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Solutions to a Class of Nonstandard Stochastic 
Control Problems with Active Learning 

TAMER BASAR, FELLOW, IEEE 

Abstrucf-We formulate and solve a dynamic stochastic optimization 
problem of a nonstandard type, whose optimal solution features active 
learning. The proof of optimality and the derivation of the corresponding 
control policies is an indirect one, which relates the original single-person 
optimization problem to a sequence of nested zero-sum stochastic games. 
Existence of saddle points for these games implies the existence of optimal 
policies for the original stochastic control problem, which, in turn, can be 
obtained from the solution of a nonlinear deterministic optimal control 
problem. The paper also studies the problem of existence of stationary 
optimal policies when the time horizon is infinite and the objective 
function is discounted. 

I. INTRODUCTION 

NE of the major challenges of optimum stochastic control 0 theory has been to deal effectively with problems which do 
not satisfy the condition of the separation theorem [8], known 
more casually as the separation principle, which refers to 
situations where the control and estimation (filtering) functions 
can be separated out and dealt with individually, either indepen- 
dently or sequentially. The simplest form in which the principle 
manifests itself is the so-called certainty-equivalence property 
which is responsible for the complete separation of the control and 
filtering functions in the linear-quadratic-Gaussian (LQG) optimal 
control problem. Here, the control does not affect the quality of 
information to be carried along the line, and the LQG problem 
therefore constitutes a prime example of a control system that is of 
the neutral type; moreover, the control design could be carried out 
independently of the noise corrupted measurements available at 
the stations. 

If a stochastic control problem is not of the neutral type, there is 
the possibility that the control input will affect the information 
content of the measurements to be made at future stages, in which 
case, the estimation part cannot be decoupled from the control 
actions. In addition to the control actions impacting the filtering, 
the estimators developed will in turn impact the control actions 
and thereby their performance, thus bringing in an intricate 
interplay between the two. The presence of such multiple roles of 
control design (to improve control performance and simultane- 
ously the quality of estimation-which are at times conflicting 
objectives) makes stochastic control problems with active learning 
quite intractable, both analytically and numerically, unless one 
resorts to some approximation schemes and is content with 
suboptimal laws [l], [6].  There is no general theory available for 
such problems, and one cannot even identify a subclass whose 
complete solution can be obtained. 

The main objective of this paper is to define a class of discrete- 
time stochastic control problems of the nonneutral type, and to 
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solve it for both finite and infinite horizons, by developing an 
indirect method for the derivation of optimal policies and for the 
proof of existence and optimality. The problem involves active 
learning, and is motivated by a macro-economics model of 
credibility and monetary policy developed recently (but not 
solved) in [5 ] .  This is a model of monetary policy and inflation 
that incorporates asymmetric information between the private 
sector and the monetary authority. The former is a passive player 
who simply forms conditional (rational) expectations of the 
current inflation rate, which constitutes the surprise component of 
the policy maker's (the monetary authority) objective function. 
The policy maker tries to maximize the objective function by 
choosing a control policy which also affects the information 
carried to the passive player whose rational expectations in turn 
influence the performance of that policy (see also, [3] for a full 
discussion on and the economics aspects of this model). 

The problem is formulated in precise mathematical terms in the 
next section as a nonstandard stochastic control problem. The 
complete solution to the two-stage version is provided in Section 
111, which clearly displays the active learning role played by the 
optimal control. An interesting aspect of the derivation and proof 
of optimality is that, even though the original problem is a single 
person stochastic optimization problem, one has to introduce a 
seemingly related stochastic zero-sum game and study its saddle- 
point solution. In Section IV we study the solution to the general 
finite-horizon problem with affine policies, and in Section V we 
discuss the more general case as well as the infinite-horizon case. 
The concluding remarks of Section VI end the paper. We should 
note at the outset that even though the original problem was 
motivated by a model arising in macro-economics, no background 
in economics is needed in order to follow the analysis and the 
methodology developed in this paper. We also feel that the 
solution technique introduced here for the first time should be of 
independent interest to researchers in stochastic control. 

II. THE GENERAL MATHEMATICAL MODEL 

The rational expectations model alluded to in Section I (see the 
Appendix for an economic interpretation) leads to the (nonstan- 
dard) stochastic control problem where the objective is to 
maximize over yN:  = (yo, e ,  y N )  the functional 

subject to 
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where /3 E (0, 1) is a discount factor, yi is a general Bore1 
measurable mapping, c; is a scalar, and x0,  U;, wi are independent 
Gaussian random variables, for i = 0, 1, . + ,  N. Furthermore, 
E [  U; I I;] denotes the conditional expectation of the random 
variable U; with respect to the sigma field generated by the 
information vector Z;, and E { . } denotes the unconditional 
expectation. When N is finite, we call this a finite horizon 
problem (with N + 1 stages), and if N = 03 we will refer to it as 
an infinite horizon problem, in which case we replace y N  in 
(2.1) formally by ym. 

We note that the control U; enters the problem not through the 
state equation (2.2), but through the message process (2.6) and the 
cost function (2.1) to be minimized. The presence of the 
conditional expectation term in (2.1) makes this a nonstandard 
stochastic dynamic optimization problem not treated heretofore; 
furthermore, the problem is nonneutral since the choice of ui has a 
direct effect on the content of the information carried by the 
measurement y; regarding the state xi .  

Our first observation here is that since 

E{ x;E[u; I Zi] } = E { E[x;  I Z;] U;} (2.7) 

the objective function (2.1) can equivalently be written as 

which is a more convenient form to work with. 
Our second observation is a reiteration of the earlier remark 

that even though the stochastic control problem formulated above 
is one with perfect information, it is not of the standard type 
because of the presence of the conditional expectation term 
E[xj lZj]  in the cost functional, which depends on the past control 
values U,- 

Because of the nonstandard nature of the problem, it will be 
illuminating first to study the two-stage version, which clearly 
displays the dual role control plays in these stochastic optimization 
problems. The complete solution to this problem, presented in the 
next section, and the method of derivation and verification of 
optimality should be of independent interest. 

* - . , uo. 

111. THE TWO-STAGE VERSION: A COMPLETE SOLUTION 

In view of (2.8), the problem here is to maximize 

1 1 
+ u o ( x 0 - 2 0 ) - ~  ( u ~ ) ~  (3.la) 

over yl = (yo, yl) ,  where 

U0 = ro(xo), UI = YI (x1, Yo) 

ZI = { Y o } ,  yo=uo+ WO 

XI = pxo + CO + uo. (3.lb) 

Since J I  is quadratic and strictly concave in y l ,  it has a unique 
maximum over y1 for each yo, given by 

yT(x1, Yo) = x1- a x 1  I Yo1 (3.2) 

yielding 

: = F(y0). (3.3) 

Since 

expression (3.3) can equivalently be written as 

I: 1 
2 

= - P(u,+p2u00)-E - ~ P 2 ( ~ [ f o l Y o l ) 2  

1 1 
2 +- (uo)*-uofo (3.5) 

where .fo : = x0 - Xo, and the last line follows since the error xo 
- E[xolyo] is orthogonal to the estimate E[xolyo]. 

Note that the control uo enters F both directly (through the last 
two terms, which are quadratic) and also indirectly through the 
conditional estimate E[xo I yo] ,  which is nonquadratic in uo. This 
is a clear illustration of the dual role of control, leading to an 
optimization problem of the type not treated heretofore. 

Now, i fFhad not included the term (E[ . fo lyo])2 ,  its maximum 
would be attained uniquely by a linear function of fo . ' Motivated 
by this appealing structure, we now restrict yo to lie in the class 
~ O ( X O )  = L(XO - Xo), L being an arbitrary scalar, and maximize 
F over this class. Since 

F(yo)  can be evaluated on this class to be 

which is continuous and bounded above, and therefore admits a 
maximum. By differentiating F ( L )  with respect to L and setting 
the resulting expression equal to zero, we obtain the equation 

P P 2  
Looow 

(L2uo+ uw)2 
1-L= 

which can be rewritten as 

1-L= Lpo p p 2  

(L2P0+ 

where 

(3.7) 

po : = uo/uw. 

The polynomial equation (3.7) will admit one or three or five real 
solutions, but every such solution will lie in the open interval (0, 
1). Let Lo b_e that real solution of (3.7) that provides the largest 
value for F ( L )  defined by (3.6). If there is more than one 
maximizing solution, then Lo could be taken to be_ any one of 
them, which we will henceforth refer to as an F-maximizing 
solution of (3.7). We are now in a position to state our first result. 

Proposition 3.1: When yo is restricted to the class of affine 
policies, the stochastic control problem (3.1) admits the globally 

' The minimum of (E[ . fo  lye])*, on the other hand, is zero and is attained by 
choosing yo(xo) = 0, again showing the conflicting roles of control in this 
optimization problem. 
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optimal solution solution, which is 

Y T ( X I ,  Yo) = X I  - a x 1  l Yo1 = XI -2110, (3.8a) 

r o * ( X o ) = L o ( X o - X o ~  (3.8b) 

where Lo is an lhaximizing solution of (3.7), 0 < Lo < 1 ,  and 

LOP0 2qo =f0 + 7 LoPo + 1 Yo. 

0 

The question now is whether it would be possible to improve 
upon the performance attained under cy,*, yT) above by going 
outside the class of affine policies for 7:. The following theorem 
provides a set of (sufficient) conditions under which this is not 
possible, and thus the pair (3.8) is overall optimal. 

Theorem 3. I: The policy pair cy,*, y :) given in Proposition 
3.1 izthe uniqueglobally optimal solution of (3.1) if there exists 
an F-maximizing solution Lo of (3.7), satisfying the strict 
inequality 

LOU -Lo)Po< 1. (3.9) 
Proof: Before proceeding with the proof, it is important to 

note that implicit in the statement of the theorem is the property 
that there can be at most one F-maximizing solution of (3.7) that 
satisfies (3.9), which is a result we are also going to prove. Now, 
the proof of the theorem is an indirect one, relating the 
maximizing solution of (3.4) to the saddle point of an auxiliary 
zero-sum game. Towards this end, introduce a two-person zero- 
sum game in normal form [2], defined by the kernel 

G(6, ? ) = E  5 P P 2 ( 6 ( Y o ) - x o ) 2  I’ 
+ u o ( x o - X ~ ) - ~  1 (u0)’] +; 1 /30, (3.10) 

I &  
which is to be minimized by a suitable choice of 6 = 6(yo) and 
maximized by an appropriate uo = y(xo), where yo = uo + w, is 
as defined before. We now claim that this game admits the unique 
saddle-point solution 

under the condition (3.9), where Lo is the unique Ihnaximizing 
solution of (3.7). To prove this claim, it will be sufficient to verify 
the validity of the two saddle-point inequalities 

G(6*, y*)~G(6,  y*), 

G(6*, y*)rG(S*, y), 

for all 6 

for all y 

and show that the optimum solution is unique in each case. 
Initially, y e  do not know whether Lo is unique, therefore, we take 
it as any F-maximizing solution of (3.7) that satisfies (3.9). Then, 
the first inequality above follows since G(6, y) is minimized over 
S for any y uniquely by the conditional mean of xo, and when y = 
y*, this conditional mean is affine in yo as given. For the second 
inequality, note that G(S*, y) is a quadratic function of uo = 
~ ( x o ) ,  with the coefficient of ( uo)2 being 

The condition a < 0 directly implies that G(6*, y) is a strictly 
concave function of y, and being quadratic, it admits a unique 

Using the fact that Lo satisfies (3.7), the gain term above can be 
simplified to give 

~ ( x o ) = L o ( x o - ~ o ~  

thus verifying the validity of the second saddle-point inequality, 
under the condition a < 0. Again using the fact that Lo satisfies 
(3.7), CY can be simplified to 

1 
2 a=- [L,(l-L,)po-l]  

and, hence the concavity condition is indeed equivalent to (3.9). 
Note that under this condition, G(S*, y) admits a unique 
maximum. Now, using the ordered interchangeability property of 
multiple saddle-point equilibria [2, p. 241, it readily follows that 
(3.11) is indeed the unique saddle-point solution-of G under 
(3.9), and hence that there can be at most one F-maximizing 
solution of (3.7) under (3.9). Otherwise, there will be at least two 
different y*’s maximizing G(S*, y) for the same S*, which is 
impossible since the kernel is strictly concave under (3.9). 

Thus, completing verification of our claim on the saddle point 
of G, we now proceed with the proof of the theorem. A crucial 
observation now is the equality 

max F ( y )  = max min G(6, y) 

that is, the unrestricted maximum value of our function F is equal 
to the lower value of the game with kernel G. Since the upper and 
lower values of the game are equal under (3.9), and the saddle 
point is unique and linear, it follows that F admits a unique 

U 
Remark 3.1: The condition of Theorem 3.1 is sufficient for the 

affine solution to be overall maximizing, but there is no indication 
that it is also necessary; in fact, it is quite plausible that the result 
is valid for all values of the parameters defining the problem. 
Nonsatisfaction of (3.9) simply means that the auxiliary game 
defined in the proof of the theorem does not admit a saddle point; 
that is, the upper value is strictly larger than the lower value; 
however, this does not outrule the possibility that the maximizing 

0 
Condition (3.9) was given in terms of the solution of (3.7). It is 

possible, however, to derive another condition, directly in terms 
of the parameters of the problem, which would guarantee 
satisfaction of (3.9). The following corollary (to Theorem 3.1) 
does precisely that. 

Corollary 3.1: The pair of policies given in Proposition 3.1 is 
the unique globally optimal solution if 

p0p2P<4. (3.12) 

Proof: The result follows from Theorem 3.1 if we can show 
that (3.12) implies (3.9). Towards this end rewrite (3.9), in view 
of (3.7), as 

7 Y h  

maximizing policy which is linear in fo. 

solution for F ( y )  is still affine. 

1 2 - 2  
L o y o  

(L ipo+  1)2 p2P 
1 -  

which is bounded below by 

which further is positive by (3.12). 
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Remark 3.1: Condition (3.12) above is in fact a very 
reasonable condition which is satisfied in all practical cases. Note 
that since p2/3 < 1, it is satisifed whenever uo I 4oW, that is, the 
variance of the initial state xo should not be much larger than the 
variance of the noise wo. 0 

IV. SOLUTION TO THE FINITE HORIZON PROBLEM 

Guided by the results of the previous section, we now seek a 
solution to the general finite horizon problem formulated in 
Section 11, first in the class of policies 

u;=-fl(x;, I ; )=pl (x; -E[x;~Z;] ) ,  i=o,  I ,  . * .  (4. la) 

where p i  is a general linear mapping, say 

pi (x)  = L;x, for all x E R. (4. Ib) 

Later we will show (in Proposition 4.2) that the optimum solution 
obtained in this class is in fact optimum in the larger class of 
policies where y ;  above is allowed to be any affine mapping, and 
furthermore (in Section V) that under certain conditions it is 
optimal even in the class of general nonlinear policies. 

The first step in our derivation is to obtain a recursive algorithm 
for E[x,  1 I,] when y N  is restricted to the class given above. Note 
that xi is generated by 

x;+I=px;+c;+ui, i=o,  I ,  * * *  (4.2a) 

and the measurement equation is 

y ,  = Lj(xj  - E[xi  I I,]) + w;; i = I ,  * * . (4.2b) 

Since the underlying statistics are Gaussian, E[x,JZ;] can be 
computed recursively using the Kalman filter, with the corres- 
ponding expressions given in the following lemma. 

Lemma4.1:Withu; = Li(xl - E[xi[Zi]) , i  = 0, a . . ,  N,the 
expressions for the conditional mean &;- : = E[xi I Zi] can be 
obtained recursively by 

f ; ~ ; - ~ = p f ; & l l i - ~ + c l ,  fOl-I=Zo (4.3a) 

where 

p ;  : = Uj l , -  I / U W  

r := uu/uw 

and note that p i  is generated by the recursive equation 

pi+  = r+p2pi / (Lfp i+  I ) ,  po=  uO/uw. (4.4) 

Hence, when the policies are restricted to the form (4.1), the 
stochastic control problem becomes equivalent to the determinis- 
tic optimal control problem 

under the dynamic (state equation) constraint (4.4). We now show 

that this optimal control problem admits a unique solution, and we 
characterize the solution in terms of a recursive equation. 

A .  Preliminary Notation 

recursively by 
For each positive scalar p ,  let { W k ( P ) > t = ,  be defined 

w N + l ( P )  E (4.6a) 

k = N ,  N - I ,  ..., 0. (4.6b) 

Let Lk = L k ( p )  be a maximizing solution for the RHS (right- 
hand side) of (4.6b), whenever it exists, and let { ~ : ) f = ~  be a 
trajectory sequence defined recursively by 

(4.7) 
P2P: 

Pk*+l= L:(p;)p,* + 1 +r;  p,*=po. 

Finally, let 

Lk* := Lk(p,*), k=O, 1, ..., N.  (4 .8)  

Proposition 4.1: 
i) The maximization problem (4.6b) admits a solution for each 

positive p.  
ii) The control problem (4.4), (4.5) admits a solution { L ; } F z O  

which is given by (4.8), and the corresponding optimum 
trajectory is generated by (4.7). 

iii) The optimum solution satisfies 

O s L : l l ,  k < N ,  and L;= 1. 

iv) The maximum value of (4.5) is WO( po)uW. 
To set the stage for the proof of this result, we will state and 

prove a number of auxiliary lemmata. 
Lemm! 4.2: The value of the optimal control problem (4.4), 

(4.5) is J z  = Wo(po)uw,  where WO(.)  is obtained through the 
recursive equation 

wN+I E 0 

:= SUP Gk(p, L ) ,  k S N .  (4.9) 
L 

Furthermore, if the RHS above admits a solution Lk( p ) ,  k I N ,  
then L k ( p , * ) ,  k 5 N is the optimal solution where p t  is 
generated by (4.7). 

Proof: This follows from a standard dynamic programming 
0 argument (see, e.g., [4] and [7]). 

Lemma 4.3: For each p > 0, we have the bounds 

0 < wk ( p )  5 A kp + ak, k 5 N 

where { Ak ) , { ak 1 are generated recursively by 

(4.10) 

1 1 
A N = j ,  A k = ~ + p 2 ~ A k + l ,  k S N -  I 

aN= 0 ,  ak = rpAk+ 1 + flak+ 1,  k 5 N - 1. 

Proof: The proof is by induction on k.  Firstly, for k = N ,  
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hence, the bound is exact for k = N. Now, we show that if the 
bound is valid for k + 1, then it is also valid for k. Toward this 
end, consider the following sequence of inequalities: 

P 
<z+PzP@Ak+ I + Oak+ 1 + @rAk+ I 

Akp+ak 

where the first inequality is a property of the supremum, the 
second inequality follows from the stipulated bound on wk+ I ,  and 
the third strict inequality follows since p > 0 and { A k }  is a 
positive sequence. Since the upper bound was valid for k = N, by 
induction it is valid for all k < N. 

To prove the strict lower bound, it is sufficient to see that 
w k ( p )  is nonnegative for d l  k I N, and hence from (4.9) 

Lemma 4.4: For every p > 0, there exists a solution to the 
RHS of (4.9). 

(L2p + I)] + r )  and note that if W k + , ( p )  is continuous in its 
argument, then G k ( p ,  L )  is jointly continuous in ( p ,  L ) ,  and 
consequently w k ( p )  = supL G k ( p ,  L )  is continuous in p ,  
provided that Gk is bounded above in L .  Since WN+ ( p )  is zero 
(and thereby continuous in p ) ,  it follows by induction (on k) that 
Gk( p ,  L) is jointly continuous in ( p ,  L )  for dl k I N, under the 
proviso that it is bounded above in L. However, using the bound 
(4.10) on wk, we can readily see that G k ( p ,  L )  1 - 03 as L + 

k 03. Hence, it is indeed bounded above in L ,  and furthermore 
there exists a finite positive constant Kp such that sup, Gk( p ,  L )  

Gk(p ,  L ) .  It then follows from the Weierstrass 
0 

Lemma 4.5: 
i) wk( p )  is an increasing function of p ,  ( v k (  p )  t p ) ,  for all k 

ii) If L k (  p )  is any maximizing solution, then for a l lp  > 0,O I 

Proof: The proof of i) is by induction on k. The result is 
clearly true for k = N, since W N ( p )  = (1/2)p. Now, if 
w k + I ( p )  t p , fo reachL ,  wk+I([pzp/ (L2p + I)] + r )  t p s ince  
([PzP/(L2P + 1)1 + r )  t P.  Also, wk+i([P2P/(L2P + 1)1 + r )  
1 L2,  and hence maxL G k ( p ,  L) = max,,rLrl Gk(p ,  L ) ,  since 
otherwise (i.e., for L outside the interval [o, 11) both terms in Gk 
are decreasing in L (as L 1 for L < 0 and as L t for L > 1). 
Now, since (L  - L2/2)p  t p for L E (0, l), and the second term 
of Gk was increasing i n p  for all L ,  as shown above, it follows that 

Therefore, the result is true for k if it is true for k + 1 I N + 1 ,  
thus completing the induction. As a byproduct, we also obtain 
ii) . 0 

Proof: Let Gk(p ,  L )  := (L  - L2/2)p  + bwk+, ( [p2p /  

- - 

theorem that a maximum exists, for all k i N. 

I N. 

L k ( p )  I 1 ,  k I N. 

w k ( P )  = maXL Gk(p ,  L )  = ma&sLsl Gk(P, L )  t P.  

Lemma 4.6: 

w k ( P ) >  wk+l(P)  VkSN,  P>o. 

Proof: For k = N, 

1 
w d P ) = T >  W,+,(P)=O V P > O  

which starts the induction process. We now show that w k ( p )  > 
r k + l ( p )  if w k + l ( p )  > wk+z(p ) ,  thus completing the induc- 
tion process. This is accomplished by noting the following 

sequence of inequality and equalities: 

= p  [ wk+l (& - +r) - wk+, ( P p +  1 >o 

where L̂  = Lk+ ( p )  is the argument of the second maximization, 
as introduced earlier. (If there is more than one-such maximizing 

0 
Proof of Proposition 4.1: The proof follows from the 

The next result says that the structural restriction (4.la) does 
not bring in any loss of generality in the class of affine policies. 

Proposition 4.2: In the general formulation of Section 11, let U; 
= yi(yi-I, xi) = Li(yi-l ,  xi )  where Li is a general affine 
mapping for each i = 0, 1, * * e ,  N. In this affine class, the 
maximum of JN(-yN) is attained by 

solution, any one of them could be chosen as L . )  

sequence of Lemmas 4 . 2 4 . 6 .  0 

~ ~ = L T ( x ~ - i ~ l ~ - ~ ) ,  i = O ,  a . . ,  N (4.11) 

where the sequence {L,?} is defined by (4.8), and {iili-l} is 
determined as in Lemma 4.1 with Li replaced by L,?. Further- 
more, the statement of Proposition 4.1 is valid over this larger 
class. 

Proof: We first note that over the affine class, yi  can be 
written as 

U;= L;(xi-E[xi I y i - ' ] )  + l i (y i - I ) ,  i = 0 ,  . . , N (4.12) 

where Li is an arbitrary scalar and li is some arbitrary affine 
mapping. To save from notation let us denote the first term in 
(4.12) by C i ,  and the second term by mi,  which are both random 
variables. Now, substituting this form into (2. l) ,  and recognizing 
that ai and mi are uncorrelated, we obtain the functional 

S E  (p)' [c;(x;-E[x;ly"l)--  2 l l  (Ci)2 

i = O  

where in arriving at the last step we have used the fact that ( mi)2  is 
a nonnegative random variable (hence, the inequality), and have 
also utilized the interchange of conditional expectations as in 
(2.7). Now, the final step of the proof is to recognize that the 
sigma field generated by y i  is the same as the sigma field 
generated by yi, where 

y k k C k + v k  yk-mk. 

(This is true since mk is yk-l-rneasurable.) Hence, 

where the RHS is precisely the function that was maximized 
earlier in this section under the structural restriction (4. la). Since 
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and this upper bound is attained (as shown in Proposition 4.1), the 
proof is completed. U 

V. OFTIMALITY OVER THE NONLINEAR CLASS, AND THE INFINITE 
HORIZON CASE 

In this section we provide two extensions to the analysis and 
results of Section IV: i) a study of the optimality of linear policies 
in the general class of nonlinear policies; and ii) the infinite- 
horizon problem. 

A. Optimality Over the Nonlinear Class 

In Section IV we have shown that the stochastic dynamic 
optimization problem formulated in Section I1 admits an optimal 
solution in the class of affine policies (cf. Proposition 4.2), 
whereas in Section 111 we had shown that for the two-stage version 
of the problem the linear solution is optimal even in the larger 
class of nonlinear policies. The proof given in Section I11 was an 
indirect one, relating the solution of the original problem to the 
saddle-point solution of a stochastic zero-sum game. The question 
now is whether that line of proof carries over to the general N- 
stage problem so as to establish overall optimality of the policies 
(4.1 I). 

It turns out that a nontrivial extension of the game-theoretic 
approach is possible, where we now define, instead of a single 
game, a sequence of nested zero-sum games, each one imposing 
saddle-point existence conditions on the problem similar to that of 
(3.9). We provide below the essentials of our line of approach, 
and the construction of the nested games which are used in the 
proof of overall optimality . The procedure also leads recursively 
to precise conditions under which the linear solution of Proposi- 
tion 4.2 would be overall optimal. 

Now, starting with the objective functional (2.8), we first note 
the equality 

since uN = 1/2(xN - E[xN(ZN]) is overall optimal. Denote the 
maximand on the RHS by FN-I(yN-I), and introduce the zero- 
sum game ( N  - 1 th game) with kernel 

Note that 

max FN-I(yN-I)= max min G N - I ( G N ,  y N - I )  
?N- I 6~ 

and hence a saddle-point solution for GN-I  would provide a 
maximizing solution for FN- I . We now claim that (under certain 
conditions) the pair {6 ;  = y T ( x j ,  y j - l )  = L,?(xi - 
.t. 1 1 1 - l  . ) 9 i = 0,  . . a ,  N - 1 } provides a saddle-point solution for 
GN- I ,  where the relevant terms were defined in Proposition 4.2. 
To prove this, we first observe that, with yN-' = yN- '*  as given, 
the optimality of 6; follows readily from the Kalman filter theory; 
verification of the other side of the saddle-point inequality, 
however, is quite subtle, and is discussed next. 

Now, the problem is to maximize GN-l (6; ,  y N - ' )  over -yN-', 
which is another nonstandard stochastic control problem and is as 
difficult to solve as the original one. Towards its solution we first 
note that, since 

we have 

where 

Now, the expression above can be maximized over ?,,-I,  
provided that 1 - PKk-,  > 0, in which case 

where the maximizing y N - I  is 

which is in the same form as the asserted optimum policy (4.11). 
In (*) above, p N - I  is defined by 

p N - 1  :=  ~ ( ~ - P P K N - I ) ~ / ( ~ - P P K ~ ~ - ~ ) I + P P ~ .  

Furthermore, define the maximand in (*), without the k N - l  term, 
as FN-2(y"2) ,  i.e., 

Hence, to complete the solution of the N - Ith game (with kernel 
GN- I )  we have to maximize FN-2(yN-2) over y N - 2 .  This is again 
a nonstandard stochastic control problem, for which we now 
introduce a new game (the N - 2th game) with kernel 

whose relationship with the latest maximization problem is 

max F ~ - 2 ( y ~ - ~ ) =  max min GN-z(~N-I, yN- ' ) .  

This new game is structurally similar to the N -  Ith one, and 
hence following the earlier procedure we can obtain only part of 
the saddle point, comprising the policies 6;- I and y;-2, with the 
derivation of y;-3 left to the next game in the sequence. Hence, 
this way, we define, recursively, a sequence of nested games 

? N - 2  ? N - 2  6 ~ -  I 
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The backward iteration halts when n reaches 0, in which case the 
saddle-point solution is obtained completely for the 0th game 
defined by the kernel yo), which yields 

Now, moving in the opposite direction (forward in time) we 
complete the saddle-point solution of every game in the sequence, 
thus verifying that the very first game introduced, GN-I(6N, 
$'"I) admits a saddle point on& in the structural form (4.11). 
Finally, consistency of the adopted procedure requires that 

Theorem :.I: Let (5.2) and (5.4) admit a solution sequence 
{ L,} r:;, { K , }  f:;, satisfying (5.3), where f i n  depends on K,  
through (5.1) and an+ 1 1, depends on L, as in Lemma 4.1. Then: 

i)L, = L; ,n  = 0, ***,N- 1,wherethelatterwasdefined 
in Proposition 4.1; 

ii) the linear control law (4.11) is optimal also in the class of 
nonlinear policies. 

Proof: The proof follows from the construction of nested 
games prior to the statement of the theorem, and the two facts that: 
i) the only saddle-point solution of the game with kernel GN- is 
linear with the structure (4.11); and ii) the solution to the original 
stochastic control problem exists in the class of linear policies (cf. 
Proposition 4.2). U 

Remark 5.1: It can be seen through some routine manipulations 
that when N = 1 and n = 0, the condition (5.3), and hence that of 
Theorem 5.1, is equivalent to that of Theorem 3.1. 0 

B. The Infinite Horizon Case 

We treat the infinite horizon case as the limit of the finite 
horizon problem as N ---* 03, provided that the discounted payoff 
(2.1) remains bounded and the optimum policy sequence (4.11) 
converges to a well-defined limit. Note that since the optimal 
policy (cf. Theorem 5.1 and Proposition 4.2) is linear, the 
stationary limiting policy will be given by 

where L *  is the stationary solution of the optimal control problem 
(4.4), (4.5) as N + 03. For each N, denoting the solution given in 
Proposition 4.1 iii) by L:*, k < N, we would expect L* = 
limN+, L y ,  for every finite k. 

To study the existence of such a limit, we first recall that the 
value function wk(p)  defined in (4.6) is strictly increasing for 
decreasing k < N, for every p > 0 (cf. Lemma 4.6), and further 
that it is bounded above by an affine function (cf. Lemma 4.3). 

This last property follows since in (4.10) both Ak and a k  are 
bounded in retrograde time. Hence, limk,, w-k (p )  = w ( p )  
where the limiting function satisfies 

Denoting the maximizing solution here by L ( p ) ,  we already 
know from Lemma 4.5 that 0 I L(  p )  5 1 for a l lp  > 0. In view 
of this, and the fact that p 2  < 1 ,  (4.7) describes a stable system 
with L k  replaced by L ,  and hence P k  ---* p*, where p *  solves 

p*  = P 2P* 
L ( p * ) p * + l + r .  

(5.6a) 

Let 

L* := L(p*). (5.6b) 

Then, we have the following solution for the infinite horizon 
problem. 

Theorem 5.2: With N + 00 in (2.1) and under the conditions 
of Theorem 5.1, the stochastic control problem of Section I1 
admits the optimal stationary policies 

y , * ( X n ,  ~ " - ' ) = L * ( ~ n - E [ ~ n ( z n l )  

for n sufficiently large, where L* is defined by (5.6). For smaller 
values of n, the optimal policy is 

Y ,* (xn, Y" - ) = L ( ~ n  )(Xn - E [ X n  I In I) 
where p, is obtained from 

and L ( * )  is a maximizing solution of (5.5) 0 

VI. CONCLUSION 

One of the main messages of this paper has been that there do 
exist stochastic control problems of the nonneutral type which 
admit analytic solutions. However, even for the seemingly simple 
scalar problem of this paper, the derivation of optimal policies and 
proof of their existence is quite a nontrivial task, requiring an 
indirect approach. It would be interesting (and quite rewarding) to 
explore the possibility of devising a more direct approach towards 
the solution of this problem; although, by the experience of the 
author, this seems to be quite unlikely. We should also note that 
even though the solution has been obtained in closed form, it still 
involves (off-line) the solution of a nonlinear deterministic 
optimal control problem which, even numerically, is not easy. 

The general approach of this paper, which relates the original 
single-person optimization problem to a sequence of nested zero- 
sum games, is original and seems to appear in the literature for the 
first time. One of its unique aspects is the demonstration of the 
utility of the powerful machinery of saddle-point equilibria even 
in problems which are neither formulated as, nor can directly be 
converted to, zero-sum games. Other applications of this ap- 
proach could be seen, for example, in extending the results of this 
paper to more general models where (2.2) is replaced by higher 
order ARMA processes. Such an extension, although not immedi- 
ate, seems to be possible. 

APPENDIX 

Here, we provide interpretations for the different terms used in 
the mathematical model of Section 11, in the context of the rational 
expectations model alluded to in Section I. Further insight into the 
model can be gained from [3] and [SI. 
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As mentioned in the Introduction, there are actually two players 
in this decision problem, the policy maker (say, the government) 
and the private (or the public) sector. The former is an active 
decision maker, who controls the rate of monetary growth, which 
we denote by U; at time step i .  This is, in fact, the desired 
(planned) rate, which will in general be different from the actual 
rate of monetary growth y; because of independent shocks 
impending on the economy. Now, the other player is a passive 
one, who simply attempts to predict the future (one-step ahead) 
value of y;,  using the information available at time i ,  which we 
denote by 1;; hence, his input to the decision problem is E[yj lZj] .  
The difference between the actual and predicted values of y;, yi - 
E[y;IZ;] is called the monetary surprise which, according to 
common belief, has a positive impact on the economy, because it 
leads to stimulation. The benefit that accrues from stimulation will 
have to be traded off against the negative (inflationary) effect 
caused by large values of U;. This tradeoff is captured in the 
preference parameter x,, which is only known to the policy 
maker. Then, the problem is to find the best mix between 
stimulation and inflation, which is formulated as a dynamic 
optimization problem. The objective function adopted, J N ,  
reflects the tradeoff between benefit derived from stimulation 
(x;( y; - E [ y ;  1 Z;])) and loss incurred from increased inflation (( 1/ 
2 ) ~ ; ) .  Note that since E { x ; ( y ,  - E[y , (Z;] )}  = E { x , ( u ,  - 
E [  U; 1 Z;])} , this objective function is equivalent to the one given 
by (2.1). 
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