

 Parallel solutions for large-scale
eigenvalue problems arising in

graph analytics

Thèse de doctorat de l'Université Paris-Saclay
préparée à l’Université de Versailles Saint-Quentin-en-Yvelines

École doctorale n°580 Sciences et technologies
de l'information et de la communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Saclay, le 13 décembre 2017, par

 Alexandre Fender

Composition du Jury :

M. Jean-Marc Delosme
Professeur à l’Université d’Evry-Val d’Essonne Président

M. Michel Daydé
Professeur à l’ENSEEIHT Rapporteur

Mme. Katherine Yelick
Professeur à l’University of California Berkeley, USA Rapporteur

M. Joe Eaton
Technical lead à Nvidia, USA Examinateur

M. Jean-Luc Gaudiot
Professeur à l’University of California Irvine, USA Examinateur

Mme. Nahid Emad
Professeur à l’Université de Versailles Directrice de thèse

M. Serge Petiton
Professeur à l’Université de Lille Co-Directeur de thèse

N
N

T
 :

20
17

S
A

C
LV

06
9

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Solutions parallèles pour les grands problèmes de valeurs propres issus de l'analyse de graphe

Mots clés : méthodes numériques, parallélisme, science de données, GPU, PageRank, groupement
spectral

Résumé : Les graphes, ou réseaux, sont des
structures mathématiques représentant des
relations entre des éléments. Ces systèmes
peuvent être analysés dans le but d’extraire des
informations sur la structure globale ou sur des
composants individuels. L'analyse de graphe
conduit souvent à des problèmes hautement
complexes à résoudre. À grande échelle, le coût
de calcul de la solution exacte est prohibitif.
Heureusement, il est possible d’utiliser des
méthodes d’approximations itératives pour
parvenir à des estimations précises. Les
méthodes historiques adaptées à un petit nombre
de variables ne conviennent pas aux matrices
creuses de grande taille provenant des graphes.
Par conséquent, la conception de solveurs
fiables, évolutifs, et efficaces demeure un
problème essentiel.

L’émergence d'architectures parallèles telles que
le GPU ouvre également de nouvelles
perspectives avec des progrès concernant à la
fois la puissance de calcul et l'efficacité
énergétique.
Nos travaux ciblent la résolution de problèmes de
valeurs propres de grande taille provenant des
méthodes d’analyse de graphe dans le but
d'utiliser efficacement les architectures
parallèles. Nous présentons le domaine de
l'analyse spectrale de grands réseaux puis
proposons de nouveaux algorithmes et
implémentations parallèles.
Les résultats expérimentaux indiquent des
améliorations conséquentes dans des
applications réelles comme la détection de
communautés et les indicateurs de popularité.

Title : Parallel solutions for large-scale eigenvalue problems arising in graph analytics

Keywords : numerical methods, parallelism, data science, GPU, PageRank, spectral clustering

Abstract : Graphs, or networks, are
mathematical structures to represent relations
between elements. These systems can be
analyzed to extract information upon the
comprehensive structure or the nature of
individual components. The analysis of
networks often results in problems of high
complexity. At large scale, the exact solution is
prohibitively expensive to compute.
Fortunately, this is an area where iterative
approximation methods can be employed to find
accurate estimations. Historical methods
suitable for a small number of variables could
not scale to large and sparse matrices arising in
graph applications. Therefore, the design of
scalable and efficient solvers remains an
essential problem.

Simultaneously, the emergence of parallel
architecture such as GPU revealed remarkable
ameliorations regarding performances and
power efficiency.

In this dissertation, we focus on solving large
eigenvalue problems arising in network
analytics with the goal of efficiently utilizing
parallel architectures. We revisit the spectral
graph analysis theory and propose novel parallel
algorithms and implementations.
Experimental results indicate improvements on
real and large applications in the context of
ranking and clustering problems.

Acknowledgements

C’est en français que j’ai le plaisir d’écrire ces quelques lignes pour remercier celles

et ceux qui ont le plus compté au cours de mon doctorat. Pour moi la thèse fut une

expérience exceptionnelle autant d’un point de vue professionnel que personnel et

c’est en grande partie lié à toutes les rencontres et les échanges qu’elle a entrainés.

C’est pourquoi je souhaite tout d’abord remercier ma directrice de thèse pour ces

trois années passionnantes. Je remercie Nahid Emad pour sa disponibilité, son ent-

housiasme et ses précieux conseils qui ont accompagné l’ensemble de mes recherches.

Je tiens également à remercier Serge Petiton, mon Co-Directeur de thèse, pour ses

encouragements et ses recommandations. Merci à tous les deux pour cette aventure

particulièrement enrichissante qui n’aurait pas été possible sans vous. Je n’oublierai

pas tous ces moments passés à discuter de l’avenir dans lequel je saurai mieux avancer

grâce à vous.

Je reremercie chaleureusement Michel Daydé, Professeur à l’ENSEEIHT, et Kather-

ine Yelick Professeur à l’University of California Berkeley, qui m’ont fait l’honneur

d’être les rapporteurs de ma thèse. Merci infiniment pour vos recommandations et

votre aide.

J’exprime mes remerciements à Jean-Marc Delosme, Professeur à l’Université

d’Evry-Val d’Essonne, pour avoir accepté d’être président du jury. Vos questions et

vos remarques ont contribué à enrichir mon travail. Je remercie vivement Joe Eaton,

Technical lead à Nvidia, pour être présent à mon jury et pour avoir soutenu ce projet

dès le début en faisant le lien entre la partie théorique et applicative de mes recherches.

Je reremercie Jean-Luc Gaudiot, Professeur à l’University of California Irvine, pour

avoir accepté de faire partie du jury et pour vos conseils.

Ce travail n’aurait pu être mené à bien sans Nvidia, qui m’a permis, grâce à son

soutien matériel, de me consacrer sereinement à l’élaboration de ma thèse. Je remercie

particulièrement Maxim Naumov, pour tous nos échanges sur mes recherches. Je tiens

aussi à remercier mes collègues du bureau de Paris pour tous ces moments riches aussi

bien professionnellement que personnellement.

Je suis reconnaissant de l’accueil chaleureux que m’a témoigné la Maison de la

Simulation. Je remercie l’ensemble des personnes que j’ai pu croiser durant ces trois

ans pour l’agréable atmosphère qu’ils ont su installer. En particulier, je remercie

Édouard Audit, Martial Mancip et Valérie Belle qui ont rendu possible ma soutenance

à la Maison de la Simulation. Je n’oublie pas les membres du laboratoire Li-Parad,

merci de m’avoir fait découvrir le monde de la recherche et de m’avoir encouragé à y

participer au cours de ces huit années à l’Université de Versailles.

Je tiens finalement à remercier celles et ceux qui me sont chers. Leurs attentions et

encouragements m’ont accompagné tout au long de ce parcours. Je remercie ma mère,

pour son soutien et sa confiance infaillible. Merci à Many, Luc, Jeannette et Patrick

d’avoir été présent à chaque instant.

Au terme de ce parcours, je remercie Océane pour avoir su m’accompagner de la

meilleure des façons et pour continuer à m’inspirer quotidiennement.

iv

Table of contents

List of figures ix

List of tables xiii

Nomenclature xv

1 Introduction 1

1.1 Motivations . 1

1.1.1 Graph analytics . 2

1.1.2 Eigenvalue problems . 2

1.1.3 Hardware acceleration . 3

1.2 Structure of this thesis and core contributions 4

2 Accelerated spectral graph analytics 7

2.1 From networks to linear algebra . 7

2.1.1 Structure of graphs and mathematical representation 8

2.1.2 Compressed matrix representation for computers 11

2.1.3 Graph algorithms in linear algebra 14

2.2 Eigenvalue problems arising in graphs 16

2.2.1 PageRank . 16

2.2.2 Clustering . 18

2.3 GPU accelerators . 21

2.3.1 Architecture and programming 21

2.3.2 Eigenvalue methods for networks and accelerators 24

2.3.3 Accelerated basic operations . 32

Table of contents

3 Accelerated multiple implicitly restarted Arnoldi method with nested sub-

spaces 39

3.1 Introduction . 39

3.2 Implicitly restarted Arnoldi solver with PageRank applications on GPU 40

3.2.1 Hybrid GPU approach . 42

3.3 Accelerated multiple IRAM with nested subspaces 45

3.3.1 Enabling nested subspaces in the hybrid IRAM algorithm 45

3.3.2 Synchronous auto-tuning . 46

3.3.3 Implementation . 47

3.3.4 Distributed considerations . 49

3.4 Experimental results . 50

3.4.1 Power method on GPUs . 50

3.4.2 Implicitly restarted Arnoldi for networks on GPU 53

3.4.3 Accelerated multiple IRAM with nested subspaces 56

3.5 Conclusion and future works . 60

4 Spectral modularity clustering 61

4.1 Introduction . 61

4.1.1 Modularity . 63

4.2 Spectral modularity maximization . 67

4.2.1 Algorithm . 67

4.2.2 Eigenvalue Problem . 68

4.2.3 Clustering Problem . 68

4.2.4 Parallelism and Energy Efficiency 70

4.3 Numerical Experiments . 71

4.3.1 Context . 71

4.3.2 Clustering and Effects of Precision 72

4.3.3 Adaptive Clustering . 75

4.3.4 Related Work . 78

4.3.5 Modularity and Spectral Clustering 80

4.4 Conclusion and Future Work . 83

5 Jaccard and PageRank weights in spectral clustering 85

5.1 Introduction . 85

vi

Table of contents

5.2 Jaccard Weights . 87

5.2.1 Jaccard and Related Coefficients 87

5.2.2 Jaccard and Related Edge Weights 88

5.3 Implementation . 91

5.3.1 Parallel Algorithm . 91

5.3.2 PageRank and Vertex Weights . 94

5.4 Graph Clustering . 96

5.4.1 Jaccard Spectral Clustering . 96

5.4.2 Tversky Spectral Clustering . 97

5.4.3 Profiling . 98

5.5 Numerical Experiments . 99

5.5.1 Multi-level Schemes (CPU) . 100

5.5.2 Spectral Schemes (GPU) . 101

5.5.3 Quality Across Many Samples . 102

5.6 Conclusion and Future Work . 104

6 Multiple implicitly restarted Lanczos with nested subspaces 105

6.1 Introduction . 105

6.1.1 Spectral graph analysis and clustering 106

6.2 Multiple implicitly restarted Lanczos with nested subspaces 107

6.2.1 Proposed approach . 107

6.2.2 Hybrid acceleration . 108

6.2.3 Profile . 111

6.3 Experiments . 112

6.3.1 Modularity . 113

6.3.2 Minimum balanced cut . 118

6.3.3 Different architectures . 120

6.3.4 Variation of the Krylov subspace size 121

6.4 Conclusion . 123

7 Conclusions and perspectives 125

Communications 129

References 131

vii

Table of contents

Appendix A Resumé en Français 139

A.1 Motivations . 139

A.1.1 Analyse de graphe . 140

A.1.2 Problèmes de valeurs propres . 140

A.1.3 Accélération matérielle . 141

A.2 Structure de la thèse et contributions . 142

viii

List of figures

2.1 Directed graph with 6 vertices and 10 edges 7

2.2 Amazon book co-purchasing data set with PageRank vertex weights,

Jaccard edge weights and spectral cluster assignments in two groups . . 8

2.3 Power law distribution . 10

2.4 Adjacency matrix representation of Figure 2.1 11

2.5 Multidimensional CSR representation 14

2.6 PageRank visualization, α =0.9 . 16

2.7 The Google matrix of Figure 2.1 . 18

2.8 Hierarchical clustering coupled with spectral clustering 20

2.9 Diagram of Nivida GP100 with 60 SM and 3840 cores 21

2.10 Streaming multi-processor (SM) of Nvidia GP100 22

2.11 Parallel tree-based warp reduction . 34

2.12 Parallel SpMV - CSR scalar . 35

2.13 Parallel SpMV - CSR vectorized . 35

2.14 Parallel SpMV - CSR merge-path . 36

2.15 CSRMV-MP vs CUSPARSE on the entire matrix collection of the Univer-

sity of Florida (Merrill and Garland, 2016). 38

2.16 CSRMV-MP vs MKL on the entire matrix collection of the University of

Florida (Merrill and Garland, 2016). 38

3.1 Network representing 105 books sold by Amazon connected by 441

frequent co-purchasing by the same buyers. 41

3.2 Graph of Figure 3.1 where color and diameter of vertices vary according

to the PageRank. 41

3.3 Accelerated hybrid approach of IRAM and MIRAMns 45

ix

List of figures

3.4 Speedup of the power method implementation on GPU vs. CPU (paral-

lel) for PageRank applications . 51

3.5 Speedup of the power method on several GPU for PageRank applications 52

3.6 Speedup of IRAM on GPU vs. power method on GPU with different

damping factors . 54

3.7 Impact on time and memory when changing the Krylov subspace size

on com-Orkut . 55

3.8 Profiling of IRAM on GPU . 55

3.9 Speedup and cycles saved in MIRAMns vs. IRAM. 57

3.10 Comparison of the residuals of MIRAMns and IRAM on Cage15. 58

3.11 Selected subspace size in MIRAMns vs. IRAM on af23560 59

3.12 Variation of the subspace frequency in MIRAMns on cage14 59

4.1 Same graph as in Figure 3.2 where vertices are coloured according to

their ground truth cluster. 62

4.2 Same graph as in Figure 3.2 where vertices are coloured according to

their cluster found by our spectral modularity maximization. 62

4.3 Profiling of the modularity algorithm . 68

4.4 The time achieved for 64 and 32 bit precision, when splitting the graph

into 7 clusters . 72

4.5 The number of iterations achieved for 64 and 32 bit precision, when

splitting the graph into 7 clusters . 73

4.6 The modularity score achieved for 64 and 32 bit precision, when split-

ting the graph into 7 clusters . 74

4.7 Comparing the impact of varying the number of clusters used for as-

signment for different number of computed eigenvectors 76

4.8 The modularity score achieved when changing the number of clusters

for citationCiteseer network in 64 bit precision 77

4.9 The speedup and relative quality when compared to the reference

results for large data sets on GPU in (Auer, 2013) 78

4.10 Zachary Karate Club network where vertices are coloured according to

their faction. 79

4.11 The speedup and relative quality when compared to the reference

results for large data sets on CPU in (Lasalle and Karypis, 2015) 81

x

List of figures

4.12 The modularity score obtained on large cases by using assignment

to clusters generated by modularity and minimum balanced cut algo-

rithms for 7 clusters in 64 bit precision 82

5.1 Amazon book co-purchasing original graph 86

5.2 Amazon book co-purchasing graph with Jaccard 86

5.3 Graph example, G = (V, E) . 89

5.4 Speedup of the GPU implementation vs. 1 and 12 CPU threads when

computing Jaccard Weights . 94

5.5 Speedup when computing PageRank . 95

5.6 Profile of spectral clustering with PageRank vertex and Jaccard edge

weights . 99

5.7 Improvement in the quality of partitioning obtained by METIS, with

Jaccard and Jaccard-PageRank for coPapersCitseer graph 101

5.8 Improvement in the quality of partitioning obtained by nvGRAPH, with

Jaccard and Jaccard-PageRank for coPaperDBLP graph 102

5.9 Improvement in the quality of partitioning obtained by nvGRAPH and

METIS, with Jaccard and Jaccard-PageRank weights 103

6.1 Overview of the accelerated MIRLns solver. Green is associated to the

device and blue corresponds to the host 109

6.2 Profiling of the implicitly restarted Lanczos eigensolver 111

6.3 The number of iterations achieved for 64 and 32 bit precision for spec-

tral modularity maximization . 114

6.4 The modularity score achieved for 64 and 32-bit precision for spectral

modularity maximization (Titan X). 116

6.5 The speedup of MIRLns over IRL on Tesla P100 for 64 and 32-bit

precision in the context of spectral modularity maximization. 117

6.6 The number of iterations achieved for 64 and 32-bit precision for spec-

tral balanced cut minimization (Titan X). 118

6.7 The ratio edge cut score achieved for 64 and 32-bit precision for spectral

balanced cut minimization (Titan X). 119

6.8 The number of iterations achieved for 64 and 32-bit precision for spec-

tral modularity maximization on k6000 and Titan X hardware. 121

xi

List of figures

6.9 The convergence of IRL and MIRLns on hollywood-2009 with an eye

on the selected subspace size mmax = 22 (Tesla K20c). 122

xii

List of tables

2.1 COO format . 12

2.2 CSR format . 12

2.3 CSC format . 13

2.4 Ellpack format . 13

3.1 General information on networks . 51

3.2 IRAM solver on GPU vs. power method on GPU in PageRank applica-

tions (α = 0.85, m = 4, 64 bit precision) 53

3.3 General information on matrices . 56

4.1 General information on networks . 71

4.2 The modularity (Mod), time (T) and # of iterations (It) achieved for 64

and 32 bit precision, when splitting the graph into 7 clusters 75

4.3 The modularity (Mod), best number of clusters (Clu) according to mod-

ularity, time (T) and number of iterations (It) achieved in 64 bit precision 77

4.4 The modularity for a given # of clusters when compared to the reference

results for large data sets in (Auer, 2013) 80

4.5 The modularity for a given # of clusters when compared to the reference

results for small data sets in (Auer, 2013) 80

4.6 The modularity score (Mod) and time (T) obtained by our spectral

modularity maximization (GPU) and reference results from (Lasalle

and Karypis, 2015) on hierarchical modularity maximization (CPU) . . 81

4.7 The modularity score (Mod) and time (T) obtained by using the assign-

ment to partitions generated by modularity and minimum balanced cut

algorithm for 7 clusters in 64 bit precision 82

5.1 Time(ms) needed to compute Jaccard weights 94

xiii

List of tables

5.2 Time(ms) needed to compute PageRank 96

5.3 General information on networks . 99

5.4 Improvement in the quality of partitioning obtained by nvGRAPH

(Spect) and METIS (M-L), with Jaccard (J) and Jaccard-PageRank (J+P)

weights . 103

6.1 The number of iterations (It) and modularity score (Mod) achieved for

64 and 32-bit precision for spectral modularity maximization (Titan X). 115

6.2 The time (T) in millisecond, modularity score (Mod) and speedup (SU)

achieved for 32 and 64-bit precision for spectral modularity maximiza-

tion on Tesla P100. 117

6.3 The number of iterations (It) and ratio edge cut score (ECR) achieved

for 64 and 32-bit precision for balanced cut minimization. 119

xiv

Nomenclature

Acronyms / Abbreviations

API Application Programming Interface

BLAS Basic Linear Algebra Subprograms

CCDF Complementary cumulative distribution function

COO Coordinate matrix format

CPU Central Processing Unit

CREW Concurrent Read Exclusive Write

CSC Compressed Sparse Column matrix format

CSR Compressed Sparse Row matrix format

CSRMV Compressed Sparse Row Matrix Vector multiplication

CUDA Compute Unified Device Architecture

ECC Error Correcting Code

ERAM Explicitly Restarted Arnoldi Method

FLOPS FLoating point Operations Per Second

GPGPU General-Purpose computing on Graphics Processing Units

GPU Graphics Processing Unit

HPC High Performance Computing

xv

Nomenclature

IRAM Implicitly Restarted Arnoldi Method

IRL Implicitly Restarted Lanczos Method

MERAM Multiple Explicitly Restarted Arnoldi Method

MIRAMns Multiple Implicitly Restarted Arnoldi Method with nested subspaces

MIRLns Multiple Implicitly Restarted Lanczos method with nested subspaces

MKL Maths Kernel Library

NNZ Number of non-zeroes

NP Non-deterministic Polynomial-time problem

PCI Peripheral Component Interconnect

PRAM Parallel Random-Access Machine

QR QR factorization or the QR method

RAM Random-Access Memory

RMAT Recursive MATrix graph generator

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessor

SPMV SParse Matrix Vector multiplication

SSSP Single Source Shortest Path algorithm

SSWP Single Source Widest Path algorithm

STL Standard Template Library

TDP Thermal Design Power

TEPS Traversed Edges Per Second

UVM Unified Virtual Memory

xvi

Chapter 1

Introduction

1.1 Motivations

For the past 30 years, the world’s technological capacity to store information has

roughly doubled every 3 years, resulting in an immense amount of heterogeneous

data (Hilbert and Lopez, 2011). Moreover, the recent shift in human communication

coupled with technical progress has triggered an extensive growth of data volume.

Yet, it is estimated that only 1% of the information in the digital universe is currently

analysed (Gantz and Reinsel, 2012).

Simultaneously, the CPU clock speed has stopped increasing causing the democra-

tization of parallel architectures and the need for and a new generation of software

(Sutter, 2005).

Since then, high performance computing (HPC) and parallel techniques for solving

complex computational problems have reached unprecedented levels. Most powerful

machines (Dongarra et al., 2017) now have over a million cores and approach the

exaFLOPS corresponding to a billion-billion calculations per second.

We are now at the edge of a new era of science where data and hardware open new

perspectives transforming societies through the next level of analytics and artificial

intelligence.

1

Introduction

1.1.1 Graph analytics

Many recent applications model information as relations between abstract entities.

An intuitive structure for this model is a graph, also called a network. Each node

can represent a person, place, object and each relationship represents how two nodes

are associated. This allows the modeling of all kinds of data from social networks to

roads, to neural networks, to the Internet, to populations or anything else defined by

relationships (Newman, 2010).

Graph analytics is the science of analysing the comprehensive structure or the nature

of individual components in a network. It finds key information such as communities,

important entities, and paths in the graph.

These graph problems can be defined in terms of linear operations over arrays of

data (e.g. vectors and matrices). Most elements of the system are actually zero

because an element is generally connected to a fraction of all network entities. These

problems are known as sparse linear algebra problems. Effective sparse methods

and algorithms often balance storage, computational cost, and stability (Kepner,

2011). Most advanced structural graph analysis problems are categorized as non-

deterministic polynomial-time hard problem (NP-hard). The NP-Hard theoretical

complexity class contains problems that are especially difficult to solve by nature.

Thus, the formal problem definition is often reduced to another simpler problem

which can be solved in reasonable time. Our work targets two important graph

analytics topics which are ranking (Page et al., 1998) and clustering (Schaeffer, 2007).

The former being the problem of finding the importance of each node in a graph and

the latter being the problem of finding similar subsets.

1.1.2 Eigenvalue problems

In linear algebra, an eigenvector v of a linear transformation is a vector whose direction

does not change when that linear transformation is applied to it. The linear transfor-

mation can be represented as a square matrix A so this condition can be written as

the equation Av = λv where λ is a scalar known as the eigenvalue, associated with the

eigenvector v.

Many applications in the fields of health, agriculture, advertising, electromagnetic,

energy, optimal control, finance lead to eigenvalue problems of very large size. Each

problem has its own specificity which opens vast possibilities to propose new scientific

2

1.1 Motivations

high-performance methods.

The eigenpairs of networks contain key information which can be leveraged from

several different perspectives such as ranking and clustering (Chung, 1997). Graphs

correspond to large and sparse matrices and Krylov methods are therefore indicated

because they can quickly find accurate approximations of the eigenpairs by reducing

very large problems to small ones (Bai et al., 2000). Furthermore, Krylov eigenvalue

methods have been recognized for their scalability (Maschhoff and Sorensen, 1996).

In these solvers, many parameters have a direct impact on efficiency, resilience, and

energy consumption. Best parameters differ for one case to another and, in general,

many optimal parameters remain unknown in advance. To overcome this issue, the

idea of automatically adapting parameters at run-time has shown promising results

(Shahzadeh Fazeli et al., 2015). In this thesis, we focus on adaptive strategies to

improve the implicitly restarted Arnoldi and Lanczos methods (Sorensen, 1997) for

network analytics.

1.1.3 Hardware acceleration

The graphics processing unit (GPU) is a hardware acceleration circuit which is now

one of the most accessible high-performance computational platforms. Intended

initially for performing graphics related computations for applications such as com-

puter games and visualization, GPUs have evolved into general-purpose and economic

parallel processing units (Owens et al., 2007). GPUs have a significantly higher degree

of parallelism than multi-core CPUs but GPU cores are simpler. In comparison to

CPUs, GPUs dedicate more transistors to arithmetic logic units and fewer to caches

and control flow. GPUs are ideal for parallel problems because they have a high

computational throughput potential. GPUs are also energy efficient since most cores

are dedicated to actual computation.

For many applications, including sparse Krylov eigensolvers, the memory bandwidth

is the performance bottleneck. In GPUs, memory takes a special role as it is designed

to access and modify as much memory as possible as quickly as possible. This design

directly benefits to graph analytics and sparse linear algebra where algorithms are

often bounded by memory accesses. In this thesis, we propose to study the spectral

3

Introduction

graph analytics for the GPU architecture.

1.2 Structure of this thesis and core contributions

This thesis connects sparse numerical linear algebra to data science through spectral

graph analytics. We study two important problems on networks from the spectral

perspective which are ranking and clustering. We propose novel techniques for solv-

ing large eigenvalue problems arising in graph analytics with the goal of efficiently

utilizing current and next generations of parallel architectures. For each proposed

solution, we present a GPU implementation and experiments on large data sets. Our

results improve the performances of linear eigenvalue solvers and graph analytics.

This thesis is built upon decades of scientific progress. First, we revisit the spectral

graph analytics theory and identify how graphs connect to sparse eigenvalue problems

on GPUs. Chapter 2 is dedicated to a presentation of the research topic and the

context.

In Chapter 3, we revisit the spectral graph analytics theory and propose to lever-

age accelerators in the implicitly restarted Arnoldi method with nested subspaces

(MIRAMns). We present a fast parallel solver to compute the dominant eigenpairs

of directed networks such as Markov chains. We explain the first implementation on

accelerator and the optimizations for graphs. Experiments in the context of PageRank

applications showed faster convergence compared to the traditional power iteration

method.

In Chapter 4, we develop a parallel approach for computing the modularity

clustering often used to identify and analyse communities in social networks. We

show that modularity can be approximated by looking at the largest eigenpairs of the

weighted graph adjacency matrix that has been perturbed by a rank one update. We

generalize this formulation to identify multiple clusters at once and propose a way to

detect the number of natural clusters. We develop a fast parallel implementation for it

4

1.2 Structure of this thesis and core contributions

that takes advantage of the Lanczos eigenvalue solver and k-means algorithm on GPUs.

In Chapter 5, we define Jaccard edge weights on a graph and generalize them to

account for vertex weights, such as the PageRank. We use these weights to minimize

the sum of ratios of the intersection and union of nodes on the boundary of clusters.

We construct a Laplacian matrix and show how finding a minimum balanced cut

for it can be formulated as an eigenvalue problem. Also, we develop a fast parallel

implementation on GPUs. Finally, we compare the quality of the obtained clustering

on large networks.

In Chapter 6, we present a novel method for solving large and sparse symmetric

eigenvalue problems based on the implicitly restarted Lanczos method coupled with

subspace size auto-tuning (MIRLns), which is inspired by MIRAMns for the Arnoldi

method. Our implementation combines CPU and GPU strengths to compute the

invariant subspace of real scale-free undirected networks. Experiments indicate con-

vergence improvements on real graphs with million entities in the context of clustering

problems.

In Chapter 7, we summarize the key results obtained in this thesis and present

our concluding remarks. Finally, we suggest some possible paths to future reflections.

5

Chapter 2

Accelerated spectral graph analytics

2.1 From networks to linear algebra

A graph is a mathematical structure to represent relations between elements, it can be

visualized as a set of point (vertices) connected together by lines (edges). Mathemati-

cally, a graph is defined by its vertex V and edge E sets :

G = (V ,E) (2.1)

Fig. 2.1 Directed graph with 6 vertices and 10 edges

The vertex set V = {1, ...,n} represents n nodes in a graph, with each node identified

by a unique identifier i ∈ V . The edges may be directed (one-way) to indicate that

there is a connection from a vertex i to a vertex j or undirected (two-way) to represent

the reciprocity in the connection. A graph is weighted if a number (weight) is assigned

to each edge. Weights often represent probabilities, distances, capacities, cost or any

7

Accelerated spectral graph analytics

other concept with numerical value. For instance, the edge set E = {wi1,j1 , ...,wim,jm}

represents m weighted edges in a graph, with each edge identified by wi,j ∈ E. Figure

2.1 shows a simple directed graph with 6 vertices and 10 edges.

2.1.1 Structure of graphs and mathematical representation

Figure 2.2 is an example of how graph representation helps interpreting data. It shows

the network of Amazon frequent book co-purchasing (Bader et al., 2013; Bastian

et al., 2009). There are 105 books about US politics connected by 441 frequent co-

purchasing by the same buyers. The vertex diameter varies according to the PageRank

as presented in Section 3.1. The vertex color indicates the assignment of nodes into

clusters, it is done with spectral clustering (see Section 2.2.2 and Chapter 4). Those

clusters correspond to liberal and conservative topics. The edge thickness is based on

Jaccard and PageRank weights as presented in Section 5.2.1.

Notice that the combination of different structural spectral analysis leads to a visually

intuitive discovery of clusters and makes frequently co-purchased books stand out

while giving indications on their strength of connections to other similar books.

Fig. 2.2 Amazon book co-purchasing data set with PageRank vertex weights, Jaccard
edge weights and spectral cluster assignments in two groups

8

2.1 From networks to linear algebra

All information is computed based on the graph structure only. Hence, no meta-data

or labels were used. Everything was computed with parallel algorithms and imple-

mentations developed in this thesis. The visualization tool is Gephi (Bastian et al.,

2009), an opensource software for exploring networks.

At large scale, analyzing the graph structure become a complex and expensive

operation. Let us now take the follower network from Twitter as example of this

problematic (Kwak et al., 2010). Twitter is a directed network as following a user does

not imply any reciprocity. Still, 22.1% of connections are reciprocal. Twitter contains

1.4 billion social relations between 41 million users. The compressed adjacency list

represents 12GB in memory in 32 bits. Thus, the first obstacle is the size.

One of the most important trait of the structure of a network is how edges connect

vertices, which is known as the vertex degree distribution as illustrated in Figure 2.3a.

Most web and social networks have a power law distribution (exponent between 2 and

3) which means that the majority of the vertices have a few connections compared to

the size of the graph, but some are super-connected. This can be inspected visually by

plotting the degree distribution on a logarithmic scale, on which a power law renders

as a straight line as shown on Figure 2.3a. Twitter fits to a power-law distribution with

the exponent of 2.276 till 105, beyond that users have more followers than predicted.

For this data set, the maximum degree is 3,081,112 and 40 users have more than

1,000,000 followers whereas the average degree is 35 with an average deviation of

354. The power law distribution generates technical issue that need to be considered

for the compression format of the sparse matrix and for parallel load balancing.

Another way to detect the power law is the complementary cumulative distribution

function (CCDF) as shown in Figure 2.3b. The CCDF corresponds to the probability

that the degree of a node picked at random is larger than x in function of x. Notice the

glitch at 2.102 on the x-axis which is due to the upper limit on the number of persons a

user could follow before 2009. Another glitch occurs around 20, this is because twitter

suggests 20 people to follow in a single click to newcomers. Many other distribution

indicators exist such as the Geni Coefficient which is a measure of inequality from

economics and the edge distribution entropy. It is fundamental to be aware of these

measures when designing algorithms for specific applications or drawing conclusions

from experimental results.

9

Accelerated spectral graph analytics

One important property is the existence of short paths between any randomly-chosen

pair of vertices which is known as the small-world phenomenon (Watts and Strogatz,

1998). For Twitter, 70.5% people could connect in less than 4 hops and 97.6% in less

than 6 hops. An empirical study of networks for several real applications can be found

in (Newman, 2010).

(a) Degree distribution of Twitter, logarithm
scale on both axes, (Kunegis, 2015)

(b) Complementary cumulative distribution
function of Twitter, logarithm scale on both axes
(Kwak et al., 2010)

Fig. 2.3 Power law distribution

In order to address graph analytics in linear algebra the graph is represented by its

adjacency matrix. The graph adjacency matrix is defined by :

ai,j =

wi,j ∈ E

0 otherwise
(2.2)

An example of adjacency matrix is given in Figure 2.4 for the graph presented in

Figure 2.1. In Figure 2.4a each edge weight is assumed to be one for all the graph. As

shown in Figure 2.4b, it is also possible to generate values such as the equiprobability

of following an edge from each vertex (eg. Markov chain). On real networks the adja-

cency matrix is usually very sparse (ie. with many 0 entries) because each individual

is only connected to number of other individuals that is small compared to the size

of the network. The size of these matrices can be over a billion rows (vertices) with a

dozen of non-zero elements per row in average.

10

2.1 From networks to linear algebra

0 1 1 0 0 0
0 0 0 0 0 0
1 1 0 0 1 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 0 0

(a) Adjacency matrix, weighti,j = 1

0 1
2

1
2 0 0 0

0 0 0 0 0 0
1
3

1
3 0 0 1

3 0
0 0 0 0 1

2
1
2

0 0 0 1
2 0 1

2
0 0 0 1 0 0

(b) weighti,j = 1/out_degreei

Fig. 2.4 Adjacency matrix representation of Figure 2.1

2.1.2 Compressed matrix representation for computers

An n by n matrix can be stored in a compressed format by storing only non-zeroes

values. If the matrix is sparse, the memory and computational improvements are huge.

In this section we present four famous existing compression formats. The goal is to

measure pros and cons by considering variables such as performances for accelerators,

flexibility of the format, and compression rate for real networks.

COO and Edge List

The most natural way to represent a network is probably the edge list. In a directed

graph, the notation (vi , vj) represents a link from vi to vj , thus, the complete graph

consists in a simple list of couple (vx, vy). Weighted graphs can be represented using

a list of triples (vi , vj ,wk) where w is the weight from vi to vj . For a graph, the COO

compression of its adjacency matrix corresponds exactly to the edge list.

In the Compressed coordinate format (COO) each entry has its value and its absolute

coordinate in the matrix. For instance, Table 2.1 corresponds to the compressed ver-

sion of the adjacency matrix of Figure 2.4b.

The COO format is probably the most flexible in the sense that it allows independent

insertion and deletion, and can be partitioned without effort. We also notice the fast

transpose operation which consists in swapping the row and column indices. These

advantages come with a direct cost in memory and more indirect one in term of compu-

tation. Regarding the memory, it requires 3∗nnz (rowindices+columnindices+values).

Accessing an element requires to load two coordinates and one value. The overall

memory access pattern is random (if the list is not sorted). Those are two important

disadvantages on architectures such as modern CPUs and GPUs. If the network is

11

Accelerated spectral graph analytics

undirected (ie. the matrix is symmetric) the format is often optimized by storing only

the lower triangular part of the adjacency matrix. In this case (vi , vj) represent a link

from vi to vj and from vj to vi .

Row (Source) 0 0 2 2 2 3 3 4 4 5

Column (Destination) 1 2 0 1 4 4 5 3 5 3

Values (Weights) 0.50 0.50 0.33 0.33 0.33 0.50 0.50 0.50 0.50 1.00
Table 2.1 COO format

CSR and Adjacency List

A graph can also be stored as an adjacency list, where for each vertex vi , the neighbours

vj , ..., vk and the weights wj , ...,wk (if they exist) are listed. For instance, Table 2.2

corresponds to the compressed version of the adjacency matrix of Figure 2.4b.

The adjacency list is often preferred because it improves the edge list by avoiding

redundancy of information. For example, (vi , vj), (vi , vk) can be written vi : vj , vk . The

compressed sparse row format (CSR) of the adjacency matrix of a graph is a way to

represent its adjacency list. The CSR format consists in three arrays : the row pointer

of size n, the column indices of size nnz and the values of size nnz. This compression

improves both weaknesses of the COO format since it requires less memory (2∗nnz+n)

and allows a predictable memory access pattern with fewer data to load per element

to process. This comes with a loss of flexibility as the insertion of an element requires

to shift all three arrays. CSR is widely used as sparse matrix format for linear algebra

and supported in most libraries. It is also good for power-law networks since it is

completely independent of the sparsity pattern. If the network is undirected (ie. the

matrix is symmetric) the format is often optimized by storing only the lower triangular

part of the adjacency matrix.

Row pointers 0 2 2 5 7 9 10

Column indices 1 2 0 1 4 4 5 3 5 3

Values 0.50 0.50 0.33 0.33 0.33 0.50 0.50 0.50 0.50 1.00
Table 2.2 CSR format

12

2.1 From networks to linear algebra

CSC

The compressed sparse column format (CSC) is composed by three arrays: the column

pointer of size n, the row indices of size nnz and the values of size nnz Table 2.2

corresponds to the compressed version of the adjacency matrix of Figure 2.4b.

It is exactly the same as CSR but from the column perspective, so advantages and

disadvantages, are similar to the CSR format. Notice that the transposed of a matrix

in CSR is equal to this same matrix compressed in CSC and interpreted as CSR.

Columm pointers 0 1 3 4 6 8 10

Row indices 3 1 3 1 5 6 3 4 4 5

Values 0.33 0.50 0.33 0.50 0.50 1.00 0.33 0.50 0.50 1.00
Table 2.3 CSC format

Ellpack

Ellpack compression attempts to reduce the original matrix size and keep a regular

structure at the same time. Hence, the number of columns of the compressed matrix

is reduced to the size of the largest row (in term of non − zeroes). Ellpack stores

2 matrices : one for the values and the other for the columns indices, as shown in

Table 2.4. Since Ellpack is very regular, it is well suited for accelerators and efficient for

regular sparsity pattern (Bell and Garland, 2008) but not for networks with power law

distribution, especially in term of storage. For those cases, Ellpack can be improved

like in SGP (Petiton and Emad, 1996) at the cost of a higher pre-processing and/or

additional memory requirements.

0.50 0.50 *
* * *
0.33 0.33 0.33
0.50 0.50 *
0.50 0.50 *
1.00 * *

(a) Values

1 2 *
* * *
0 1 4
4 5 *
3 5 *
3 * *
(b) Indices

Table 2.4 Ellpack format

In the context of accelerated graph analysis, we think the best trade-off is the CSR

format. This is the format we used for all codes described in this thesis.

13

Accelerated spectral graph analytics

Property graphs

Graphs can store and combine several layers of information, with multiple dimensions

of vertexes and edges, which is often called a property graph. The representation can

be similar to the CSR format with multiple value dimensions attached to vertices and

edges as shown in Figure 2.5. Algorithms can adapt to take advantage of this structure

to enable new analytics. For instance, for spectral analysis this feature allows running

multiple instances of the solver, potentially in parallel, on different edge dimensions

of a single network. Typically, several matrices can share the same topology with

different sets of weights.

Multiple vertices dimensions can be used to attach different sets of values to them.

Those dimensions are independent and can be combined for analysis purposes. This

format is also helpful in situations where we could take advantage of interlaced inputs.

Fig. 2.5 Multidimensional CSR representation

2.1.3 Graph algorithms in linear algebra

The matrix representation allows to apply basic linear algebra to graphs and take

advantage of the existing research in mathematics and computer science. Arithmetic

operations such as addition and multiplication can be generalized and applied to

matrices and vectors, this semi-ring approach can be leveraged to solve many graphs

problems (Seshadhri et al., 2011). More precisely, semi-rings operate on a set R with

two binary operators: + and ∗ that satisfy:

- (R,+) is associative, commutative with additive identity (additive_identity + a = a)

- (R,∗) is associative with multiplicative identity (multiplicative_identity ∗ a = a)

14

2.1 From networks to linear algebra

- Left and Right multiplication is distributive over addition

- Additive identity = multiplicative null operator (null_op ∗ a = a ∗null_op = null_op)

Single source shortest path (SSSP) or Single source widest path (SSWP) are good

examples of this approach. For example, on a directed graph A, the SSSP consists in

finding the shortest distance between a vertex source and every other vertices in A. We

define a semi-ring equipped with the binary operations ⊕ as min(a,b) the minimum

of a and b, and ⊗ as the regular addition of a and b (Mohri, 2002). Then, the SSSP

problem can be solved using Algorithm 1.

Algorithm 1 SSSP algorithm

sssp0 = indentity(⊗) =∞
sssp0[source] = indentity(⊕) = 0
repeat

ssspi+1 = AT ⊗ ssspi ⊕ ssspi
until ssspi+1 = ssspi

The single source widest path consists in finding the maximal capacity path from a

vertex source to every other vertices. It works the same way than SSSP with a different

semi ring, where ⊕ returns max(a,b) the maximum of a and b, and ⊗ returns min(a,b)

the minimum of a and b (Hardouin et al., 2008). Then, the SSWP problem can be

solved using Algorithm 2.

Algorithm 2 Single Source Widest Path

sswp0 = indentity(⊗) = −∞
sswp0[source] = indentity(⊕) =∞
repeat

sswpi+1 = AT ⊗ sswpi ⊕ sswpi
until sswpi+1 = sswpi

During this thesis we implemented those algorithms to find Single Source Short-

est/Widest Path distances on GPU. It was released in nvGRAPH, as part of NVIDIA’s

CUDA Toolkit 8.0.

15

Accelerated spectral graph analytics

2.2 Eigenvalue problems arising in graphs

The study of the eigenvalues of graphs is called spectral graph analysis and often

used for vertex ranking, graph clustering and partitioning. In its simplest form an

eigensolver computes the eigenpair λi and vi such as

A ∗ vi = λ ∗ xi , (2.3)

where λi is an eigenvalue of A and vi is the eigenvector corresponding to λi . In graph

theory, an eigenpair of a graph corresponds to the eigenpair of its adjacency matrix A.

2.2.1 PageRank

PageRank (Page et al., 1998) is a ranking method which measures the relative impor-

tance of elements in a graph by creating a score of importance based on topological

dependencies and propagation of influence between vertices. The underlying assump-

tion is that more important vertices are likely to receive more links from other vertices.

Figure 2.6 shows a visualization of the graph in 2.1 where PageRank information

is used. The vertex diameter and the edge width vary based on the PageRank score

which is shown in the center of the vertices.

Fig. 2.6 PageRank visualization, α =0.9

16

2.2 Eigenvalue problems arising in graphs

PageRank was introduced in 1997 and named after Larry Page who co-founded

Google. Hence, it is the historical algorithm used by Google Search to rank websites

in their search engine results (Bryan and Leise, 2006; Langville and Meyer, 2003).

In this application, the vertices of the graph are web pages and edges are hyperlink.

Nowadays, Google combines the PageRank with several other metrics to rank websites.

The PageRank can also be used to predict the evolution of an ecosystem, to anticipate

human movement and traffic flow or in recommendation engines.

PageRank is based on a Markov model enriched with a damping factor (α ∈ [0,1]), to

represent the probability to follow an outgoing edge. For example, on the graph of the

web, Google estimated that α = 0.85 considerering that a user has 85% of chance to

follow edges (ie. click on links) and 15% to open a new window and jump to a random

web page.

A Markov chain is a mathematical system that undergoes transitions from one state

to another where future states depend only on the current state. It can be seen as

a weighted graph where vertices represent states and edges are the probabilities of

transition. A stationary distribution (or equilibrium) represents a steady state in the

chain’s behavior. This equilibrium can be seen as a vector where the ith component

represents the probability to be in the ith state. Hence, the stationary distribution of a

Markov Chain is the vector w such that w ∗H = w, where H is the transition matrix.

PageRank assumes the equiprobability of following an outgoing link, as a result H is

defined as :

hij =

1/d(i) if d(i) , 0 and there is an outgoing link from i to j

0 otherwise,
(2.4)

The equilibrium vector has a large range of applications since it is used to predict

the most probable future state based on present observations. (Langville and Meyer,

2006)

The Google Matrix G (Eq. 2.5) and the PageRank vector p are formed from H and

α using:

G = αHT + b(αa+ (1−α)e)T (2.5)

Where a is the bookmark vector of leafs, formed using Eq. 2.6, and b is the constant

and uniform vector 1/n.

17

Accelerated spectral graph analytics

ai =

1 if there are no outgoing links from i

0 otherwise
(2.6)

The PageRank vector is the eigenvector corresponding to the dominant eigenvalue

of G. Notice that matrix G is row-stochastic. Therefore, it has non-negative elements

and satisfies Ge = e with e = (1, ...,1)T . In order to support large datasets, we do

not form the Google matrix G because it is dense (Eq. 2.5). Instead, we formulate

the problem to work on the sparse and irreducible matrix H as shown in Algorithm

3. Indeed, G is obtained by applying a rank-one update to H , so the main cost per

iteration can be reduced to one sparse matrix vector multiplication. The number of

iterations depends on the gap between λmax and the second largest eigenvalue which

is bounded by the damping factor α ∈ [0,1]. Many methods can solve the PageRank

problem and a comprehensive survey was done in (Langville and Meyer, 2006). Fig

2.7 shows the Google matrix of Fig 2.1 with α =0.9.

1
60

7
15

7
15

1
60

1
60

1
60

1
6

1
6

1
6

1
6

1
6

1
6

19
60

19
60

1
60

1
60

19
60

1
60

1
60

1
60

1
60

1
60

7
15

7
15

1
60

1
60

1
60

7
15

1
60

7
15

1
60

1
60

1
60

11
12

1
60

1
60

Fig. 2.7 The Google matrix of Figure 2.1

2.2.2 Clustering

Graph clustering and partitioning problems consist in dividing a graph into k smaller

components. The result is k separated groups where the number of edges between

them is minimized and/or the connection inside each group is maximized. For the

partitioning case, partitions are expected to have similar sizes while clustering focuses

on finding tightly connected groups without constraints on the size. The idea is simple

but this is actually a Non-deterministic Polynomial-time hard problem (NP-hard)

which is expensive to solve. A comprehensive review of clustering techniques is given

in (Fortunato, 2010). In this thesis we focus on spectral approaches (Newman, 2006;

18

2.2 Eigenvalue problems arising in graphs

Ng et al., 2001).

Spectral minimum balanced cut clustering

A common approach for the clustering problem is to estimate how well clusters are

independent by looking the number of edges between them. A famous technique

to minimize the number of edges between clusters is based on the graph Laplacian

matrix (Ng et al., 2001). The Laplacian matrix is a sparse positive semi-definite matrix

defined as:

L =D −A (2.7)

where A is the symmetric adjacency matrix of the undirected graph, D = diag(Ae),

and e = (1, ...,1)T . The relationship between the eigenpairs of a Laplacian matrix and

the connectivity of a graph was first noted by Donath (Donath and Hoffman, 1973)

and Fiedler (Fiedler, 1973). The minimum balanced cut problem is NP-complete but

by the Courant-Fischer theorem (Horn and Johnson, 1986) it can be approximated by

the smallest eigenpairs of the Laplacian matrix.

Spectral modularity clustering

The modularity metric is based on the idea that similar vertices are connected by

more edges in the current graph than if they were randomly connected. It measures

how well a given clustering applies to a particular graph versus a random graph

(Newman, 2003, 2006; Newman and Girvan, 2004). The modularity metric has been

used in practice to study different disease epidemics (Newman, 2003). This metric is

closely related to the assortativity coefficient (Newman, 2002) as well as the algebraic

connectivity of graphs (Chung, 1997; Donath and Hoffman, 1973; Fiedler, 1973), with

a comprehensive scientific literature review given in (Chen et al., 2014; Newman,

2010).

The clustering is achieved by finding vertex assignments into clusters such that the

modularity is maximized. The modularity maximization problem is NP-complete but

by the Courant-Fischer theorem (Horn and Johnson, 1986) it can be approximated

by the largest eigenpairs of the modularity matrix. Many other methods have been

developed for maximizing modularity based on an agglomerative approach such as

19

Accelerated spectral graph analytics

(Clauset et al., 2004) and (Blondel et al., 2008).

Hierarchical clustering

Although hierarchical clustering is not a spectral technique by nature, it is widely

used in practice (Karypis and Kumar, 1998). The technique arranges the network into

a hierarchy of groups according to a specified cost function. This can be achieved by

an agglomerative or divisive approach.

In the agglomerative, or bottom-up approach, each vertex starts in its own cluster,

and clusters are merged based on a set of heuristics. Each level of the hierarchy is

constructed from the previous level by collapsing vertices and edges together. This is

similar to the agglomerative technique used in algebraic multi-grid. In the divisive or

top-down approach, all vertices start in one cluster and splits are performed recur-

sively.

This multi-level scheme can be a clustering technique by itself or it can also be com-

bined with other approaches. As shown on Figure 2.8 the clustering problem can be

solved on the coarsest level using spectral clustering, and the results propagated back

to the fine level.

Fig. 2.8 Hierarchical clustering coupled with spectral clustering

20

2.3 GPU accelerators

2.3 GPU accelerators

2.3.1 Architecture and programming

A graphics processor unit (GPU) Figure 2.9 is an electronic circuit consisting in a

massively parallel architecture with thousands of cores designed to quickly access and

modify memory. Typical use cases involve memory-intensive and compute-intensive

tasks with a Single Instruction Multiple Data (SIMD) parallel pattern (Flynn, 1972).

Fig. 2.9 Diagram of Nivida GP100 with 60 SM and 3840 cores

Architecture overview and history

At the beginning, GPUs were designed as graphics accelerators, supporting only spe-

cific functions but the hardware became increasingly programmable. It turned out

that most of these graphics computations involved matrix and vector operations, and

quickly people started to look at GPUs for non-graphical calculations. A software

concept called General-purpose computing on graphics processing units (GPGPU)

was born.

In general we refer to the CPU as host and to the GPU as device. The device has its

own memory, with a fast connection between the memory and cores. There are often

21

Accelerated spectral graph analytics

other hierarchical layers such as the cache, shared memory and registers. The cores

are grouped in order to form streaming multiprocessors (SM) as shown in Figure 2.10,

allowing the sharing of resources such shared memory, caches, registers and scheduler.

Inside a SM, one instruction is executed at the time and it runs in parallel on the

CUDA cores. For a long time data transfers between host and device were explicit and

under the developer’s responsibility but recent architectures support a unified virtual

memory address space between CPU and GPU.

Fig. 2.10 Streaming multi-processor (SM) of Nvidia GP100

Programming

In 2006 NVIDIA invented the Compute Unified Device Architecture (CUDA), a par-

allel computing platform and programming model for general-computing on GPUs.

Today, the CUDA Toolkit (NVIDIA, 2017) includes a compiler, tools for debugging,

profiling, and many libraries covering a wide range of applications. In 2009, an open

framework for writing programs that execute across heterogeneous platforms called

Open Computing Language (OpenCL) was developed by Apple Inc in collaboration

with AMD, IBM, Qualcomm, Intel, and Nvidia.

22

2.3 GPU accelerators

The CUDA programming model involves writing parallel device code called kernel.

This code is compiled with a dedicated compiler. There are bindings in many lan-

guages such as C, C++, Java, Python, Fortran etc. A kernel is written to be executed

in parallel on many cores by design. There are different parameters that the user

can set to specify how the kernel is going to be executed. For example, how many

blocks, threads and items per thread will be used. Typically, the developer set those

parameters based on the architecture specifications and the application workload.

The following example shows a simple kernel computing z = α ∗ x + y, also known as

AXPY, in C/CUDA. Here, x,y,z are vectors and α is a scalar. In this code the kernel is

declared using the keyword __global__. This keyword indicates that the function can

be called from the host and executed on the device. The variable threadIdx.x indicates

the index of the thread executing the kernel.

__global__ void axpy (f l oa t alpha , f l oa t ∗ x , f l oa t ∗ y , f l oa t ∗ z)

{

int i = threadIdx . x ;

z [i] = alpha ∗ x [i] + y [i] ;

}

The kernel is called with parameters provided in <<< ... >>>. In this example we

assume x,y,z are accessible on the device and point to N real elements. The following

call assign a thread per element of the vector:

axpy<<<1, N>>>(2.0 , x , y , z) ;

Programming GPUs with this approach is powerful but requires a good understand-

ing of parallel computing and of the accelerator’s architecture in order to leverage

the full potential of the device. A comprehensive documentation and user’s guide

can be found in (NVIDIA, 2017). Finally, notice that it is possible to combine the

computational power of both CPU and GPU. This can be done by using a design

pattern where small independent sequential tasks are left to the host while the device

performs large parallel operations. This is often referred to as hybrid host/device

algorithms. It can also be automated by using a dedicated framework (Lee et al., 2014).

Alternatives

GPU acceleration can be obtained by using compiler directives to automatically gener-

23

Accelerated spectral graph analytics

ate device code. For instance, OpenACC and OpenMP directives. There are general

purpose libraries with a high-level interface such as Trust, a C++ template library

based on the C++ STL. In addition, there is a large ecosystem of tools and libraries

growing around GPUs, from basic routines to industrial software. In the field of graph

analysis, GPU have proved to be efficient, leding to products such as GunRock (Wang

et al., 2016), MapGaph (Fu et al., 2014) and cuStinger (Green and Bader, 2016) for

instance. Most of numerical linear algebra already benefits from GPU acceleration

with libraries such as Magma, Cublas, Cusparse, Cusolver, SparseSuite, AmgX, among

others (NVIDIA, 2017).

2.3.2 Eigenvalue methods for networks and accelerators

Accelerated sparse eigenvalue solvers represent an active research field. For example,

the Power Method and Krylov methods such as the Arnoldi method (Golub and Greif,

2006), and its explicitly restarted variant (Dubois et al., 2011; Emad et al., 2005). In

particular, the implicitly restarted Arnoldi methods (IRAM) (Sorensen, 1997) showed

good improvements compared to the power method.

Symmetric problems often use the accelerated version of Lanczos (Matam and Kotha-

palli, 2011) which can be seen as a special case of the Arnoldi method. The implicitly

restarted variant Lanczos (IRL) is known for its stability and good convergence with

constant and reasonable memory requirements (Lehoucq, 1995; Sorensen, 1998).

We point out that efficient dense eigenvalue solvers are out of the scope of this thesis

since real networks lead to large sparse eigenvalue problems.

Let us now present several numerical sparse methods of interest for network analytics.

Power iteration method

The power iteration is a straightforward iterative method to compute an eigenpair

composed by the eigenvalue λmax and the corresponding eigenvector vmax of a general

matrix A by solving iteratively

vi+1 =
Avi
||Avi ||

(2.8)

Notice that the main cost of an iteration is one sparse matrix vector multiplication

(SPMV). This method works well on sparse matrices since it does not require any

additional memory. However, it computes only one eigenvalue which is the dominant

24

2.3 GPU accelerators

one by default. It is possible to use a shift µ to converge to another eigenvalue though.

This is based on the idea that if λi is an eigenvalue of A, a constant µ can be chosen

such as σ = 1/(λi −µ) is the dominant eigenvalue of (A−µI)−1. This method is called

the inverse iteration:

vi+1 =
(A−µI)−1vi
||(A−µI)−1vi ||

(2.9)

Since the power iteration method overwrites the vector v at each iteration it looses

useful information that could be used to speed up the convergence. Hence, the main

drawback of the power method is the slow convergence compared to more advanced

methods, especially when eigenvalues are clustered (Golub and Greif, 2006).

Notice that the PageRank problem can be solved using the power iteration method as

follows:

Repeat pi+1 = Gpi / ||Gpi ||

Until pi+1 = pi

where G is a google matrix (Eq. 2.5) and p is the PageRank vector. For this problem

it is known that the number of iterations depends on the gap between λmax and the

second largest eigenvalue which is bounded by the damping factor α ∈ [0,1] (Brody,

1997). In order to support large datasets we do not form the Google matrix. Instead,

we formulate the problem in order to work on the sparse and irreducible matrix H as

shown in Algorithm 3.

Algorithm 3 PageRank

for i = 1,2, ...,n do

ai = 1 if Vi is a leaf, 0 otherwise

bi = 1/n

pi ∈ R
∗+

end for

repeat

pi+1 = αHTpi + b(αa+ (1−α)e)Tpi
pi+1 = pi+1/ ||αH

Tpi + b(αa+ (1−α)e)Tpi ||

until pi+1 ≃ pi

25

Accelerated spectral graph analytics

This approach is efficient on sparse matrices since it does not require any additional

memory. However, the power method is only able to compute one eigenpair, which is

the dominant one by default.

Arnoldi method

The Arnoldi method is an iterative method based on Krylov subspace theory to com-

pute an approximation of k eigenpairs of a general matrix A of size n by those of

a much smaller Hessenberg matrix Hm of size m, with k < m ≪ n. This matrix is

obtained by an orthogonal reduction of A onto an m-dimensional Krylov subspace

Km(A,v) (Eq. 2.10).

Km(A,v) = span{v,Av,A2v, ...Am−1v} (2.10)

The core part of this technique is the m-step Arnoldi factorization which forms

Hm,Vm, fm such that AVm = VmHm + fme
T
m, with the process described in Algorithm 4.

Algorithm 4m-step Arnoldi factorization

1: Input: A,vi , i,m

2: Output: Vm,Hm, fm

3: for j = i, ...,m do

4: if j = 1 then

5: w = A ∗ v1

6: Vm(:, j) = v1

7: Hm(1,1) = vT1 ∗w

8: fm = w− v1 ∗ v
T
1 ∗w

9: else

10: v = fm/ ||fm||; w = A ∗ v

11: Vm(:, j) = v ; Hm(j, j − 1) = ||fm||

12: h = Vm(:,1 : j)T ∗w

13: fm = w−Vm(:,1 : j) ∗ h

14: Hm(1 : j, j) = h

15: end if

16: end for

The Arnoldi method starts similarly to the power iteration but instead of rewriting

v at each iteration the information is kept by forming a matrix [v,Av,A2v, ...Am−1v]

26

2.3 GPU accelerators

where those vectors are orthonormalized using a modified Gram-Schmidt process to

form the Krylov basis. Those vectors are often called Arnoldi vectors.

Current computers and standards only offer approximations of floating point arith-

metic, thus we prefer to use a modified Garrm-Schmitt process to improve the accuracy.

This problem was discussed in (Saad, 1992).

Hm = V ∗mAVm⇔ AVm = VmHm + fme
∗
m, fm =Hm+1,mvm+1 (2.11)

Implicitly restarted Arnoldi method

The Arnoldi factorization (Algorithm 4) is based on a random initial guess, thus by

improving this initial vector it is possible to speedup the convergence. Moreover, if

Arnoldi takes too much time to converge, m becomes large and generate high memory

requirements. A method known as the Explicitly Restarted Arnoldi Method (ERAM)

was proposed in (Saad, 1980). ERAM takes advantage of spectral information of

Hm and of the orthonormal basis to do a polynomial preconditioning on the initial

vector v1. The results is a new, better Krylov subspace for the new cycle. This method

showed good improvements in term of convergence but requires an explicit linear

combination of Ritz elements.

An approach based on implicitly shifted QR factorizations on Hm, called Implicitly

Restarted Arnoldi Method (IRAM) (Lehoucq, 1995; Sorensen, 1997, 1998), uses the

unwanted eigenvalues as shifts. Algorithm 6 illustrates this method; it starts with

the Arnoldi factorization to build the initial subspace of size m. Then at each restart

cycle all eigenpairs of Hm are computed and the residual norm is estimated (Saad,

1992). The QR step concentrates the information of interest in the upper-left part

of Hm and the orthonormal matrix Qm is used to update the matrices Vm, Hm and fm.

Thus, the initial problem is implicitly updated. This process is done iteratively, at a

cost dominated by m − k matrix-vector multiplications per restart cycle. When the

approximation is good enough, the eigenvectors of Hm can be projected using Vm to

get the Ritz eigenvectors of A.

IRAM can operate in parallel (Emad et al., 2005; Shahzadeh Fazeli et al., 2015), han-

dles large problems (Liu et al., 2013), and does not require extra memory.

27

Accelerated spectral graph analytics

This approach is efficient for spectral graph analysis (Lehoucq, 1995), in addition

it is possible to compute more than one eigenpair, which can be useful for spectral

clustering applications (Ng et al., 2001).

Algorithm 5 Implicitly restarted Arnoldi algorithm

1: Input: A,v1, k,m

2: Output: k wanted eigenpairs

3: [Vm,Hm, fm] = Arnoldi-Factorization(A,v1,1,m)

4: while Convergence is not reached do

5: Compute the eigenpairs of Hm

6: Compute the residual and stop if converged

7: Select set of p =m− k shifts µ1, ...,µp based on unwanted eigenvalues

8: Qm = I

9: for j = p, ...,2,1 do

10: [Qj ,Rj] = QR-Factorization(Hm −µjI)

11: Hm =QH
j HmQj

12: Qm =QH
mQj

13: end for

14: fm = Vm(:,:)
Qm(:,k+1)

∗Hm(k+1,k)
+ fm ∗Qm(m,k)

15: Vm(:,1:k)
= Vm(:,:)

Qm(:,1:k)

16: [Vm,Hm, fm] = Arnoldi-Factorization(A,Vk , k,m)

17: end while

The IRAM method can benefit from accelerators for the sparse matrix vector multi-

plications and the dot products. However, inside the Krylov subspace, the eigenvalue

problem becomes small and cannot really take advantage of the acceleration. In this

case it is possible to offload the small matrix Hm on the CPU to find the eigenpairs

using Lapack (Anderson et al., 1999) and return the result to the device.

Multiple implicitly restarted Arnoldi method with nested subspace

In IRAM, the choice of the Krylov subspace size remains empirical but still has an

important impact on the overall success of the method. A shown in Algorithm 6, the

idea of MIRAMns (Shahzadeh Fazeli et al., 2015) is to improve this point by computing

l subspaces of different sizes and select the best one for each restart.

28

2.3 GPU accelerators

A subspace s1 is considered to be better than another subspace s2 if its residual

is smaller : P(s1) < P(s2), (ie. the approximation is better at the current cycle).

In practice the residual is calculated using the Ritz approximation technique and

P(si) =max(ρ(λ1,w1), ...,ρ(λk ,wk)), where (λ1,w1), ..., (λk ,wk) are the eigenpairs of Hm. The

residual ρ(λi ,wi) is the residual norm associated to the Ritz eigenpair (λi ,wi), calculated

using the Ritz estimate | ||fsi ||2e
T
i wi |.

Algorithm 6Multiple implicitly restarted Arnoldi with nested subspaces

Input: A,v1, k,mmax

Output: k wanted eigenpairs
[Vmi

,Hmi
, fmi

] =Arnoldi-Factorizations(A,v1,1,mmax)
where mi refers to Arnoldi Factorization of size mi

while Convergence is not reached do
Compute the eigenpairs of Hmi

Compute the residuals, stop if one subspace converged
Select the best subspace size
Set m,Hm,Vm, fm accordingly
Select p=m-k shifts µ1, ...,µp from unwanted eigenvalues
Qm = I
for j = p, ...,2,1 do

[Qj ,Rj] = QR-Factorization(Hm −µjI)
Hm =QH

j HmQj

Qm =QH
mQj

end for
fk =Hm(k +1, k)Vm(1 : n,1 :m)Qm(1 :m,j +1) +Qm(m,k)fm
Vm(1 : n,1 : k) = Vm(1 : n,1 :m)Qm(1 :m,1 : k)
[Vmi

,Hmi
, fmi

] =Arnoldi-Factorizations(A,Vk , k,mmax)
end while

Lanczos and implicitly restarted Lanczos method

The Lanczos method (Calvetti et al., 1994; Lanczos, 1950) is an iterative method

based on Krylov subspace theory to compute an approximation of k eigenpairs of

an Hermitian matrix A of size n by those of a much smaller symmetric tridiagonal

matrix Tm of size m, with k ≤m≪ n. It can compute multiple eigenpairs at once and

keeps track of previous vector directions. The matrix Tm is obtained by an orthogonal

reduction of A onto an m-dimensional Krylov subspace Km(A,v) (Equation 2.12))

Km(A,v) = span{v,Av,A2v, ...Am−1v} (2.12)

29

Accelerated spectral graph analytics

The Lanczos method can be seen as a special case of the Arnoldi method for symmetric

matrices. Hence, the Lanczos method is also similar to the power iteration method but

instead of rewriting v at each iteration the information is kept by forming a matrix

[v,Av,A2v, ...Am−1v] where those vectors are orthonormalized using a modified Gram-

Schmidt process to form the Krylov basis. Those vectors are often called Lanczos

vectors. The m-step Lanczos algorithm forms Tm,Vm, fm according to the formula in

Equation 2.13. This process is described in Algorithm 7.

AVm = VmTm + fme
T
m (2.13)

In Algorithm 7, off-diagonal elements Tm are denoted βj = Tj−1,j for notational con-

venience. Also notice that Tj−1,j = Tj,j−1 due to the symmetry. By construction, the

eigenvalues of the small tridiagonal matrix Tm are good approximations of the extreme

eigenvalues of A. This fundamental property leads to the Lanczos eigenvalue method.

Algorithm 7m-step Lanczos factorization

1: Input: A,vi , i,m
2: Output: Vm,Tm, fm
3: β1← 0
4: for j = i, i +1, · · · ,m− 1 do
5: w′j ← Avj
6: Tj,j ← w′∗j vj
7: wj ← w′j −Tj,jvj − βjvj−1

8: βj+1←
∥∥∥wj

∥∥∥
9: vj+1← wj /βj+1

10: end for
11: wm← Avm
12: Tm,m← w∗mvm

In order to limit the size of the basis (m), the method can be restarted, which has a

direct impact on memory requirements. Restarting is helpful for large cases where

each vector of size n is expensive to store and numerical imprecision arises quickly due

to the scale of the operations. Indeed, it is possible to lose accuracy when the number

of Lanczos vectors is large because of repeated roundoff resulting from numerical

floating point arithmetic. The problem is caused by the loss of orthogonality between

the Lanczos vectors, which happens as soon as Ritz values stabilize.

30

2.3 GPU accelerators

In this section we focus on the implicitly restarted Lanczos method (IRL) which

compresses the information into a k−dimensional Krylov subspace (Lehoucq, 1995;

Sorensen, 1997). This is achieved by applying an implicitly shifted QR scheme (Bai

and Demmel, 1989) where the unwanted eigenvalues are used as shifts as shown in

Algorithm 8. Initially v0 = [0, ...,0] and v1 can be initialized with a random vector

with norm 1. IRL starts with the m-step Lanczos factorization of Algorithm 7 to

build the initial Krylov subspace of size m. Then at each restart cycle all eigenpairs

of Tm are computed and the residual norm is estimated. The QR step concentrates

the information of interest in the k−dimensional subspace, which corresponds to the

upper left part of Tm and the orthonormal matrix Qm is used to update Vm, Tm and

fm. Once this step is completed the initial problem is implicitly updated and m − k

SPMVs are required for the next cycle. When the approximation is good enough it

exits the main loop and Vm is multiplied by the matrix formed by the eigenvectors of

Tm to approximate the eigenvectors of A.

Let us now discuss the complexity of this method, let nrc be the number of restart

cycles. The cost of IRL in terms of matrix-vector multiplications is m+ p × (nrc − 1).

Indeed, in the first cycle the number of matrix-vector multiplications ism and for each

of the restart cycles, the number of matrix-vector multiplications is p =m− k.

Notice that whenA is sparse and n is large, the dot products may represent a significant

part of the computation. The computation involving elements of size m is relatively

cheap compared to the rest of the operations because m≪ n. The eigenpairs of the

tridiagonal matrix Tm can be obtained in O(m2) per step with the QR method.

For a dense matrix the space complexity of IRL is n2 +O(m × n). In the context of

graphs, the complexity is O(|E|+m ∗ |V |).

The implicitly restarted technique is efficient for large sparse matrices (Lehoucq,

1995), in addition it allows to compute multiple eigenpairs at once which is useful for

spectral clustering (Ng et al., 2001). As a result, IRL is a good candidate to handle

large graph problems.

Notice that an alternative to the implicit restart is the explicit restart. The idea is

to compute a new starting vector based on all information and start again from the

beginning with this improved initial vector (Saad, 1992). In this thesis we focus on

the implicit restart.

31

Accelerated spectral graph analytics

Algorithm 8 Implicitly restarted Lanczos algorithm

1: Input: A,v1, k,m

2: Output: k wanted eigenpairs

3: [Vm,Tm, fm]← Lanczos-Factorization(A,v1,1,m)

4: while Convergence is not reached do

5: Compute the eigenpairs of Tm

6: Compute the residual and stop if converged

7: Select set of p =m− k shifts µ1, ...,µp based on unwanted eigenvalues

8: Qm← I

9: for j = p, ...,2,1 do

10: [Qj ,Rj]← QR-Factorization(Tm −µjI)

11: Tm←QT
j TmQj

12: Qm←QT
mQj

13: end for

14: fm← Vm(:,:)
Qm(:,k+1)

∗Tm(k+1,k)
+ fm ∗Qm(m,k)

15: Vm(:,1:k)
← Vm(:,:)

Qm(:,1:k)

16: [Vm,Tm, fm]← Lanczos-Factorization(A,Vk , k,m)

17: end while

2.3.3 Accelerated basic operations

Solving a sparse eigenvalue problem requires many basic linear algebra operations.

The basic linear algebra operations are commonly categorized in three levels. The first

level performs scalar and vector operations, the second performs matrix-vector opera-

tions, and the third performs matrix-matrix operations. Let us now present parallel

solutions and obstacles for several of them in the context of sparse eigensolvers for

graph analysis on GPUs.

Vector-vector operations

Vector-vector operations are known as level 1 routines and functions. For instance,

in eigensolvers, the addition of two vectors (y = x + y) or the scaling of a vector by a

constant (y = αy) appear frequently. Whenever possible, those operations are fused

since GPUs have a hardware unit to compute fused multiply–add (FMA) using a single

floating point rounding. Notice that in parallel this type of operation is straightfor-

32

2.3 GPU accelerators

ward and is expected to scale linearly with the number of threads.

Another frequent vector operation is the dot product (β = x.y) which appears in vector

normalization for instance. On GPUs, the dot product involves an embarrassingly

parallel pairwise multiplication followed by a reduction from vector to a scalar. In

parallel, the reduction cannot be safely achieved in a single parallel step since the local

reduction of each thread must reconcile with the current global sum before adding its

contribution. On GPU, a tree-based approach within each warp is generally preferred.

In this case, the reduction requires log(t) parallel steps with t the number of threads

as illustrated in Figure 2.11 for 8 threads. Moreover, in recent GPU architectures, the

shuffle instruction enables a thread to directly read a register from another thread in

the same warp. This instruction allows fast parallel tree-based reductions within a

warp without temporary memory or synchronizations. The warpReduceSum kernel

bellow corresponds to the illustration of Figure 2.11 for warpSize = 8.

int warpReduceSum(int val) {

for (int o f f s e t = warpSize /2 ; o f f s e t > 0 ; o f f s e t /= 2)

val += __shfl_down (val , o f f s e t) ;

return val ;

}

Now that local warp sums exist they can be accumulated over the entire grid using

atomics. Notice that using atomics at this level has a light impact on performances

because there are few collisions. However, this can be an issue for reproducibility

since accumulations are done in unpredictable order.

In linear algebra problems derived from graph analysis, the complexity of level 1

operations depends on the number of vertices. As a result, level 1 computations are

relatively cheap compared to level 2 and 3 operations. There are efficient existing

GPU implementations in libraries such as CUBLAS (NVIDIA, 2017).

An implicitly restarted eigenvalue solver runs dozens of level 1 operation per iteration.

There are few cases where level 1 operations can dominate the execution time. For

instance, this can occur when the number of edges is close to the number of vertices

and the dot operation is not optimized.

33

Accelerated spectral graph analytics

Fig. 2.11 Parallel tree-based warp reduction

Sparse matrix-vector operations

Matrix-vector operations are known as level 2 routines and functions. In practice, the

sparse matrix vector multiplication (SpMV) is the most expensive part in all eigen-

solvers presented in this thesis. The complexity of this operation depends on the

number of edges. Indeed, this matrix vector multiplication is at the heart of Krylov

methods since it occurs at each iteration. In PageRank for instance, the time spent in

the matrix-vector multiplication varies between 80 and 95 percent of the total time,

depending on the method. As a result, it is critical to understand the details of this

particular operation on GPU, especially for networks. There are over 100 specialized

SpMVs for GPUs (Bell and Garland, 2008). Regarding the CSR compression format,

which is popular and provides good compression for irregular networks, there are

basically four common solutions:

Scalar. Since each row can be computed independently, one thread can be assigned to

one row. The CSR-scalar is relatively simple to implement and performs well when

using a few fast cores but this does not scale on GPUs. First because memory accesses

per warp diverge and also because the total time depends on the largest rows which

34

2.3 GPU accelerators

are very large compared to the rest of the data set in scale-free networks.

Figure 2.12 shows the threads mapping for the sparse matrix vector multiplication in

CSR with the vectorized approach for the graph of Figure 2.1 and its CSR representa-

tion in Table 2.2.

Fig. 2.12 Parallel SpMV - CSR scalar

Vectorized. The memory access pattern is improved as well as the time to process

large rows by using a vectorized approach where a group of threads of fixed size is

assigned to each row. This technique performs better on GPUs, especially on regular

sparsity patterns but still suffers from load balancing problems on real networks.

Figure 2.13 shows the threads mapping for the sparse matrix vector multiplication in

CSR with the vectorized approach for the graph of Figure 2.1 and its CSR representa-

tion in Table 2.2.

Fig. 2.13 Parallel SpMV - CSR vectorized

Hybrid. The hybrid technique is an adaptive combination of previous approaches.

Typically, it considers a group of vertex (rows) and selects the best kernel depending

on the number of edges (non-zeroes). If the group is composed of small rows, it selects

a CSR scalar kernel. If the group is composed of large rows, the CSR vectorized kernel

is selected. For scale-free network applications, it is helpful to have a third kernel that

35

Accelerated spectral graph analytics

splits very large rows in order to process them using several groups of threads.

Pre-processed and post-processed. Pre-processing and post-processing steps can be

applied to reorder, sort, classify, or break rows and compute auxiliary information

which helps to speedup the multiplication (Greathouse and Daga, 2014). This is

particularly useful for iterative methods since, in general, the pre-processing step is

done only once as the sparsity pattern of the matrix does not change.

For example, the CSRMV merge-path (CSRMV-MP) (Merrill and Garland, 2016),

offers a perfect workload balance on GPUs, which is a primary concern in our case.

At a high level it starts by computing partitions using the 2D merge-path (Deo et al.,

1994; Odeh et al., 2012), the output of this step is the starting offsets of each, bal-

anced, partition (in term of coordinates in row offsets and values or column indices as

illustrated in Figure 2.14). Since multiple rows can belong to the same partition or a

single row can cross partitions, a key value array is used to keep track of that. Then,

the actual multiplication is performed in two steps. First, local multiplications and

accumulations are computed. Since some rows may cross partitions, the second step is

to use a key-value reduction to accumulate partial sums.

Fig. 2.14 Parallel SpMV - CSR merge-path

36

2.3 GPU accelerators

Figure 2.14 shows the threads mapping for the sparse matrix vector multiplication

in CSR with the merge-path approach (Merrill and Garland, 2016) for the graph of

Figure 2.1 and its CSR representation in Table 2.2. The merge-path CSR decompo-

sition can be illustrated as a 2D path based on the row_offsets and the sequence of

indices of column_indices or values arrays. The path begins in the top-left corner, it

moves downward when consuming indices (accumulating matrix-vector dot-products

within a row) and rightward when consuming row offsets. Finally, diagonals are used

to split this decision path into equal-lengths. In Figure 2.14 the decomposition is

done for three threads and the workload is optimally balanced.

Figures 2.15 and 2.16 show an experiment from (Merrill and Garland, 2016) on the

performance of CSRMV-MP vs. Cusparse (Tesla K40, 64 bit) and MKL (dual-socket

Intel e5-2695, 48-threads) on the entire matrix collection of the University of Florida

(4200 matrices). Notice that CSRMV-MP has a better consistency between size and

time than Cusparse because it is more resilient to row-length variations. In average,

the CSRMV-MP is 1.1× and 2.9× faster on the CPUs and GPUs respectively.

Matrix-matrix operations

Matrix-matrix operations are known as level 3 routines and functions. The matrix-

matrix multiplication is also known to be an expensive operation with almost cubic

complexity. In implicitly restarted Krylov solvers, it appears during the implicit

update of the Krylov vectors and at the very end of the method when computing the

eigenvectors. Although, in practice, it is not a primary concern for three reasons :

- First, it is a very special type of matrix-matrix multiplication called tall skinny matrix

matrix multiply. Indeed, notice in Algorithms 5, 6, and 8 that the matrix V of size

(n,k) is always multiplied by a matrix of size (k,k) where only n is large and k is very

small.

- Second, it is not in the inner loop, it happens only during the restart and at the end

of the method (Algorithms 5, 6, and 8).

- Third, the dense matrix-matrix multiply is intensive, parallel, and well balanced, so

this is one of the best scenarios to take advantage of GPU performances. We use the

CUBLAS library for this operation (NVIDIA, 2017).

37

Accelerated spectral graph analytics

Fig. 2.15 CSRMV-MP vs CUSPARSE on the entire matrix collection of the University
of Florida (Merrill and Garland, 2016).

Fig. 2.16 CSRMV-MP vs MKL on the entire matrix collection of the University of
Florida (Merrill and Garland, 2016).

38

Chapter 3

Accelerated multiple implicitly

restarted Arnoldi method with nested

subspaces

3.1 Introduction

The PageRank and the equilibrium of a Markov chain are famous topics of graph

analytics and they lead to large, sparse, nonsymmetric, eigenvalue problems. The

PageRank algorithm is used in many applications such as Web (Bryan and Leise, 2006),

epidemiology (Liu et al., 2013), or finance (Ermann et al., 2015). The idea is based on

a Markov model to represent transition probabilities from one vertex to another, so

the stationary distribution (or the equilibrium) represents a steady state in the chain’s

behavior (Langville and Meyer, 2003). This equilibrium can be seen as a vector where

the ith component represents the probability to be in the ith state. In other words, the

stationary distribution of a Markov Chain is the vector x such that A ∗ x = x, where A

the transition matrix. This vector has a large range of applications since it is used to

predict the most probable future state based on present observations.

For instance, the graph showed in Figure 3.1 represents frequent co-purchasing of

books on Amazon. In Figure 3.2 the PageRank is used to enhance the visualization.

In this example, large dark vertices have a high PageRank so we can visually detect

popular books that are frequently bought with other books.

39

Accelerated multiple implicitly restarted Arnoldi method with nested subspaces

In these applications we look for the dominant eigenpair, which can be approxi-

mated with methods like the power method as shown in Algorithm 3. We intially

implemented a GPU solver for this method and results showed a very fast time per

iteration compared to CPU alternatives (Fender, 2014). This is expected since the

main cost per iteration is a sparse matrix-vector multiplication which can be efficiently

parallelized on GPU. We used this power method solver as a reference to measure

improvements offered by Arnoldi methods in the context of accelerated network

analysis.

For many real applications the largest eigenvalues are clustered, which slows down

the convergence. As an example, with a damping factor close to 1 and a tolerance

of 10−9 the power method requires hundreds of iterations to converge. Recall that

the number of iterations depends on the gap between λmax and the second largest

eigenvalue which is bounded by the damping factor α ∈ [0,1] (Brody, 1997). In

this situation more advanced methods,like restarted Arnoldi methods, should be

considered in order to obtain the result in reasonable time. We found that even on

simple PageRank cases the implicitly restarted Arnoldi method leads to a reduction of

the number of matrix-vector multiplications.

In this chapter we present a parallel implicitly restarted Arnoldi solver on the GPU

especially designed for fast network analysis. Algorithms and implementations are

explained and experiments showed a speedup between 2× and 15× compared to the

power method on GPU and an additional improvement up to 8× by using an auto-

tuning technique for the subspace size. Our solver is also efficient as we could solve

the PageRank problem on networks with hundred millions edges in a few seconds by

using a single GPU. The work presented in this chapter has been published as Fender

et al., 2016a and Fender et al., 2016b.

3.2 Implicitly restarted Arnoldi solver with PageRank

applications on GPU

In Chapter 2 we showed that GPUs have a high parallel throughput and a good power

efficiency. Thus, it makes sense to use them for the largest and most computationally

intensive part. However, Krylov methods like ERAM and IRAM project the problem

40

3.2 Implicitly restarted Arnoldi solver with PageRank applications on GPU

Fig. 3.1 Network representing 105 books sold by Amazon connected by 441 frequent
co-purchasing by the same buyers.

Fig. 3.2 Graph of Figure 3.1 where color and diameter of vertices vary according to
the PageRank.

41

Accelerated multiple implicitly restarted Arnoldi method with nested subspaces

into a small subspace. In the PageRank case a sufficient subspace size is between 4

and 10 (depending on the network), which is too small to fully take advantage of the

GPU. Fortunately we can leverage the low latency of the CPU for those operations and

build a hybrid strategy based on CPU and GPU cooperation.

The host-device transfers minimization and GPU usage maximization leads to focus

on the implicitly restarted Arnoldi method which is known for improving convergence,

and thus, overall time of nonsymetric sparse eigenvalue problems (Lehoucq, 1995;

Sorensen, 1997, 1998).

In this section we describe a new approach to combine both CPUs and GPUs strengths

in order to solve those problems faster and in an efficient way. The concepts presented

here can be generalized and transposed to other methods based on projections or

coarsening of large sparse problems into small subspaces. We first present the hybrid

acceleration of IRAM designed for large networks with power-law distribution and

clustered eigenvalues. We explain how famous graph problems such as PageRank

directly benefit from this solver and discuss optimizations.

3.2.1 Hybrid GPU approach

In most sparse eigenvalue solvers, the critical part is the parallel sparse matrix-vector

multiplication (Bell and Garland, 2008; Greathouse and Daga, 2014).

The SPMV is a memory bounded application, which is good for GPU since the

device memory bandwidth is several times larger than the host bandwidth. Neverthe-

less, accelerating this operation is not straightforward and several points have to be

carefully designed, such as the compression format and the load balancing.

The bottleneck of the initial host to device data transfer is not relevant in the

context of iterative methods since it is done only once, before the iterative process.

Nevertheless, the sparse matrix compression format should still have a good compres-

sion rate. Indeed, networks have a very irregular sparsity pattern, so a bad compression

can lead to huge memory costs, and thus expensive transfers. On this type of dataset

CSR is 30% smaller than COO and 80% smaller than ELLPACK in average (Bell and

Garland, 2008). This is the main reason why we chose the compressed sparse row

(CSR) format, the other reason being the wide adoption of this format. However, this

representation generates an irregular workload for the GPU and introduces important

unoccupancy which impacts performances.

42

3.2 Implicitly restarted Arnoldi solver with PageRank applications on GPU

Another issue comes from small tasks, which can lead to important loss of re-

sources on GPU. So, if a small task is on the critical path, it will not take advantage of

the high throughput of the GPU.

At a high level, a cycle of IRAM is composed by three main steps as shown in Figure

3.3a. First the Arnoldi factorization (Algorithm 4). Second, solving the problem in the

small subspace. Third, implicitly update in the original problem or compute the Ritz

vectors if converged. This naturally matches a hybrid approach where the GPU would

be in charge of steps 1 and 3 and the would CPU handle the second step. Notice that

it is possible to hide transfers and latency in both directions by using asynchronous

transfers and overlap them with computation. Hence, we propose to combine CPU

and GPU to accelerate the implicitly restarted Arnoldi method.

Algorithm 9 Accelerated IRAM

Notation: D stands for Device and H for Host

Initially: A and v1 are on D

[Hm]H [Vm, fm]D = Arnoldi-factorization(A,v1,1,m)

while Convergence is not reached do

H: Compute the eigenpairs of Hm

H: Compute the residual and stop if converged

H: Select p =m− k shifts µ1, ...,µp based on unwanted eigenvalues

H: Qm = I

for j = p, ...,2,1 do

H: [Qj ,Rj] = QR-Factorization(Hm −µjI)

H: Hm =QH
j HmQj

H: Qm =QH
mQj

end for

Transfer: Hm and Qm from H to D

D: fm = Vm(:,:)
Qm(:,k+1)

∗Hm(k+1,k)
+ fm ∗Qm(m,k)

D: Vm(:,1:k)
= Vm(:,:)

Qm(:,1:k)

[Hm]H [Vm, fm]D = Arnoldi-factorization(A,Vk , k,m)

end while

43

Accelerated multiple implicitly restarted Arnoldi method with nested subspaces

Initially, the network is assumed to be in the device memory in CSR representation

as shown in Algorithm 9. With recent unified virtual memory (UVM), the graph

can also be streamed to the device on-demand as well. Every other data structure of

the size of the graph, such as additional vertex or edge information are also on the

device. The reason for that is the assumption that host-device and host bandwidth

are considerably slower than the device bandwidth, hence, it is primordial to avoid

transfers at this scale inside the iterative process.

In Algorithm 9, the SPMV and the Gram–Schmidt process are done on the device,

thus we form the matrix Vm from the Arnoldi factorization (Algorithm 4) directly on

the device, each column j of Vm corresponds to the result Avi orthogonalized with the

previous vectors. Notice that Vm is a dense matrix which is stored in column major

order by nature. The small matrix Hm is formed at the same time directly on the host

in column major order as well. The size (m) of this matrix is between 4 and 20 for most

graph applications. There is no explicit or blocking transfer of the matrix Hm at this

point, since the elements Hi,j are the result of level1 operations happening between

the SpMVs of the Arnoldi factorization (Algorithm 4). Results are just written on the

host one by one without Read After Write issues since Hm is used at the very end of

the factorization.

Once the desired size is reached, the eigenpairs of Hm can be computed on the host,

we select the unwanted eigenvalues to perform the shifted QR factorizations there. At

this point the problem is solved into the subspace and the next step is to update the

basis. This is done by using the new matrix H+
m and Q+

m of Algorithm 9. However,

this part involves Vm which is composed by vectors of the size of the graph. This step

corresponds to tall skinny dense matrix-matrix multiplications. Fortunately, this type

of operation are good use cases for accelerators as shown in Section 2.3.3, plus the

large matrix A is already on the device. We only need to transfer the new subspace

information which is a couple of matrices of size m.

Finally, we are ready for a new cycle with the same strategy starting by the Arnoldi

factorization (Algorithm 4) at the k +1th step.

44

3.3 Accelerated multiple IRAM with nested subspaces

3.3 Accelerated multiple IRAM with nested subspaces

3.3.1 Enabling nested subspaces in the hybrid IRAM algorithm

The subspace size has an important impact on the performances, however, it is se-

lected empirically in advance in the IRAM method. MIRAMns, generates multiple

subspaces in a nested fashion in order to dynamically pick the best one inside each

restart cycle. The parallel overall hybrid (host/device) algorithm is described the in

Algorithm 10. Device (D) operations are performed in parallel on the throughput

oriented architecture, host (H) steps are processed sequentially at high frequency. An

illustration is provided in Figure 3.3b where green steps are on the device, and blue

ones on the host.

(a) Hybrid IRAM solver
(b) Hybrid IRAM solver with nested sub-
spaces

Fig. 3.3 Accelerated hybrid approach of IRAM and MIRAMns

45

Accelerated multiple implicitly restarted Arnoldi method with nested subspaces

Algorithm 10 Parallel multiple implicitly restarted Arnoldi with nested subspaces

Notation: D stand for Device and H for Host

Initially: A and v1 are on D

[Hmi
]H [Vmi

, fmi
]D = Arnoldi-factorization(A,v1,1,mmax)

while Convergence is not reached do

H: Compute the eigenpairs of Hmi

H: Compute the residuals, stop if converged

H: Select the best subspace size

H: Set m,Hm,Vm, fm accordingly

H: Select p =m− k shifts µ1, ...,µp

based on unwanted eigenvalues

for j = p, ...,2,1 do

H: [Qj ,Rj] = QR-Factorization(Hm −µjI)

H: Hm =QH
j HmQj

H: Qm =QH
mQj

end for

Transfer: Hm and Qm from H to D

D: fk =Hm(k +1, k)Vm(1 : n,1 :m)Qm(1 :m,j +1) +Qm(m,k)fm
D: Vm(1 : n,1 : k) = Vm(1 : n,1 :m)Qm(1 :m,1 : k)

[Hmi
]H [Vmi

, fmi
]D = Arnoldi-factorizations(A,Vk , k,mmax)

end while

3.3.2 Synchronous auto-tuning

The initial idea of MIRAMns (Shahzadeh Fazeli et al., 2015) is to compute l nested

subspaces of different sizes and select the best one for each restart. In this chapter we

introduce a way to automatically set the nested subspace sizes based on the number of

desired eigenvalues and the maximum subspace size. The smallest subspace size is

k+C, where C is a constant to make sure the minimum subspace size is large enough to

capture the desired eigenvalues. In order to limit the number of subspaces of interest

between k +C and mmax we perform the quality check at a given frequency φ so we

look at the subspaces of size k +C,k +C +φ,k +C +2φ, ...,mmax.

For each size we evaluate the quality of the newly generated subspace. This is done

by computing the eigenpairs of Hm on the host for the residual approximation. In

46

3.3 Accelerated multiple IRAM with nested subspaces

the meantime we can continue the next Arnoldi factorization (Algorithm 4) on the

device or wait for the residual to perform an early exit if the residual is lower than the

tolerance.

When the maximum size mmax is reached, we compare all residuals and keep only

the best subspace of size mselect (with Hmselect
,Vmselect

, fmselect
) on the host and discard

other subspaces. Then we proceed exactly like for IRAM, we select the unwanted

eigenvalues to perform the shifted QR factorizations on the host. At this point the

problem is solved into the subspace and the next step is to update the basis, this is

done by using the new matrices H+ and Q+. Again, since this part involves V which

is composed by vectors of size n this step is done on the GPU. The transfers involve

the new subspace information which is a couple of matrices of size mselect. Finally,

we are ready for a new cycle with the exact same strategy, starting by the Arnoldi

factorization (Algorithm 4) at the kth step.

3.3.3 Implementation

SpMV

The approach we chose is based on Merrill’s solution which efficiently handles arbi-

trary sparsity pattern based on a 2D merge-path decomposition (Deo et al., 1994;

Odeh et al., 2012). This approach presented in Section 2.3.3 is called CSRMV merge-

path (Merrill and Garland, 2016). It offers a perfect workload balance on GPU for

networks.

Complex eigenvalues

Real non-symmetric matrices often have real eigenvalues but it is very common to

have complex conjugate eigenvalues as well. In this case we adjust the shifted QR

step of algorithm 9 in order to avoid dealing with complex arithmetic. Typically, if µj
has an imaginary part we consume two shifts at once (µj and µj+1) and compute the

QR factorization of (Hm −ℜ(muj) ∗ I)2 +ℑ(muj)2 ∗ I . For this reason, when the user

asks for k eigenvalues we actually compute k +1 eigenvalues, to make sure we never

consume the kth eigenvalue in the double shifted QR (if k +1 is a complex conjugate

shift).

47

Accelerated multiple implicitly restarted Arnoldi method with nested subspaces

GPUMemory Manager

GPU memory allocation and deallocation have a cost in term of performance. In meth-

ods like IRAM and MIRAMns such operations may happen at each restart. Fortunately

the device memory can be managed by the application itself. In other words, instead

of explicitly allocating and freeing device memory in the code we take advantage

of a memory management layer in charge of managing used and unused memory

blocks on the device. Hence, a large block of memory can be allocated once during

the initialization of the library and distributed in an on-demand fashion by a memory

manager. This manager also has the ability to allocate more GPU memory if needed.

Unified Virtual Memory

For a long time the user had to explicitly transfer the data to the accelerator and

the size of the data set was bounded by the device memory capacity. With recent

NVIDIA’s GPU architectures and CUDA it is now possible to use a unified virtual

memory address space between host and device. It is based on a page fault mechanism

between the CPU and the GPU. Data are automatically properly transferred when

accessed either from host or device. This enables GPU over-subscription and out-of-

core algorithms to process graphs that could not fit into the local memory a single GPU.

PageRank support

Our implementation of the IRAM solver can find the equilibrium of a Markov chain or

compute the PageRank. Based on the formulation of Section 2.2.1, we added support

for the damping factor and the rank-one update in order to artificially represent the

Google matrix (Eq. 2.5) during the Arnoldi-factorization (Algorithm 4). Hence, the

largest eigenpair of the generated subspace is the equilibrium.

Design

The solver is implemented in an experimental branch of nvGRAPH, which is a CUDA

library at Nvidia. It is written in C++/CUDA with C API. For many low level primi-

tives on the GPU we leverage other parts of the CUDA Toolkit libraries such as Cublas,

Cusparse and Thrust (NVIDIA, 2017). On the host we used Lapack for QR factoriza-

tions. Internally the code leverages object oriented design. Each step of the solver is

independent and was validated and tested separately. We built a test suite based on

48

3.3 Accelerated multiple IRAM with nested subspaces

GTEST , a Google open-source framework for C++ tests.

Parameters

The IRAM solver takes a graph and an initial guess (which can be random) as input.

The user also provides the desired Krylov subspace size and the number of desired

eigenpairs. As output, the solver returns those eigenpairs.

The solver can artificially represent Google matrices to solve the PageRank problem.

This mechanism can also be applied to guaranty a unique eigenvector corresponding

to the largest eigenvalue of a stochastic matrix (Krieger, 1974). In this case the user

should provide the bookmark of dangling nodes and the damping factor (ie. the

probability to follow each edge). Internally this has almost no computational cost

since it is done on the device during the Arnoldi factorization with the rank-one

update. Finally, it is possible to print statistics like time, number of iteration, memory

used, best Krylov subspace size and residual at each cycle.

3.3.4 Distributed considerations

Multiple asynchronous solvers

It is possible to take advantage of multiple devices by running an instance of a solver

on each GPU. A different initial guess and various nested subspaces sizes should be

used for each instance. Increasing the number of instances also increases the chances

to find better parameters. Thus, the time to find a solution can be reduced. Strong

scaling can be achieved with this technique for data sets of moderate size which can

fit in a single device.

Distributed synchronous auto-tuning

The primary concern of a distributed version is to handle problems that cannot fit

into the memory of a single device. In order to bypass this limitation, the problem can

be split into several partitions. Still, the multi-GPU implementation of an implicitly

restarted eigensolver will operate on data of different orders of magnitudes at all times.

Large operations involving the size of the graph are done in parallel on the device.

There is one sparse matrix vector multiplication (spmv) per iteration and it is the

most expensive step, since it is the only one involving the matrix. The performance

49

Accelerated multiple implicitly restarted Arnoldi method with nested subspaces

of this operation highly depends on how the matrix has been distributed among

accelerators (eg. simple, 2D partitioning, random, according to a specific optimized

partition vector, etc.). This partitioning directly impacts the implementation of the

SPMV because, for instance, the factorization step is done differently depending on

the distributed data layout.

Other operations of large size involve dense data. They are dot, axpy and gemm

(tall-skinny). When targeting a large number of accelerators each operation should

be replaced by its distributed version as well. In a single device those operations are

quickly done. However, if the data are distributed across multiple devices, intra-node

communications and host-device transfers will become increasingly expensive. This

should be optimized as much as possible because those operations are called many

time per iteration and can potentially end by dominating the total execution time.

Small operations involving the size of the subspace are done on the host. The

reduced problem is too small to benefit from accelerated or distributed computing.

Hence, it should be gathered on a single host in order to be solved, then the result

can be sent to all nodes and a new cycle can start. The communication cost should be

relatively low as long as the number of partitions is reasonable. The only problematic

part being the implicit synchronization before each restart. As a result, the solution is

obtained only when the slowest node completed all tasks.

3.4 Experimental results

We implemented and optimized the power method on GPU in order to have a fair and

useful way to estimate the speedup offered by the hybrid IRAM solver. Based on that

we can also quantify the improvements offered by the hybrid MIRAMns solver.

3.4.1 Power method on GPUs

The experiment was performed on a CentOS 7.2, x86-64, with 128GB of memory. We

implemented the power method in nvGraph (NVIDIA, 2017) as a PageRank solver and

ran it on K80, M40, P100 with ECC ON and using an Intel Xeon Haswell single-socket

16-core E5-2698 v3, base clocks. We ran GraphMat (Sundaram et al., 2015) and Galois

(Nguyen et al., 2013) in parallel on Intel Xeon Broadwell dual-socket 44-core E5-2699

50

3.4 Experimental results

v4 @ 2.22GHz, 3.6GHz Turbo which was the most recent CPU architecture at the time

we did the experiment. We selected a relevant sample of graphs from the University

of Florida collection (Davis and Hu, 2011), shown in Table 3.1.

Name n = |V| m = |E| Application
web-BerkStan 685230 7600595 Web
web-Google 916428 5105039 Web
Webbase-1M 1000005 3105536 Web
Wiki-Talk 2394385 5021410 Comm
ctiPatents 3774768 16518948 Citations
soc-LiveJournal 4847571 86220856 Social
Live Journal 5363260 79023142 Social
Twitter 41652230 1468365182 Social

Table 3.1 General information on networks

In Figure 3.4 we compare nvgraph (accelerated power method) to famous competi-

tors which are GraphMat (Sundaram et al., 2015) and Galois (Nguyen et al., 2013).

We compare the average time per iteration. Galois and GraphMat run in parallel on

all available cores of the machine (2 sockets with 44 CPU threads). We run nvgraph

on Maxwell (M40) and Pascal (P100 PCIe). In nvgraph, the input and output data

are assumed to be on the device. The graph is transferred only once in an other

API call which allows applications to chain multiple nvgraph algorithms without

re-transferring the graph. For the Pagerank case, the transfer overhead is diluted over

a large number of SpMV operations, rendering it negligible.

Fig. 3.4 Speedup of the power method implementation on GPU vs. CPU (parallel) for
PageRank applications

51

Accelerated multiple implicitly restarted Arnoldi method with nested subspaces

First, notice that the speedup over Galois is better on live journal than on Twitter.

This is because Galois performs better on larger data sets.

Second, GraphMat outperforms Galois by 5× to 50×. A reason for that is be-

cause Galois targets more general purpose parallel computing while GraphMat is an

optimized software by Intel for graph analysis.

Third, notice that graphs as large as Twitter with 1.4 Billion edges can be handled

by a single GPU with nvgraph’s power method.

Fourth, nvgraph outperforms Galois by 200× and 70× on soc-LiveJournal and

Twitter respectively. It also outperforms GraphMat by 4× and 5× on soc-LiveJournal

and Twitter respectively.

As the cost of one iteration is dominated by the cost of the sparse matrix vector

multiplication, the speedup is mostly resulting from the faster sparse matrix vector

multiplication on GPU than on CPU.

Since our implementation of the power method in nvgraph is the fastest implemen-

tation, it will be our reference baseline for further comparison against the implicitly

restarted Arnoldi method.

Figure 3.5 shows PageRank performances on GPU on the three latest Nvidia

architectures : Kepler (K80), Maxwell (M40) and Pascal (P100 PCIe).

Fig. 3.5 Speedup of the power method on several GPU for PageRank applications

52

3.4 Experimental results

Power IRAM
Graph Type V E SPMV T(s) SPMV T(s) Speedup
com-Youtube Social 1,134,890 5,975,248* 65 0.20 22 0.09 2.13
rmat-1M Artificial 1,000,000 41,237,691 18 0.41 10 0.24 1.74
wiki-2011 Citations 3,721,339 66,454,329 40 1.85 25 1.26 1.47
com-Orkut Social 3,072,441 234,370,166* 46 6.37 25 3.55 1.79

Table 3.2 IRAM solver on GPU vs. power method on GPU in PageRank applications
(α = 0.85, m = 4, 64 bit precision)

Notice that P100 is 2.3× faster than M40 and 4× faster than K80 while the speedup

between M40 and K80 is 1.7×. This trend seems to indicate that GPU architectures

are becoming increasingly better for graph analysis workloads.

3.4.2 Implicitly restarted Arnoldi for networks on GPU

We use an NVIDIA Tesla K40m for this experiment with the driver version 352.68 and

CUDA7.5. The test machine OS is RedHat6.5 and is equipped with an Intel Xeon CPU

E5-2698 v3 at 2.30GHz and 256GB of memory. In Table 3.2 we selected real networks

from SNAP collection (Leskovec and Krevl, 2014) and KONECT (Kunegis, 2015), the

star (*) on undirected graphs indicates that an undirected connection is represented

by a directed edge in each direction. Column V represents the number of vertices (size

of the matrix) and column E shows the number of edges of the graph (ie. the number

of non-zero entries in the matrix). com-Youtube and com-Orkut are social networks

where vertices are users and edges are friendship links. Rmat-1M is an artificial graph

generated using Boost Graph Library RMAT generator, and wiki-2011 represents the

citations (edges) between Wikipedia articles (vertices) (Eom et al., 2013).

Accelerated IRAM versus power method

In general, PageRank is a good use case for the power method solver, especially with

a reasonably low damping factor and in single precision mode. Nevertheless, IRAM

performs better in Table 3.2, with an average speedup of 1.8x for a standard damping

factor of 0.85. There are simple cases where the power method can beat the hybrid

IRAM solver in term of total time, for example if the two dominant eigenvalues are

not clustered (at least |λ1 −λ2| > 10−1) and if we do not care much about the quality of

the approximation (tolerance under 10−4).

53

Accelerated multiple implicitly restarted Arnoldi method with nested subspaces

Typically, the power method can reach the desired tolerance in less than 9 iterations

on these cases. Ideally, a general adaptive solver could dynamically choose between

the two solvers based on input information.

In the PageRank example, the damping factor has a direct impact on the gap

between the two largest eigenvalues, and thus on the convergence rate. We use this

property to show the speedup variation between IRAM and the power method in

Figure 3.6. Notice that when the problem becomes harder to solve, the IRAM solver

performs better by dividing the number of SPMV by 18.3× in average when eigenvalues

are clustered (eg. α = 0.999). For those cases the resulting average speedup in term of

time is 14.4×, compared to the power method on GPU.

The difference between the reduction of the number of SpMV and the actual time

speedup corresponds to the cost of the implicit restarts of IRAM.

The choice of the subspace size can be independent of the graph size, for the exper-

iment in Figure 3.6 the subspace size is always 4, which means that the theoretical

cost for solving the problem in the subspace is independent of the size of the network.

Hence, increasing the network size tends to dilute the cost of the implicit restarts.

For example, on a small graph like com-Youtube the speedup is 28.08% under the

reduction of the number of SpMVs, while on com-Orkut, the largest data set of Table

3.2 , this difference is only about 2.46%.

Fig. 3.6 Speedup of IRAM on GPU vs. power method on GPU with different damping
factors

54

3.4 Experimental results

Fig. 3.7 Impact on time and memory when changing the Krylov subspace size on
com-Orkut

Figure 3.8 shows a time profile of IRAM on the GPU (Algorithm 9), when looking

for one eigenvalue in a subspace of size four on wiki-2011. This profile shows that

most of the time is spent in the CSRMV (37ms per CSRMV in average in this example).

Notice that level 1 BLAS routines such as AXPY, DOT and SCAL are cheap compared

to the CSRMV. At the end of each cycle there is a tall skinny matrix multiplication for

the projection. In this PageRank example, we are looking for one eigenvector so the

final projection is only one tall-skinny matrix-vector multiply. Transfers of Algorithm

9 take one to five micro-second each, and are too small to be visualized on Figure 3.8.

Fig. 3.8 Profiling of IRAM on GPU

55

Accelerated multiple implicitly restarted Arnoldi method with nested subspaces

3.4.3 Accelerated multiple IRAM with nested subspaces

We validated the results by comparing to the CPU reference code of this method in

Matlab, we were also able to check the results of the accelerated version of IRAM and

MIRAMns on the af23560matrix by comparing with results from the literature.

The matrix af23560 (Table 3.3) is non-symmetric and comes from a computational

fluid dynamics problem. In addition, we selected three large matrices from (Davis

and Hu, 2011) and made sure we always converged to the same eigenvalues with

both methods. Cage14 and cage15 (Table 3.3) are non symmetric matrices with real

values from DNA electrophoresis and Hook1498 is symmetric, from a 3D mechanical

problem. The tolerance of the quality of the approximation is 1E−12 for the following

experiments. Initial vectors are always identical.

Name N NNZ Application

af23560 23,560 484,256 CFD

Hook1498 1,498,023 59,374,451 Structural

cage14 1,505,785 27,130,349 DNA electrophoresis

cage15 5,154,859 99,199,551 DNA electrophoresis
Table 3.3 General information on matrices

Comparison between two IRAM and MIRAMns on GPU

The SPMV is the most expensive operation per cycle, thus the number of SPMV (or the

number of restart cycles, which contain a fixed number of SPMV) is a generic metric

to measure the efficiency of Krylov methods. We also compare the total time since

both solvers has host-device transfers inside each cycle.

MIRAMns requires to transfer p subspaces per cycle so it is critical to make sure

that this extra cost is balanced by the improvement offered by the reduction of the total

number of SPMV. In order to capture the same subspace information, we compare

MIRAMns (mk+C ,mk+C+φ , ...,mmax) against IRAM(mmax).

Figure 3.9 shows ratios of speedup (dark blue) and reduction of the number of

cycles (light blue) of MIRAMns vs. IRAM. For each matrix we have results for k = 2

and k = 4, m = 25. Half of our experiments show a speedup from 2× and 8×, directly

related to the reduction of the number of restart cycles.

56

3.4 Experimental results

On Figure 3.9, the case Hook1498_2 illustrates an interesting detail of MIRAMns

solver. Notice that, MIRAMns does not reduce the number of cycles but there is still a

small speedup. What we see is a successful early exit of MIRAMns because a smaller

subspace than mmax converged. This explains why sometimes the speedup can be

slightly higher than the ratio of the reduction of the number of restarts.

Notice that as the speedup comes closer to the factor of saved cycles, the size of

matrix increases. The solver is able to compute the 4 dominant eigenvalues of af23560

in 0.07s, Hook1498 in 1.95s, cage14 in 43.6s, and cage15 in 235.6s. Recall that cage15

has almost 100 million entries, the matrix market file is about 2.6GB and the device

memory requirement of the accelerated solver to process it in double precision is only

2.9GB.

Fig. 3.9 Speedup and cycles saved in MIRAMns vs. IRAM.

Convergence and stability

MIRAMns involves many parameters such as the number of wanted eigenpairs, the

size of the largest subspace and the number of subspaces. Different parameters can

lead to significant differences in terms of time for the same data set. For example

cage15 takes 489 restarts to converge when looking for 2 eigenvalues, but by changing

the number of wanted eigenvalues to 8 (without changing any other parameter), the

number of restarts rises over 2000. Figure 3.10 shows the stability of the solver at

57

Accelerated multiple implicitly restarted Arnoldi method with nested subspaces

that scale, and after so many restarts during a long execution (matrix = cage15, k = 8,

m = 25).

In Figure 3.10 both methods struggle to converge. However, notice that there

are spikes breaking stagnation in MIRAMns while some divergence phases happen

in IRAM. Also, notice the final overtaking of MIRAMns while IRAM starts to show

higher signs of divergence.

Fig. 3.10 Comparison of the residuals of MIRAMns and IRAM on Cage15.

In Figure 3.11 MIRAMns is 2.7x faster by making active use of different subspace

sizes. It shows that MIRAMns starts to use smaller subspaces from the beguning,

leading to a better residual. It also avoids bad spikes that happen in IRAM. In the end,

MIRAMns solver converges in 9 cycles instead of 30 for IRAM.

58

3.4 Experimental results

Fig. 3.11 Selected subspace size in MIRAMns vs. IRAM on af23560

Variation of the number of nested subspaces

By only changing the frequency that controls the number of subspaces of interest, it is

possible to increase or decrease the number of subspaces between mk+C and mmax.

Fig. 3.12 Variation of the subspace frequency in MIRAMns on cage14

Typically, we would expect that the more subspaces we have, the better it should be

to find the one with the lowest residual. However, it requires to compute the residual

of more subspaces and has a cost in term of time. We also found that a high number of

59

Accelerated multiple implicitly restarted Arnoldi method with nested subspaces

subspaces does not always lead to a smaller number of restart cycles (and thus better

execution time). Figure 3.12 illustrates this phenomenon. Results do not seem to

follow a precise rule but we can see that more subspaces (ie. low frequencies) do not

lead to better results.

3.5 Conclusion and future works

We presented the first hybrid, accelerated, MIRAMns solver that leverages GPUs. It

makes use of the high GPU throughput for large sparse operations without suffering

from under-occupancy by solving small coarse problems on the CPU. The hybrid

strategy can benefit to other methods with reduction-projection patterns. We also

discussed collateral problems we had to deal with during the implementation of this

solver such as the load imbalance and the host device memory management.

We showed that the accelerated MIRAMns solver competes against other acceler-

ated eigenvalue methods that are known to be efficient on GPU architectures. The

power method is 2x faster on a single GPU (1 Nvidia Tesla K20) than on CPU (Intel’s

MKL on 32 cores of a dual-socket Xeon Haswell CPU).

The IRAM solver is between 4x and 10x faster in average than the accelerated

power method on GPU.

The MIRAMns solver is up to 8x faster than the IRAM solver on GPU.

In addition, our experiments lead to new ideas for improving the auto-tuning in

MIRAMns. For instance, the number of subspaces of interest can have an important

impact on the performances of the method. Indeed, a high number of subspaces is not

always the best strategy and a too low number either. In the future, we believe that

MIRAMns can be improved by adapting the number of nested subspaces.

60

Chapter 4

Spectral modularity clustering

4.1 Introduction

In this chapter we develop a novel parallel approach for computing the modularity

clustering often used to identify and analyse communities in social networks.

An illustration of graph clustering is showed in Figures 4.1 and 4.2. As seen

in the previous chapter, Figure 3.2 represents frequent co-purchasing of books on

Amazon.com. In Figure 4.1 vertices have been given colors pink, yellow, or green

to indicate whether they are liberal, neutral, or conservative. These clusters were

assigned based on a reading of the descriptions and reviews of the books posted

on Amazon. In Figure 4.2 vertices are colored according to their cluster found by

our spectral modularity maximization. There is a 84% hit rate compared to Figure 4.1.

In this chapter, we show that modularity can be approximated by looking at

the largest eigenvalue and eigenvector of the weighted graph adjacency matrix that

has been perturbed by a rank one update. Also, we generalize this formulation to

identify multiple clusters at once. We develop a fast parallel implementation for it that

takes advantage of the Lanczos eigenvalue solver and k-means algorithm on the GPU.

Finally, we highlight the performance and quality of our approach versus existing

state-of-the-art techniques.

61

Spectral modularity clustering

Fig. 4.1 Same graph as in Figure 3.2 where vertices are coloured according to their
ground truth cluster.

Fig. 4.2 Same graph as in Figure 3.2 where vertices are coloured according to their
cluster found by our spectral modularity maximization.

62

4.1 Introduction

We focus on the mathematical theory behind modularity. We use it to setup an

approximate continuous eigenvalue based solution and show how to use the k-means

algorithm to transform a continuous solution back into a discrete one, which is our

clustering solution. We follow an outline similar to the approach developed for

minimum cut partitioning in (Naumov and Moon, 2016).

We show how to generalize the method to work with weighted graphs and to

identify a set of fixed multiple clusters at once. Notice that in our approach the

number of fixed clusters p is arbitrary. It does not need to be a power of two, i.e. p = 2k ,

as when repeated bisection is used k times. Moreover, we outline how the proposed

approach could be modified to find an adaptive number of clusters.

Also, we analyse the effects of using single and double precision to solve the

problem. Moreover, we show that in our approach the clustering information could be

derived from the smaller, same or larger number of eigenvectors, with the former case

exchanging lower quality for higher performance.

Finally, in our numerical experiments we compare the modularity and minimum

balanced cut metrics on the clustering obtained by the random, spectral and modular-

ity approach developed in this chapter. We comment on the quality and performance

tradeoffs when they are applied to large social network graphs that often have power

law-like distribution of edges per node. We highlight the impressive performance

obtained by our novel parallel approach on the GPU. For example, it can find 7 clusters

with a modularity score over 0.5 in about 0.8 seconds for hollywood-2009 network

with over a hundred million undirected edges using a single GPU.

The work presented in this chapter has been published as Fender et al., 2017a.

4.1.1 Modularity

Let a graph G = (V ,E) be undirected with wi,j ≡ wj,i and consequently matrix A is

symmetric. If it is not, we can always work with G̃ induced by A+AT . Also, we assume

that we do not include self-edges, diagonal elements, in the definition of the weighted

adjacency matrix A.

Let two disjoint set of vertices S and T ⊆ V , then let us define a cut C = (S,T) of a

graph to be a partition of vertices V into these sets. In graph clustering we are often

interested in finding a cut C such that it minimizes or maximizes a particular metric,

such as modularity.

63

Spectral modularity clustering

In the following discussion, let |.| denote cardinality (number of elements) of a set

and di denote the degree (number of edges) of the vertex i ∈ V . Also, let us define the

volume of a node vi to be

vi =
n∑

j=1

ai,j (4.1)

and volume of a set of vertices vol(V) to be

vol(V) =
n∑

i=1

vi =
n∑

i=1

n∑

j=1

ai,j = 2ω (4.2)

Notice that for unweighted graphs ai,j = 1 and therefore vi = di and 2ω = 2m. An

intuitive way to identify structure in a graph is to assume that similar vertices are

connected by more edges in the current graph than if they were randomly connected.

The modularity measures the difference between how well vertices are assigned into

clusters for the current graph G = (V ,E), when compared to a random graph R = (V ,F)

(Newman, 2006, 2010; Newman and Girvan, 2004).

The reference random graph R = (V ,F) is constructed with the same set of vertices,

but a different set of edges as the current graph. The set of edges F of the random

graph is constructed such that the number of edges |F | = |E| =m and degree di of each

vertex is the same, but the edges themselves are rewired randomly between vertices in

V .

Notice that every broken edge, generates two edge ends that are available for

rewiring, as shown on Fig 1. Then, the weighted probability of a particular edge end

to be connected with some edge end at node i is vi /2ω. Therefore, the probability of

node i and j to be connected during the rewiring is (vivj)/2ω.

The modularity is the difference between existing edges and the probabilities of

edges in random graph across all nodes that belong to a given set of clusters.

Definition 1. Let graph G = (V ,E) and c(i) be an assignment of nodes into clusters. Then,

modularity Q can be expressed as

Q =
1
2ω

n∑

i=1

n∑

j=1

(
ai,j −

vivj

2ω

)
δc(i),c(j) (4.3)

64

4.1 Introduction

where

δc(i),c(j) =

1 if c(i) = c(j)

0 otherwise
(4.4)

The above definition can be reduced to the special case in (Newman, 2006, 2010;

Newman and Girvan, 2004) if we choose to ignore the edge weights during rewiring

or work with unweighted graphs, in which case
vivj
2ω =

didj
2m . Notice that modularity is

bounded.

Lemma 1. The modularity Q is between

−
1
2
≤ Q ≤ 1 (4.5)

Proof. See Lemma 1 in (Brandes et al., 2008).

Let us now define the modularity matrix, state its properties and show its relation-

ship to modularity metric.

Definition 2. Let the volume vector be vT = [v1, ..., vn], then the modularity matrix can be

written as

B = A−
1
2ω

vv
T (4.6)

Lemma 2. The modularity and adjacency matrices have the following properties

Be = 0 (4.7)

Ae = v (4.8)

v
T
e = e

TAe = 2ω (4.9)

where e = [1, ...,1]T .

Proof. The latter two follow from (4.1) and (4.2). The former follows from the latter

two and Be = Ae− (v
T e
2ω)v = 0.

Notice that the modularity matrix B is symmetric indefinite. Indeed, according

to Lemma 2 it is singular, with an eigenvalue 0 and corresponding eigenvector

e = [1, ...,1]T .

65

Spectral modularity clustering

Let us now assume that we are working with many clusters at once. Then, let us

define a tall matrix U = [ui,k], that can be interpreted as a set of vectors U = [u1, ...,up]

where each vector uk corresponds to a cluster Sk for k = 1, ...,p, with elements

ui,k =

1 if c(i) = k

0 otherwise
(4.10)

Theorem 1. Let the matrix U = [u1, ...,up] be defined in (4.10). Then,

Q =
1
2ω

Tr(UTBU) (4.11)

where Tr(.) is the trace (sum of diagonal elements) of a matrix.

Proof. Notice that

Q =
1
2ω

p∑

k=1

∑

∀i s.t.
c(i)=k

∑

∀j s.t.
c(j)=k

(
ai,j −

vivj

2ω

)

=
1
2ω

p∑

k=1

(
uT
k Buk

)

=
1
2ω

Tr(UTBU) (4.12)

with elements of U constrained to be in set C = {0,1}.

Notice that ultimately we are interested in finding the cluster assignment c that

achieves the maximum modularity

max
c
Q =

1
2ω

max
U∈C

Tr(UTBU) (4.13)

The exact solution to the modularity maximization problem stated in (4.13) is NP-

complete (Brandes et al., 2008). However, we can find an approximation by relaxing

the requirement that elements of matrix U take discrete values (Naumov and Moon,

2016; Von Luxburg, 2007).

Notice that UTU = D, where D = [dk,k] is a p × p diagonal matrix with elements

dk,k = |Sk |. Then, introducing the auxiliary matrix Ũ =UD−1/2 ∈ Rn×p, we can start by

looking for

max
ŨT Ũ=I

Tr(ŨTBŨ) (4.14)

66

4.2 Spectral modularity maximization

Notice that by the Courant-Fischer theorem (Horn and Johnson, 1986) this max-

imum is achieved by the largest eigenpairs of the modularity matrix. Now, we still

need to convert the real values obtained in (4.14) back into the discrete assignment

into clusters.

Since we are working in multiple dimensions, it is natural to use the distance

between points as a metric of how to group them. In this case, if we interpret each

row of the matrix U as a point in a p-dimensional space then it becomes natural to

use a clustering algorithm, such as k-means (Arthur and Vassilvitskii, 2007; Lloyd,

1982) to identify the p distinct partitions. We are not aware of a theoretical result

guaranteeing that the obtained approximate solution will closely match the optimal

discrete solution, but in practice we often do obtain a good approximation.

4.2 Spectral modularity maximization

4.2.1 Algorithm

We are now ready to describe an outline of the modularity clustering technique, shown

in Algorithm 11.

Algorithm 11Modularity Clustering

1: Let G = (V ,E) be an input graph and A be its weighted adjacency matrix.
2: Let p be the number of desired clusters.
3: Set the modularity matrix B = A− 1

2ωvv
T .

4: Find the p largest eigenpairs BU =UΣ, where Σ = diag(λ1, ...,λp).
5: Scale the eigenvectors U by row or by column (optional).
6: Run a clustering algorithm, such as k-means, on the points defined by the rows of

U .

Notice that the general outline of the modularity clustering closely resembles

the spectral partitioning in (Naumov and Moon, 2016). The main difference is that

in the former case we use the modularity matrix B and find its largest eigenpairs,

while in the latter case we use the Laplacian matrix L and find its smallest eigenpairs.

The properties of modularity and Laplacian matrices are also different, requiring a

different choice of eigenvalue problem solvers.

67

Spectral modularity clustering

4.2.2 Eigenvalue Problem

In order to find the largest eigenpairs we choose to use the restarted Lanczos eigenvalue

solver (Bai et al., 2000; Saad, 1992). It is one of the most efficient and fastest eigenvalue

solvers for finding the largest eigenvalues of symmetric problems. Its pseudo-code is

shown in Algorithm 8.

Fig. 4.3 Profiling of the modularity algorithm

In our numerical experiments we have found that the eigenvalue solver is a critical

part of this technique because it is the most time consuming part of the computation,

as shown in Figure 4.3. Also, the accuracy of the solution of the eigenvalue problem

has a significant impact on the quality of the obtained clustering, with insufficient

accuracy usually resulting in poor approximation to the original discrete problem.

Moreover, a failure in convergence of the eigenvalue solver results in failure of the

entire algorithm.

Finally, the most time consuming part of the Lanczos eigenvalue solver is the

sparse matrix-vector multiplication (csrmv) with remaining time consumed by BLAS

operations (NVIDIA, 2017), as shown in Figure 6.2.

4.2.3 Clustering Problem

Assuming that we have solved the optimization problem (4.14), let us now show how

to solve the related discrete problem (4.13) and find the assignment of nodes into

clusters.

68

4.2 Spectral modularity maximization

Let us interpret each row of U as a point xi in p-dimensional space, so that

U =

u11 . . . u1p

u21 . . . u2p
...

...

un1 . . . unp

=

xT1
xT2
...

xTn

(4.15)

Then, we will need to find cluster sets Sk for k = 1, ...,p, each with a centroid (point in

the center) ck , such that

min
Sk

p∑

k=1

∑

i∈Sk

||xi − ck ||
2
2 (4.16)

The exact solution of this problem is NP-complete, but we can find an approximation

to its solution using many variations of the k-means clustering algorithm (Arthur and

Vassilvitskii, 2007; Lloyd, 1982). The pseudo-code of the k-means Lloyd algorithm is

shown for completeness in Algorithm 12.

Algorithm 12 K-means Lloyd Algorithm

1: Let centroids ck for k = 1, ...,p be an initial guess.
2: for j = 1, ...,p do ▷ Assign points xi to clusters Sk
3: Compute distance dij = ||xi − cj ||2 for i = 1, ...,n
4: end for
5: Assign points xi , so that cluster Sk = {i : dik ≤ dij } for j = 1, ...,p
6: for l = 1,2, ...convergence do
7: Compute error ϵl =

∑p
k=1

∑
i∈Sk

d2ik
8: Check convergence |ϵl − ϵl−1|/n < tol.
9: for k = 1, ...,p do ▷ Update centroids ck of Sk

10: Compute centroid ck =
(∑

i∈Sk
xi
)
/ |Sk |

11: end for
12: for j = 1, ...,p do ▷ Assign points xi to Sk
13: Compute distance dij = ||xi − cj ||2 for i = 1, ...,n
14: end for
15: Assign points xi , so that cluster Sk = {i : dik ≤ dij } for j = 1, ...,p
16: end for

Finally, notice that the number of partitions identified by the clustering algorithm

does not necessarily need to match the number of computed eigenvectors. In fact it

can be chosen adaptively based on the modularity score (Smyth and White, 2005) or

69

Spectral modularity clustering

x-means algorithm proposed in (Pelleg et al., 2000). We will revisit this point in the

next sections.

4.2.4 Parallelism and Energy Efficiency

Most real networks are very large and for the vast majority of applications the analysis

of the structure of the graph is on the critical path of complex data analytics. As a

result cluster detection is expected to be done very quickly. Therefore performances

and scalability are a primary concern for the overall success of a graph clustering

algorithm.

Notice that each step in Algorithm 11 could benefit from parallelism. Also, the

parallel variant of each building block can be leveraged on the GPU (commonly

referred as device). This hardware platform is relevant for the modularity clustering

because the performance of Algorithm 11 is limited by memory bandwidth which

is higher on the device than on the CPU (commonly referred as host). Thus, taking

advantage of parallelism and accelerators is critical for successful application of

Algorithm 11 in practice.

In our implementation all data structures, including the adjacency matrix A, are

stored in the device memory. The modularity matrix B is stored implicitly and the

result of its action on a vector is computed using sparse matrix-vector multiplication

(csrmv) with the adjacency matrix and rank-one update. Also, all vectors and scalars

required by Algorithm 8 and Algorithm 12 are stored on the device.

Therefore all the algorithms are also implemented on the device. The Lanczos

algorithm is implemented by using the sparse and dense basic linear algebra subrou-

tines in CUSPARSE and CUBLAS libraries (NVIDIA, 2017). The k-means algorithm

Algorithm 12 is also accelerated on the GPU using custom kernels. Indeed, the most

expensive part in it is an embarrassingly parallel computation of the distances to the

centroids, which can be done efficiently on the device.

We can expect that using GPU would also be advantageous from the energy effi-

ciency perspective. While we do not measure the energy consumed by the algorithm

directly, in broad terms we can relate it to the difference in Thermal Design Power

(TDP). The TDP measures the average power a processor dissipates when operating

with all cores active. The real energy usage may be different and may change depend-

ing on the hardware generation and time consumed by the algorithm on different

70

4.3 Numerical Experiments

hardware platforms. For instance, in the next section we will perform experiments on

Nvidia Titan X (Pascal) GPU and Intel Core i7-3930K CPU with 250 and 130 Watts

TDP, respectively. Also, we will show that our algorithm on the GPU outperforms

the state-of-the-art implementation on the CPU by ∼ 3× on average. Since the ratio

between the speedup and ratio of TDP (250/130 ∼ 2×) on these platforms is 3/2 > 1,

we can in general expect to achieve a better power efficiency on the GPU. The GPU

power consumption can be estimated more accurately based on statistical approach

and performance counters as presented in (Nagasaka et al., 2010).

4.3 Numerical Experiments

4.3.1 Context

Let us now study the performance and quality of the clustering obtained by the

proposed modularity algorithm Algorithm 11 on a set of graphs from the DIMACS10,

LAW and SNAP graph collections (Bader et al., 2013; Davis and Hu, 2011). In this sample

set, we have selected large networks for which the clustering problem is relevant, as

shown in Table 4.1.

Matrix n = |V| m = |E| Application
1. preferentialA... 100,000 499,985 Artificial
2. caidaRouterLevel 192,244 609,066 Internet
3. coAuthorsDBLP 299,067 977,676 Coauthorship
4. citationCiteseer 268,495 1,156,647 Citation
5. coPapersDBLP 540,486 15,245,729 Affiliation
6. coPapersCiteseer 434,102 16,036,720 Affiliation
7. as-Skitter 1,696,415 22,190,596 Internet
8. hollywood-2009 1,139,905 113,891,327 Coauthorship

Table 4.1 General information on networks

In the modularity algorithm, we let the stopping criteria for the Lanczos eigenvalue

solver in Algorithm 8 be based on the norm of the residual of the largest eigenpair

||r1||2 = ||Bu1 −λ1u1||2 ≤ 10−3 and maximum number of iterations 800 (with restart at

every 20 iterations), while for the k-means Algorithm 12 we let it be based on the

scaled error difference |ϵl − ϵl−1|/n < 10−2 and maximum number of iterations 20.

71

Spectral modularity clustering

Also, all numerical experiments are performed on a workstation with Ubuntu

14.04 operating system, gcc 4.8.4 compiler, CUDA Toolkit 8.0 software and Intel Core

i7-3930K CPU 3.2 GHz and Nvidia Titan X (Pascal) GPU hardware. The performance

of the algorithms was always measured across multiple runs to ensure consistency.

4.3.2 Clustering and Effects of Precision

First, let the number of cluster into which we would like to partition the graph be

fixed. For instance, suppose that we have decided to partition the graph into 7 clusters.

We plot the corresponding time, number of iterations and modularity score in Figures

4.4, 4.5 and 4.6.

Fig. 4.4 The time achieved for 64 and 32 bit precision, when splitting the graph into 7
clusters

In (Newman, 2003) this type of clustering was achieved by recursive bisection,

which has significant drawbacks. In particular, there is no guarantee that the recursive

bisection correctly discovers an odd number of clusters. For example, if the network

was already split in two cluster there is no reason why the third cluster would be

perfectly included inside one of them. In fact, there is a very good chance that

72

4.3 Numerical Experiments

Fig. 4.5 The number of iterations achieved for 64 and 32 bit precision, when splitting
the graph into 7 clusters

a clustering in three groups looks completely different and cannot be computed

recursively (Chen et al., 2014).

The modularity algorithm is robust and converged to the solution on all networks

of interest. Also, the computed modularity score remained in the interval [−0.5,1]

as predicted by the theory (Table 4.2). Moreover, the modularity score computed by

random assignment of nodes into clusters was 0 for all the networks as expected. It is

an important baseline for comparing attained modularity scores.

The behavior of the algorithm differs when the computation is performed using

single (32 bit) and double (64 bit) floating point arithmetic. In particular, the total

time to the solution can be significantly better in 64 bit than in 32 bit precision as

shown in Figure 4.4.

This may be surprising given that single precision has a significantly higher raw

floating point performance and requires less bandwidth to access the data. However,

single precision also results in unwanted perturbations during the computation of

the Krylov subspace by the Lanczos eigenvalue solver. Those perturbations can

impact the number of iterations and the overall quality of the approximation. Their

effect depends on the sensitivity of the problem that is measured by its condition

73

Spectral modularity clustering

Fig. 4.6 The modularity score achieved for 64 and 32 bit precision, when splitting the
graph into 7 clusters

number. We can empirically see these effects when we plot the number of iterations

on Figure 4.5. It shows that using 64 bit precision often requires a lower number of

iterations for convergence. A particularly stark illustration of this behavior happens

on coPapersCiteseer network, which takes almost twice the number of iterations in

32 bit precision to converge.

Nevertheless, when the number of eigenvalue solver iterations is not affected by

the use of lower precision, as is the case for citationCiteseer network, then the

computation in 32 bit can outperform 64 bit precision as shown in Figure 4.4.

The choice of arithmetic precision also has direct impact on the quality of the

discrete solution. Figure 4.6 clearly shows that the use of 64 bit precision almost

always leads to a significant improvement in the quality of the final result. Therefore,

we have found that using 64 bit precision is a safer option, unless the modularity

matrix is particularly well conditioned.

The detailed results are summarized in Table 4.2.

74

4.3 Numerical Experiments

64 bits 32 bits
Mod T (ms) It Mod T (ms) It
1. 0.147 82 92 0.108 80 140
2. 0.397 74 92 0.233 59 141
3. 0.392 62 44 0.297 45 81
4. 0.417 108 81 0.417 64 92
5. 0.326 318 80 0.201 514 188
6. 0.319 168 56 0.092 1206 681
7. 0.407 1104 104 0.223 2001 230
8. 0.544 796 69 0.187 973 116

Table 4.2 The modularity (Mod), time (T) and # of iterations (It) achieved for 64 and
32 bit precision, when splitting the graph into 7 clusters

4.3.3 Adaptive Clustering

In the previous experiments we have kept the number of eigenpairs and k-means

clusters the same as suggested by the theory developed in earlier sections. Next, we

investigate what happens when we decouple these parameters. On one hand, we

would expect that by selecting more k-means clusters than eigenpairs we would trade

lower quality for higher performance. On the other hand, we could interpret selecting

fewer k-means clusters than eigenpairs as filtering the noise in the data and perhaps

obtaining a better solution.

In our experiments we have indeed found that for most networks it is possible to

maximize the modularity by varying the number of k-means clusters independently

of the number of eigenpairs as shown in Figure 4.7. In these experiments we have

computed 2 to 8 eigenpairs, and afterward we have continued to increase only the

number of k-means clusters. Notice that the plot demonstrates how the choice of

the number of eigenpairs impacts the modularity score. Based on the formulation

of the modularity problem one can expect that the best case scenario would be to

compute a number of eigenpairs equal to the number of clusters. This is mostly, but

not always, true, with the exceptions often due to loss of orthogonality or low quality

approximation of the latest eigenvectors.

We also see that it is possible to compute fewer eigenpairs for an equivalent

clustering quality as shown in Figure 4.7. Indeed, modularity values seem to follow a

trend set by the number of clusters and the selected number of eigenpairs is secondary.

Hence, given a constant number of eigenpairs it is possible to maximize modularity

75

Spectral modularity clustering

Fig. 4.7 Comparing the impact of varying the number of clusters used for assignment
for different number of computed eigenvectors

by only increasing the number of k-means clusters. We can take advantage of this

property for networks with many clusters, because computing a very large number

of eigenpairs could prohibitively increase memory and time requirements of the

eigenvalue solver, which has a direct impact on total time taken by the modularity

computation.

The above experiments lead us to propose the following method for discovering

an approximation to the natural number of clusters, which has also been proposed

for small networks in (Smyth and White, 2005). We propose computing as many

eigenpairs as clusters up to 7, and afterward continuing to increase the number of

k-means clusters only, while keeping track of modularity score as shown on Figure

4.8. Since the plotted modularity score curve has a bell shape it is straight-forward to

detect that its maximum is at 17 clusters on the x-axis. A similar trend can be seen for

several other networks in our experiments. Moreover, we also found that it is better to

over-estimate rather than under-estimate the number of clusters.

Also, notice on Figure 4.8 that when we increase the number of clusters by 10×

from 2 to 20 the time to compute them only increases by about 20% from 95 ms to 120

ms. The plotted time line has a very low slope with respect to the x-axis, because the

76

4.3 Numerical Experiments

number of computed eigenpairs does not increase past 7 in this experiment. Hence,

the time growth shown on the figure only reflects additional time spent in the k-means

step.

Fig. 4.8 The modularity score achieved when changing the number of clusters for
citationCiteseer network in 64 bit precision

Clusters Modularity Time (ms) # of iterations
1. 7 0.15 75 92
2. 11 0.40 70 92
3. 7 0.39 63 44
4. 17 0.51 117 81
5. 73 0.54 445 80
6. 53 0.64 248 56
7. 7 0.41 1095 104
8. 11 0.55 821 69

Table 4.3 The modularity (Mod), best number of clusters (Clu) according to modularity,
time (T) and number of iterations (It) achieved in 64 bit precision

Using this technique we were able to detect the best clustering for all of the

networks in Table 4.1. The resulting number of clusters and the modularity score

found by our method are shown in Table 4.3.

77

Spectral modularity clustering

In general, our algorithm can very quickly computes modularity for many clusters

with only limited memory requirements. For example, we computed 53 clusters in

half a second for coPapersCiteseer network with 16 million edges. Also, it takes

only 0.8 seconds on a single GPU to find a clustering with a modularity score over 0.5

for hollywood-2009 which has 1,139,905 vertices and 113,891,327 edges.

4.3.4 Related Work

It is important to know how our algorithm compares against previous results. The

earlier work on modularity was based on a reformulated modularity metric and an

implementation of a greedy algorithm on the GPU (Auer, 2013). Unfortunately, we do

not have access to the corresponding code and are forced to make the comparisons with

the Tesla C2075 GPU used in it. Since in both algorithms the execution time is limited

by memory bandwidth, we estimate a factor of ∼ 3× as baseline performance difference

between the Tesla C2075 with 144GB/s and TitanX with 337GB/s bandwidth. We

believe this estimate to be fair in practice.

Fig. 4.9 The speedup and relative quality when compared to the reference results for
large data sets on GPU in (Auer, 2013)

78

4.3 Numerical Experiments

The performance of our approach versus earlier results is plotted in Figure 4.9.

Our implementation achieves speedups of up to 8× compared to previous results,

even when compensating for bandwidth difference of up to 3× due to difference in the

hardware resources. It also allows us to handle networks with up to hundred million

edges in less than a second. However, as a tradeoff in some large cases our approach

obtains a lower modularity score for these networks, see Table 4.4.

On the other hand, for small cases the modularity algorithm we propose often

attains a better modularity score than the reference results in (Auer, 2013). In fact its

score is better in 5 out of 6 cases considered in the study, as shown in Table 4.5. Since

we implement different algorithms for computing modularity, it is not completely

surprising that their behavior varies on different data sets. Unfortunately, we could

not identify any particular trend that would tell us when one algorithm would be

better than the other in terms of quality. However, we always outperform the reference

approach on large cases.

In particular, on the famous Zachary Karate Club social network, our clustering

is 100% exact when comparing against the reference factions in (Zachary, 1977) as

shown in Figure 4.10.

Fig. 4.10 Zachary Karate Club network where vertices are coloured according to their
faction.

79

Spectral modularity clustering

Matrix # Clusters Modularity Ref Modularity
preferentialAtt... 7 0.147 0.214
caidaRouterLevel 11 0.397 0.768
coAuthorsDBLP 7 0.392 0.748
citationCiteseer 17 0.506 0.643
coPapersDBLP 73 0.540 0.640
coPapersCiteseer 53 0.636 0.746

Table 4.4 The modularity for a given # of clusters when compared to the reference
results for large data sets in (Auer, 2013)

Matrix # Clusters Modularity Ref Modularity
karate 3 0.390 0.363
dolphins 5 0.509 0.453
lesmis 11 0.250 0.444
adjnoun 5 0.255 0.247
polbooks 3 0.504 0.437
football 7 0.575 0.412

Table 4.5 The modularity for a given # of clusters when compared to the reference
results for small data sets in (Auer, 2013)

Another more recent work on modularity developed a hierarchical algorithm for

computing it on the CPU (Lasalle and Karypis, 2015). We have experimented with

this algorithm using all CPU cores available on the machine. We computed 7 clusters

in 64 bit precision on the data sets from Table 4.1. The performance of our approach

versus these results is plotted in Figure 4.11. Notice that on average our algorithm

outperforms the hierarchical approach by about 3×, but it does suffer from the same

quality tradeoffs as shown in Table 4.6.

4.3.5 Modularity and Spectral Clustering

Finally, we compare the modularity score using the assignment into clusters obtained

by two different clustering techniques. The first is obtained by the modularity algo-

rithm in this chapter, while the second is obtained by spectral algorithm, that finds

the minimum balanced cut of a graph (Naumov and Moon, 2016). Both techniques

solve an eigenvalue problem and cluster the values of the eigenvectors using k-means

algorithm. However, in the former case we use the modularity matrix B and find its

80

4.3 Numerical Experiments

Fig. 4.11 The speedup and relative quality when compared to the reference results for
large data sets on CPU in (Lasalle and Karypis, 2015)

Spectral (GPU) Hierarchical (CPU)
Mod T (ms) Mod T (ms)
1. 0.147 82.23 0.285314 251.39
2. 0.397 74.01 0.778106 209.885
3. 0.392 62.38 0.745344 249.412
4. 0.417 108.10 0.769948 243.494
5. 0.326 318.42 0.776566 762.448
6. 0.319 168.65 0.810843 612.387
7. 0.407 1104.78 0.78723 1307.34
8. 0.544 796.79 0.716734 4415.08

Table 4.6 The modularity score (Mod) and time (T) obtained by our spectral modularity
maximization (GPU) and reference results from (Lasalle and Karypis, 2015) on
hierarchical modularity maximization (CPU)

largest eigenpairs, while in the latter case we use the Laplacian matrix L and find its

smallest eigenpairs.

Although, we found that modularity maximization has more predictable quality

and achieved better scores for many networks, it is interesting to note that there are

cases where spectral minimum balanced cut leads to assignments that have better

modularity scores as shown in Figure 4.12.

81

Spectral modularity clustering

Fig. 4.12 The modularity score obtained on large cases by using assignment to clusters
generated by modularity and minimum balanced cut algorithms for 7 clusters in 64
bit precision

Modularity Maximization Minimum Balanced Cut
Mod T (ms) Mod T (ms)
1. 0.147 82.23 0.154 143.70
2. 0.397 74.01 0.254 171.37
3. 0.392 62.38 0.478 221.21
4. 0.417 108.10 0.225 289.86
5. 0.326 318.42 0.493 1106.0
6. 0.319 168.65 0.648 798.41
7. 0.407 1104.7 0.015 2961.0
8. 0.544 796.79 0.171 3173.2

Table 4.7 The modularity score (Mod) and time (T) obtained by using the assignment
to partitions generated by modularity and minimum balanced cut algorithm for 7
clusters in 64 bit precision

Also, we note that the modularity maximization is always faster than the spectral

technique because it requires fewer iterations to solve the eigenvalue problem. Indeed,

the smallest eigenvalues of the Laplacian are often more clustered than the largest

eigenvalues of the modularity matrix. Since the number of eigensolver iterations often

depends on the gap between the eigenvalues, the convergence to eigenvalues of the

82

4.4 Conclusion and Future Work

modularity matrix is faster. As a result the modularity algorithm attains on average

3× speedup over the spectral scheme as shown in Table 4.7, where we have used the

same parameters for both techniques.

4.4 Conclusion and Future Work

In this chapter we have revisited the modularity theory and its generalization to handle

weighted graphs as well as to be able to find multiple clusters at once. The latter

allows us to avoid using recursive bisection, while still maximizing the modularity

score when looking for many clusters.

We have developed a parallel variation of the technique that computes multiple

eigenpairs with the Lanczos algorithm and perform a multidimensional k-means

clustering on the obtained eigenvectors on the GPU. This implementation has achieved

speedups of up to 8× compared to previous results, even when compensating for

bandwidth difference of up to 3× due to difference in the hardware resources. It also

allowed us to handle networks with up to hundred million edges in less than a second.

Our experiments on real networks showed that modularity benefits from more

accurate and stable approximation of the eigenpairs and therefore often requires use

of 64 bit precision floating point arithmetic.

Also, we experimented with using l k-means centroids, while computing k ≪ l

eigenvectors. This has allowed us to compute l clusters for the original graph more

quickly at the expense of lower quality. We also highlighted that it is possible to use

this for developing a technique to detect and adaptively select the natural number of

clusters in the graph.

83

Chapter 5

Jaccard and PageRank weights in

spectral clustering

5.1 Introduction

In this chapter we propose to generalize Jaccard and related measures, often used

as similarity coefficients between two sets. We define Jaccard, Dice-Sorensen and

Tversky edge weights on a graph and generalize them to account for vertex weights.

We develop an efficient parallel algorithm for computing Jaccard edge and PageRank

vertex weights. We highlight that the Jaccard weights computation can obtain more

than 10× speedup on the GPU versus CPU. Also, we show that finding a minimum

balanced cut for modified weights can be related to minimizing the sum of ratios of the

intersection and union of nodes on the boundary of clusters. Finally, we show that the

novel weights can improve the quality of the graph clustering by about 15% and 80%

for multi-level and spectral graph partitioning and clustering schemes, respectively.

Let us now show how these weights help to naturally represent and express the

structural information contained in a graph. For instance, the graph representing the

Amazon book co-purchasing data set (Bader et al., 2013; Bastian et al., 2009; Davis

and Hu, 2011; Newman, 2010) with original weights is shown on Figure 5.1, while the

effect of using modified weights is illustrated on Figure 5.2, where thicker connections

and larger circles indicate larger edge and vertex weights.

85

Jaccard and PageRank weights in spectral clustering

Notice that the graph on Figure 5.2 has apparently distinct clusters, which are easier

to visually identify with Jaccard weights.

Fig. 5.1 Amazon book co-purchasing original graph

Fig. 5.2 Amazon book co-purchasing graph with Jaccard

Many processes in physical, biological and information systems are represented

as graphs. In a variety of applications we would like to find a relationship between

86

5.2 Jaccard Weights

different nodes in a graph and partition it into multiple clusters. For example, graph

matching techniques can be used to build an algebraic multigrid hierarchy and graph

clustering can be used to identify communities in social networks.

In this chapter we start by reviewing the Jaccard, Dice-Sorensen and Tversky

coefficients of similarity between two sets (Dice, 1945; Jaccard, 1902; Sørensen, 1948;

Tversky, 1977). Then, we show how to define graph edge weights based on these

measures (Santisteban and Tejada Carcamo, 2015). Further, we generalize them to be

able to take advantage of the vertex weights and show how to compute these using the

PageRank algorithm (Page et al., 1998). We develop an efficient parallel algorithm for

computing Jaccard edge and PageRank vertex weights. We highlight that the Jaccard

weights computation can obtain more than 10× speedup on the GPU versus CPU. Also,

we show that the modified weights, when combined with multi-level partitioning

(Karypis and Kumar, 1998) and spectral clustering schemes (Naumov and Moon,

2016; Von Luxburg, 2007), can improve the quality of the minimum balanced cut

obtained by these schemes by about 15% and 80%, respectively. Finally, we relate the

Jaccard weights to the intersection and union of nodes on the boundary of clusters.

The work presented in this chapter has been published as Fender et al., 2017b.

5.2 Jaccard Weights

5.2.1 Jaccard and Related Coefficients

The Jaccard coefficient is often used as a measure of similarity between sets S1 and S2

(Jaccard, 1902; Levandowsky and Winter, 1971). It is defined as

J (S1,S2) =
|S1 ∩ S2|

|S1 ∪ S2|
(5.1)

where |.| denotes the cardinality of a set. Notice that J(S1,S2) ∈ [0,1], with minimum 0

and maximum 1 achieved when the sets are disjoint S1∩S2 = {∅} and the same S1 ≡ S2,

respectively. It is closely related to the Tanimoto coefficient for bit sequences (Rogers

and Tanimoto, 1960).

87

Jaccard and PageRank weights in spectral clustering

Also, Jaccard coefficient is related to the Dice-Sorensen coefficient (Dice, 1945;

Sørensen, 1948) often used in ecology and defined as

1
2
D(S1,S2) =

|S1 ∩ S2|

|S1|+ |S2|
=

|S1 ∩ S2|

|S1 ∪ S2|+ |S1 ∩ S2|
(5.2)

and Tversky index (Tversky, 1977) used in psychology and defined as

Tα,β(S1,S2) =
|S1 ∩ S2|

α|S1 − S2|+ β|S2 − S1|+ |S1 ∩ S2|
(5.3)

where S1 − S2 is a relative complement of set S2 in S1 and scalars α,β ≥ 0. Notice that

T 1
2 ,

1
2
(S1,S2) =D(S1,S2) and T1,1(S1,S2) = J (S1,S2).

5.2.2 Jaccard and Related Edge Weights

Let a graph G = (V ,E) be defined by its vertex V and edge E sets. The vertex set

V = {v1, ..., vn} represents n nodes and edge set E = {(i1, j1), ..., (im, jm)} represents m

edges. Also, we associate a nonnegative weight wij ≥ 0 with every edge (i, j) ∈ E.

Let the adjacency matrix A = [aij] corresponding to a graph G = (V ,E) be defined

through its elements

aij =

wij ∈ E

0 otherwise
(5.4)

We will assume that the graph is undirected, with wij ≡ wji , and therefore A is a

symmetric matrix.

Let us define a neighbourhood of a node vi as the set of nodes immediately adjacent

to vi , so that

N (vi) = {vj | (i, j) ∈ E} (5.5)

For example, for the unweighted graph shown on Figure 5.3 the neighbourhood of

v3 isN (v3) = {v2, v4, v5}.

In order to setup Jaccard-based clustering, we propose to define the following

intermediate edge weights in the graph. The intersection weight

w
(I)
ij =

∑

vk∈N (vi)∩N (vj)

vk (5.6)

88

5.2 Jaccard Weights

Fig. 5.3 Graph example, G = (V, E)

the sum weight

w
(S)
ij =

∑

vk∈N (vi)

vk +
∑

vl∈N (vj)

vl (5.7)

the complement weight

w
(C)
ij =

∑

vk∈N (vi)

vk −w
(I)
ij (5.8)

and the union weight

w
(U)
ij = w

(S)
ji −w

(I)
ij (5.9)

= w
(C)
ij +w

(C)
ji +w

(I)
ji (5.10)

For instance, for the special case of unweighted graphs, with vi = 1 and wij = 1, we

can omit the vertex weight and write these weights as

w
(I)
ij = |N (i)∩N (j)| (5.11)

w
(S)
ij = |N (i)|+ |N (j)| (5.12)

w
(C)
ij = |N (i)| − |N (i)∩N (j)| = |N (i)−N (j)| (5.13)

w
(U)
ij = |N (i)|+ |N (j)| − |N (i)∩N (j)|

= |N (i)−N (j)|+ |N (j)−N (i)|+ |N (i)∩N (j)|

= |N (i)∪N (j)| (5.14)

Then, we can define Jaccard weight as

w
(J)
ij = w

(I)
ij /w

(U)
ij (5.15)

89

Jaccard and PageRank weights in spectral clustering

Dice-Sorensen weight as

w
(D)
ij = w

(I)
ij /w

(S)
ij (5.16)

Tversky weight as

w
(T)
ij = w

(I)
ij /(αw

(C)
ij + βw

(C)
ij +w

(I)
ij) (5.17)

For example, for the unweighted graph on Figure 1 the original adjacency matrix

can be written as

A(O) =

1

1 1 1

1 1 1

1 1

1

(5.18)

while based on Jaccard weights it can be written as

A(J) =

0

0 1/5 1/4

1/5 1/4 0

1/4 1/4

0

(5.19)

Notice that if we simply use the Jaccard weights the new graph might become

disconnected. For instance, in our example the intersections of neighborhoods of

N (1) ∩N (2) and N (3) ∩N (5) are empty {∅} and consequently nodes 1 and 5 are

disconnected from the rest of the graph. While it is possible to work with disconnected

graphs, in many scenarios such change in the graph properties is undesirable.

Also, notice that the original weights w(O)
ij have arbitrary magnitude, while Jaccard

weight w(J)
ij ∈ [0,1]. Therefore, adding these weights might result in non uniform

effects on different parts of the graph (with small and large original weights) and make

these effects scaling dependent.

In order to address these issues we propose to combine Jaccard and original weights

in the following fashion

w
(∗)
ij = w

(O)
ij

(
1+w

(J)
ij

)
(5.20)

Notice that in this formula the Jaccard weight is used to strengthen edges with large

overlapping neighbourhoods.

90

5.3 Implementation

In the next section we will show how we can efficiently compute Jaccard weights

in parallel on the GPU. The Dice-Sorensen and Tversky weights can be computed

similarly.

5.3 Implementation

5.3.1 Parallel Algorithm

The graph and its adjacency matrix can be stored in arbitrary data structures. Let us

assume that we use the standard CSR format, which simply concatenates all non-zero

entries of the matrix in row-major order and records the starting position for the

entries of each row as presented in Section 2.1.2. For notation convenience, we use Ap

to denote the row pointers array, Ac for the column indices array, and Av for the values

array.

Then, the intersection weights in (5.6) can be computed in parallel using Algorithm

13, where the binary search is done according to Algorithm 14. Notice that in

Algorithm 13 we perform intersections on sets corresponding to neighbourhoods of

nodes i and j . These sets have potentially different number of elements Ni = ei − si

and Nj = ej − sj . In order to obtain better computational complexity we would like

to perform the binary search on the largest set. In the above pseudo-code we have

implicitly assumed that the smallest set corresponds to node i. In practice, we can

always test the set size by looking at whether Ni < Nj and swap indices i and j if

needed.

Then, the sum weights in (5.7) can be computed using the parallel Algorithm 15,

where the sum operation on line 6 and 10 can be written for general graphs as

sum(s, e,Av) = Av[s] + Av[s +1] + ...+ Av[e] (5.21)

and for unweighted graphs as

sum(s, e,Av) = 1+ ...+1 = e − s (5.22)

Finally, the union and the corresponding Jaccard weights can be obtained using

(5.9) and (5.15), respectively.

91

Jaccard and PageRank weights in spectral clustering

Algorithm 13 Intersection Weights

1: Let n and m be the # of nodes and edges in the graph.
2: Let Ap, Ac and Av represent its adjacency matrix A(O).

3: Initialize all weights w(I)
ij to 0.

4: for i = 1, ...,n do in parallel
5: Set si = Ap[i] and ei = Ap[i +1]
6: for k = si , ..., ei do in parallel
7: Set j = Ac[k]
8: Set sj = Ap[j] and ej = Ap[j +1]
9: for z = si , ..., ei do in parallel ▷ Intersection

10: l = binary_search(Ac[z], sj , ej − 1,Ac)
11: if l ≥ 0 then ▷ Found element
12: AtomicAdd(w(I)

ij ,Av[l]) ▷ Atomic Update
13: end if
14: end for
15: end for
16: end for

Algorithm 14 binary_search(i, l, r,x)

1: Let i be the element we would like to find.
2: Let left l and right r be the end points of a set.
3: Let sorted set elements be located in array x.
4: while l ≤ r do
5: m = (l + r)/2 ▷ Find middle of the set
6: j = x[m]
7: if j > i then
8: Set r =m− 1 ▷ Move right end point
9: else if j < i then

10: Set l =m+1 ▷ Move left end point
11: else
12: Return m ▷ Done, element found
13: end if
14: end while
15: Return −1 ▷ Done, element not found

Let us assume a standard theoretical PRAM (CREW) model for analysis (Jaja,

1992). Notice that the sequential complexity of Algorithm 13 is

n∑

i=1

Ni∑

j=1

Ni logNj (5.23)

92

5.3 Implementation

Algorithm 15 Sum Weights

1: Let n and m be the # of nodes and edges in the graph.
2: Let Ap, Ac and Av represent its adjacency matrix A(O).
3: for i = 1, ...,n do in parallel
4: Set si = Ap[i] and ei = Ap[i +1]
5: Set Ni = sum(si , ei ,Av)
6: for k = si , ..., ei do in parallel
7: Set j = Ac[k]
8: Set sj = Ap[j] and ej = Ap[j +1]
9: Set Nj = sum(sj , ej ,Av)

10: Set w(S)
ij =Ni +Nj

11: end for
12: end for

and, assuming we can store intermediate results of Algorithm 15, is

n∑

i=1

logNi +m (5.24)

where Ni = |N (vi)| is the number of elements in each row. However, the complexity of

both algorithms is

max
i

logNi (5.25)

using nmaxiN
2
i and m processors, respectively, which illustrates the degree of avail-

able parallelism.

Also, notice that Algorithm 13 can be interpreted as the sparse matrix-matrix

multiplication AAT , where only elements that are already present in the sparsity

pattern of A are left, in other words, we do not allow any fill-in in the result.

The performance of the parallel implementation in CUDA of the algorithm for

computing Jaccard weights on the GPU is shown in Figure 5.4. Notice that we compare

it with sequential (single thread) as well as openMP (12 threads) implementation of the

algorithm on the CPU, with hardware details specified in the numerical experiments

section. We often obtain a speedup above 10× on the data sets from Table 5.3. The

details of the experiments are provided in Table 5.1.

93

Jaccard and PageRank weights in spectral clustering

Fig. 5.4 Speedup of the GPU implementation vs. 1 and 12 CPU threads when comput-
ing Jaccard Weights

CPU (1 thread) CPU (12 threads) GPU
1. 155 86 5
2. 193 125 8
3. 172 82 4
4. 340 77 9
5. 9401 2847 308
6. 13514 5130 538
7. 65582 34646 502
8. 337870 109541 12751

Table 5.1 Time(ms) needed to compute Jaccard weights

5.3.2 PageRank and Vertex Weights

The PageRank algorithm measures the relative importance of a vertex compared to

other nodes in the graph. Therefore, it is natural to incorporate the vertex weights vk
to measure the importance of neighbourhoods, as shown on Figure 5.2.

The PageRank algorithm (Page et al., 1998), has been a key feature of search and

recommendation engines for years (Brezinski et al., 2005; Langville and Meyer, 2006).

Recall that the PageRank algorithm is based on a discrete Markov process (Markov

94

5.3 Implementation

chain), a mathematical system that undergoes transitions from one state to another

and where the future states depend only on the current state.

More information about PageRank algorithm is available in Sections 2.2.1 and 3.1

with experimental results in 3.4.

For completeness, the performance of the parallel CUDA implementation of the

algorithm for computing PageRank on the data sets from Table 5.3 is shown in Figure

5.5. Notice that we compare NVGRAPH (from Nvidia CUDA Toolkit) with the Intel

MKL implementation of Algorithm 3, with hardware details specified in Section

5.5. We often obtain a speedup above 10× on realistic data sets from Table 4.1. The

details of the experiments are provided in Table 5.2. In Figure 5.5 and Table 5.2 we

always use the same initial guess (w = 1
ne) for CPU and GPU implementations. Also,

both reached the desired approximation tolerance (1e−6) after the same number of

iterations.

Fig. 5.5 Speedup when computing PageRank

95

Jaccard and PageRank weights in spectral clustering

CPU GPU
time it. ||rk ||2/ ||r0||2 time it. ||rk ||2/ ||r0||2
1. 61 17 8.3e-06 7 17 8.3e-06
2. 393 76 9.0e-06 29 76 9.0e-06
3. 461 51 9.9e-06 24 51 9.9e-06
4. 470 57 8.9e-06 30 57 8.9e-06
5. 1721 51 2.4e-06 156 51 2.4e-06
6. 1615 53 2.7e-06 157 53 2.7e-06
7. 5228 74 6.6e-06 188 74 6.6e-06
8. 6650 49 1.1e-06 442 49 1.1e-06
Table 5.2 Time(ms) needed to compute PageRank

5.4 Graph Clustering

In graph clustering the vertex set V is often partitioned into p disjoint sets Sk , such that

V = S1 ∪ S2...∪ Sp and Si ∩ Sj = {∅} for i , j (Karypis and Kumar, 1998; Von Luxburg,

2007). More information about spectral graph custering is available in Section 2.2.2.

Notice that instead of the original graph G = (V ,E) we can use the modified graph

G(∗) = (V (∗),E(∗)), with vertex v
(∗)
i and edge w(∗)

ij weights computed based on PageRank

and Jaccard or related schemes discussed in earlier sections.

5.4.1 Jaccard Spectral Clustering

Notice that we can define the Laplacian as

L(∗) =D(∗) −A(∗) (5.26)

where D(∗) = diag(A(∗)e) is the diagonal matrix.

Then, we would minimize the normalized balanced cut

η̃(S1, ...,Sp) = min
S1,...,Sp

p∑

k=1

vol(∂(Sk))
vol(Sk)

= min
UTD(∗)U=I

Tr(UTL(∗)U) (5.27)

where boundary edges

∂S = {w(∗)
ij | v

(∗)
i ∈ S ∧ v

(∗)
j < S} (5.28)

96

5.4 Graph Clustering

and volume

vol(S) =
∑

v
(∗)
i ∈S

w
(∗)
ij (5.29)

vol(∂S) =
∑

(i,j)∈∂(S)

w
(∗)
ij =

∑

(i,j)∈∂(S)

w
(O)
ij

1+

w
(I)
ij

w
(U)
ij

by finding its smallest eigenpairs and transforming them into assignment of nodes into

clusters (Naumov and Moon, 2016). Notice that Jaccard weights correspond to the

last term in the above formula, and are related to the sum of ratios of the intersection

and union of nodes on the boundary of clusters.

Also, we point out that we choose to use normalized cut spectral formulation

because it is invariant under scaling. Notice that based on (5.20) the edge weight

w
(∗)
ij ≥ w

(O)
ij . Therefore, to avoid artificially higher/lower scores when comparing

quality, we need to use a metric that is invariant under edge weight scaling. To

illustrate this point suppose that for a given assignment of nodes into clusters the edge

weights are multiplied by 2. The clustering has not changed and normalized score

stays the same, while ratio cut score increases and therefore is not an appropriate

metric for our comparisons.

5.4.2 Tversky Spectral Clustering

So far we have essentially defined Tversky clustering for a special case T1,1(S1,S2) =

J (S1,S2). We note that further generalization is possible by introducing

A(T) = A(I) ⊘ (αL(C) + βU (C) +A(I)) (5.30)

where L(C) is lower and U (C) is upper triangular part of the matrix A(C) = [a(C)ij]

with elements a
(C)
ij = w

(C)
ij corresponding to complement weights, A(I) is a matrix

with intersection weights and the ⊘ operation corresponds to Hadamard (entry-wise)

division.

However, we point out that we can only compute Tversky clustering analogously

to Jaccard clustering when the scaling parameters α = β. Notice that if α , β then the

adjacency matrix A(T) and the corresponding Laplacian matrix L(T) are not symmetric.

97

Jaccard and PageRank weights in spectral clustering

Therefore, the Courant-Fischer theorem (Horn and Johnson, 1986) is no longer appli-

cable and the minimum of the objective function η̃ in (5.27) no longer corresponds to

the smallest eigenvalues of the Laplacian.

5.4.3 Profiling

Notice that the computation of Jaccard and PageRank weights is often a small fraction

< 20% of the total computation time, see Figure 5.6. In fact the profiling of the

complete spectral clustering pipeline on the GPU shows that most time > 80% is

actually spent in the eigenvalue solver. In our code we rely on the LOBPCG method

(Knyazev, 2001), which has been shown to be effective for Laplacian matrices (Naumov

and Moon, 2016).

The second most time consuming operation is the computation of PageRank vertex

weights. Notice that PageRank also solves an eigenvalue problem, but it finds the

largest eigenpairs of the Google matrix and therefore is significantly faster than

LOBPCG, which looks for the smallest eigenpairs. We point out that the PageRank

computation is optional and can be skipped if needed.

Finally, the computation of Jaccard edge weights is only the third most time

consuming operation. Since our implementation supports weighted vertices by design,

there is no extra cost for using the vertex weight resulting from PageRank or any other

algorithm.

98

5.5 Numerical Experiments

Fig. 5.6 Profile of spectral clustering with PageRank vertex and Jaccard edge weights

5.5 Numerical Experiments

Let us now study the performance and quality of the clustering obtained using Jaccard

weights on a sample of graphs from the DIMACS10, LAW and SNAP graph collection

(Davis and Hu, 2011), shown in Table 5.3.

Matrix n = |V| m = |E| Application
0. smallword 100,000 999,996 Artificial
1. preferentialA... 100,000 499,985 Artificial
2. caidaRouterLevel 192,244 609,066 Internet
3. coAuthorsDBLP 299,067 977,676 Coauthorship
4. citationCiteseer 268,495 1,156,647 Citation
5. coPapersDBLP 540,486 15,245,729 Affiliation
6. coPapersCiteseer 434,102 16,036,720 Affiliation
7. as-Skitter 1,696,415 22,190,596 Internet
8. hollywood-2009 1,139,905 113,891,327 Coauthorship

Table 5.3 General information on networks

In our spectral experiments we use the nvGRAPH 9.0 library and let the stopping

criteria for the LOBPCG eigenvalue solver be based on the norm of the residual

corresponding to the smallest eigenpair ||r1||2 = ||Lu1 −λ1u1||2 ≤ 10−4 and maximum

99

Jaccard and PageRank weights in spectral clustering

of 40 iterations, while for the k-means algorithm we let it be based on the scaled

error difference |ϵl − ϵl−1|/n < 10−2 between consecutive steps and a maximum of 16

iterations (Naumov and Moon, 2016).

In our multi-level experiments we use the METIS 5.1.0 library and choose the

default parameters for it (Karypis and Kumar, 1998). Also, we plot the quality

improvement as a percentage of the original score based on 100% × (η̃(modif ied) −

η̃(original))/η̃(original).

All experiments are performed on a workstation with Ubuntu 14.04 operating

system, gcc 4.8.4 compiler, Intel MKL 11.0.4, CUDA Toolkit 9.0 software and Intel

Core i7-3930K CPU 3.2 GHz and NVIDIA Titan Xp GPU hardware. The performance

of the algorithms was always measured across multiple runs to ensure consistency.

5.5.1 Multi-level Schemes (CPU)

Let us first look at the impact of using Jaccard weights in popular multi-level graph

partitioning schemes, that are implemented in software packages such as METIS

(Karypis and Kumar, 1998). These schemes agglomerate nodes of the graph in order

to create a hierarchy, where the fine level represents the original graph and the coarse

level represents its reduced form. The partitioning is performed on the coarse level

and results are propagated back to the fine level.

In our experiments we compute the modified vertex v
(∗)
i and edge w

(∗)
ij weights

ahead of time and supply them to METIS as one of the parameters. We measure

the quality of the partitioning using the cost function η̃ in (5.27) and plot it over

different numbers of clusters for the same coPaperCitseer network. The obtained

improvement in quality when using Jaccard and Jaccard-PageRank versus original

weights is shown in Figure 5.7.

Notice that using Jaccard and Jaccard-PageRank weights helped improve METIS

partitioning by 18% and 21% on average, respectively. This is a moderate but steady

amelioration, taking values within a range of 7% to 25% for Jaccard and 15% to 26%

with additional PageRank information.

100

5.5 Numerical Experiments

Fig. 5.7 Improvement in the quality of partitioning obtained by METIS, with Jaccard
and Jaccard-PageRank for coPapersCitseer graph

5.5.2 Spectral Schemes (GPU)

Let us now look at using Jaccard weights in spectral schemes, that are implemented

in the nvGRAPH library. These schemes often use the eigenpairs of the Laplacian

matrix and subsequent post-processing by k-means to find the assignment of nodes

into clusters.

In our experiments we measure the quality of clustering using the cost function

η̃ in (5.27) and plot it over different number of cluster for the same coPapersDBLP

network. The obtained improvement in quality when using Jaccard and Jaccard-

PageRank versus original weights is shown in Figure 5.8. Notice that in spectral

clustering it is possible to compute a smaller number of eigenpairs than clusters

(Fender et al., 2017a) and in these experiments we have varied them synchronously

until 32, after which we have fixed the number of eigenpairs pairs and increased the

number of clusters only. The limit of 32 was chosen somewhat arbitrarily based on

tradeoffs between computation time, memory usage and quality.

Notice that using Jaccard and Jaccard-PageRank weights helped improve the spec-

tral clustering quality by 49% and 51% on average, respectively. This is a significant

101

Jaccard and PageRank weights in spectral clustering

Fig. 5.8 Improvement in the quality of partitioning obtained by nvGRAPH, with
Jaccard and Jaccard-PageRank for coPaperDBLP graph

but sometimes irregular amelioration, taking values within a range of −39% to 172%

for Jaccard and 11% to 163% with additional PageRank information.

5.5.3 Quality Across Many Samples

Finally, let us compare the impact of using Jaccard and Jaccard-PageRank weights

across samples listed in Table 5.3. In this section we fix the number of clusters

to be 31, which is a prime number large enough to be relevant for real clustering

applications. We maintain the same way to measure quality as described in the

previous two sections. The obtained improvement in quality when using Jaccard and

Jaccard-PageRank versus original weights is shown in Figure 5.9 and Table 5.4.

Notice that for these graphs the Jaccard weights help to improve the multi-level

and spectral clustering quality by about 10% and 70% on average, respectively. When

using additional PageRank information this improvement rises to about 15% and 80%

on average, respectively. However, the improvements are not always regular, and on

occasion might result in lower quality clustering.

102

5.5 Numerical Experiments

M-L (J) Spect (J) M-L (J+P) Spect (J+P)
smallworld 14.0% 9.9% 14.0% 22.9%
coAuthorsDBLP 14.3% 52.0% 15.1% 33.1%
citationCiteseer 2.1% -9.0% 4.5% -20.2%
coPapersDBLP 13.1% 61.0% 11.8% 113.8%
coPapersCiteseer 19.1% 237.7% 21.2% 236.5%

Table 5.4 Improvement in the quality of partitioning obtained by nvGRAPH (Spect)
and METIS (M-L), with Jaccard (J) and Jaccard-PageRank (J+P) weights

Fig. 5.9 Improvement in the quality of partitioning obtained by nvGRAPH and METIS,
with Jaccard and Jaccard-PageRank weights

The spectral clustering has a more intense average amelioration but there is one

case that does not benefit from using modified weights. This is consistent with the

experiment of Figure 5.8. The multi-level clustering has lower average amelioration,

but all cases seem to benefit from using Jaccard and Jaccard-PageRank weights.

Finally, we note that using Jaccard or Jaccard-PageRank weights on coPapersCite-

seer network leads to an improvement over 230% for the spectral clustering approach.

In this case, the high amelioration ratio happens because the spectral clustering

method struggles to find a good clustering without weights that represent the local

connectivity information.

103

Jaccard and PageRank weights in spectral clustering

5.6 Conclusion and Future Work

In this chapter we have extended the Jaccard, Dice-Sorensen and Tversky measures to

graphs. Also, we have shown how to incorporate vertex weights into these metrics.

In particular, we have shown how to leverage the PageRank algorithm to compute

relevant vertex weights.

Also, we have developed the corresponding parallel implementation of Jaccard edge

and PageRank vertex weights on the GPU. The Jaccard implementation has attained

a speedup of more than 10× on GPU versus a parallel CPU code. Moreover, we

have profiled the entire clustering pipeline and shown that computation of modified

weights consumes no more than 20% of the total time.

Finally, in our numerical experiments we have shown that clustering and parti-

tioning can benefit from using Jaccard and PageRank weights on real networks. In

particular, we have shown that spectral clustering quality can increase by up to 3×,

while we also note that the improvements are not uniform across graphs. On the other

hand, for multi-level schemes, we have shown smaller but steadier improvement of

about 15% on average.

104

Chapter 6

Multiple implicitly restarted Lanczos

with nested subspaces

6.1 Introduction

The numerical technique for solving an eigenvalue problem highly depends on the

properties of the graph which is seen as a sparse matrix. In the context of spectral

graph analysis it is natural to use a sparse eigenvalue solver which does not modify the

sparsity pattern of the input, essentially because of the memory limitations. Sparse

iterative methods have been studied and showed promising results on GPU. For exam-

ple, the power method and Krylov methods such as the Arnoldi method (Golub and

Greif, 2006), are good illustrations as seen in Chapter 3. In particular, the implicitly

restarted Arnoldi methods (IRAM) (Sorensen, 1997) showed good improvements

compared to the power method on GPU for network analysis. Symmetric problems

often use the Lanczos method (Matam and Kothapalli, 2011) which can be seen as a

special case of the Arnoldi method. The implicitly restarted Lanczos variant (IRL) is

known for its stability and good convergence with constant and reasonable memory

requirements (Lehoucq, 1995; Sorensen, 1998).

In Krylov methods, the subspace size has an important impact on the performances

and is chosen empirically in advance. A better strategy would be to dynamically select

the best subspace size at each restart and improve the convergence even more. For the

non-symmetric case, this method is called MIRAMns (Shahzadeh Fazeli et al., 2015)

105

Multiple implicitly restarted Lanczos with nested subspaces

and showed good results on GPU as shown in Chapter 3, (Fender et al., 2016a) and

Fender et al., 2016b.

In this chapter we explain how the analysis of networks leads to large and sparse

symmetric eigenvalue problem. We propose an adaptation of MIRAMns to IRL. This

approach can be seen as an auto tuning technique for choosing the best subspace

size in IRL. We present an efficient implementation which combines CPU and GPU

strengths to compute the invariant subspace of real scale-free undirected networks,

and compare against existing methods. We explain the hybrid acceleration of the

implicitly restarted Lanczos method designed for large graphs and clustering prob-

lems. We highlight the main challenges for sparse iterative eigenvalue methods and

symmetric cases with irregular sparsity pattern. Our solver can compute largest or

smallest eigenpairs of large symmetric matrices. Both paths were evaluated upon

two real spectral clustering applications which are spectral modularity maximization

and edge cut minimization. We present experiments conducted on 8 real networks

with up to 113,891,327 edges on 4 different GPU architectures. For instance, in the

modularity clustering application presented in Chapter 4, MIRLns solver shows an

average reduction of the number of iterations by 41% and an improvement of the

quality of the final clustering by 36%. The resulting speedup is up to 2.7× over the

regular implicitly restarted Lanczos on Nvidia P100 GPU.

In Section 6.1.1, we present key context elements regarding the spectral graph

analysis application, methods related to MIRLns, and the GPU. Section 6.2 describes

MIRLns approach and its implementation on GPU. Section 6.3 focuses on experi-

mental results pointing out the efficiency of the approach for large graphs analysis

problems on the GPU architecture. Concluding remarks and perspective are presented

in Section 6.4.

The work presented in this chapter has been submitted for publication as (Fender

et al., 2017c).

6.1.1 Spectral graph analysis and clustering

Let a graph G = (V ,E) be defined by its vertex V and edge E sets. The vertex set

V = {1, ...,n} represents n nodes in a graph, with each node identified by a unique

106

6.2 Multiple implicitly restarted Lanczos with nested subspaces

integer number i ∈ V . The set of edges E = {wi1,j1 , ...,wim,jm} represents m weighted

edges in a graph, with each undirected edge identified by wi,j ∈ E with wi,j ≥ 0. In

order to address graph analysis in linear algebra the graph is represented by its

adjacency matrix. The graph adjacency matrix is defined by

ai,j =

wi,j ∈ E

0 otherwise
(6.1)

In this chapter we focus on clustering which can be used to identify and analyse

communities in social networks among many other applications. In graph theory, an

eigenpair of a graph corresponds to the eigenpair of its adjacency matrix A. In practice

for graph clustering application, alterations can be applied to A, depending on the

clustering metrics, before solving the eigenvalue problem.

In order to provide relevant examples of improvements offered by our eigensolver

on graph applications we selected two different and complementary graph clustering

techniques. These techniques are based on the minimum balanced cut (Naumov and

Moon, 2016; Von Luxburg, 2007) and modularity maximization (Chen et al., 2014;

Newman, 2010).

Recall that the spectral formulation for those clustering problems is presented in

Section 2.2.2. In particular, the spectral modularity maximization clustering was

developed further in Chapter 4.

6.2 Multiple implicitly restarted Lanczos with nested

subspaces

6.2.1 Proposed approach

In IRL, the choice of the subspace size remains empirical but still has an important

impact on the overall success of the method. It is known that the eigen-information of

interest may not appear when the size of the subspace is too small (Sorensen, 1997).

If the subspace size is too large, keeping orthogonality can become an issue. It is also

107

Multiple implicitly restarted Lanczos with nested subspaces

suggested to avoid setting k in a way that splits clusters of eigenvalues (Sorensen,

1997). This is true for the choice of m as well.

The idea in MIRLns is to improve this point by computing several subspaces of

different sizes and select the best one for each restart. This technique is derived from

the existing multiple implicitly restarted Arnoldi with nested subspaces (MIRAMns).

Further analysis of the nested subspaces approach for the Arnoldi method was done

in (Shahzadeh Fazeli et al., 2015).

A Krylov subspace Kmi
is considered as better than another subspace Kmj

if its residual

is smaller : P(Kmi
) < P(Kmj

), with P(Kmi
) defined in Eq. (6.2).

P(Kmi
) =max(ρ(λ1,w1), ...,ρ(λk ,wk)) (6.2)

where (λ1,w1), ..., (λk ,wk) are the extreme eigenpairs of Tmi
. The residual ρ(λi ,wi) is

calculated using the Ritz estimate | ||fi ||e
T
i wi | (Sorensen, 1997).

The cost of MIRLns in terms of matrix-vector multiplications is mmax +p× (nrc−1),

with p = mmax − k which is the same as IRL with a subspace of size mmax. Indeed,

in the first cycle the number of matrix-vector multiplications is mmax and for each

of the restart cycles, the number of matrix-vector multiplication is mmax − k. The

eigenpairs of the tridiagonal matrix Tmbest
can be obtained in O(m2

best) per step with the

QR method. For a dense matrix, the space complexity of MIRLns is n2 +O(mmax ×n).

In the context of graphs, the complexity is O(|E|+mmax ∗ |V |) which is the same as IRL

with a subspace of size mmax.

In addition, notice that one restart cycle of MIRLns can be less expensive than IRL as

it was shown for MIRAMns in (Shahzadeh Fazeli et al., 2015). Indeed, mbest is often

smaller than mmax, as a result all computations involving elements of size mbest in

MIRLns(m1, ...,mmax) can be cheaper than the same operation in IRL(mmax).

6.2.2 Hybrid acceleration

GPUs have a high parallel throughput and a good power efficiency. Thus, they should

be used for the largest and most computationally intensive part as seen in Section

2.3 and 2.3.2 . However, Krylov methods like MIRLns reduce the problem into a

small subspace. In general, this subspace is too small to take advantage of the GPU.

Fortunately, it is possible to leverage the CPU low latency for those operations and

108

6.2 Multiple implicitly restarted Lanczos with nested subspaces

build a hybrid strategy based on CPU and GPU cooperation.

Initially, the network is assumed to be in the device memory in its CSR representation

(Section 2.1.2). Every other data structure of the size of the graph, such as additional

vertex or edges information and vectors should be on the device. The reason for that is

the assumption that host/device and host bandwidth are considerably smaller than

the device bandwidth, so it is primordial to avoid transfers at this scale inside the

iterative process.

The parallel overall hybrid (host/device) scheme is described in Figure 6.1. Device

operations are performed in parallel on throughput oriented architecture, host steps

are processed sequentially at high frequency. Notice that device operations correspond

to the most expensive steps of the algorithm (Section 2.3.3) while all host operations

correspond to small tasks.

Fig. 6.1 Overview of the accelerated MIRLns solver. Green is associated to the device
and blue corresponds to the host

The SpMV and the Gram-Schmidt process are done on the device, thus the Lanczos

vectors are directly formed on the device, each column j of Vm corresponds to the

result Avi orthogonalized with the previous vectors. Notice that Vm is a dense matrix

and will be stored in column major order by nature. The small matrix Tm is formed at

the same time directly on the host, it is important to know that the size of this matrix

(m) is around 20 for most graph applications. The smallest subspace size is k +C,

109

Multiple implicitly restarted Lanczos with nested subspaces

where C is a constant to make sure the minimum subspace size is large enough to

capture the desired eigenvalues and ensure stability.

For each size, the quality of the newly generated subspace is evaluated. This is

done by computing the eigenpairs of Tm on the host for the residual approximation.

In the meantime, the next m-step Lanczos factorization can continue on the device

or it can wait and potentially exit before reaching the maximum subspace size if the

residual is lower than the tolerance.

When the maximum size mmax is reached, all residuals are compared and only the

best subspace of size mbest is kept on the host (Tmbest
,Vmbest

, fmbest
) and other subspaces

are discarded. At this point the problem is solved into the subspace and the next step

is to update the basis, this is done by using the new matrix T +
m and Q+

m. This part

involves Vm which is composed by vectors of the size of the graph and the operation is

a tall skinny dense matrix-matrix multiplication. Fortunately, this type of operation is

efficiently performed on accelerators (Section 2.3.3), plus the large matrix is already

on the device. Only the new subspace information is transferred, which represents

a couple of matrices of size m. Finally, a new cycle can begin with exactly the same

strategy, completing the m-step Lanczos factorization beginning at the k +Cth step.

Algorithm 16Multiple implicitly restarted Lanczos with nested subspaces

[Tmi
Vmi

, fmi
]← Lanczos-Factorization(A,v1,1,mmax)

while Convergence is not reached do
Compute the eigenpairs of Tmi

Compute the residuals, stop if converged
Select the best subspace size
Set m,Tm,Vm, fm accordingly
Select p =m− k shifts µ1, ...,µp based on unwanted eigenvalues
for j = p, ...,2,1 do

[Qj ,Rj]← QR-Factorization(Tm −µjI)
Tm←QH

j TmQj

Qm←QH
mQj

end for
fk ← Tm(k +1, k)Vm(1 : n,1 :m)Qm(1 :m,j +1) +Qm(m,k)fm
Vm(1 : n,1 : k)← Vm(1 : n,1 :m)Qm(1 :m,1 : k)
[Tmi

,Vmi
, fmi

]← Lanczos-Factorization(A,Vk , k,mmax)
end while

110

6.2 Multiple implicitly restarted Lanczos with nested subspaces

6.2.3 Profile

The profile of our GPU implementation for modularity maximization shows that 90%

of the time is spent in the eigensolver, where the eigensolver time is dominated by the

SPMV as shown in Figure 6.2.

Fig. 6.2 Profiling of the implicitly restarted Lanczos eigensolver

It is possible to estimate the benefits of the GPU acceleration from the performance

profile since the solver is composed by basic linear algebra subroutines (BLAS) with

known performances. The BLAS are commonly categorized in three levels. The

first level performs scalar and vector operations, the second performs matrix-vector

operations, and the third performs matrix-matrix operations. Recall that accelerated

basic operations are presented in Section 2.3.3.

There is a dozen of level 1 operations per Lanczos iteration. The complexity of

those operations depends on the number of vertices, which is low compared to the

number of edges. The dot product involves a reduction which scales at a rate of

κ ∗ log(κ) with κ the number of cores and the vector addition scales linearly with the

number of cores. Thus, in this application, level 1 operations are relatively cheap to

compute because of the relative size of the input and the scalability of the operations

in parallel.

The sparse matrix vector multiplication is the most expensive operation in the solver as

shown in Figure 6.2. Notice that it is called at each Lanczos iteration. The complexity

of this operation depends on the number of edges. There are many specialized SpMV

111

Multiple implicitly restarted Lanczos with nested subspaces

for GPUs (Bell and Garland, 2008) and the speedup is often between 2× and 3×

against comparable parallel CPU implementation.

The matrix-matrix multiplication is known to be expensive sequentially. It appears

during the implicit update of the Krylov vectors and at the very end of the method

when computing the eigenvectors. In our applications this is not a primary concern

because this does not happen in the inner loop. In addition, this is a tall skinny

matrix-matrix multiplication where n is large but m and k are very small. This matrix

multiplication is efficiently done in parallel on the GPU.

Finally, the host-device transfers are too fast to be visible on the profile because

they involve very small matrices. The host part is also invisible as it operates on data

sizes that are several orders of magnitude smaller than the device part.

6.3 Experiments

In Chapter 4, we selected a sample of real networks from DIMACS10, LAW and SNAP

graph collections (Bader et al., 2013) and (Davis and Hu, 2011) that are relevant

for clustering. We propose to reuse the data sets of Table 4.1 in this section. The

column V represents the number of vertices (size of the matrix) and E column shows

the number of edges of the graph (ie. the number of non zero entries in the matrix).

We let the stopping criteria for the Lanczos eigenvalue solver in Algorithm 16

be based on the maximum residual norm of the eigenpairs max(ρ(λ1,w1), ...,ρ(λk ,wk)) ≤

10−3. Notice that the spectral clustering application does not require very precise

eigenvectors as the goal is to compare elements together. However, it still needs an

accurate eigensolver to reach this precision. In this section, an iteration refers to one

iteration of the m-step Lanczos factorization (Algorithm 7), where one iteration of

the m-step Lanczos factorization contains one sparse matrix vector multiplication. A

restart cycle refers to one cycle of MIRLns in Algorithm 16. The maximum number of

iterations is 500. For consistency, we fixed the parameter corresponding to the number

of clusters and the desired eigenvalues (k) to be 7 in all experiments. We choose 7

because it is a non-trivial prime number which is large enough to be relevant for the

clustering application. We set the maximum subspace size mmax = 15+ k because it is

a realistic parameter for IRL.

112

6.3 Experiments

Experiments cover the three latest Nvidia architectures : Kepler (Tesla K20c and

Quadro K6000), Maxwell (Geforce Titan X) and Pascal (Tesla P100 PCIe).

The Tesla P100 experiment was performed on CentOS Linux 7.3 server, driver

375.2, Intel Xeon E5-2698v3 2.30GHz, 256 GB of memory. All other experiments were

performed on Ubuntu 14.04 workstation, driver 375.0, Intel i7-3930K 3.20GHz, 8GB

of memory.

Our parallel MIRLns solver Algorithm 16 is compared to IRL Algorithm 8 on GPUs

within the context of spectral graph clustering. The exact same software, hardware

and parameters were selected. We present two spectral clustering techniques that

are relevant for evaluating MIRLns solver : modularity maximization and minimum

balanced cut. The former involves finding the largest eigenpairs and the later involves

finding the smallest ones. The performance improvement is measured by the reduction

of number of iterations rather than time because it is more generic and independent

of the architecture specifications. Notice that in IRL and MIRLns, the time of one

iteration is dominated by one SpMV as shown in Figure 6.2. For completeness, we

also present times and speedup results on recent hardware. The quality improvement

in the application is estimated by the clustering quality.

In all cases the stopping criteria was met before reaching the maximum number

of iterations. We ran MIRLns on graphs as large as hollywood-2009 with 1,139,905

vertices and 113,891,327 edges (Table 4.1). In 32 bit precision, MIRLns reduces the

number of iterations by 2.55× and at the same time increases the final modularity

quality score by 80 %. Notice that the improvements presented in this sections are

directly related to adaptive selection of the subspace size as this is the only part

changing between IRL and MIRLns.

6.3.1 Modularity

Figure 6.3 shows the number of iterations achieved for 32-bit (single) and 64-bit

(double) precision.

First, notice that at same precision, MIRLns always reduces or matches the number

of iterations of IRL. Moreover, MIRLns in 32-bit is able to beat or match the number of

iterations of IRL in 64-bit in 6 cases out of 8. This enables the use of 32-bit arithmetic

on cases where 64-bit gave better results, allowing additional improvements in terms

113

Multiple implicitly restarted Lanczos with nested subspaces

Fig. 6.3 The number of iterations achieved for 64 and 32 bit precision for spectral
modularity maximization

of memory requirement and execution time. Indeed, single precision has significantly

higher raw floating point performance and requires less bandwidth to access the data.

Second, notice that in both cases 64-bit precision helps to reduce the number of

iterations. This is because single precision can results in roundoff errors during the

computation of the Krylov subspace. Those perturbations can impact the number

of iterations and the overall quality of the approximation. Their effect depends on

the sensitivity of the problem that is measured by its condition number. We can

empirically see these effects on Figure 6.3, a particularly relevant illustration of this

behaviour happens on coPapersCiteseer network, which takes more than twice the

number of iterations in 32-bit precision to converge.

Third, notice that there is better consistency between 32-bit and 64-bit results in

MIRLns than in IRL. The gap between 32-bit and 64-bit is over 2× in IRL in 3 cases

out of 8 while this never happens in MIRLns. Thus, MIRLns is more robust for this

application.

114

6.3 Experiments

IRL MIRLns
64b 32b 64b 32b

It Mod It Mod It Mod It Mod
1. 92 0.1343 106 0.1345 78 0.1473 95 0.1379
2. 92 0.4067 120 0.1553 65 0.3945 64 0.4101
3. 50 0.3155 106 0.0550 50 0.2998 64 0.0621
4. 106 0.4702 134 0.4656 78 0.4103 92 0.4539
5. 148 0.3086 162 0.2276 65 0.3335 122 0.2873
6. 50 0.3194 134 0.3013 50 0.2249 36 0.2014
7. 134 0.3305 134 0.2105 80 0.4597 79 0.3117
8. 36 0.5581 92 0.3332 36 0.5587 36 0.5854

Table 6.1 The number of iterations (It) and modularity score (Mod) achieved for 64
and 32-bit precision for spectral modularity maximization (Titan X).

Figure 6.4 shows the modularity score (Newman, 2010) achieved for 64-bit and 32-

bit precision. The ideal modularity score is known to be 1 and 0 would approximately

corresponds to the score of a random clustering. In 64-bit, MIRLns and IRL lead

to similar results in terms of clustering quality. However, in 32-bit MIRLns leads

to significant quality improvement in two cases with up to 2.64× improvement on

caidaRouterLevel and 78% on hollywood-2009. Notice that this corresponds to

cases where MIRLns converged faster (eg. 2.55× less iterations for hollywood-2009).

This result makes sense because the dynamic selection of the best subspace allows to

reduce unwanted roundoff errors leading to faster convergence and at the same time

limits the risk of having poor approximation.

In this experiment MIRLns leads to modularity scores 36% higher in average in

32-bit and preserves the score in 64-bits. This improvement is the result of the better

convergence of the eigensolver resulting of the adaptive nested subspace variant.

The Tesla P100 (PCIe) is among the most powerful accelerators at the time we

write this article. It has 3584 cores and delivers 9.3 TeraFLOPS (in 32-bit) for 250 W.

Hence, we selected this architecture to measure time and speedup. Notice that this

experiment was done on the PCIe version of the Tesla P100 but the NVLink alternative

is expected to improve the bandwidth by 5× . Thus, NVLink would increase further

the speedup of MIRLns over IRL since MIRLns exchange more data with the host.

Figure 6.5 shows the speedup of MIRLns over IRL on Tesla P100. Notice that

MIRLns has an average speedup of 58% in 32-bit and 40% in 64-bit. Among 16 cases

115

Multiple implicitly restarted Lanczos with nested subspaces

Fig. 6.4 The modularity score achieved for 64 and 32-bit precision for spectral modu-
larity maximization (Titan X).

only 2 slowdowns were reported with the highest one being -15% and the second one

-2%. These two slowdowns happened on small data sets of Table 4.1. The intensity of

this slowdown and the size of the networks indicate that MIRLns did not sufficiently

improve the convergence compared to IRL to cover the cost of the auto tuning of the

subspace size. Still, the resulting clustering score was better with MIRLns for these

two cases.

Results on Tesla P100 hardware (Figure 6.5) can be different from the results on

Titan X (Figure 6.3, Figure 6.4). Indeed, changing the parallel hardware may impact

the convergence, for this reason, the number of iterations reported in Table 6.1 does

not systematically correspond to the speedup in time of Table 6.2. The details on how

the architecture impacts MIRLns are given in Figure 6.8.

Finally, notice that with MIRLns, the spectral modularity clustering is achieved in

0.2 second for hollywood-2009 which is the largest network of Table 4.1. Another rel-

evant example is coPapersDBLP which has over 15 millions edges and where MIRLns

is twice faster than IRL which allows to find a clustering in near real time (0.1 second).

116

6.3 Experiments

Fig. 6.5 The speedup of MIRLns over IRL on Tesla P100 for 64 and 32-bit precision in
the context of spectral modularity maximization.

IRL MIRLns

32b 64b 32b 64b

T(ms) Mod T(ms) Mod T(ms) SU Mod T(ms) SU Mod

1 107.91 0.12 71.403 0.13 90.977 1.18 0.12 84.492 0.86 0.15

2 78.65 0.28 69.0 0.32 55.458 1.41 0.41 55.932 1.23 0.40

3 37.56 0.05 52.311 0.32 38.143 0.98 0.18 49.312 1.06 0.37

4 71.56 0.42 89.263 0.47 70.459 1.01 0.44 86.589 1.03 0.41

5 327.0 0.11 310.98 0.36 155.67 2.1 0.31 147.94 2.10 0.41

6 144.14 0.32 96.373 0.30 64.345 2.24 0.20 85.364 1.13 0.48

7 1328.5 0.21 1789.5 0.28 630.83 2.1 0.33 665.99 2.69 0.46

8 427.02 0.16 253.82 0.57 267.10 1.6 0.46 221.46 1.15 0.58
Table 6.2 The time (T) in millisecond, modularity score (Mod) and speedup (SU)
achieved for 32 and 64-bit precision for spectral modularity maximization on Tesla
P100.

117

Multiple implicitly restarted Lanczos with nested subspaces

6.3.2 Minimum balanced cut

Figure 6.6 shows the number of iterations achieved for 64 and 32-bit precision.

MIRLns always reduces or matches the number of iterations of IRL in 64-bit and 75%

of the time in 32-bit. Notice that the average number of iterations is higher than

for modularity because the smallest eigenvalues of the Laplacian are often highly

clustered. Although, in this application, the 64-bit precision does not clearly impact

the number of iterations compared to 32-bit for both algorithms because the subspace

seems more stable and less impacted by small roundoff errors. Notice that MIRLns in

32-bit is still able to beat or match the number of iterations of IRL in 64-bit in 7 cases

out of 8. Finally, in 64-bit MIRLns reduces the number of iterations by 21% while

improving quality by 23% over IRL in 64-bit.

Fig. 6.6 The number of iterations achieved for 64 and 32-bit precision for spectral
balanced cut minimization (Titan X).

Figure 6.7 shows the score of the number of edge cuts per vertex achieved in 64-bit

and 32-bit precision. The ratio edge cut for a cluster is the ratio of the volume of edges

that have an end outside of the cluster divided by the number of vertices inside the

118

6.3 Experiments

cluster. The total ratio edge cut is the average of all cluster scores. Hence, the smaller

this ratio, the better is the clustering according to this metric.

Fig. 6.7 The ratio edge cut score achieved for 64 and 32-bit precision for spectral
balanced cut minimization (Titan X).

IRL IRLns

64b 32b 64b 32b

It ECR It ECR It ECR It ECR

1. 260 33.581 289 34.605 218 34.540 181 40.951

2. 274 8.6733 260 6.6687 239 8.5707 270 7.1242

3. 274 5.2738 288 5.1697 211 5.7861 208 5.0897

4. 274 10.538 274 11.808 198 10.750 240 11.704

5. 274 20.760 246 22.375 198 25.205 212 31.759

6. 274 11.808 302 10.324 237 10.855 254 9.8163

7. 260 111.37 260 169.04 213 168.20 264 86.665

8. 274 51.219 274 41.050 195 107.01 229 56.580
Table 6.3 The number of iterations (It) and ratio edge cut score (ECR) achieved for 64
and 32-bit precision for balanced cut minimization.

119

Multiple implicitly restarted Lanczos with nested subspaces

In the first 6 cases, the quality is preserved within the range of small irregular

variations. However, on as-skitter and hollywood-2009 there are differences of

over 2× (without showing any trend for a particular solver). Since the ratio edge cut

is high for both networks it is likely that they do not have a natural division in 7

clusters, which can lead to an unstable clustering approximation. Also, the variations

are decoupled from the precision or the eigensolver so we suspect that this comes from

the clustering pipeline such as the k-means initialization rather than the eigensolver

itself.

6.3.3 Different architectures

In parallel computing, it is common to have reproducibility on the same hardware

but possible variations on different architectures. Indeed, operations like reduction

can lead to different results in limited arithmetic precision depending on the order

of the summations. Typically, optimized parallel codes will take advantage of the

architecture by looking at the cache size or the number of cores for heuristics. Consid-

ering the number of reduction in Algorithm 7 and their context, this may impact the

final result. The following experiment shows how the parallel architecture impacts

convergence and time of MIRLns solver. The most recent GPU is the GeForce Titan X

based on Maxwell architecture and the second is the Quadro K6000 based on Kepler

architecture. The Titan X is expected to have better performances while the Quadro is

older but is expected to have a smaller gap between 32-bit and 64-bit performances.

Figure 6.8 shows the number of iterations achieved for 64 and 32-bit precision on

those architectures.

In 32-bit, a particularly relevant case is coPaperDPLB where rounding approxima-

tions are harmless on K6000 but double the number of iterations on Titan X. The

opposite happens on hollywood-2009. As expected, there are smaller differences

between the two architectures when using 64-bit precision.

In all cases, the solver converged and the resulting clustering was significantly

better than random assignments. Thus, MIRLns can offer reasonable consistency even

when architectures are different.

120

6.3 Experiments

Fig. 6.8 The number of iterations achieved for 64 and 32-bit precision for spectral
modularity maximization on k6000 and Titan X hardware.

6.3.4 Variation of the Krylov subspace size

It is not possible to know in advance what subspace size will have the best residual

at each restart cycle, this is the reason why MIRLns dynamically detects and takes

advantage of the best subspace size. In the next experiment we propose to compare

the evolution of the residual of IRL and MIRLns while keeping track of the selected

subspace size in MIRLns. The experiment was done in the context of 32-bit arith-

metic precision in order to highlight the resilience to roundoff errors in the subspace

resulting of repeated rounding.

Figure 6.9 compares IRL(mmax) to MIRLns(m1, ...,mmax) when looking for 7 eigen-

pairs with mmax = 22. It illustrates how the Kylov subspace size directly impacts the

convergence on hollywood-2009, which is our largest data set.

121

Multiple implicitly restarted Lanczos with nested subspaces

Fig. 6.9 The convergence of IRL and MIRLns on hollywood-2009 with an eye on the
selected subspace size mmax = 22 (Tesla K20c).

In this experiment we let the stopping criteria be based on the maximum residual

norm of the eigenpairs max(ρ(λ1,w1), ...,ρ(λk ,wk)) ≤ 1e−6 on Tesla k20c. Both methods

start with a subspace size of 22 and a residual of 0.032 at the initial restart cycle. In

the next restart cycle MIRLns selects the smallest subspace available which appears to

have a slightly higher residual after restart than IRL, which continues with a subspace

size of 22. Keeping a large subspace pays off for IRL during the first cycles but it starts

to stagnate after the 5th cycle. During the same period of time MIRLns continues to

switch the subspace size at each cycle till it quickly catches up IRL at the 7th cycle

and finally reaches the desired precision at the 8th cycle. Eventually, IRL will also

converge at the 15th restart cycle. Roundoff is likely to be the cause of the stagnation

in IRL which is often seen in Krylov methods in general. Another hypothesis is that

the number of eigenpairs (k) and/or the subspace size (mmax) splits a natural clusters

of eigenvalues. In the example of Figure 6.9 notice that IRL could reach convergence

faster than MIRLns before 1e−4 but the residual norms do not decrease steadily while

those of MIRLns continue to decrease further.

MIRLns appears to suffer less from roundoff issues. It is likely because period-

ically selecting smaller subspaces that are more precise allows to avoid the impact

122

6.4 Conclusion

of repeated rounding onto the overall method. Moreover, changing the subspace at

each restart leads to significant changes in the subspace but preserves the progress

of the algorithm which has proved to be a good strategy to break stagnation phases.

Finally, it may also help adapting to the natural clusters of eigenvalues. The adaptive

subspace size approach remains empirical and could be improved in the future by

analyzing the results of intensive experimentation.

6.4 Conclusion

We explained how spectral graph clustering of real networks leads to large symmetric

eigenvalue problems. The eigenpairs of interest are a small set among the largest or

smallest ones, hence, a sparse iterative method like implicitly restarted Lanczos is

suitable for solving this problem.

We proposed a new approach based on the implicitly restarted Lanczos method

with subspace size auto-tuning.

We implemented a hybrid, accelerated, solution to leverage GPU throughput to

operate on large sparse matrices without suffering from under-occupancy when solving

the small, coarse, problem. The details of the hybrid strategy are explained, and can

apply to other methods with reduction-projection patterns.

We found that the implicitly restarted Lanczos method benefits from the nested

subspaces variant which allows a dynamic selection of the subspace size. The parallel

implementation on GPU ran on networks with a million vertices and a hundred

million edges. Our experiments showed that the accelerated MIRLns solver improves

robustness and achieves better performances than the regular implicitly restarted

Lanczos method for different spectral graph clustering applications. For instance, a

modularity clustering score of 0.58 was achieved in 0.2 seconds on Tesla P100 GPU for

the network representing 113,891,327 collaborations of Hollywood actors. Moreover,

our experiments indicated that the adaptive subspace size allowed to reduce floating-

point arithmetic precision from double (64-bit) to single (32-bit) without quality loss

in the application. In the future, we plan to analyze MIRLns further, investigate the

adaptive selection of more eigensolver parameters, and experiment with half (16-bit)

floating-point arithmetic precision.

123

Chapter 7

Conclusions and perspectives

The contributions of this thesis address several interconnected problems in the field

of graphs, numerical eigenvalue problems and GPU.

First, we identified and discussed spectral graph analytics problems on GPU. We

explained how graphs connect to sparse linear algebra and highlighted problems

that can be addressed with an eigenvalue solver. We presented the advantages of the

implicitly restarted Arnoldi and Lanczos methods in this context. We studied how the

GPU architecture benefits to spectral graph analytics and exposed obstacles.

Second, we supplied the first implementation of the implicitly restarted Arnoldi

method with adaptive subspaces on the GPU and experimented it on Pagerank appli-

cations. It achieved 2× to 15× speedup over the power method and 2× to 8× speedup

over the regular implicitly restarted Arnoldi method. This solver allows near real time

ranking of elements in graphs with tens of millions edges. We developed a hybrid

solution to leverage GPU throughput to operate on large sparse matrices without

suffering from under-occupancy when solving the small, coarse, problem.

In the future, the quality metric of the subspace can be studied further with the goal

of improving the subspace selection. In addition, experiments showed that a high

number of subspaces is not always the best strategy and a too low number either.

Research can be pursued in this direction in order to find heuristics for the optimal

number of nested subspaces.

Third, we revisited the modularity maximization on GPU as an eigenvalue problem.

We supplied a fast graph clustering implementation which achieves 3× speedup over

state-of-the-art agglomerative CPU implementation. Experimentation showed that for

a given number of clusters, it is possible to reduce the number of eigenpairs without

125

Conclusions and perspectives

losing quality. We also found that a natural number of clusters can be discovered by

changing the number of k-means centroids while keeping the number of eigenpairs

constant.

As far as we know, the spectral modularity maximization scheme is faster than agglom-

erative schemes but we could not always reach the same level of clustering quality. In

the future, the impact of different graph features should be investigated as well as

eigensolver and k-means parameters.

Fourth, we have extended the Jaccard similarity to graphs and showed how to

incorporate vertex weights into this metric. We have developed the corresponding

parallel implementation of Jaccard edge and PageRank vertex weights on the GPU

which achieves 10× speedup over CPU. Our numerical experiments have shown that

clustering and partitioning can benefit from using Jaccard and PageRank weights

on real networks. In particular, we have shown that spectral clustering quality can

increase by up to 3×.

In the future, the impact of other vertex weights than Pagerank should be investigated.

Finally, we believe that other applications than clustering could benefit from these

weights.

Fifth, we introduced an adaptive strategy for the subspace size in the implicitly

restarted Lanczos method. This method generates multiple nested subspaces and

selects the best at each restart cycle. We did the first implementation of this method

and integrated it into two spectral clustering techniques. Experiments on GPU has

shown a reduction of the number of sparse matrix vector multiplications by 41% and

increased the modularity clustering quality by 36%, when comparing against the

regular implicitly restarted Lanczos method on GPU. Moreover, experiments indicated

better stability and showed a 2.7× speedup on newest GPU hardware.

In the future, a deeper analysis of the subspace selection could help to improve the

method further. Also, our experiments indicated that the adaptive subspace size

allowed to reduce floating-point arithmetic precision from double (64 bits) to single

(32 bits) without quality loss in the application. This characteristic can be investigated

further by experimenting with half (16 bits) floating-point arithmetic precision.

We have presented how a variety of spectral graph analytics problems are effi-

ciently handled by the GPU and introduced new methods and techniques designed

126

to solve the difficulties we encountered. Pagerank and spectral clustering parallel

implementations are available in the NVGRAPH library which has been distributed in

the NVIDIA CUDA Toolkit.

127

Communications

Peer-reviewed publications

Parallel implicitly restarted Lanczos with nested subspaces and network clustering

applications

Alexandre Fender, Nahid Emad, Serge Petiton and Maxim Naumov

Submitted for publication, 2017.

Parallel Jaccard and Related Graph Clustering Techniques

Alexandre Fender, Nahid Emad, Serge Petiton, Joe Eaton and Maxim Naumov

Proceedings of Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)

held at SC’17, accepted for publication, 2017b.

Parallel modularity clustering

Alexandre Fender, Nahid Emad, Serge Petiton and Maxim Naumov

Proceedings of the International Conference on Computational Science (ICCS), MATH-

EX workshop, Procedia Computer Science, 108:1793-1802, 2017a.

Leveraging accelerators in the multiple implicitly restarted Arnoldi method with

nested subspaces

Alexandre Fender, Nahid Emad, Serge Petiton and Joe Eaton

Proceedings of the IEEE International Conference on Emerging Technologies and In-

novative Business Practices for the Transformation of Societies (EmergiTech), 389–394,

2016b.

Accelerated hybrid approach for spectral problems arising in graph analytics

Alexandre Fender, Nahid Emad, Joe Eaton and Serge Petiton

Proceedings of the International Conference on Computational Science (ICCS), Proce-

dia Computer Science, 80:2338–2347, 2016a.

A fine-grained parallel model for the Fast Iterative Method in solving Eikonal equa-

tions

Florian Dang, Nahid Emad and Alexandre Fender

Proceedings of the IEEE International Conference on P2P, Parallel, Grid, Cloud and

Internet Computing (3PGCIC), 152-157, 2013

Invited talks

Spectral Graph Analysis with Unite and Conquer Approach

Nahid Emad, Serge Petiton, Alexandre Fender, Joe Eaton and Maxim Naumov

SIAM Conference on Parallel Processing for Scientific Computing, Tokyo, Japan, 2018.

Parallel spectral clustering

Alexandre Fender, Nahid Emad, Serge Petiton and Maxim Naumov

GPU Technology Conference, San Jose, USA, 2017.

Spectral graph partitioning

Maxim Naumov, Tim Moon and Alexandre Fender

SIAM Conference on Computational Science & Engineering, Atlanta, USA, 2017.

Graph analytics on GPU

Alexandre Fender

Teratec Forum, Palaiseau, France, 2016.

Emerging GPGPU applications,

Alexandre Fender, Nahid Emad, Serge Petiton and Joe Eaton

HPCSeminar at CEA (Alternative Energies and Atomic Energy Commission),

Bruyères-le-Châtel, France, 2015.

Toward accelerated graph analytics

Alexandre Fender, Nahid Emad, Serge Petiton and Joe Eaton

Grace seminar at Maison de la Simulation, Saclay, France, 2015.

References

Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. (1999). LAPACK
Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA,
third edition.

Arnoldi, W. E. (1951). The principle of minimized iteration in the solution of the
matrix eigenproblem. Quart. Appl. Math., 9:17–29.

Arthur, D. and Vassilvitskii, S. (2007). K-Means++: the Advantages of Careful Seeding.
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
8:1027–1025.

Auer, B. O. F. (2013). GPU Acceleration of Graph Matching, Clustering and Partitioning.
PhD thesis, Utrecht University.

Bader, D. A., Meyerhenke, H., Sanders, P., and Wagner, D. (2013). Graph Partitioning
and Graph Clustering. Contemporary Mathematics, 588:73–82.

Bai, Z. and Demmel, J. (1989). On a Block Implementation of Hessenberg Multishift
Qr Iteration. International Journal of High Speed Computing, 01(01):97–112.

Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., and van der Vorst, H. (2000). Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM,
Philadelphia, PA, 11:316.

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks.
Science, 286(5439):11.

Barnard, S. T. and Simon, H. D. (1994). Fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. Concurrency: Practice and
Experience, 6(2):101–117.

Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: An Open Source Software
for Exploring and Manipulating Networks. Third International AAAI Conference on
Weblogs and Social Media, pages 361–362.

Batagelj, V. and Brandes, U. (2005). Efficient generation of large random networks.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 71(3):1–5.

Bell, N. and Garland, M. (2008). Efficient Sparse Matrix-Vector Multiplication on
CUDA. Technical report, NVIDIA.

131

References

Berkhin, P. (2005). A Survey on PageRank Computing. Internet Mathematics, 2(1):73–
120.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 10008(10):6.

Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., and Wagner,
D. (2008). On Modularity Clustering. IEEE Transactions on Knowledge and Data
Engineering, 20(2):172–188.

Brezinski, C., Redivo-Zaglia, M., and Serra-Capizzano, S. (2005). Extrapolation
methods for PageRank computations. Comptes Rendus Mathematique, 340(5):393–
397.

Brody, A. (1997). The Second Eigenvalue of the Leontief Matrix. Economic Systems
Research, 9(3):253–258.

Bryan, K. and Leise, T. (2006). The $25,000,000,000 Eigenvector: The Linear Algebra
behind Google. SIAM Review, 48(3):569–581.

Calvetti, D., Reichel, L., and Sorensen, D. C. (1994). An implicitly restarted Lanc-
zos method for large symmetric eigenvalue problems. Electronic Transactions on
Numerical Analysis, 2(March):1–21.

Chakrabarti, D., Zhan, Y., and Faloutsos, C. (2004). R-MAT: A Recursive Model for
Graph Mining. In Proceedings of the 2004 SIAM International Conference on Data Min-
ing, pages 442–446. Society for Industrial and Applied Mathematics, Philadelphia,
PA.

Chen, M., Kuzmin, K., and Szymanski, B. K. (2014). Community detection via maxi-
mization of modularity and its variants. IEEE Transactions on Computational Social
Systems, 1(1):46–65.

Chung, F. R. K. (1997). Spectral Graph Theory. American Mathematical Soc.

Clauset, A., Newman, M. E. J., and Moore, C. (2004). Finding community structure in
very large networks. Cond-Mat/0408187, 70:066111.

Davis, T. a. and Hu, Y. (2011). The university of Florida sparse matrix collection. ACM
Transactions on Mathematical Software, 38(1):1–25.

Deo, N., Jain, A., and Medidi, M. (1994). An optimal parallel algorithm for merging
using multiselection. Information Processing Letters, 50(2):81–87.

Dhillon, I., Guan, Y., and Kulis, B. (2005). A fast kernel-based multilevel algorithm for
graph clustering. Proceeding of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining - KDD ’05, page 629.

Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species.
Ecology, 26(3):297–302.

132

References

Donath, W. E. and Hoffman, a. J. (1973). Lower Bounds for the Partitioning of Graphs.

Dongarra, J. J., Meuer, H. W., Strohmaier, E., and Others (2017). TOP500 supercom-
puter.

Dubois, J., Calvin, C., and Petiton, S. (2011). Accelerating the explicitly restarted
Arnoldi method with GPUs using an autotuned matrix vector product. SIAM Journal
on Scientific Computing, 33(5):3010–3019.

Emad, N. and Petiton, S. (2016). Unite and conquer approach for high scale numerical
computing. Journal of Computational Science, pages 1–10.

Emad, N., Petiton, S., and Edjlali, G. (2005). Multiple Explicitly Restarted Arnoldi
Method for Solving Large Eigenproblems. SIAM Journal on Scientific Computing,
27(1):253–277.

Emad, N., Shahzadeh-Fazeli, S. A., and Dongarra, J. (2006). An asynchronous al-
gorithm on the NetSolve global computing system. Future Generation Computer
Systems, 22(3):279–290.

Eom, Y. H., Frahm, K. M., Benczúr, A., and Shepelyansky, D. L. (2013). Time evolution
of wikipedia network ranking. European Physical Journal B, 86(12).

Ermann, L., Chepelianskii, A. D., and Shepelyansky, D. L. (2012). Toward two-
dimensional search engines. Journal of Physics A: Mathematical and Theoretical,
45(27):275101.

Ermann, L., Frahm, K. M., and Shepelyansky, D. L. (2013). Spectral properties of
Google matrix of Wikipedia and other networks. European Physical Journal B, 86(5).

Ermann, L., Frahm, K. M., and Shepelyansky, D. L. (2015). Google matrix analysis of
directed networks. Reviews of Modern Physics, 87(4):1261–1310.

Fender, A. (2014). Scalable platforms for graph analytics on GPU. M.sc thesis, Ecole
Centrale Paris & University of Versailles.

Fiedler, M. (1973). Algebraic Connectivity of Graphs. Czechoslovak Mathematical
Journal, 23(2):298–305.

Flynn, M. J. (1972). Some computer organizations and their effectiveness. IEEE
Transactions on Computers, C-21(9):948–960.

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5):75–
174.

Fu, Z., Personick, M., and Thompson, B. (2014). MapGraph. Proceedings of Workshop
on GRAph Data management Experiences and Systems - GRADES’14, pages 1–6.

Gantz, J. and Reinsel, D. (2012). THE DIGITAL UNIVERSE IN 2020: Big Data,
Bigger Digi tal Shadows, and Biggest Growth in the Far East. Idc, 2007(December
2012):1–16.

133

References

Girvan, M. and Newman, M. E. J. (2002). Community structure in social and biological
networks. Proceedings of the National Academy of Sciences of the United States of
America, 99(12):7821–7826.

Golub, G. H. and Greif, C. (2006). An Arnoldi-type algorithm for computing page
rank. BIT Numerical Mathematics, 46(4):759–771.

Golub, G. H. and Van Der Vorst, H. A. (2000). Eigenvalue computation in the 20th
century. Journal of Computational and Applied Mathematics, 123(1-2):35–65.

Greathouse, J. L. and Daga, M. (2014). Efficient Sparse Matrix-Vector Multiplication on
GPUs Using the CSR Storage Format. International Conference for High Performance
Computing, Networking, Storage and Analysis, SC, 2015-Janua(January):769–780.

Green, O. and Bader, D. A. (2016). cuSTINGER: Supporting dynamic graph algorithms
for GPUs. In IEEE High Performance Extreme Computing Conference (HPEC), number
September, pages 1–6.

Hardouin, L., Cottenceau, B., Lagrange, S., and Corronc, E. L. (2008). Performance
analysis of linear systems over semiring with additive inputs. Proceedings - 9th
International Workshop on Discrete Event Systems, WODES’ 08, 3:43–48.

Hilbert, M. and Lopez, P. (2011). The World’s Technological Capacity to Store, Com-
municate, and Compute Information. Science, 332(6025):60–65.

Horn, R. a. and Johnson, C. R. (1986). Matrix Analysis. Cambridge University Press.

Jaccard, P. (1902). Lois de distribution florale dans la zone alpine. Bulletin de la Société
Vaudoise des Sciences Naturelles, 38:67–130.

Jaja, J. (1992). Introduction to Parallel Algorithms. Addison-Wesley, addison-we edition.

Kanungo;, T. (2000). An efficient k-means clutering algorithm: analysis and imple-
mentation. Proceedings of the 16th ACM symposium on Computational Geometry,
24(7):881–892.

Karypis, G. and Kumar, V. (1998). A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392.

Kepner, J. (2011). Graph Algorithms in the Language of Linear Algebra, volume 67. SIAM.

Knyazev, A. V. (2001). Toward the Optimal Preconditioned Eigensolver: Locally Opti-
mal Block Preconditioned Conjugate Gradient Method. SIAM Journal on Scientific
Computing, 23(2):517–541.

Krieger, W. (1974). On the uniqueness of the equilibrium state. Mathematical Systems
Theory, 8(2):97–104.

Kunegis, J. (2015). Handbook of Network Analysis KONECT – the Koblenz Network
Collection. Proceedings of the 22Nd International Conference on World Wide Web
Companion, pages 1–56.

134

References

Kwak, H., Lee, C., Park, H., and Moon, S. (2010). What is Twitter, a Social Network or
a News Media? the 19th international conference on World wide web, pages 591–600.

Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. Journal of Research of the National Bureau
of Standards, 45(4):255.

Langville, A. and Meyer, C. (2003). Deeper Inside PageRank.

Langville, A. N. and Meyer, C. D. (2006). Updating Markov Chains with an Eye on
Google’s PageRank. SIAM Journal on Matrix Analysis and Applications, 27(4):968–987.

Lasalle, D. and Karypis, G. (2015). Multi-threaded modularity based graph clustering
using the multilevel paradigm. Journal of Parallel and Distributed Computing, 76:66–
80.

Lee, C., Ro, W. W., and Gaudiot, J.-L. (2014). Boosting CUDA Applications with
CPU–GPU Hybrid Computing. International Journal of Parallel Programming,
42(2):384–404.

Lehoucq, R. B. (1995). Analysis and Implementation of an Implicitly Restarted Arnoldi
Iteration. PhD thesis, Rice University.

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., and Ghahramani, Z. (2010).
Kronecker graphs: An approach to modeling networks. Journal of Machine Learning
Research, 11:985–1042.

Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford Large Network Dataset
Collection.

Levandowsky, M. and Winter, D. (1971). Distance between Sets. Nature, 234(5323):34–
35.

Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J. (2008). NVIDIA Tesla: A
unified graphics and computing architecture. IEEE Micro, 28(2):39–55.

Liu, Z., Emad, N., Amor, S. B., and Lamure, M. (2013). A parallel IRAM algorithm
to compute PageRank for modeling epidemic spread. Proceedings - Symposium on
Computer Architecture and High Performance Computing, pages 120–127.

Livne, O. E. and Brandt, A. (2012). Lean Algebraic Multigrid (Lamg): Fast Graph
Laplacian Linear Solver. Siam Journal on Scientific Computing, 34(4):B499–B522.

Lloyd, S. P. (1982). Least Squares Quantization in PCM. IEEE Transactions on Informa-
tion Theory, 28(2):129–137.

Maschhoff, K. J. and Sorensen, D. C. (1996). P_ARPACK: An efficient portable large
scale eigenvalue package for distributed memory parallel architectures. In PARA
’96 Proceedings of the Third International Workshop on Applied Parallel Computing, In-
dustrial Computation and Optimization, pages 478–486. Springer, Berlin, Heidelberg.

135

References

Matam, K. K. and Kothapalli, K. (2011). GPU accelerated Lanczos algorithm with ap-
plications. Proceedings - 25th IEEE International Conference on Advanced Information
Networking and Applications Workshops, WAINA 2011, pages 71–76.

Mattson, T., Bader, D., Berry, J., Buluc, A., Dongarra, J., Faloutsos, C., Feo, J., Gilbert,
J., Gonzalez, J., Hendrickson, B., Kepner, J., Leiserson, C., Lumsdaine, A., Padua, D.,
Poole, S., Reinhardt, S., Stonebraker, M., Wallach, S., and Yoo, A. (2013). Standards
for graph algorithm primitives. In 2013 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–2. IEEE.

Merrill, D. and Garland, M. (2016). Merge-based sparse matrix-vector multiplication
(SpMV) using the CSR storage format. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming - PPoPP ’16, pages 1–2,
New York, New York, USA. ACM Press.

Mohri, M. (2002). Semiring Frameworks and Algorithms for Shortest-Distance Prob-
lems. Journal of Automata, Languages and Combinatorics, 7(3):321–350.

Moore, G. (1965). Cramming More Components Onto Integrated Circuits. Electronics,
38(1):82–85.

Morgan, R. B. (1996). On restarting the Arnoldi method for large nonsymmetric
eigenvalue problems. Mathematics of Computation, 65(215):1213–1231.

Nagasaka, H., Maruyama, N., Nukada, A., Endo, T., andMatsuoka, S. (2010). Statistical
power modeling of GPU kernels using performance counters. 2010 International
Conference on Green Computing, Green Comp 2010, pages 115–122.

Naumov, M. and Moon, T. (2016). Parallel Spectral Graph Partitioning. Technical
report, Nvidia.

Newman, M. E. J. (2002). Assortative Mixing in Networks. Physical Review Letters,
89(20):208701.

Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM
Review, 45(2):167–256.

Newman, M. E. J. (2006). Modularity and community structure in networks. Pnas,
103(23):8577–8582.

Newman, M. E. J. (2010). Networks: an introduction. Oxford University Press.

Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure
in networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 69(2
2):1–16.

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2001). On Spectral Clustering: Analysis and an
algorithm. Advances in Neural Information Processing Systems, pages 849–856.

Nguyen, D., Lenharth, A., and Pingali, K. (2013). A lightweight infrastructure for
graph analytics. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles - SOSP ’13, pages 456–471, New York, New York, USA. ACM
Press.

136

References

NVIDIA (2017). CUDA Toolkit.

Odeh, S., Green, O., Mwassi, Z., Shmueli, O., and Birk, Y. (2012). Merge path - Parallel
merging made simple. Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops, IPDPSW 2012, pages 1611–1618.

Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E.,
and Purcell, T. J. (2007). A Survey of General Purpose Computation on Graphics
Hardware. Computer Graphics Forum, 26(1):80–113.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The PageRank Citation
Ranking: Bringing Order to the Web. Technical Report 1999-66, Stanford InfoLab.

Palmer, C. and Steffan, J. (2000). Generating network topologies that obey power laws.
Globecom ’00 - IEEE. Global Telecommunications Conference. Conference Record (Cat.
No.00CH37137), 1:434–438.

Pelleg, D., Pelleg, D., Moore, A., and Moore, A. (2000). X-means: Extending K-means
with efficient estimation of the number of clusters. Proceedings of the Seventeenth
International Conference on Machine Learning table of contents, pages 727–734.

Petiton, S. G. and Emad, N. (1996). A data parallel scientific computing introduction.
Proceeding of The Data Parallel Programming Model: Foundations, HPF Realization,
and Scientific Applications, 1132:45–64.

Radke, R. J. (1996). A Matlab Implementation of the Implicitly Restarted Arnoldi Method
for Solving Large-Scale Eigenvalue Problems Master of Arts A Matlab Implementation of
the Implicitly Restarted Arnoldi Method for Solving Large-Scale Eigenvalue Problems.
PhD thesis, Rice University.

Rogers, D. J. and Tanimoto, T. T. (1960). A Computer Program for Classifying Plants.
Science, 132(3434).

Ross, S. M. (2007). Introduction to Probability Models. Academic Press.

Saad, Y. (1980). Variations on Arnoldi’s method for computing eigenelements of large
unsymmetric matrices. Linear Algebra and Its Applications, 34(C):269–295.

Saad, Y. (1992). Numerical Methods for Large Eigenvalue Problems. In Numerical
Methods for Large Eigenvalue Problems, volume 66, pages 1–27. Society for Industrial
and Applied Mathematics.

Santisteban, J. and Tejada Carcamo, J. L. (2015). Unilateral Jaccard similarity coeffi-
cient. In CEUR Workshop Proceedings, volume 1393, pages 23–27.

Schaeffer, S. E. (2007). Graph clustering. Computer Science Review, 1(1):27–64.

Seshadhri, C., Pinar, A., and Kolda, T. G. (2011). An in-depth study of stochastic
Kronecker graphs. Proceedings - IEEE International Conference on Data Mining, ICDM,
67:587–596.

Shahzadeh Fazeli, S. A., Emad, N., and Liu, Z. (2015). A key to choose subspace size
in implicitly restarted Arnoldi method. Numerical Algorithms, 70(2):407–426.

137

References

Smyth, S. and White, S. (2005). A spectral clustering approach to finding communities
in graphs. Proceedings of the 5th SIAM International Conference on Data Mining, pages
76–84.

Sorensen, D. C. (1997). Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale
Eigenvalue Calculations. In Keyes, D. E., , Sameh, A., , and Venkatakrishnan, V.,
editors, Parallel Numerical Algorithms, pages 119–165. Springer Netherlands.

Sorensen, D. C. (1998). Deflation for Implictly Restarted Arnoldi Methods. SIAM
Journal on Matrix Analysis and Applications.

Sørensen, T. J. (1948). A method of establishing groups of equal amplitude in plant so-
ciology based on similarity of species and its application to analyses of the vegetation
on Danish commons. Biol. Skr., 5.

Stüben, K. (2001). A review of algebraic multigrid. Journal of Computational and
Applied Mathematics, 128(1-2):281–309.

Sundaram, N., Satish, N. R., Patwary, M. M. A., Dulloor, S. R., Vadlamudi, S. G., Das,
D., and Dubey, P. (2015). GraphMat: High performance graph analytics made
productive. Proceedings of the VLDB Endowment, 8(11):1214–1225.

Sutter, H. (2005). The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal, pages 1–9.

Tremblay, J. C. and Carrington, T. (2007). A refined unsymmetric Lanczos eigensolver
for computing accurate eigentriplets of a real unsymmetric matrix. Electronic
Transactions on Numerical Analysis, 28:95–113.

Tversky, A. (1977). Features of Similarity. In Readings in Cognitive Science, pages
290–302. Elsevier.

Vanderstraeten, D. (1999). A stable and efficient parallel block Gram-Schmidt algo-
rithm. Euro-Par’99 Parallel Processing, pages 1128–1135.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416.

Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., and Owens, J. D. (2016). Gunrock. In
Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming - PPoPP ’16, pages 1–12, New York, New York, USA. ACM Press.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks.
Nature, 393(June):440–442.

Zachary, W. W. (1977). An Information Flow Model for Conflict and Fission in Small
Groups. Journal of Anthropological Research, 33(4):452–473.

138

Appendix A

Resumé en Français

A.1 Motivations

Au cours des 30 dernières années, la capacité de stockage mondiale de l’information

a pratiquement doublé tous les 3 ans, ce qui donne lieu à des décennies de données

hétérogènes (Hilbert and Lopez, 2011). De plus, la récente transformation des modes

de communication et les progrès techniques ont conduit à une explosion du volume

des données. Pourtant, il est estimé que seulement 1% de l’information digitale est

actuellement analysée (Gantz and Reinsel, 2012).

Simultanément, la fréquence d’horloge des processeurs a cessé d’augmenter provo-

quant la démocratisation des architectures parallèles et la nécessité d’une nouvelle

génération de logiciels (Sutter, 2005).

Depuis lors, le calcul haute performance (HPC) et les techniques parallèles pour

résoudre des problèmes complexes de calcul ont atteint des niveaux sans précédent.

Les machines les plus puissantes (Dongarra et al., 2017) ont maintenant plus d’un

million de cœurs et s’approchent de l’exaFLOPS, ce qui correspond à un milliard de

milliards de calculs par seconde.

Nous sommes donc a un tournant de la science où la technologie et les données ou-

vrent de nouvelles perspectives de transformation de la société à travers l’analyse des

données et l’intelligence artificielle.

139

Resumé en Français

A.1.1 Analyse de graphe

De nombreuses applications récentes modélisent l’information sous forme de relations

entre entités abstraites. Une structure intuitive pour ce modèle est un graphe. Chaque

noeud peut représenter une personne, un lieu, une chose et chaque relation représente

la façon dont deux nœuds sont associés. Cela permet d’exprimer toutes sortes de

données, des réseaux sociaux aux routes, aux réseaux de neurones, à Internet, aux

populations ou à toute autre concept défini par des relations (Newman, 2010).

L’analyse de graphe est la science qui consiste a analyser la structure globale ou la

nature des composants individuels d’un graphe. Cela permet de trouver des informa-

tions clés telles que des communautés, des entités importantes ou des chemins dans le

graphe.

Ces problèmes peuvent être décrits en termes d’opérations linéaires sur des tableaux

de données (par exemple, des vecteurs et des matrices). La plupart des éléments des

systèmes qui en résultent sont en général nuls car chaque élément est connecté à une

fraction de l’ensemble des entités du réseau. Ces types de problèmes font partie de

l’algèbre linéaire creuse. Les méthodes et les algorithmes creux efficaces équilibrent

souvent les contraintes entre stockage, coût de calcul et stabilité (Kepner, 2011). Les

problèmes d’analyse structurale avancés font souvent parti des problèmes polyno-

miaux non déterministes de type NP-difficiles. La classe de complexité théorique

NP-difficiles contient des problèmes particulièrement dur à résoudre par nature. En

pratique, la définition formelle du problème est souvent réduite à un autre problème

plus simple qui peut être résolu en un temps raisonnable.

Cette thèse cible deux sujets majeurs d’analyse de graphe qui sont le classement (rank-

ing) et le groupement (clustering). Le premier problème étant de trouver l’importance

de chaque nœud dans un graphe (Page et al., 1998) et le second étant de trouver des

sous-ensembles similaires (Schaeffer, 2007).

A.1.2 Problèmes de valeurs propres

En algèbre linéaire, un vecteur propre v d’une transformation linéaire est un vecteur

dont la direction ne change pas lorsque cette transformation lui est appliquée. La

transformation linéaire peut être représentée comme une matrice carrée A et cette

condition peut donc s’écrire Av = λv où λ est un scalaire appelé valeur propre associée

140

A.1 Motivations

au vecteur propre v.

Beaucoup d’applications dans les domaines de la santé, de l’agriculture, de la publicité,

de l’électromagnétique, de l’énergie, du contrôle optimal ou encore la finance con-

duisent à des problèmes de valeurs propres de très grandes tailles. Chaque problème

ayant ses propres spécificités, cela ouvre à de vastes possibilités pour proposer de

nouvelles méthodes scientifiques de calcul haute performance.

Les sous-espaces propres des graphes contiennent des informations clés qui peuvent

être utiles à plusieurs fins telles que classement et regroupement (Chung, 1997).

Les graphes correspondent a de grandes matrices creuses et les méthodes de Krylov

sont donc spécialement indiquées car elles permettent de trouver rapidement des

approximations précises des valeurs propres en réduisant la taille du problème (Bai

et al., 2000). De plus, les méthodes de valeurs propres de Krylov sont reconnues pour

leur efficacité à grande échelle (Maschhoff and Sorensen, 1996). Dans ces solveurs, de

nombreux paramètres ont un impact direct sur l’efficacité, l’évolutivité, la résilience et

la consommation d’énergie. Les meilleurs paramètres diffèrent d’un cas à l’autre et, en

général, de nombreux réglages optimaux sont inconnus à l’avance. Pour surmonter ce

problème, l’idée d’adapter automatiquement les paramètres au moment de l’exécution

a récemment donné des résultats prometteurs (Shahzadeh Fazeli et al., 2015). Dans

cette thèse, nous nous concentrons particulièrement sur l’amélioration des méthodes

implicites d’Arnoldi et de Lanczos (Sorensen, 1997) pour l’analyse de graphe.

A.1.3 Accélération matérielle

Le processeur graphique (GPU, de l’anglais Graphics Processing Unit) est un accéléra-

teur matériel qui est aujoud’hui l’une des plates-formes de calcul haute performance

les plus accessibles au grand publique. Initialement conçus pour exécuter des calculs

liés aux graphiques pour des applications telles que les jeux vidéos et la visualisa-

tion, les GPU ont évolué en unités de calcul parallèle plus générales et économiques

(Owens et al., 2007). Les GPU ont un degré de parallélisme significativement plus

élevé que les processeurs multicœurs standard, mais avec des cœurs plus simples. En

comparaison avec les CPU, les GPU consacrent plus de transistors aux unités logiques

et arithmétiques et moins aux caches et aux structures de contrôle. Les GPU peuvent

donc fournir une meilleure efficacité énergétique puisque les cœurs sont dédiés au

141

Resumé en Français

calcul et en même temps fournir une performance maximale sur des tâches hautement

parallèles.

Pour de nombreuses applications la bande passante de la mémoire est le facteur limi-

tant la performance. Dans les GPU, la mémoire a un rôle particulier car l’architecture

est conçue pour accéder et modifier autant de mémoire que possible le plus rapide-

ment possible. Cette propriété profite directement à l’analyse de graphe et à l’algèbre

linéaire creuse où les algorithmes sont souvent limités par les accès mémoire. Dans

cette thèse nous proposons d’étudier l’analyse spectrale des graphes pour les accéléra-

teurs de calcul et en particulier les GPU.

A.2 Structure de la thèse et contributions

Cette thèse associe l’algèbre linéaire numérique creuse à la science des données grâce

à l’analyse spectrale de graphes. Nous étudions deux problèmes de graphes du point

de vue spectral qui sont le classement et le groupement. Nous proposons de nouvelles

techniques pour résoudre les problèmes de valeurs propres de grande echelle qui

apparaissent dans l’analyse de graphe, dans le but d’utiliser efficacement les généra-

tions actuelles et futures d’architectures parallèles. Pour chaque solution proposée,

nous présentons une implémentation sur GPU et des expérimentations sur de grands

ensembles de données. Les résultats montrent une amélioration des performances des

solveurs de valeurs propres dans les applications de calcul scientifique et d’analyse de

graphes.

Cette thèse repose sur des décennies de progrès scientifique. Le Chapitre 2 est

consacré à la présentation et a l’état de l’art du sujet de recherche.

Dans le Chapitre 3, nous proposons d’utiliser les accélérateurs dans la méthode

d’Arnoldi implicitement redémarrée avec des sous-espaces imbriqués (MIRAMns).

Nous présentons un solveur parallèle rapide pour calculer les valeurs propres dom-

inantes des graphes orientés tels que les chaines de Markov. Nous expliquons la

première implémentation de cette méthode sur GPU et les optimisations pour les

graphes.

142

A.2 Structure de la thèse et contributions

Les expérimentations dans le contexte des applications de Pagerank montrent une

convergence plus rapide par rapport à la méthode de la puissance. L’accélération

moyenne est de 2× pour le cas simple et de 15× pour les cas compliqués avec des

valeurs propres groupées, en comparant avec la méthode de la puissance sur GPU.

Au chapitre 4, nous développons une approche parallèle pour calculer le groupe-

ment par modularité qui est souvent utilisé pour identifier et analyser les commu-

nautés dans les réseaux sociaux. Nous montrons que la modularité peut être estimée

en examinant les valeurs propres dominantes de la matrice d’adjacence modifiée d’un

graphe valué. Nous généralisons cette formulation pour identifier plusieurs groupes

à la fois et proposons un moyen de détecter le nombre de groupes naturels. Nous

développons une implémentation parallèle efficace sur GPU qui se base sur le solveur

de valeurs propres de Lanczos et sur l’algorithme des K-moyennes.

Dans le chapitre 5, nous définissons la similarité de Jaccard pour les arrêtes d’un

graphe et la généralisons pour tenir compte des poids des sommets, tels que le PageR-

ank. Nous utilisons ces poids pour minimiser la somme des ratios de l’intersection et

l’union des voisins des nœuds sur la frontière des partitions. A partir de la construc-

tion d’un Laplacien nous montrons comment l’approximation de la coupe minimale

peut être formulée comme un problème de valeurs propres. Nous développons une

implémentation parallèle rapide sur GPU. Enfin, nous comparons la qualité du groupe-

ment obtenu sur de grands ensembles de données.

Au chapitre 6, nous présentons une nouvelle méthode pour résoudre les prob-

lèmes de valeurs propres symétriques de grandes tailles, basé sur la méthode de

Lanczos implicitement redémarrée couplée à une taille du sous-espace adaptative

(MIRLns). Notre implémentation combine les forces du CPU et du GPU pour cal-

culer le sous-espace invariant de grands graphes. Les expérimentations indiquent

des améliorations de convergence sur des graphes avec des millions d’entités dans le

contexte de problèmes de groupement.

Dans le chapitre 7, nous résumons les principaux résultats obtenus dans cette

thèse et présentons nos remarques de conclusion. Enfin, nous proposons des pistes de

143

Resumé en Français

réflexions pour les recherches futures.

Les contributions de cette thèse abordent plusieurs problèmes interconnectés dans

le domaine des graphes, des problèmes numériques de valeurs propres et des GPU.

Cette thèse a introduit un solveur numérique rapide de valeurs propres, des nouvelles

implémentations GPU performantes et de nouveaux résultats expérimentaux. Nous

avons présenté comment les problèmes d’analyse spectrale de graphes sont résolus

efficacement avec les GPU et avons introduit de nouvelles solutions conçues à partir

des obstacles que nous avons rencontrés. Les implémentations font partie de la biblio-

thèque d’analyse de graphes d’NVIDIA (nvGraph) qui est distribuée avec les outils de

développement (NVIDIA CUDA Toolkit).

144

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivations
	1.1.1 Graph analytics
	1.1.2 Eigenvalue problems
	1.1.3 Hardware acceleration

	1.2 Structure of this thesis and core contributions

	2 Accelerated spectral graph analytics
	2.1 From networks to linear algebra
	2.1.1 Structure of graphs and mathematical representation
	2.1.2 Compressed matrix representation for computers
	2.1.3 Graph algorithms in linear algebra

	2.2 Eigenvalue problems arising in graphs
	2.2.1 PageRank
	2.2.2 Clustering

	2.3 GPU accelerators
	2.3.1 Architecture and programming
	2.3.2 Eigenvalue methods for networks and accelerators
	2.3.3 Accelerated basic operations

	3 Accelerated multiple implicitly restarted Arnoldi method with nested subspaces
	3.1 Introduction
	3.2 Implicitly restarted Arnoldi solver with PageRank applications on GPU
	3.2.1 Hybrid GPU approach

	3.3 Accelerated multiple IRAM with nested subspaces
	3.3.1 Enabling nested subspaces in the hybrid IRAM algorithm
	3.3.2 Synchronous auto-tuning
	3.3.3 Implementation
	3.3.4 Distributed considerations

	3.4 Experimental results
	3.4.1 Power method on GPUs
	3.4.2 Implicitly restarted Arnoldi for networks on GPU
	3.4.3 Accelerated multiple IRAM with nested subspaces

	3.5 Conclusion and future works

	4 Spectral modularity clustering
	4.1 Introduction
	4.1.1 Modularity

	4.2 Spectral modularity maximization
	4.2.1 Algorithm
	4.2.2 Eigenvalue Problem
	4.2.3 Clustering Problem
	4.2.4 Parallelism and Energy Efficiency

	4.3 Numerical Experiments
	4.3.1 Context
	4.3.2 Clustering and Effects of Precision
	4.3.3 Adaptive Clustering
	4.3.4 Related Work
	4.3.5 Modularity and Spectral Clustering

	4.4 Conclusion and Future Work

	5 Jaccard and PageRank weights in spectral clustering
	5.1 Introduction
	5.2 Jaccard Weights
	5.2.1 Jaccard and Related Coefficients
	5.2.2 Jaccard and Related Edge Weights

	5.3 Implementation
	5.3.1 Parallel Algorithm
	5.3.2 PageRank and Vertex Weights

	5.4 Graph Clustering
	5.4.1 Jaccard Spectral Clustering
	5.4.2 Tversky Spectral Clustering
	5.4.3 Profiling

	5.5 Numerical Experiments
	5.5.1 Multi-level Schemes (CPU)
	5.5.2 Spectral Schemes (GPU)
	5.5.3 Quality Across Many Samples

	5.6 Conclusion and Future Work

	6 Multiple implicitly restarted Lanczos with nested subspaces
	6.1 Introduction
	6.1.1 Spectral graph analysis and clustering

	6.2 Multiple implicitly restarted Lanczos with nested subspaces
	6.2.1 Proposed approach
	6.2.2 Hybrid acceleration
	6.2.3 Profile

	6.3 Experiments
	6.3.1 Modularity
	6.3.2 Minimum balanced cut
	6.3.3 Different architectures
	6.3.4 Variation of the Krylov subspace size

	6.4 Conclusion

	7 Conclusions and perspectives
	Communications
	References
	Appendix A Resumé en Français
	A.1 Motivations
	A.1.1 Analyse de graphe
	A.1.2 Problèmes de valeurs propres
	A.1.3 Accélération matérielle

	A.2 Structure de la thèse et contributions

