4× 4, 6× 6, and 8× 8 lattices, respectively.
In the lightly-doped regime, larger expansions have been
used: 48 determinants in a 10× 4 (〈n〉 = 0.8) lattice and
80 determinants in a 16 × 4 (〈n〉 = 0.875) one. A linear
extrapolation in the reciprocal of the number of deter-
minants, i.e. in 1/n has been performed to the infinite
configuration limit for the ground state energies.
The calculations presented could in principle be im-

proved in a number of ways: additional symmetries
could be broken and restored (such as Ŝz or particle
number) in the reference configurations; more config-
urations could be included; and/or a full optimization
of all determinants could be performed, in the spirit of
the resonating Hartree–Fock approach.75 The accuracy
of any one result can therefore be increased, as shown by
Rodŕıguez-Guzmán et al.76 or by Mizusaki and Imada77

in the closely related path integral renormalization group
(PIRG) approach. Recently, Tahara and Imada78 have
combined the symmetry-projected determinant expan-
sion with short- and long-range Jastrow factors within a
variational Monte Carlo framework, which may be used
to further increase the accuracy. These techniques, and
others, have been used to explore, for example, spin and
charge stripe phases, which we do not explore in this
work.79–81

E. Unrestricted Coupled Cluster - Singles and
Doubles (UCCSD)

Coupled cluster (CC) theory40–42 is a ground-state
wave function technique. It is widely used in quantum
chemistry and often considered the best source of pre-
cise data for molecules that are neither too large nor
too strongly correlated. Its application to the Hubbard
model has been more limited, where it has been used in
two different formulations. In the first form, which di-
rectly exploits the translational invariance of the lattice
to work in the thermodynamic limit, the theory is formu-
lated in the site-basis, starting from an infinite Néel or-
dered reference, from which clusters of excitations which
change occupancy and flip spins are created82,83. In the
second form, the theory starts from a single determinant
reference state on a finite lattice, from which clusters of
particle hole excitations are created84. This is similar to
how the theory is used in quantum chemistry, and is the
formulation discussed further here. As this second form
does not work in the thermodynamic limit, the energies
must be extrapolated.
The CC wave function is written as |Ψ〉 = exp(T) |0〉

where |0〉 is a single determinant reference state, and
T =

∑

n Tn, where Tn =
∑

qn
tqn A

†
qn is the cluster op-

erator. The operator A†
qn creates an excited determi-

nant |Φqn〉 which contains n particle-hole pairs relative to
the reference state. In its standard and simplest version
(used here), the energy and coefficients tqn are obtained
by solving the Schrödinger equation projectively:

E = 〈0|e−T H eT |0〉, (4a)

0 = 〈Φqn |e−T H eT |0〉 ∀qn. (4b)

CC theory thus diagonalizes a similarity-transformed
Hamiltonian H̄ = exp(−T )H exp(T ) in a subspace of
states defined by |0〉 and |Φqn〉. Note that because T
is a pure excitation operator, the commutator expansion
used to evaluate H̄ truncates after four commutators.
If the sum over n in defining the cluster operator is

carried out to all orders, the exact ground state wave
function is reproduced. In practice the operator T is
typically restricted to terms involving a small number
of particle-hole pair excitations above the reference state
(n ≤ nmax) and |Ψ〉 = exp(T) |0〉 is projected onto the
space of states with up to nmax particle-hole pairs; the
accuracy then depends upon nmax and the choice of ref-
erence state |0〉. In a lattice model such as the Hubbard
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model with N sites, the computational cost is, roughly
speaking, proportional to N2(nmax+1).

The calculations reported in this manuscript primarily
limit T to n ≤ 2, i.e. to the creation of only singly- and
doubly-excited determinants, giving what we refer to as
CC with single and double excitations (CCSD).85,86 For
select examples, we have included corrections for triple
and occasionally quadruple excitation effects. The accu-
racy of CC theory, and the need for higher excitations,
depends on how well the reference |0〉 captures the quali-
tative physics. When the reference is accurate, then sin-
gles and doubles excitations may be sufficient; however,
when the reference determinant bears little resemblance
to the exact wave function (as may happen in strongly
correlated systems) a much higher degree of excitation is
required to recover the correct physics. For this reason,
the calculations reported here use a symmetry-broken
unrestricted Hartree-Fock (UHF) reference determinant,
because UHF can provide a better mean-field descrip-
tion, particularly near half filling where antiferromag-
netic correlations dominate; this defines the unrestricted
CCSD (UCCSD) method used here. Note, however, that
particularly for doped systems with large U there are
a plethora of nearly degenerate UHF states, and find-
ing the best reference for UCCSD is not straightforward.
We have prepared the UHF solution following the pre-
scription of Ref. 87. In principle the deficiencies of the
reference determinant can be corrected in what is known
as Brueckner CC88 where the reference determinant is
adjusted to eliminate single excitation effects. These cal-
culations are more computationally demanding and we
have not pursued them here.

An important virtue of the exponential parametriza-
tion of the wave function is that the CC energy has a
non-trivial thermodynamic limit even for restricted ex-
citations nmax

40–42 Thus, as lattice size increases, the
energy per site approaches the thermodynamic limit for
the given nmax, and the exact thermodynamic limit as
nmax is increased. For smaller values of U where conver-
gence to the thermodynamic limit is slower, we have con-
verged second-order perturbation theory out to the ther-
modynamic limit and added a correction for the differ-
ence between CC theory and perturbation theory which,
for small U , converges quickly with respect to system
size. Double occupancies have been computed by nu-
merical differentiation of the CC energy with respect to
U . We also provide UCCSDTQ estimates of the ground
state energy (labelled as UCCSDTQ*) for n=1 systems,
where the triples (T) correction is obtained as UCCSDT-
UCCSD energies for a 6× 6 system, and the quadruples
(Q) correction is obtained from UCCSDTQ-UCCSDT
energies for a 4 × 4 lattice. For n=0.8 (n=0.875), our
UCCSDT estimates (labeled as UCCSDT*) are obtained
from 10× 4 (16× 4) lattices.

The UCCSD calculations reported here can be com-
pleted in a few hours using standard quantum chemistry
packages.89 Even at half filling where there are not many
Hartree-Fock solutions to be concerned with, we find

large effects due to single excitations, which suggests that
the coupled cluster calculations could be substantially
improved by optimizing the identity of the reference de-
terminant. Similarly, we generally see significant correc-
tions due to triple and higher excitations; these can also
be computed with standard packages,90 but while opti-
mizing the reference determinant and including higher
excitation effects will increase the accuracy of the cou-
pled cluster calculations, they also increase the cost.

F. Density Matrix Renormalization Group
(DMRG)

The density matrix renormalization group30 is a vari-
ational ground state wave function technique. It con-
structs the ground state of a system by diagonalizing the
Hamiltonian in a finite subspace spanned by an itera-
tively constructed basis that is optimized via a Schmidt
decomposition that minimizes the spatial extent of the
quantum mechanical entanglement between basis states.
DMRG is generally believed to be the optimal method

for finding grounds states of one dimensional lattice mod-
els. In the application to one dimensional systems two
sources of error must in principle be controlled. Results
for a fixed system length of L must be converged with
respect to basis size m, and then the converged results
must be extrapolated to L → ∞. However, for most of
the one dimensional Hamiltonians of current interest the
convergence is very rapid and in practice large enough m
and L are accessible numerically, so extrapolation is not
required.
Application of DMRG to a finite size 2D system pro-

ceeds by defining an effective one dimensional problem,
to which the standard one-dimensional DMRG is applied.
Two dimensional tensor network generalizations of the
DMRG ideas have attracted tremendous recent interest,
but these methods have not yet produced results for the
two dimensional Hubbard model that can be included in
the present comparison.91,92

Most current implementations of DMRG require open
boundary conditions. The canonical method for creat-
ing an effective one dimensional system from a finite-size
two dimensional one is to impose periodic boundary con-
ditions in one direction and open boundary conditions
in the other, thereby defining a cylinder of finite length
and finite circumference. One then defines an effective
one dimensional problem by indexing the sites along a
one dimensional path that covers all of the sites on the
cylinder and taking the matrix elements of the Hamil-
tonian in this basis. The price is that two sites sepa-
rated by a small distance along the cylinder axis in the
physical system are separated by a distance of order the
cylinder circumference in the effective one dimensional
model. The effective one-dimensional problem thus has
long ranged terms, which imply longer ranged entangle-
ment and require that more states are kept in the optimal
basis. The number of states needed grows exponentially



8

with the circumference of the cylinder (width of origi-
nal finite lattice) meaning that there is a sharp cut-off in
the accessible system widths, typically around width 6
in the Hubbard systems; however, systems of very large
cylinder length can be studied. The extrapolation to the
thermodynamic limit must thus be handled with care.

The DMRG calculations reported here were performed
with the standard DMRG finite system algorithm30,31

Two types of cylinders were considered: one with the ax-
ial and circumferential directions aligned parallel to the
bonds of the square lattice and one rotated by 45 degrees.
When one cuts a cylinder in two, the 45 degree rotated
system has fewer sites on the boundary per unit length,
and thus one expects a smaller growth of the entangle-
ment with the length of the cut (governed by the area
law). For the undoped antiferromagnetic system, the ro-
tated system also is unfrustrated both for odd and even
circumferences, reducing shell effects in the finite size re-
sults. For half filled systems both types of orientation
are considered and they show good agreement, and error
bars are estimated to incorporate both the error bars on
the data points for specific widths, and the differences be-
tween the two orientations. However we note that for the
half-filled systems, better results were obtained with the
rotated system.93,94 With doped systems, we see striping
behavior at stronger coupling. A stripe is a line of holes
which act as a domain wall in the antiferromagnetism
on either side. These stripes have been seen in the t-J
model with DMRG starting in the late 90’s.66 The stripes
typically wrap around the cylinder, with a specific even
number of holes in the ring-stripe. With doping, the op-
timal number of holes can change. Striped configurations
with the wrong number of holes in a stripe are typically
metastable. For the ordinary orientation, we were able
to sort out stripe fillings, finding the low energy states
and avoiding metastability. For the 45 degree rotated
lattices, the patterns seem more delicate, and we have
not yet sorted out the lowest energy configurations. We
thus present only the results for standard orientation for
doped systems.

Convergence issues pose more severe problems than in
the standard one dimensional cases, both because of the
intrinsic limits on system size discussed above and be-
cause in some cases the presence of several metastable
states can cause troubles for extrapolation, and can lead
to the appearance of states that are not the ground state
and may be important only for finite systems. In the sys-
tems studied here, metastability was traced to the pres-
ence of physically different “striped” states for different
hole doping in the DMRG cylinder.

We obtained converged results as follows. For each
cylinder of a specific length L, we extrapolated the energy
in the number of basis states, m. To make this extrapola-
tion reliablem was slowly increased, but eachm was used
for two consecutive sweeps. The truncation error and the
energy were measured on the second sweep for each m.
Then a linear extrapolation of energy versus truncation
error is used to obtain the ground state energy with error

bars. The deterministic nature of DMRG can result in
uncertainties due to fitting which do not appropriately
represent the uncertainty in choice of extrapolation pro-
cedure. We therefore assume a normally distributed error
of 1/5 the difference between the last point and the ex-
trapolated value which we justify by comparison to the
accuracy of previous DMRG data.93,94 Metastability was
signaled by lack of linearity in this extrapolation. When
this was found we determined which state had the lowest
energy. The system was then rerun with an initial state
favoring the lower energy state producing results in the
lower energy configuration such that the extrapolations
are linear in the truncation error.
For a fixed width we then extrapolate the energies lin-

early in 1/L to get an energy per site for an infinite
cylinder. Errors are estimated statistically using the er-
ror bars on each point. To reduce the finite size effects
from different widths, we employ a simple version of the
phase averaging trick60 by taking an average over pe-
riodic and antiperiodic boundary conditions around the
cylinder. The phase averaging eliminated an oscillation
in the energy as a function of system width in the 45
degree rotated systems, and in general nicely accelerated
convergence. We then analyzed the results as a func-
tion of cylinder width. For half filling we found that
extrapolating the energy to the thermodynamic limit by
1/width3 works well. This is the finite-size behavior in
the Heisenberg model, where it is well understood.95

G. Density Matrix Embedding Theory (DMET)

The density matrix embedding theory (DMET)28,29 is
a ground state embedding method formulated in terms
of wave function entanglement. Given an impurity clus-
ter of size Nc, DMET maps an L × L bulk many-body
problem (L is chosen very large) to an impurity and bath
many-body problem, yielding a problem with 2Nc sites
in total. The mapping is constructed from the Schmidt
decomposition96 of a bulk wave function |Ψ〉. The formu-
lation is exact if |Ψ〉 is the exact bulk ground state, or in
the limit of impurity cluster size Nc → ∞. Since the ex-
act bulk state is not known a priori, an approximate bulk
state is used for the impurity mapping. Recently, DMET
has been applied to both ground-state and linear re-
sponse spectral properties of the Hubbard model28,97–99.
In this work we use a general BCS bulk state, the ground-
state of the DMET lattice Hamiltonian given by the hop-
ping part of the Hubbard Hamiltonian augmented with
the DMET correlation potential u, that is applied in each
cluster supercell of Nc sites in the bulk lattice. This bulk
state is allowed to spontaneously break spin and parti-
cle number symmetry through the self-consistency cycle
that determines u (which contains both particle number
conserving and non-conserving terms). In this cycle, the
bulk state |Ψ〉 is updated from the interacting impurity
and bath solution |Φ〉, by minimizing the difference be-
tween |Ψ〉 and |Φ〉 (as measured by their (generalized)
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one-particle density matrices) with respect to the poten-
tial u.

For the bulk lattice, we use L = 72. From cal-
culations on larger L, we find that the finite lattice
error associated with this choice is negligible, on the
scale of the significant digits reported. The BCS bulk
state is obtained by solving the lattice spin-unrestricted
Bogoliubov-deGennes equation100,101 with the correla-
tion potential u. The impurity and bath problem is
solved in the BCS quasiparticle basis, with general one-
body and two-body interactions that do not conserve
particle number or locality. We use the density ma-
trix renormalization group (DMRG)30 as an impurity
solver (adapted from the quantum chemistry DMRG
code BLOCK102–104), with a maximum number of renor-
malized states m=2000 (DMET self-consistency is per-
formed up to m=1200). The DMET lattice and impurity
Hamiltonians are augmented with a chemical potential
µ, to ensure that the relative error in particle number is
less than 0.05%. We used impurity clusters of dimensions
2 × 2, 4 × 2, 4 × 4 and 8 × 2 at each point in the phase
diagram. The energies and observables were then extrap-
olated to the thermodynamic limit using a linear relation-

ship with N
−1/2
c , as appropriate to a non-translationally

invariant cluster embedding theory.

The total DMET uncertainty is estimated by com-
bining the errors from three sources (i) convergence
of DMET self-consistency, (ii) solution of the impurity
many-body problem using DMRG, (iii) extrapolation to
the limit of infinite impurity size. We estimate the
self-consistency error (i) using the difference of the last
two DMET self-consistent iterations. The average self-
consistency error is below 5× 10−4t in the energy for all
cluster sizes. The impurity solver error (ii) is from us-
ing a finite number of renormalized states m in DMRG.
This error is only non-zero in clusters larger than 2× 2.
The energy and observables are extrapolated to m = ∞
using the standard linear relation between energy and
DMRG truncation error.93,102,105 For 4×4 impurity clus-
ters, the truncation error is large enough to contribute
also to the converged DMET self-consistent correlation
potential u(m). To take this into account, we extrap-
olate using (a) self-consistent DMET results converged
at different m, and (b) non-self-consistent DMET results
using different m in the DMRG impurity solver at a fixed
correlation potential u(mmax), where mmax is the max-
imum m used in the DMET self-consistency. The dif-
ference between the two extrapolations is then added to
the total DMET uncertainty. For the cluster sizes in this
study the errors due to (i) and (ii) are small and eas-
ily controlled. Therefore, the finite size impurity error
is the main source of uncertainty at almost all points in
the phase diagram. It is estimated as the standard devi-
ation of the finite size extrapolation. The quality of the
approximate DMET impurity mapping depends on the
approximate lattice wave function |Ψ〉 and decreases as
the coupling strength U increases, especially for carrier
concentrations near half filling. This slows down the clus-

ter size convergence of the results for large U , increasing
the uncertainty. In the strong coupling, weakly doped
region, we find competing homogeneous and inhomoge-
neous orders that become very sensitive to the cluster size
and shapes (similar to the stripes observed in DMRG).
It is difficult to reliably extrapolate these results to the
thermodynamic limit. As a result, the total DMET un-
certainties range from about 10−4t at half filling and low
densities to a maximum of about 10−2t in the strong cou-
pling, underdoped region. A detailed description of the
methodology and extrapolation procedures for the calcu-
lations is contained in Ref. 106.

H. Dynamical Cluster Approximation (DCA)

The dynamical cluster approximation (DCA)32,107,108

is an embedding technique in which an approximation to
the electron self energy is obtained from the solution of a
quantum impurity model consisting of some number Nc

of interacting sites coupled to an infinite bath of non-
interacting electrons. In applications to the Hubbard
model, the interactions in the impurity model are the
interactions of the original problem while the one-body
terms are determined from a self-consistency condition
relating the Greens functions of the impurity model to
those of the lattice. The DCA is a particular general-
ization to Nc > 1 of the ‘single site’ dynamical mean
field method.109,110 Other generalizations have also been
introduced,111,112 but results from these methods are not
considered here. The single-site method was motivated
by the observation that in an appropriately defined infi-
nite coordination number limit an exact solution of the
Hubbard model can be found,5 and can be recast in terms
of the solution of a single-site impurity model.109 It was
later understood that generalization to Nc > 1 impurity
model representations allows a treatment of the finite
coordination number model that becomes exact as the
number of impurity sites Nc → ∞.
The DCA formulation partitions the Brillouin zone

into Nc equal area tiles and approximates the self en-
ergy Σ as a piecewise constant function of momentum
taking a different value in each tile:

Σ(k, ω) =
∑

a=1...Nc

φa(k)Σa(ω) (5)

with φa(k) = 1 for k ∈ a and φa(k) = 0 for k /∈ a.
The tiles, a, map directly on to impurity model single-
particle levels, the impurity model Greens function and
self energy are diagonal in the impurity model a-basis
and the DCA self-consistency equation

Gimp
a (ω) =

∫

a

d2k

(2π)2
1

ω − εk − Σa(ω)
(6)

determines the remaining parameters of the impurity
model. The self consistency loop is solved by iteration;
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an initial guess for the impurity model parameters pro-
duces a set of Σa which are then used to update the im-
purity model parameters. The loop typically converges
well and errors associated with the self consistency are
smaller than errors in the solution of the impurity model.
We obtain results for different Nc in the paramagnetic

phase and extrapolate to the thermodynamic limit by

exploiting the known32 N
−d/2
c scaling for momentum av-

eraged quantities in d-dimensions and systematically in-
creasing Nc.

113,114

To solve the Nc site impurity problem we use a CT-
AUX algorithm115,116 with submatrix updates.117 Our
codes are based on the ALPS libraries.118,119 Selected
points have been compared to a CT-INT120 implementa-
tion based on the TRIQS libraries.121

In this work we provide extrapolated DCA results from
clusters of sizes Nc=16, 20, 32, 34, 50, 64, 72 and 98,
depending on temperature and densities, in order to give
a reliable estimate of the properties of the 2D Hubbard
model in the thermodynamic limit.
The CT-AUX method is a type of diagrammatic Monte

Carlo. In the T > 0, impurity model context the dia-
grammatic series is absolutely convergent and the issues
discussed below for Diag-MC in the infinite-lattice con-
text are not important. However, the CT-AUX method
is restricted at low T by the existence of a Monte Carlo
sign problem in the auxiliary field solver. The sign prob-
lem worsens rapidly as U is increased, as T is decreased,
or as Nc is increased and is particularly evident in the
density range n = [0.8, 1.0). Further, as temperature is
decreased, the length scale of correlations in the system
increases, resulting in larger finite size effects. We take
a conservative approach to determining the uncertainty
in the extrapolation procedure. We include both a sta-
tistical uncertainty in the extrapolation in 1/Nc as well
as an additional uncertainty which we take as half the
difference of the extrapolated value from the largest Nc

value explored. This gives a robust representation of an
extrapolation error which is larger when finite size effects
are large, but that also vanishes as Nc increases. As such,
the error bars for extrapolation of our DCA results to the
thermodynamic limit contain both stochastic and finite
size uncertainties, and values for finite system sizes with
stochastic error bars are provided.

I. Dual Fermion (DF) Ladder Approximation

The dual fermion approach27,122,123 is a diagrammatic
extension of the single site dynamical mean field theory
(DMFT). The DF technique is motivated by the idea that
non-local corrections to DMFT can be captured by a per-
turbative expansion around a solution of the dynamical
mean field equations. In formal terms the expansion re-
quires summing a series of diagrams for two and higher
particle correlations, with vertices defined in terms of
the fully interacting but reducible vertices of the impu-
rity model. In this regard, the DF technique is similar in

spirit to methods such as the dynamical vertex approx-
imation (DΓA) and dynamical mean-field extensions of
fRG (DMF2RG) which approximate interactions on the
level of 2-particle vertex functions.124–126 In practical im-
plementations to date the dual fermion expansion is trun-
cated at the two particle level (higher than two-particle
interactions are omitted) and the series of two particle
corrections is approximated by a few low-order terms or
a ladder resummation. One of its strengths lies in the
ability to describe phase transitions of the system by em-
ploying resummations of the relevant diagrams.127,128

The DF results presented here are obtained using the
open-source opendf code129, starting from a single-site
(Nc = 1) dynamical mean field solution obtained with
a continuous-time auxiliary-field (CT-AUX)115–117 im-
purity solver. The method is limited by the accuracy
to which reducible impurity vertex functions can be ob-
tained, which is a polynomial (cubic) complexity prob-
lem. Within the approximation of neglecting higher or-
der vertices and only considering ladder diagrams, a sys-
tematic estimation of deviation from the true interacting
system is not possible, and we omit error bars altogether.

J. Diagrammatic Monte Carlo (DiagMC)

The diagrammatic Monte Carlo method (DiagMC) be-
gins from the observation that within standard many-
body perturbation theory, any quantity Q that depends
on some set of arguments y (which may include both con-
tinuous components such as frequency and momentum
and discrete components such as spin) may be expressed
as an infinite series of terms, each of which involves multi-
dimensional integrals and sums over many variables:

Q(y) =
∞
∑

α=0

∑

ξ

∫

. . .

∫

dx1. . . dxαD(α, ξ,x1, . . . ,xα;y) ,

(7)
Here the D are known functions defined by the Feyn-
man rules of diagrammatic perturbation theory. The
series order α controls the number of internal integra-
tion/summation variables {x1, . . . ,xα}, and ξ labels dif-
ferent terms of the same order in the series. The quantity
Qmay be the electron Greens function G, the self-energy,
Σ, the screened interaction, W , the polarization opera-
tor, Π, the pair-propagator (for contact interaction), Γ,
and its self-energy, ΣΓ, or the current-current or other
correlation functions. Basic thermodynamic properties
(particle, kinetic, and potential energy densities) in the
Grand Canonical ensemble are readily obtained from G
and Σ, see Ref. 130.
The most widely-used formulation of perturbation the-

ory is in terms of Feynman diagrams. In this case stan-
dard rules relate the graphical representation of a given
term in the series to the corresponding mathematical ex-
pressions for the D, which are typically given (up to a
sign or phase factor) by a product of functions associ-
ated with graph lines, D =

∏

lines Fline(xline). In pertur-
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bation theory for particles interacting via pairwise forces,
these lines are associated with the interaction potential,
U , and bare single-particle propagators G(0). If we de-
note the collection of all external and internal variables
that allow for a complete characterization of the diagram
(diagram topology and internal and external variables) as
ν ≡ (α, ξ,x1, . . . ,xα;y), then Eq. (7) can be viewed as
weighted average over the configuration space {ν}: i.e.,
Q =

∑

ν Dν ≡ ∑

ν e
iϕν |Dν |, where the modulus of Dν

defines the configuration ’weight’, and ϕν = argDν . The
basic idea of the diagrammatic Monte Carlo (DiagMC)
method is to use stochastic sampling of the configuration
space to compute Q by treating ∝ |Dν | as the probabil-
ity density for the contribution of point ν to the sum. In
DiagMC the diagram order, its topology, and all internal
and external variables are treated on equal footing and
each diagram represents a point, not an integral, in {ν}.
The MC process of generating diagrams with probabili-
ties proportional to their weight is based on the conven-
tional Markov-chain updating scheme24–26 implemented
directly in the space of continuous variables.

Since connected Feynman diagrams are formulated di-
rectly in the asymptotic limit, there is no infinite sys-
tem size limit to take. The main numerical issue con-
cerns the convergence of the Monte Carlo process, which
is complicated by the exponential proliferation of num-
ber of diagrams with perturbation order α. This leads
to exponential computational complexity since final re-
sults are recovered only after extrapolation to the infinite
diagram-order limit. The fermion sign enters the calcula-
tion in an interesting way: different diagrams have differ-
ent signs (arising from the different orderings of fermion
creation and annihilation operators) and at large diagram
order the contributions of diagrams with plus and minus
sign tend to cancel. This cancellation is in fact respon-
sible for the convergence of the many-body perturbation
theory.26,131 To manage this issue it is useful to consider a
Monte Carlo process for approximate series in which the
maximum diagram order is limited to some finite value
via a hard or soft cutoff, and then cutoff is increased until
convergence is reached.

Diagrammatic Monte Carlo techniques can also take
advantage of known field-theoretical techniques to run
the calculation in a self-consistent mode in which cer-
tain infinite series of diagrams are summed and then
automatically absorbed into the renormalized propaga-
tors and interaction lines using Dyson-type equations.
One example is the skeleton expansion131; another is a
“bold” expansion in perturbative corrections to an an-
alytic partial resummation.132,133 This flexibility allows
for an additional control over systematic errors coming
from series extrapolation as well as convergence issues—
different schemes should produce consistent final results.

In this work we employ four complementary tech-
niques:

• A [G(0)]2U -scheme based on a Taylor series expan-
sion of Σ in powers of U with fixed shifted chemical po-
tential µ̃ = µ − Un/2, see Refs. 26 and 134. The total

electron density, n =
∑

σ nσ, and the chemical potential
are computed posteriori (after results are extrapolated to
the αmax → ∞ limit).
• A G2W -scheme based on skeleton series for Σ and

Π in which all lines in the diagram are understood as
fully dressed Green’s functions and screened interactions.
Self-consistency is implemented by feedback loops when
G and W are obtained by solving algebraic Dyson equa-
tions, G−1 = [G(0)]−1 − Σ and W−1 = U−1 − Π, in
momentum-frequency representation, see Refs. 135–137
for more details.
• A G2Γ-scheme based on the skeleton series for Σ

and ΣΓ when all lines in the graph are understood as
fully dressed single-particle (Green’s functions) and two-
particle propagators. This compact formulation is pos-
sible only for a contact interaction potential when the
sum of ladder-type diagrams for spin-up and spin-down
particles has the same functional structure as the single-
particle propagator, see Refs. 132, 138, and 139. Again,
self-consistency is implemented by feedback loops us-
ing Dyson equations, G−1 = [G(0)]−1 − Σ and Γ−1 =
[Γ(0)]−1 − ΣΓ, where Γ(0) is the sum of bare ladder dia-
grams.
• A [G(0)]2Γ(0)-scheme based on diagrams expressed in

terms of bare single- and pair-propagators with shifted
chemical potential µ̃ = µ−Un/2; this is similar in spirit
to the [G(0)]2U -expansion, but with one extra geomet-
rical series (bare ladder diagrams) being accounted for
analytically.
To establish the parameter region where DiagMC

works, we performed calculations using all four schemes.
The results were compared to each other and to those
obtained by DCA. Additional insight was also gained by
doing calculations in the atomic limit.140 We find that
for bare coupling U/t < 4 and temperature T/t > 0.1,
all schemes produce consistent results within statistical
errors. At half filling, n = 1, and U/t ≤ 6, the (G(0))2U -
and (G(0))2Γ(0)-schemes still produce results consistent
with those obtained by DCA and the determinant Monte
Carlo method. In the dilute region (small filling fac-
tors), the G2Γ- and (G(0))2Γ(0)-schemes can be applied
for larger values of U . For dilute systems our benchmarks
include points (U/t = 6, n = 0.6), (U/t = 6, n = 0.3),
and (U/t = 8, n = 0.3).

IV. EXTRAPOLATIONS AND
UNCERTAINTIES

A. Extrapolations

All of the numerical methods we have considered rely
on the extrapolation of results to a thermodynamic or
asymptotic limit. For DiagMC, which is formulated di-
rectly on an infinite system, the extrapolation is in di-
agrammatic order. All other methods are extrapolated
from a finite embedded system, finite cluster, or cylin-
der with finite width to the infinite system size limit.
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FIG. 1. (Color online) Extrapolations of the ground state
energy at U/t = 8, n = 1. Main panel: AFQMC and FN
extrapolated as a function of the inverse cube of the system’s
linear dimension, L, along with DMRG extrapolated in cube
of inverse cylinder circumference (also denoted L). DMRG
data are presented both for rotated (with

√
2) and unrotated

wrapping of cylinders. Inset: DMET data for clusters of size
and geometry indicated, plotted against the reciprocal of the
square root of the total number of sites in the cluster Nc.

In many cases, a considerable contribution to our errors
comes from this extrapolation procedure, which differs
from method to method. In some cases determining
stochastic uncertainties in extrapolation are not possi-
ble, in which case we produce estimates of uncertainties
by choosing a reference system for a given technique. We
then assume a normal distribution of uncertainty with re-
spect to the reference. Specifics of the extrapolation pro-
cedure for each system (and of the associated procedure
for estimating extrapolation uncertainties) are described
in Sec. III. All methods have therefore defined procedures
to estimate error in TL quantities as accurately as pos-
sible through the use of known reference systems. Ad-
ditional uncertainties due to extrapolation, curve fitting,
truncation in excitation order are addressed on a per-
technique basis. These added uncertainties are assumed
to be normally distributed and defined such that they
can, in principle, be made arbitrarily small by adding
additional data. This section illustrates these extrapola-
tions and presents some of the challenges encountered in
performing them.

We start our discussion with ground state properties.
In Fig. 1, DMRG, FN and AFQMC results are presented
in the main panel. The system size dependence in all
three techniques is clearly visible and the difference be-
tween the estimated thermodynamic limit value and the
largest size considered is in some cases outside of the
error bars of the thermodynamic limit value: in other
words, extrapolation is essential for obtaining the ther-
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FIG. 2. (Color online) Energies obtained at U/t = 4,

T/t = 0.25 and n = 0.8 from G2Γ (magenta) and [G(0)]2Γ(0)

(turquoise) as a function of the inverse square of the diagram
order parameter α (upper axis label) along with DCA results
obtained from finite clusters plotted against the inverse of the
cluster size Nc (lower axis labels).

modynamic limit value. For this reason, in the results
sections we typically present both the thermodynamic
limit value and the sequence of finite size results which
led to it, so that the reader can see how large an extrap-
olation is required.

For DMRG, results from both un-rotated cylinders
(filled symbol; other smaller-L data are not shown but lie
on the same scaling curve) and rotated cylinders (crosses)
are consistent, both scaling as 1/L3, although with dif-
ferent slopes, allowing for a clean extrapolation to the
thermodynamic limit. On the other hand, the AFQMC
data indicate a change in scaling for system sizes larger
than 10 × 10 geometry under twist averaged boundry
conditions. This could indicate either that unidentified
complications occur in the large system AFQMC calcu-
lations or that deviations from the 1/L3 size dependence
might occur in the DMRG data at larger cylinder size
(i.e. that the DMRG error bar is underestimated). In
this regard, it is important to note that the ground state
energy of the largest system examined in DMRG, rotated
6×∞, is within uncertainty of the extrapolated AFQMC
data.

The FN data also demonstrate a systematic depen-
dence of the energy on system size, allowing a precise
thermodynamic limit extrapolation. The deviation of
the FN results from the AFQMC and DMRG results
is caused by a systematic fixed node error, which by
comparison to other methods seems to be no more than
2× 10−3t.

Shown in the inset of Fig. 1 are the extrapolations in
DMET which scale as 1/

√
Nc. Due to the restricted small

system sizes in DMET and large U , the resulting uncer-
tainty is dominated by the extrapolation. The value,
also shown in the main panel, is in good agreement with
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DMRG and FN, and only slightly outside error bars of
the AFQMC result.
In Fig. 2 we show data for two DiagMC methods at

U/t = 4, T/t = 0.25 and n = 0.8, along with DCA
data. DiagMC is done directly in the thermodynamic
limit, and the results become successively more precise as
more and more expansion orders are added to the series.
The results from the two diagrammatic series we show
agree within error bars, with the G2Γ series converging
more smoothly than [G(0)]2Γ(0). The convergence with
expansion order in the regimes we present is very rapid,
so that the value at order α = 6 or 7 can be taken as
representative for the infinite order series, with error bars
estimated by statistics and by comparison to the results
at the second largest order; in other words, extrapolation
to α→ ∞ is not needed.
DCA for the 2D Hubbard model approaches the ther-

modynamic limit ∼ 1/Nc. However, in the parame-
ter regime considered here the many-body physics is
converged with respect to Nc and deviations from the
thermodynamic limit are dominated by single-particle
shell effects. In other regimes, especially at larger
U , extrapolation in 1/Nc is required, see for example
Refs. 113, 114, and 117.
The key result of this section is that in many cases

extrapolation to the infinite system size limit is needed
to obtain accurate results, with the value obtained by
extrapolation significantly different from the value ob-
tained by the largest size studied. For this reason we
will typically display below both the extrapolated ther-
modynamic limit results and the finite size results that
produced the extrapolation.

B. Sources of Uncertainty

For clarity we repeat the main sources of uncertainties
and the meaning of the error bars shown in the graphs
for each technique; further details can be found in the
sections on each method.
• AFQMC: at n = 1 error bars include all sources of

uncertainty; stochastic errors and extrapolation to TL.
For n 6= 1, uncertainty from the constrained path ap-
proximation is not estimated by the error bar.
• FN: error bars account for stochastic Monte Carlo

errors and for extrapolation to the TL. Uncertainties due
to the fixed node approximation are not included in the
error bar.
• MRPHF: results are not extrapolated to the TL and,

on each finite system, an estimate of the uncertainty due
to truncation in the number of Slater determinants is not
included.
• UCCSD: error bars do not include an estimate of

uncertainty for truncation of excitation order to doubles.
• DMRG: error bars include all sources of uncertainty;

the extrapolation in the number of basis states and ex-
trapolation to TL.
• DMET: error bars include all sources of uncertainty;

uncertainty due to extrapolation in of the number of basis
states of the impurity solver and extrapolation to TL as
well as estimates of DMET self consistency convergence.
• DCA: error bars include all sources of uncertainty;

stochastic Monte Carlo uncertainties and an additional
estimate of uncertainty due to extrapolation to the TL.
• DF: values are presented without error bars, the ef-

fect of neglecting non-ladder and higher order diagrams
is not quantified.
•DiagMC: error bars include all sources of uncertainty;

the stochastic Monte Carlo uncertainty at each expansion
order and estimate of uncertainty in convergence of ex-
pansion order.

V. RESULTS AT INTERMEDIATE TO STRONG
INTERACTION STRENGTH

We begin our discussion of results with an analy-
sis of an intermediate-to-strongly coupled case, namely
U/t = 8. Throughout all figures we use common leg-
ends, distinguishing techniques by symbol and color. We
present both results for the thermodynamic limit and
the finite system size data from which the thermody-
namic limit results were obtained. This information is
useful in assessing both the importance of the extrapola-
tion and other aspects of the performance of the method.
We use open symbols to denote values in the thermody-
namic limit and filled symbols for finite size values from
which the extrapolations are obtained.

A. Half-Filled, particle-hole symmetric case
(U/t = 8, n = 1, t′/t = 0)

We begin our discussion with an analysis of the energy
per site for a widely accessible parameter choice, half
filling, showing in Fig. 3 the temperature dependence of
the energy and in Fig. 4 an expanded view of the T = 0
energy.
First we discuss the DCA results in Fig.3; in this

particle-hole symmetric parameter regime the impurity
solvers have no sign problem and cubic complexity, mean-
ing that reliable results can be obtained on relatively
large clusters and that the Monte Carlo errors (here are
on the order of 10−3) can be systematically reduced with
additional computation. Thermodynamic limit data are
obtained from the 1/Nc extrapolation. Computational
scaling towards low temperatures results in an increase
of uncertainty for fixed computational time, and this is
reflected in the uncertainty in the extrapolated values. At
T/t = 0.5 our results agree within error bars with high
temperature series and lattice Monte Carlo data (see Ref.
114).
The results of a DF calculation are shown at T/t = 0.5

(lower T data are not available). The DF technique ne-
glects vertex functions of higher order than two-particle
vertices. Further, at the two-particle level we sum only
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FIG. 3. (Color online) Temperature dependence of the en-
ergy for n = 1 for U/t = 8 obtained by DCA (black circles)
and DF (red cross) and compared to zero temperature results
compiled from various techniques. Solid symbols represent
finite systems, open symbols represent extrapolations to the
thermodynamic limit (TL).

a ladder series in the spin and charge channels. Despite
these approximations, we see that the DF technique pro-
vides an energy which falls on top of that of the extrap-
olated thermodynamic limit DCA result.
Results from a variety of algorithms are available at

zero temperature. Fig. 4 presents an expanded view of
the T = 0 results, with the energy on the vertical axis
and data for each method offset in the x-axis. Note that
in some cases the thermodynamic limit results are further
offset for clarity.
We start our discussion of zero-T results with a Monte

Carlo technique, AFQMC, which is extrapolated to the
thermodynamic limit. In this case, finite size results are
averaged over twisted-boundary conditions, which allows
a smooth and rapid convergence to the thermodynamic
limit. These results, obtained at half filling from Monte
Carlo, are unbiased and therefore expected to be exact
within a quoted uncertainty of ±0.0002t.
DMRG results on cylinders of infinite length but finite

width of 3, 4, 5, and 6 for 45 degree rotated systems and
width of 4 and 6 for non-rotated systems are shown. All
the finite size data are after phase averaging, showing
only very weak finite-size effects, so that an extrapola-
tion to the thermodynamic limit is feasible. In this case,
the estimation of uncertainty (as discussed in Sec. III F)
contains the uncertainty of each extrapolation and the
difference between the two orientations (rotated and non-
rotated), both of which are on the order of 10−4t. The
resulting energy is close to, but slightly outside of, the
AFQMC results. This extrapolation issue was discussed
in more detail in Sec. IVA.
For DMET we show results obtained for finite clusters
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FIG. 4. (Color online) Thermodynamic limit (TL) ground
state energy for n = 1 for U/t = 8 as obtained by various
algorithms (open symbols). Also shown are the finite size
systems (filled symbols with adjacent labels) from which the
TL ground state energy was obtained. Data from AFQMC
(red crosses), DMET (blue triangles), UCCSD (maroon dia-
monds), MRPHF (purple triangles), DMRG (orange squares),
and FN (green triangles). Horizontal thin dotted lines show
the best estimates for the ground state energy.

of size 2× 2, 4× 2, 8× 2, and 4× 4. The thermodynamic
limit is obtained by extrapolating the 2 × 2, 4 × 2, and
4× 4 clusters in 1/

√
Nc. Errors from the solution of the

finite impurity are on the order of 10−4t. DMET clus-
ter size convergence is slower at large U , thus U/t = 8
corresponds to the largest half filling DMET error bar
discussed here. The total thermodynamic limit uncer-
tainty is estimated to be 0.001t, and comes entirely from
the thermodynamic limit extrapolation. The lower end
of the DMET error bar lies at the average of the DMRG
and AFQMC estimates.

For the FN technique, a diffusion Monte Carlo calcula-
tion based on the nodal structure of a trial wave function
obtained with variational Monte Carlo, we show finite
size results for a sequence of 45-degree rotated clusters
with size 98, 162, and 242, which have the property of
being closed shells at U = 0. The results show only
weak size dependence, so that the thermodynamic limit
value shown is close to the finite size results. However,
the results are systematically above the values obtained
by AFQMC and DMRG, while they are consistent with
DMET. This is a consequence of the fixed node approx-
imation, which in this particular case resulted in a fixed
node error of about 0.0015t.

The results of UCCSD are shown for systems of size
6 × 6, 8 × 8, and 10 × 10, and exhibit weak finite size
effects at this U value. We see that the result is accu-
rate to roughly the 1% level. The deviation is caused by
correlations that are not captured by singles and dou-
bles. Higher order excitations (triples, quadruples, etc)
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will eventually recover the remaining energy. To sup-
port this claim we show a single case in Fig. 4 labeled
as UCCSDT(Q) which includes all triples and a subset
of quadruples. In this higher order approximation the
deviation from other techniques is reduced by a factor of
2. The higher order corrections are more important for
these coupled cluster calculations than extrapolations in
cluster geometry size, however, the improvement with
increased excitation order converges slowly. Also shown
are approximate results including quadruples from small
system sizes (4× 4) which we label UCCSDTQ*. While
not exact, this approximation scheme produces a results
which deviates from AFQMC by only 0.15%.

MRPHF calculations have been performed for several
finite systems (4× 4, 6× 6, and 8× 8) . As summarized
in the methods description, reaching a constant level of
accuracy would require a successively larger MR expan-
sion. Results for larger systems are therefore solved less
precisely; in particular the energy of the 8 × 8 lattice
in Fig. 4 is too high. More sophisticated implementa-
tions and additional optimizations may make it possible
to reach the accuracy needed to perform extrapolations
to the thermodynamic limit.

AFQMC - TL

DCA-TL

UCCSD - TL

DFDMET
DCA MRPHF FN - TLDMET - TL

DMRG

DMRG - TL

0 0.1 0.2 0.3 0.4 0.5

T/t

0.045

0.05

0.055

D

2x2xxxx

0.0535

0.054

0.0545

5xinf

6xinf

n=1, U=84x4

6x6

2x2

4x2
4x4

8x8

FIG. 5. (Color online) Double occupancy data for U/t = 8
and n = 1. Main panel: temperature dependence of dou-
ble occupancy, obtained from DCA (finite T , black circles)
and DF (finite T , red plus sign), and the T = 0 techniques
AFQMC (red crosses), DMET (blue triangles), UCCSD (ma-
roon diamonds), MRPHF (purple triangles), DMRG (orange
squares), and FN (green triangles). Solid symbols represent
finite systems, open symbols represent extrapolations to the
thermodynamic limit (TL). Inset: data at T = 0 reproduced
with an arbitrary x-axis offset, from MRPHF, UCCSD, FN,
DMET, DMRG, and AFQMC.

We now discuss the results for the double occupancy
in Fig. 5 at U/t = 8 and n = 1. Open symbols denote
results in the thermodynamic limit, filled symbols results
on finite systems. The finite-T DCA results show that

the double occupancy contribution rises as the tempera-
ture is lowered. The finite-T results are consistent with
the T = 0 values obtained by AFQMC, DMRG, DMET,
FN, and MRPHF. At T/t = 0.5, the double occupancy
obtained from the DF technique is also shown. Unlike
the total energy, the DF double-occupancy shows devia-
tions from the DCA result, suggesting a cancellation of
errors in the kinetic and potential energy terms. As for
all other points we have examined, the DF method pro-
duces results which lie between single-site DMFT values
(not shown) and the extrapolated DCA results.
The inset shows the various T = 0 values. Within error

bars, there is agreement between AFQMC, DMET and
DMRG results for the double occupancy. DMET obtains
a value (after thermodynamic limit extrapolation) com-
parable to AFQMC and, overall, shows a weaker system
size dependence than for the energy.
UCCSD and FN produce a double occupancy which

is underestimated as compared to AFQMC and DMET.
Finite size effects of FN are on the order of 0.0001. Fi-
nally, for MRPHF we quote two values for 4 × 4 and
6 × 6 systems which show a system size dependence on
the order of 0.001. This makes a thermodynamic limit
extrapolation impractical.

B. Doped strongly correlated regime (U/t = 8,
n = 0.875, t′/t = 0)

The half-filled particle-hole symmetric case of Sec. VA
is in many ways ideally suited for numerical algorithms:
a large charge gap allows methods like the DMRG
to quickly converge, and particle-hole symmetry makes
Monte Carlo simulations without a sign problem possi-
ble. We now turn to a case which is particularly difficult
to simulate, where we expect results to be substantially
less accurate than for the half filled case. This parame-
ter regime shows metallic behavior, strong particle-hole
asymmetry, and interesting inhomogeneous phases in the
ground state. In Fig. 6 we plot the total energy per site
and in Fig. 7 the double occupancy per site at U/t = 8
and n = 0.875.
The main panel presents data as a function of temper-

ature. The DCA results remain consistent with T = 0,
but results are not available at the lowest benchmark
temperature, T/t = 0.125, due to a large sign problem in
the Monte Carlo impurity solver. The finite size effects,
at the system sizes accessible in DCA, are smaller than
in the n = 1 case.
The inset to Fig. 6 presents data at T = 0 with an arbi-

trary x-axis offset added for clarity. The AFQMC simula-
tion, using a (non-variational) constrained path approx-
imation in the absence of particle-hole symmetry, yields
a result for the total energy that is lower than the one
obtained from DMET, FN, and DMRG. The total energy
difference is ∼1% when compared to finite sized DMRG,
and ∼ 1.4%(2.1%) when compared to the DMET 8 × 2
(thermodynamic limit) cluster respectively, and ∼ 2.1%
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FIG. 6. (Color online) Data for n = 0.875 for U/t = 8. Main
panel: temperature dependence of E/t compiled from vari-
ous techniques. Solid symbols represent finite systems, open
symbols represent extrapolations to the thermodynamic limit
(TL). Finite T results are shown for DCA (black circles), and
zero-T data from AFQMC (red crosses), DMET (blue trian-
gles), UCCSD (maroon diamonds), DMRG (orange squares),
and FN (green triangles). Top left inset: zoom in to the
zero-T data from DMET, AFQMC, FN, and DMRG includ-
ing finite system size data (as labeled).

in comparison to FN.
DMRG shows the results for cylinders of infinite length

and finite widths of 4 and 6 lattice sites after using phase
averaging. The energy is higher for the wider cylinder,
and for the width 6 cylinder the energy is above the en-
ergy from AFQMC. Given that the extrapolation is per-
formed with only two widths, we consider the extrapo-
lated DMRG value to be not reliable in this case and
omit it entirely.
DMET shows a large system size dependence and a de-

pendence of the thermodynamic limit value on the cluster
sequence chosen for the extrapolation. We show an ex-
trapolation based on 2× 2, 4× 2, and 8× 2 clusters. The
use of the 8×2 cluster allows inhomogeneous order to de-
velop, giving an extrapolated value of E/t = −0.749(7).
The extrapolation using the 4×4 rather than 8×2 cluster,
which does not allow for inhomogeneous order, yields a
value of E/t = −0.737(5). Since the energy changes non-
monotonically: the 8×2 energy lies above the 2×2 energy,
but below the 4×2 energy, the uncertainty in the thermo-
dynamic limit extrapolation is very large, and does not
provide any more information than the results obtained
from the largest clusters.
The FN method shows a clear finite system size depen-

dence. The infinite system value is estimated from the
16 × 16 and 20 × 20 values, and finite size errors are on
the order of 0.001t, much larger than the stochastic er-
rors of 0.00001t. Here, the FN results are consistent with
DMET extrapolation which omits the 4 × 4 cluster and

these are considerably higher than AFQMC. This is sug-
gestive of a fixed node error of ≈ 0.015t, indicating that a
uniform variational wave function may not be enough to
fully account for the nature of the ground state. Indeed,
the VMC error is of the order of 0.022t, much larger than
the one obtained at half filling which was ≈ 0.004t. In
both cases, the FN projection improves the VMC results
by the same order of magnitude.
UCCSD and MRPHF results are much higher in en-

ergy (E/t = −0.7094(5) for MRPHF (16 × 4 system)
and E/t = −0.7122 for UCCSD, barely visible on the
main panel), an indication that correlated metallic states
are difficult to capture with these methods. Although
not shown, data is available for UCCSD(T) (perturba-
tive inclusion of triples) in the supplemental material,46

which improves upon the value from UCCSD, and gives
E/t = −0.7272 (−0.7281) for a 16 × 4 (16 × 8) cluster.
Full inclusion of triples (UCCSDT) lowers the 16× 4 es-
timate to E/t = −0.7427. The MRPHF results indicate
the need for a much larger MR expansion than that af-
forded in this work.
In this parameter regime, ordered ‘stripe’ phases might

exist. However, the precise form of these stripes is
strongly influenced by choice of finite size systems (e.g.
width and orientation of the cylinder in DMRG and
shape of the cluster in DMET) that are used for the ther-
modynamic extrapolation and the approximations used
to solve that finite system. The finite temperature al-
gorithms have not reached the onset of inhomogeneous
states at the lowest temperature accessible. The precise
nature of the inhomogeneities in the ground state in this
parameter regime is still open.
We finally briefly mention the results for double occu-

pancy in Fig. 7 for U/t = 8 and n = 0.875. As was the
case for the energies, the finite-T results smoothly con-
nect to the zero-T values. MRPHF and UCCSD overesti-
mate the double occupancy by close to 15%. The remain-
ing ground state methods (DMRG, AFQMC, DMET,
and FN) present consistent values in the range between
0.04 and 0.043. Both FN and AFQMC values contain
additional (fixed node and constrained path) errors that
are not estimated by the error bar.

C. Half-filled, non particle-hole symmetric case
(U/t = 8, n = 1, t′/t = −0.2)

We now turn our attention to a case of half filling with-
out particle-hole symmetry, by adding a second nearest
neighbor hopping t′. An overview of the energies from
several algorithms for U/t = 8, n = 1 and t′ = −0.2 is
shown in Fig. 8.
The main panel shows the temperature-dependence of

the data. The DCA results available at finite T show
almost no sign problem for T/t = 0.5 and T/t = 0.25, but
are hampered by a severe sign problem at T/t = 0.125.
The results are consistent within error bars with the zero-
temperature results.
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FIG. 7. (Color online) Data for n = 0.875 for U/t = 8.
Main panel: temperature dependence of double occupancy,
D, compiled from various techniques. Solid symbols repre-
sent finite systems, open symbols represent extrapolations to
the thermodynamic limit (TL). Finite T results are shown
for DCA (black circles), and zero-T data from DMET (blue
triangles), MRPHF (purple triangles), UCCSD (maroon dia-
monds), DMRG (orange squares), and FN (green triangles).
Inset: zoom in to the zero-T data from FN, AFQMC, DMET,
and DMRG.

As at U/t = 8, n = 0.875, t′ = 0, the AFQMC is ap-
proximate because of a constrained path approximation
due to the lack of particle-hole symmetry. Despite this,
the results are in agreement with both the DMET and
DMRG results.

The DMET results are obtained on clusters of size
2 × 2, 2 × 4, and 4 × 4. Errors of the individual finite
size systems are substantially smaller than the system
size dependence. The DMET thermodynamic limit is
consistent with the thermodynamic estimates obtained
from DMRG (from cylinders of width 4 and 6) and from
AFQMC. This is even more evident in the bottom right
inset, which displays the thermodynamic limit estimates
on a smaller scale.

FN results are higher in energy than AFQMC and
DMET (well within two joint standard deviations) and
are higher than DMRG by 0.0013t. As seen in previous
plots, the finite system size dependence of the fixed node
results is small on this scale.

UCCSD results show only small finite size effects and
an overall energy ≈1% higher than other techniques. The
MRPHF results obtained on finite systems show an en-
ergy that rises rapidly as the system size is increased. As
in the case of t′ = 0, a systematic extrapolation to the
thermodynamic limit is not possible, and we only present
results on finite systems.
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FIG. 8. (Color online) Data for n = 1 for U/t = 8 with t′/t =
−0.2. Main panel: temperature dependence of E/t compiled
from various techniques. Solid symbols represent finite sys-
tems, open symbols represent extrapolations to the thermody-
namic limit (TL). Finite T results are shown for DCA (black
circles), and zero-T data from AFQMC (red crosses), DMET
(blue triangles), UCCSD (maroon diamonds), MRPHF (pur-
ple triangles), DMRG (orange squares), and FN (green trian-
gles). Top left inset: zoom in to the zero-T data from MR-
PHF, UCCSD, DMET, FN, DMRG, and AFQMC, including
finite system size data (as labeled) for MRPHF, FN, DMET,
and DMRG. Bottom right panel: enlarged region of the top
left inset showing DMET, DMRG, FN, and AFQMC data
at T = 0, including error bars, extrapolated to the infinite
system size.

VI. RESULTS IN THE INTERMEDIATE
COUPLING REGIME

In this section we repeat the previous discussion for an
interaction strength of half the size, U/t = 4. As before
we start our discussion at half filling. We then discuss a
correlated metallic case with 20% doping.

A. Half-Filled, particle-hole symmetric case
(U/t = 4, n = 1, t′/t = 0)

In Fig. 9 we report the energy as a function of temper-
ature. At finite T and U/t = 4, both DCA and the di-
agrammatic Monte Carlo method for the [G(0)]2U series
provide results in the thermodynamic limit. DCA results
in the thermodynamic limit are extrapolated from finite
clusters, DiagMC results are extrapolated in the expan-
sion order. The results are consistent within the error
bars of the respective methods. The large error bars of
the extrapolation in DiagMC-[G(0)]2U mainly come from
a conservative estimate of the diagram-order extrapola-
tion error. DCA shows surprisingly large finite size ef-
fects which persist above Nc = 72, unlike at U/t = 8.
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FIG. 9. (Color online) Data for n = 1 for U/t = 4. Main
panel: temperature dependence of E/t compiled from vari-
ous techniques. Solid symbols represent finite systems, open
symbols represent extrapolations to the thermodynamic limit
(TL). Finite T results are shown for DCA (black circles) and
DiagMC (turquoise stars), and zero-T data from AFQMC
(red crosses), DMET (blue triangles), UCCSD (maroon dia-
monds), MRPHF (purple triangles), DMRG (orange squares),
and FN (green triangles). Top left inset: zoom in to the zero-
T data from MRPHF, DMET, FN, DMRG, and AFQMC,
including finite system size data (as labeled) for MRPHF,
FN, DMRG, and DMET.

While each individual Nc result has uncertainties in the
energy on the order of 10−4t, the spread in values results
in large uncertainty when extrapolated to the thermody-
namic limit.

We now move to the zero-temperature methods, which
are shown in the inset of Fig. 9. AFQMC provides numer-
ically exact ground state energies for this system. The
value quoted is E/t = −0.8603(2), which is in agreement
with the DMET value of E/t = −0.8604(3). and the
DMRG value of E/t = −0.8605(5). DMET values are
obtained from an extrapolation of 2× 2, 2× 4, and 4× 4
clusters. DMRG values are obtained from an extrapola-
tion of widths 3, 4 and 5 for 45-degree rotated cylinders
and of width 4 and 6 for non-rotated cylinders.

The results obtained by AFQMC, DMRG, and DMET
are in excellent agreement with recent calculations ob-
tained from linearized auxiliary fields Monte Carlo
(LAQMC) available in the literature141, which gives
E/t = −0.85996(5). FN results are higher in energy
(E/t = −0.8575(3)), and unlike in previous cases for
stronger interaction, a clear dependence on the finite sys-
tem studied is visible. The FN projection technique leads
to an energy gain of ≈ 0.002t with respect to the VMC re-
sult of E/t = −0.8558(5). This number can be compared
with a previous estimation of the thermodynamic limit
in VMC obtained with a slightly less accurate variational
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FIG. 10. Data for n = 1 for U/t = 4. Main panel: tem-
perature dependence of double occupancy, D, compiled from
various techniques. Solid symbols represent finite systems,
open symbols represent extrapolations to the thermodynamic
limit (TL). Finite T results are shown for DCA and DiagMC
(turquoise stars), and zero-T data from DMET (blue trian-
gles), UCCSD (maroon diamonds), MRPHF (purple trian-
gles), DMRG (orange squares), and FN (green triangles). In-
set: zoom in to the zero-T data from DMRG, FN, UCCSD
(only finite systems data), DMET, and AFQMC.

state, see Ref. 78.

The UCCSD thermodynamic limit overestimates the
energy by ∼ 0.7%. MRPHF values, shown as purple right
triangles in the main panel and inset, show large finite
size effects and are higher than the values obtained with
other methods. We see that as system size is increased,
the energy increases rapidly.

In Fig. 10 we report the double occupancy vs T . At
finite T , the DCA results show a clear rise in D as T de-
creases from 0.5t → 0.25t. However, this trend reverses
as T decreases further. A similar behavior is obtained
also by using DiagMC, demonstrating that this is a gen-
uine effect present in the Hubbard model.

These trends are consistent with the T = 0 data, which
lie below all of the DCA data points at finite T . For
clarity of presentation we again display this data in the
inset and add an arbitrary x-axis offset. We see that fi-
nite size effects in DMET are very small, and that the
extrapolation of DMET agrees perfectly with AFQMC.
Finite sized FN results produce values comparable to to
DMRG, DMET and AFQMC. However, extrapolation in
FN results in an underestimate of the double occupancy,
although within uncertainty. In the DMRG simulations,
phase averaging has greatly reduced finite size effects,
and the DMRG error bars are determined by the trunca-
tion errors. Within those error bars, DMRG results are
consistent with AFQMC and DMET.
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B. Doped case (U/t = 4, n = 0.8, t′/t = 0)

Away from half filling (with t′ = 0), we can perform
further comparisons at finite T between DCA and Di-
agMC at U/t = 4. We begin the discussion with the inset
of Fig. 11, which shows the convergence of the imaginary
part of the local Matsubara self-energy of the G2Γ and
G2W DiagMC series as a function of evaluation order.
The values are compared to DCA results. We see that
the first six orders of the series are precise enough to
get good agreement of the Matsubara self-energy in the
thermodynamic limit, and convergence is rapid. While
deviations are visible in the energy, these are attributed
to differences of the chemical potential, i.e. the real part
of the self-energy.
The top left inset of Fig. 11 shows the convergence of

the energy in DCA and two different series of DiagMC,
[G(0)]2U and G2Γ, for increasing order of the diagram-
matic resummations, α. The values obtained from the
three techniques are within error bars.
The T > 0 values smoothly connect to T = 0 (although

a precise comparison is not possible because we lack a
quantitative functional form to extrapolate the T > 0
values to T = 0) which we display separately in Fig. 12
where data from DMET, AFQMC (constrained path),
UCCSD, MRPHF, FN, and DMRG are shown. In this
case, MRPHF and UCCSD are systematically higher in
energy from the other techniques. In the case of UCCSD
we see larger finite size effects than at U/t = 8. Inclu-
sion of higher orders of excitation (perturbative triples
(T), triples T and perturbative quadruples (Q)) suggests
that the dominant error is associated with the truncation
of the excitation order and not finite size effects. The
FN result is in agreement with the value from DMRG.
At slightly lower energy AFQMC (constrained path) and
DMET are in close agreement. Overall, the spread in
energies is similar to that shown away from half filling
at U/t = 8 (see Fig. 6) but smaller in magnitude, per-
haps due to better convergence for weak coupling in some
techniques.

VII. RESULTS IN THE WEAK COUPLING
REGIME

In the weak coupling limit we restrict the presentation
of data to the half-filled case since the correlated metallic
phase is not qualitatively distinct from U/t = 4. Data
sets for doped, weakly correlated systems are available in
the supplemental material.46

A. Half-Filled, particle-hole symmetric case
(U/t = 2, n = 1, t′/t = 0)

In Figs. 13 and 14 we present results for U/t = 2 and
n = 1, the half-filled weak coupling regime. This regime
is particularly easy for methods based on a weak coupling
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FIG. 11. (Color online) Data for n = 0.8 for U/t = 4. Main
panel: temperature dependence of E/t compiled from vari-
ous techniques. Solid symbols represent finite systems, open
symbols represent extrapolations to the thermodynamic limit
(TL). Finite T results are shown for DCA (black circles) and
DiagMC (pink and turquoise asterisks), and zero-T data from
AFQMC (red crosses), DMRG (orange squares), FN (green
triangles), and DMET (blue triangles). Top left inset: zoom
in to the T/t = 0.25 data from DCA and two types of Di-
agMC for different orders α = 3, 4, . . . . Bottom right inset:
plot of the imaginary part of the local self energy ImΣ(iωn)
from DiagMC for different expansion orders α and from DCA
(black circles covered by magenta stars).
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thermodynamic limit ground state energy was obtained. Data
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the best estimates for the ground state energy.
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Main panel: temperature dependence of E/t compiled from
various techniques. Solid symbols represent finite systems,
open symbols represent extrapolations to the thermodynamic
limit (TL). Finite T results are shown for DCA (black circles)
and DiagMC (blue asterisks), and zero-T data from AFQMC
(red crosses), DMET (blue triangles), UCCSD (maroon dia-
monds), MRPHF (purple triangles), DMRG (orange squares),
and FN (green triangles). Top left inset: zoom in to the zero-
T data from UCCSD, DMET, FN, DMRG, and AFQMC, and
DMET. Bottom right panel: enlarged region of the top left
inset showing thermodynamic limit data for DMRG, DMET,
UCCSD, FN and AFQMC data at T = 0, including error
bars, extrapolated to the infinite system size.

expansion around a non-interacting system, and many of
the algorithms show uncertainties that are much smaller
than in the intermediate or strong interaction limit.

At non-zero T , the data from two types of DiagMC and
from DCA in the thermodynamic limit agree within un-
certainty. The values smoothly connect to the T = 0 val-
ues, except for MRPHF energies, which are higher than
the ground state energies obtained by the other meth-
ods and higher than the energies obtained for the lowest
temperature point obtained from both finite-T methods.

At T/t = 0.5 we show a result from DF. As was the
case in the strong coupling regime, the DF procedure pro-
duces an energy estimate consistent with DCA results. In
this case, with only weak finite size dependence, the un-
derlying DMFT approximation differs from DCA by only
0.4%. The DF value improves on the DMFT and differs
from the extrapolated DCA results by only 0.07%.

In the lower right inset of Fig. 13, we present T = 0 ex-
trapolations. As in the case of larger interactions, DMET
and AFQMC (which is numerically exact in this situa-
tion) agree precisely while FN is slightly higher in energy
but compatible within two error bars. In the upper left
inset we explore the finite size effects of the methods.
In the case of DMET, these finite size effects are small,
and can be extrapolated with small error bars. FN shows

much larger finite size effects, approaching the thermody-
namic limit energy from below (only the largest system
size is visible on the scale of the plot). DMRG results
with phase averaging are precise even at U/t = 2, though
much larger uncertainties than at U/t = 8 are present.

The results of MRPHF, outside of the scale shown by
the inset, show a gradual decrease of the energy with in-
creasing system size: 4 × 4 yields E/t = −1.1260, 6 × 6
E/t = −1.1515, and 8 × 8 E/t = −1.1629. UCCSD re-
sults, here shown for cluster sizes of 12 × 12, 10 × 10,
8× 8, and 6× 6, show large finite size effects. With the
aid of an extrapolation the value in the thermodynamic
limit is estimated higher than other techniques. The de-
viation of the thermodynamic limit value from AFQMC
and DMET is on the order of 2× 10−3t, suggesting that
excitations beyond the singles and doubles level are im-
portant even in this relatively weak coupling regime.
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FIG. 14. Data for n = 1 for U/t = 2. Main panel: tempera-
ture dependence of double occupancy, D, compiled from var-
ious techniques. Solid symbols represent finite systems, open
symbols represent extrapolations to the thermodynamic limit
(TL). Finite T results are shown for DCA (black circles) and
DiagMC (turquoise asterisks), and zero-T data from DMET
(blue triangles), UCCSD (maroon diamonds), MRPHF (pur-
ple triangles), DMRG (orange squares), and FN (green trian-
gles). Inset: zoom in to the zero-T data from FN, UCCSD,
MRPHF, DRMG, DMET, and AFQMC.

Finally, Fig. 14 shows the double occupancy for these
parameters. We see an increase in finite size effects in
DCA as we progress to lower temperature. Reasonable
agreement with DiagMC is achieved in the double occu-
pancy. At temperatures lower than our lowest tempera-
ture, the double occupancy will need to dip, as was the
case at U/t = 4, in order for the finite T data to be con-
sistent with T = 0. Similar to the strong coupling case,
DF provides only a slight shift to the double occupancy,
a minimal improvement over DMFT alone.

The ground-state double occupancies are very precisely
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FIG. 15. (Color online) Imaginary part of the local self
energy, ImΣloc(iωn) at U/t = 2, T/t = 0.5 and n = 0.3 from
DCA and DiagMC. In the case of DiagMC-G2Γ we label α,
the series order from Eqn (7).

determined by AFQMC and DMET which are in agree-
ment. The FN value is somewhat overestimated. Results
from DMRG fall below AFQMC and DMET and the er-
ror bar underestimates the uncertainty. The larger er-
ror appears consistent with the difficulty in treating the
small U limit in the DMRG calculations. The results
from MRPHF show an improvement in D as the system
size is increased, consistent with the behavior for the en-
ergy. In the case of UCCSD, since it is an expansion in
the coupling strength, at weak coupling the procedure is
more reliable, and while there are substantial finite size
effects, the extrapolation produces a result within error
bars of AFQMC, and in general agreement with DMET.

VIII. FREQUENCY AND MOMENTUM
DEPENDENCE

Next we discuss single-particle finite temperature prop-
erties. All finite-temperature algorithms discussed in this
work are based on approximations of the single-particle
self-energy. We show three characteristic plots for this
quantity: Figure 15 shows the imaginary part of the lo-
cal self-energy as a function of Matsubara frequency, Fig-
ure 16 shows the dependence of the real part of the lowest
Matsubara frequency on k-space, and Figure 17 shows the
frequency-dependence of the imaginary part of the self-
energy for a specific momentum. Any discrepancy in the
energy or double occupancy is the result of discrepancies
in the single-particle self-energy.
The data shown in Fig. 15 is obtained for weak inter-

action strength U/t = 2 and for a density n = 0.3. In
this metallic regime, self-energies are small. Black circles
denote the imaginary part of the local self energy from
an Nc = 20 DCA calculation, which for these parameters
shows essentially no finite size effects. The data agrees
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FIG. 16. (Color online) Comparison of the lowest Matsubara
frequency, iω0, real part of the self energy, ReΣ(k, iω0), ob-
tained from DF (red) compared to 72-site DCA calculations
(black) plotted as a function of momentum, k, throughout
the Brillouin zone for n = 1.0, U/t = 8, T/t = 0.5. The Dual
Fermion and DCA self-energies are plotted as step functions.
Also included are interpolated results obtained by diagram-
matic determinantal Monte Carlo120,140,142,143 (dashed black)
with a gray shading to indicate the level of uncertainty.

perfectly with DiagMC-G2W data shown as red dashed
lines, and convergence of the DiagMC-G2Γ method to the
result of the other two methods (stars, magenta dotted
line) is observed as a function of expansion order α. This
agreement implies that the local physics is captured well
by all three algorithms.

In Fig. 16 we examine momentum dependent data. We
show a path of (kx, ky) through the Brillouin zone and
plot the real part of the self energy at the lowest Mat-
subara frequency at U/t = 8, β = 2 and n = 1. Di-
agMC data is not available in this regime, but for com-
parison we plot large DCA cluster results (Nc = 72)
and results from continuous-time lattice Monte Carlo
simulations (DDMC, see Refs. 120, 140, 142, and 143).
The DCA approximation (blue lines) produces a step-
discretized self-energy which is in approximate agreement
with the momentum dependence from other techniques.
Discrepancies between the approximate DF method and
the (essentially converged) DDMC method are visible
but within the uncertainty of the DDMC comparison
data. Any discrepancies are expected to rapidly dis-
appear at higher Matsubara frequencies, which can be
seen in a comparison of the imaginary part of the self-
energy (Fig. 17) of DF and DCA at fixed momentum k =
(π, 0). For comparison/verification purposes, we include
results from dynamical vertex approximation (DΓA, see
Refs. 124, 144, and 145) which, in a spirit similar to DF
solves the model in an expansion of two-particle vertex
functions. We find that the results from DF and DΓA
are consistent.
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IX. TABLES FOR GROUND STATE
PROPERTIES

We conclude the discussion of our results with a list
of the thermodynamic limit estimates for the half-filled
t′ = 0 case. Table II shows a list of energies in the
thermodynamic limit, obtained from AFQMC, DMRG,
DMET, and FN. The MRPHF and UCCSD values pre-
sented show the value for the largest finite size system
studied. The uncertainties presented are the best uncer-
tainties available within each algorithm and do not con-
tain an assessment of systematic errors (e.g. fixed node
or truncation in expansion order). We see that for much
of phase space, errors are a few times 10−4t and values
between the techniques are remarkably consistent.

Table III shows the double occupancy for the same
values. Relative errors for the double occupancy are of
the same magnitude as for the total energy, and values in
the thermodynamic limit are consistent within error bars.
Tables IV and V present ground state energies for the
densities n = 0.8 and 0.875 for values of U/t considered in
this work. The full table of values for the data presented
in this paper is available online as supplemental material
to this paper.46

Not all quantities are as consistent as the energies.
This is especially true for order parameters and correla-
tion functions, where discrepancies outside of error bars
are present. Presumably, many competing phases exist in
a narrow energy window near the ground state, and the
most favorable state found in each method will depend on
details of the finite size system and the approximation.
Table VI shows the comparison between the magnetiza-
tion that DMET observes and the magnetization found
in AFQMC for the full range of U/t at half filling. At

weak interaction strength, DMET finds a larger polar-
ization than AFQMC even though the energies agree to
all significant digits, as a result of DMET finite size scal-
ing from small clusters. At large interaction strength,
AFQMC gives a polarization with large statistical fluc-
tuation despite very accurate energies. Similar behavior
(not shown here) is apparent for other variables, e.g. the
d-wave order parameter or the stripe geometry observed
at U/t = 8 and n = 0.875.

X. CONCLUSIONS

In this paper we have presented a detailed examination
of results for static and dynamic properties of the two di-
mensional Hubbard model at correlation strengths rang-
ing from weak to intermediate to strong coupling, and
at various carrier concentrations, obtained using state of
the art numerical methods. We believe the results are
useful for two reasons. First, the two dimensional Hub-
bard model is one of the paradigm models of quantum
condensed matter theory, and it is therefore important
to determine, as reliably as possible, the state of our
knowledge about it. Second, solving the grand-challenge
problem of determining the physics of interacting many-
electron systems will require numerics, and as no one
technique is likely to provide solutions in all regimes or
for all quantities of physical interest, it is important to
develop tools for assessing the strengths and weaknesses
of different approaches.
We argue that the only quantities that can meaning-

fully be compared between different approaches are esti-
mates, with error bars, for the thermodynamic limit val-
ues of observables including local operators such as the
energy, double occupancy, density (or chemical poten-
tial) and magnetization, as well as correlation functions
such as the electron self-energy. We restricted attention
to methods and regimes for which large enough systems
can be studied that reasonable extrapolations to the ther-
modynamic limit can be performed. Care is required in
performing the extrapolations and we have found it use-
ful to present both the extrapolated results and (in most
cases) the finite size data that led to the extrapolation.
Comparison of results obtained from different methods

shows that the ground state properties of a substantial
part of the Hubbard model phase space are now under
numerical control (see e.g. Figs 4 and 12). Moreover,
where there is agreement on the ground state properties,
the non-zero temperature methods appear to connect
smoothly to the ground state as the temperature is de-
creased, although a quantitative extrapolation to T = 0
is not yet available. The most substantial uncertainties
exist at intermediate correlations (e.g. U/t ≈ 4 → 8)
and at dopings near to but not equal to the half filling
value n = 1. In this intermediate coupling/near half
filling regime several physically different states seem to
have very similar energies, and small effects can favor the
choice of one state over the other, leading to substantial



23

U 2 4 6 8 12

AFQMC -1.1763 0.0002 -0.8603 0.0002 -0.6568 0.0003 -0.5247 0.0002 -0.3693 0.0002
DMET -1.1764 0.0003 -0.8604 0.0003 -0.6562 0.0005 -0.5234 0.0010 -0.3685 0.0010
DMRG -1.176 0.001 -0.8605 0.0005 -0.6565 0.0001 -0.5241 0.0001 -0.3689 0.0001
FN -1.175 0.001 -0.8575 0.0003 -0.6551 0.0001 -0.52315 0.00005 -0.36835 0.00005
MRPHF -1.1628 [8 × 8] -0.8554 [8 × 8] -0.6512 [8 × 8] -0.5169 [8 × 8] -0.3626 [8 × 8]
UCCSD -1.1735 0.0004 -0.8546 [14 × 14] -0.6510 [10 × 10] -0.5191 [10 × 10] -0.3647 [10 × 10]
UCCSDTQ* -1.1749 – -0.8610 – -0.6582 – -0.5255 – -0.3696 –

TABLE II. Zero-temperature energy and uncertainty for n = 1, T = 0, for a range of interaction strengths U , obtained from
AFQMC, DMET, DMRG, FN, MRPHF and UCCSD. Where extrapolations to the TL are not available, finite size geometries
are listed in lieu of uncertainties. UCCSDTQ* data estimates higher order corrections by including triples from a [6 × 6] and
quadruples from a [4 × 4]. UCCSD data for U/t > 4 provides nearly converged energy estimates with respect to system size.

U 2 4 6 8 12

AFQMC 0.1923 0.0003 0.1262 0.0002 0.0810 0.0001 0.0540 0.0001 0.0278 0.0001
DMET 0.1913 0.0004 0.1261 0.0001 0.08095 0.00004 0.05398 0.00007 0.02780 0.00003
DMRG 0.188 0.001 0.126 0.001 0.0809 0.0003 0.0539 0.0001 0.0278 0.0001
FN 0.198 0.001 0.125 0.001 0.0803 0.0002 0.0535 0.0001 0.0278 0.0002
MRPHF 0.1824 [8 × 8] 0.1262 [8 × 8] 0.0818 [8 × 8] 0.0544 [8 × 8] 0.0275 [8 × 8]
UCCSD 0.194 0.002 0.1268 [12 × 12] 0.0807 [10 × 10] 0.0537 [10 × 10] 0.0276 [10 × 10]

TABLE III. Zero-temperature double occupancy and uncertainty for n = 1, for a range of interaction strengths U , obtained
from AFQMC, DMET, DMRG, FN, MRPHF, and UCCSD. Where extrapolations to the TL are not available, finite size
geometries are listed in lieu of uncertainties.

uncertainties in physical quantities. Also, the issues asso-
ciated with fermion sign problems seem to be most severe.
Interestingly, it is this regime that is of most physical in-
terest in connection with high-Tc superconductivity in
the copper-oxide materials.
Where two or more methods produce results that agree

within reasonable error bars, we take the result to be es-
tablished, and appropriate for use as a benchmark. Ta-
bles of our benchmark results are contained in the supple-
mental material46 and made available online. We expect
that these results will be useful in validating new meth-
ods, or new implementations of existing methods.
Turning now to prospects and open questions, we first

observe that all of the methods we have considered to
date have difficulty in the physically interesting inter-
mediate coupling, near half filling regime. Development
of new methods, or improvement of existing methods to
deal with this regime is urgently needed. Further, we
remark that our understanding of dynamical correlation
functions, even ones as simple as the electron Green func-
tion, is much less advanced than our understanding of
ground state properties and simple expectation values.
Finally, we observe that the process of producing this pa-
per, in particular the confrontation of each method with
the body of related work produced by other methods,

led in several cases to substantial improvements in algo-
rithm and error analysis. We suggest that as quantitative
numerics in the many-electron field continues to evolve,
intercomparison of different methods, leading to bench-
marking on important model problems, will significantly
advance the field.
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