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ABSTRACT 

This dissertation describes methods of solving electromagnetic 

induction problems by use of the vector potential. The differential 

equations for the vector potential are derived from Maxwell's equations, 

and cylindrical symmetry is assumed. This differential equation is 

then solved by two different basic techniques: a "closed form" solution 

and a relaxation solution. 

For the "closed form" solution, sinusoidal driving currents and 

linear, isotropic, and homogeneous media are assumed. The differential 

equation is solved for two different conductor configurations; a 

rectangular cross-section coil above a plane with one conductor clad on 

another and a rectangular cross-section coil encircling a two conductor 

rod. The solutions .for both configurations are given.in terms of 

integrals of Bessel functions. 

The relaxation method is used for three different cases, the 

first being that for an applied current with a sinusoidal time depen- 

dence in a linear, isotropic, and inhomogeneous medium. The second 

case is a time sequential relaxation for an current with any 

type of time dependence in a linear, isotropic, and inhomogeneous 

medium. The third case is the same as the second, except the medium 

may be nonlinear. 

In the relaxation method finite difference approximations are made 

for all terms in the differential equation, and the vector potential at 

every point is expressed in terms of the vector potential at neighboring 



ix 

points. The vector potential at every point may then be solved using a 

relaxation (iteration) technique for any particular configuration of 

coil and material. 

Once the vector potential is determined, any physically observable 

electromagnetic phenomenon can be calculated from it. Equations are 

given for the eddy-current density, heating density, force density, 

induced voltages, and coil impedance for both perfect metals and metals 

with defects. Examples of the application of the relaxation technique 

to solve these problems and, experimental verification of the answers 

are given. In most cases the agreement between calculated and measured 

values is good. These two techniques will allow the solution of a large 

number of electromagnetic induction problems. 



CHAPTER I 

INTRODUCTION 

Electromagnetic problems are usually divided into three categories: 

low frequency, intermediate frequency, and high frequency. At low fre- . 

quencies, static conditions are assumed; at high frequencies, wave 

equations are used. Both of these regions have been studied extensively. 

However, in the intermediate frequency range, where diffusion equations 

are used, very few problems have actually been solved. Induction prob- 

lems fall into this intermediate frequency region. Electromagnetic 

induction has been used in industry for many years. As early as 1879, 

D. E. Hughes used an induction coil to sort metals. Since this time, 

induction coils have been used to test materials, to heat materials, and 

to form materials (~a~naformin~). This thesis outlines a method of 

solving these induc-bion problems. 

There have been numerous articles on the testing of materials with 

eddy currents. Some of the first papers dealing with both the theory 

and the practical aspects of eddy-current testing are by FUrster (1952), 

Porster and Stambke (1954), and Forster (1954). In this series of 

papers, analyses are made of a coil above a conducting surface, assuming 

the coil to be a magnetic dipole, and of an infinite coil encircling an 

infinite rod. Hochschild (1959) also gives an analysis of an infinite 

coil including some eddy-current distributions in the metal. Waidelich 

and Renken (1956) made an analysis of the coil impedance using an image 

approach. Their theoretical results agreed well with theory for relatively 

1 
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high frequencies. Libby (1959) presented a theory in which he assumed 

the coil was a transformer with a network tied to the secondary. This 

network representation gave good results when compared to experiment. 

The diffusion of eddy-current pulses [Atwood and Libby (1963)l can be 

represented in this manner. Russell, Schuster and Waidelich (1962) gave 

an analysis of a cup core coil where they assumed the flux was entirely 

coupled into the conductor. The semiempirical results agreed fa i r ly  well 

with the experimental measurements. Vein (1962), Cheng (1964), and 

Burrows (1964) gave treatments based on delta function coils, and 

Burrows continued with the development of an eddy-current flaw theory. 

Dodd and Deeds (1963) and Dodd (1965) gave a relaxation theory to calcu- 

late the vector potential of a coil with a finite cross section. 

Excerpts from the latter work appear here in parts of Chapter 11, the 

first section of Chapter IV, and the first two figurea in Chapter VI. 

The equation for the impedance of a defect is also given in an earlier 

work [Dodd and Deeds (1967)l. This dissertation extends the "closed 

form" solution to coils with finite cross sections and the relaxation 

calculation to include forces, nonsinusoidal currents, and nonlinear 

media. 

The vector potential was used in this dissertation as opposed to 

the electric and magnetic fields. The differential equations for the 

vector potential will be derived from Maxwell's equations, with the 

assumption of cylindrical symmetry. This differential equation will 

then be solved by two different techniques to obtain a "closed fom" 

solution and a relaxation solution. 
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For the "closed form" solution, sinusoidal driving currents and 

linear, isotropic, and homogeneous media will be assumed. Solutions 

will be obtained for two different conductor geometries: a rectangular 

cross-section coil above a plane with one conductor clad on another and 

a rectangular cross-section coil encircling a two conductor rod. The 

solutions for both geometries will be given in terms of integrals of 

Bessel functions. 

The relaxation method will be used for three different cases, the 

first being that for an applied current with a sinusoidal time depen- 

dence in a linear, isotropic, inhomogeneous medium. The second case 

will involve a time sequential relaxation for an applied current with 

an arbitrary continuous time dependence in a linear, isotropic, inhomo- 

geneous medium. The third case will be the same as the second, except 

that the medium will be assumed to be nonlinear. 

In the relaxation method, finite difference approximations are 

made for all terms in the differential equation, and the vector poten- 

tial at any point can be expressed in terms of the vector potential at 

neighboring points. The vector potential at every point can then be 

solved using a relaxation (iteration) technique for any particular 

configuration of coil and material. 

Once the vector potential has been determined, either by a "closed 

form" solution or by a relaxation technique, any physically observable 

electromagnetic quantity can be calculated from it. Equations for the 

eddy-current density, heating density, force density, induced voltages, 

and coil impedance for both perfect metals and metals with defects will 
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be derived. Examples of the application of the relaxation technique to 

solve these problems and experimental verification of the answers will 

be given. In most cases, the agreement between calculated and measured 

values is good. 



CHAPTER I1 

DERIVATION OF VECTOR POTENTIAL 

The differential equations for the vector potential will be derived 

from Maxwell's equations which are [Dodd (1965)l: 

The medium is taken to be linear and isotropic, but not homogeneous. 

In a linear and isotropic medium, the following relations between 5 

and 2 and 5 and 2 hold: 

--* 

The current density J can be expressed in terms of Ohm's law: 

Equations (2.6) and (2.7) may be substituted into equation (2.1) to 

+ + 
obtain the curl of H in terms of E: 



6 
+ 

+ 
The term dE is much greater than @, so the latter may be neglected 

at 

for frequencies below about ten megacycles per second.* The magnetic 

+ --* 

induction field B may be expressed as the curl of a vector potential A: 

Substituting this into equation (2.'2) gives ~ 

+ a + ax 
V X E = - - V X A = - V X -  

(3 t at. 

The term Jr is a scalar potential. The coil may be driven by a voltage 

1' 
generator with an applied voltage Jr and an internal resistivity, ;i. 

However, for the purpose of this problem the driving function is 

expressed as an alternating current density of constant amplitude; 3, 
rather than an applied potential, where 

Limit (- 67,) = 3 
a + 0. 

0 

vqf - Q). 

-- - 

+ 
+ 

- -  ad 
EaE = ~ E W E .  ,The term oE is much   or sinusoidal waves, - - 

at at 
-11 

greater than EWE or a :> EW. u " lo7 mhos/meter for metals, E = 10 . 
For frequencies on the order of lo7 cps, w a lo8, lo7 :> lo8 x 10-11, 

Or d " lolo CW. 
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This provides a current which is not affected' by induced voltages or 

the presence of other coils. Making this substitution gives: ' 

Substituting equations (2.5, page 5) and (2.9) into the left. side of 

equation (2.8, page 5) and equation (2.14) into the right side gives: 

The vector identities (~orse and Feshback, 1953) 

V x (I@) = (w) x $ + x $ and V X (V X ?) = V(V.5) - V2$, can be 

used to obtain the differential equation for 2: 

In the definition of the vector potential the divergence of the vector 

,*I ... ' 37. 

potential ,was not defined, so it can be defined to be anything conve- 

+ 
nient. For induction problems V.A is set to zero.  h his corresponds 

to the Coulomb gauge. ) Equation (2.16) will then yield the following- 

results when substituted into equation (2,15). 

This is the equation for the vector potential in an isotropic, linear, 

inhomogeneous medium. For most coil problems, it is possible to assume 

axial symmetry, as shown in Figure 1. The vector potential will be 

symmetric about the axis of the coil. Since this assumption is valid 

for most problems and the alternative to this assumption is a much 



Figure 1. Delta funct ion c o i l  above a two conductor plane. 



9 

more complicated problem which is impractical at this time, axial 

symmetry is assumed. With axial symmetry, there is only a 8 component 

of ? and therefore x. Expanding the 63 component of equation (2.18) 

gives : 

Assume that J is a sinusoidal function of time, J = Jb ejWt. Then the 
0 0 

vector potential is likewise a sinusoidal function of time, 

A = A f  e 
j(wt + @) 

= A" ejwt. Substituting into equation (2.18) gives: 

a2Att jut+ 1 ?A" .jut a2Att jwt A jot = - p   jut + jwoA,, - e jut 

ar2 r ar +F -Fe 

Canceling out U l e  term ejwt and dropping the prime gives : 

This is the general differential equation'for the vector potential 

in a linear, inhomogeneous medium with a sinusoidal driving current. We 

shall now solve the equation by two different methods, a "closed form" 

solution and a relaxation technique. 



CHAPTER I11 , 

CLOSED FORM SOLUTION OF THE VECTOR POTENTIAL 
f 

For a closed form solut ion,  we s h a l l  assume the  medium t o  be 

l i n e a r ,  i so t rop ic ,  and homogeneous. When I i s  the  t o t a l  dr iving current  
. . 

i n  a d e l t a  function c o i l  a t  ( ro ,zo) ,  t he  general equation (2.19) then 

becomes : 

Once we have s o l v e d , t h i s  l i n e a r  d i f f e r e n t i a l  equation f o r ' a  pa r t i c -  

u l a r  conductor configuration,  we can then superimpose any number of 

d e l t a  function c o i l s  t o  bu i ld  up any desired shape of c o i l  (provided 

t h a t  t he  current  i n  each c o i l  i s  known). 

We s h a l l  solve t he  problem f o r  two d i f f e r en t  conductor configura- 

t i ons :  a c o i l  above a two conductor plane and a c o i l  encirc l ing a two 

conductor rod. These two configurations apply t o  a l a rge  number of 

p r a c t i c a l  problems. 

Coi l  above a Two Conductor Plane 

The c o i l  above a two conductor plane i s  shown i n  Figure 1, page 8. 

We have divided t he  problem i n t o  four regions. The d i f f e r e n t i a l  equation 

i n  a i r  (regions I and 11) i s :  



The differential equation in a conductor (regions I11 and IV) is: 

Setting ~(r,z) = ~ ( r )  ~ ( z )  and clividing by ~ ( r )  ~ ( z )  gives: 

We can write for the z dependence: 

We shall define: 

Equation (3.4) then becomes: 

This is a first-order Bessel equation and has the solutions: 

~ ( r )  = C ~ ~ ( a r )  + D Y1 (ar) . (3.9) 

Combining the solutions we have: 

~(r,z) = [A e +cliz+Be*iZ][~ ~~(ar)+D~l(ar)] . (3.10) 

We now need to determine the constants A, B,'C, and D. They are 

functione of the separation "constant" a and are usually different for 



each value o f , a .  Our complelie solution would be a sum of a l l  the 

individual solutions i f  a were a discrete  variable, but, since a i s  a 

continuous variable, the complete solution i s  an in tegra l  over the 

en t i r e  range of a. Thus, the general solution is: 

u) a jz -~2 jz 
A(r,z) = [A(") e + ~ ( a )  e ][c(Q) ~ ~ ( a r )  + ~ ( a )  ~ l ( a r ) ]  dn . (3.11) 

We must take ~ ( a )  = 0 i n  region I, where z goes t o  plus inf in i ty .  

Due t o  the divergence of Y1 a t  the origin,  ~ ( a )  n 0 i n  a l l  regions. 

I n  region I V ,  where z goes t o  minus inf in i ty ,  ~ ( a )  must vanish. The 

solutions i n  each region then become: 

w a2z 
A ( ~ ) ( ~ , z )  = [ c4  (a) e .Jl(ar) da . 

0 

The boundary conditions between the different  regions are: 



Equation (3.16) gives : 

If we idtiply both sides of equation (3.22) by $m~l(a' r)r dr and then 
0 

reverse the order of integration, we obtain: 

w w 

aR =I& a [C2(a) e +B2(a) e*']p~(ar) ~ ~ ( d r )  ar dr] da . (3.23) 
0 0 

We can simplify equation (3.23) by use of the Fourier-Bessel 

equation, which is: 

w w 

,F(af) =$~(a) L J ~  (ar)h(afr) crr dr da . 
o (3.24) 

Equiztiori (:3.23) then becomes : 

We can. evaluate the other integral equations in a similar manner. 

We get (after dropping the primes on the a): 

C 2  B2 c 3 + B 3  - + - = -  
a a a a  9 



We now have s i x  equations with s i x  unknowns. Their solut ion is :  

We can now wr i t e  t he  expressions f o r  t h e  vector  p o t e n t i a l  i n  each 

region: 



These give 'the vector potential produced by a single delta f'unction 

coil. We can approximate any coil, as shown in Figure 2, by a number of 

delta function coils. In general, we shall have: 

A(r,z) (total) = pi(r,z) = LA(r, z, li, ri) . 

We shall now make the further restricting assumptions that the 

phase and amplitude of the current in each loop are identical and the 

coi.1 has a rectangular cross section, as shown in Figure 2. We can now 

approximate equation (3.41) by: 

where ~(r,z, a ,  r ) is the vector potential produced by a current 
0 

density 1(1, ro). 



Figure 2. Rectangular cross-section coil above a two conductor plane. 



After reversing the order of integration, we can write: 

Integration with respect to the 1 variable gives: 

We can now integrate over the r variable [with the help of 
0 

equation (11.1.1) in the National Bureau of Standards Handbook of 

Mathematical Functions No. 551 and get: 

While equation (3.45) io quite complicated, wecan make some 

definitions which will help simplify it. Also, in actual computations 



it will be more useful to work with dimensionless quantities. We 

therefore define: 

and 

If we divide a.bl  dimensions .by 7 and multiply<a, a1 and a2 by 7, 

we then have equation. (3.45) in terms of dimensionless quantities. We 

can also break equation (3.45) into the sum of four integrals. They may 

be written: 

- 
We can now redefine the expressions in equation (3.48): m E a, 

Z - - - z, etc. We shall now consider all dimensions normalized in terms - - 
r 

of r (except r) . Equation (3.48) then becomes : 



19 

Now we have f o r  equation (3.45, page 17): 

I n  general we have: 

I n  region 11, i=2, and F2( r ,  rm, z, dn, M 1 ,  M 2 )  i s  given by: 

03 

I n  region 111, i=3, and Fs(r ,  r , z, en, M 1 ,  ~ 2 )  i s  given by: 
m 

I n  region IV, id, and A(4 ) ( r , z )  i s  given i n  terms of t he  m c t i o n s :  
. . 

/ ay 
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In region 1-11, between the top and bottom of -the coil, we have 

to break the problem into two parts. We shall use equation (3.50) to 

determine the vector potential due to the part of the coil below the 

point of interest and equation (3.51) to determine the vector potential 

due to the part of the coil above the point.. The.tota1 vector 

potential is the sum of the two: 

Thus, in principle, we have determined the vector potential at any 

point in space for a coil above any two plane conductors. However, there 

still remains the task of evaluating the integral equations (3.49, page 18), 

(3.51), (3.52), and (3.53). In order to generate a table with enough 

values of the F functions to be really useful in practice, we would have 

to evaluate the integral equation about 10l0 times. This would require 

a computer program and is left for a later date. 

These equations will reduce somewhat for more simple geometrical 

configurations. For instance, if we let the conductivities in the two 

metals be the same, we get the case of a coil above a single conductor: 



If, instead, we let c, the thickness of the metal in region 111, 

go to zero rather than let al= a2, we obtain exactly the same equations 

for F1, F2, and F4. The value for F3 is different, but it is for a 

region that no longer exists. We also get similar solutions if we let 

c approach infinity. The only difference in this case is that the con- 

ductivity is in terms of al instead of a2, and the vector potential in 

region IV vanishes. 

We shall now consider the special case where the second conductor 

becomes an insulator, that is, a2 = o and a2= a. This gives the case of 

a finite cross-section coil above a plane sheet of finite thickness: 

00 



Considerable s impli f icat ion r e su l t s  i f  we special ize  t o  the case 

of a s ing le  de l t a  function c o i l  i n  s nonconducting medium. We can l e t  

a = o = o and obtain the following reduction fo r  equation (3.37, page I&): 
1 2 

I f  we take J=o, we ge t  the  same equation. f o r  the  vector po ten t ia l  

a s  given i n  equation (8-54) of Panofsky and P h i l l i p s  (1956). We a l so  

g e t  the  same equation i f  we s h i f t  the or ig in  t o  the  c o i l  and move the 

metal away t o  i n f in i ty .  

I f  we l e t  the  conductivity i n  equation (3.37) approach inf in i ty ,  

we obtain: 
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This. is the equation for a coil at z=+E and an image at z= -a, 

180 degrees out of phase. Equation (3.38, page 15) likewise reduces 

to a coil and its image when the conductivity approaches infinity: 

The vector potential given by equation (3.64) goes to zero at the face 

of the metal, as it should. The vector potential inside the metal, as 

given 'by equations (3.39) and (3.40, page 15) also goes to zero, as it 

should, when the conductivity is infinite. 

Coil Encircling a Two Conductor Rod 

We shall assume a delta function coil encircling an infinitely 

long, two conductor rod, as shown in Figure 3. 

The general differential equation is the same as equation (3.4, page 11) 

in the case of a coil above a conducting plane. 

Now, however, we shall assume the separation constant to be 

negative : 

Then 

and equation (3.65) becomes: 



I 

Figure 3. Delta function coil encircling a two conductor rod. 
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The solut ion t o  equation (3.68, page 23) i n  terms of modified Bessel 

functions i s :  

We can now wr i te  the vector po t en t i a l  i n  each region. We s h a l l  use 

the  f a c t  t h a t  it i s  symmetric (with respect  t o  z;z ) t o  throw out the  
0 

s ine  terms and t he  f a c t  t h a t K l ( o )  and 1l(m) both diverge t o  el iminate 

t h e i r  coef f ic ien t s  i n  regions I and IV, respectively.  Thus we have: 

03 1 

A(')(r,z-zo) = J o c l (a )11[ (a2  + j a r  cosa(z-zo) do: , 

+ n 2 ( a ) ~ l { ( a 2  + j ~ p u ~ ) ~ r )  COS~(Z-z0 )  do: , ' 3 (3.71) 

03 

~ ( ~ ) ( r , z - z ~ )  = 6 [ ~ ~ ( a ) ~ l ( a r )  + D3(a)Kl(ar)l cosa(z-z0) do: 9 (3.72 ) 

w 

A(4)(r ,z-zo) = .f o D4(a)IC1(ar) cosa(z-zO) do: (3.73 ) 

The boundary conditions between t h e  d i f f e r en t  regions are:  

A'' ) (a ,  z-zo) = ~ ( ~ ) ( a , z - z ~ )  ' 9 



I f  we multiply both s ides  of equation (3.74) by c o w f  (z-zo) and 

in tegra te  from zero t o  i n f in i ty ,  we obtain: 

03 03 1 

/ c l ( a ) 1 1 ( ( a 2  + j w ~ u , ) ~ r )  c o ( z - z )  a ( z - z )  d a  
0 0 

We can reverse the order of integrat ion and use the  orthogonal 

p roper t ies  of the  cosine int.egra1 o r  use the Four ie r - in tegra l  theorem: 

1 "  m 

- , f ( a )  ( lo  cosa(z-zo) cow' (z-z0) d(z-z0) ) da = f (a( ) (3.81) 
0 

Thus, we can solve the i n t eg ra l  equations (3.74) through (3.79). We 

1 1 

s h a l l  use a1 and a2 t o  designate (a2 + jwyol)' and (a2  + jwp.oz)'. We 

s h a l l  use primes t o  designate derivatives with respect t o  the  argument. 

We get  from the in t eg ra l  equations (3.74) through (3.79): 



Now we have six equations with six unknown constants. The equations 

may be solved. to give the constants. We shall define: 

The constants are: 
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We can now write for the vector potential in each region: 

~(~)(r,z-z o = n 5-r o o  ~ ~ ( a r ~ )  {Il(ar) - [- ' b ~  ~1 (ab ) (a14 (a2B)IO(a1a) 

03 

= ltZ ./ r0~1(~rO)K1(~~) 
(a2b) [a211 (ala)I,(a~a) - a111 (aza)I0(ala)] 

* 0 Kl (ah ) bD 

Equations (3.95) through (3.98) are the equations for the vector 

potential of a delta function coil located at r=r o and z=z o . If we make 

the assumption of a rectangular cross-section coil (~igure 4 )  with a 

uniform current distribution, we can write for the superimposed solutions: 



Figure 4 .  Rectangular cross-section coil encircling a two con- 

ductor rod. 
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Since the integrals of 11 (are) and Kl (are) do not reduce to simple 

forms, we shall not write equations (3.95 through 3.98, page 28) after 

the integrations over the coil have been made. 

In order for the closed form solutions to be really useful, the 

final integral equattons must be evaluated, either by a computer integra- 

tion or preferably by an approximation in terms of simple functions. If 

the latter can be found, it. will allow these problems to be solved 

readily with manual calculations. The evaluation of these integrals is 

left to future work. 

We can effect some reductions in equations (3.95 through 3.99, 

page 28) if we'specialize to the case of a single conductor. If we let 

the conductivities in the two metals be the same we get: 

PI 11(a2b) 
= - o I*~~KI (alb )K~ (ar ) 

{bKl(ab) [aIl(a,b)KO(ab) + a2IO(p2b)bl(ab) 1 
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( 2 We ge t  t he  same equations i f  we l e t  a=b, 'with t h e  exception of A , 
which i s  t he  vector  po t en t i a l  f o r  a region which no longer ex i s t s .  We 

a l s o  ge t  t h e  same equations i f  we l e t  a approach zero. 

We can a l so  l e t  t h e  conductivity approach zero, o r  a2 = al = a. 

Then 

These equations a r e  the  same as  those given i n  equations (8-51) of 

Panofsky and P h i l l i p s  (1956) f o r  t he  vector p o t e n t i a l  of a d e l t a  f'unction 

c o i l  i n  a nonconducting medium. This i n t e g r a l  i s  equivalent t o  t h e  

e a r l i e r  form of the  vector po t en t i a l  f o r  the  c o i l  i n  a i r  [equation (3.62, 

page 22)] with J=o. Both of these  equations can be'-evaluated i n  terms 

of e l l i p t i c  i n t eg ra l s  according t o  equation (13.4.1.17) i n  i n t eg ra l s  of 

Bessel functions by Y. L. Luke (1962): 

PI r 
0 PIro a, - ( a o )  J ( a )  eaz da = - $ ~ , ( a r ~ ) ~ , ( a r )  cosaz da 

2 0 3.t 0 

where ~ ( k )  and ~ ( k )  a r e  the  complete e l l i p t i c  in tegra l s  of t he  f i r s t  

and second kinds, respectively.  



CHAPTER IV 

RELAXATION SOLUTION OF THE VECTOR POTENTIAL 

We shall now solve the differential equation for the vector poten- 

tial [equation (2.19, page 9)] by a relaxation technique. We shall 

first assume a linear, isotropic, inhomogeneous medium with a sinusoidal 

driving current [Dodd (1965)l. . . . 

 ine ear Medium and Sinusoidal Driving Current 

The individual terms in equation (2.19) may be written in finite 

difference terms. The first deriva.t.ive of a function f(x) at a point x 

may be approximated by values of the f'unction on either side of x, as 

shown in Figure 5(a). 

Figure 5(b) &how& how the ~econd derivative may be calculated by 

a a 
first obtaining the derivative at points x + 7 and x - - 

2' 
From 

Figure 5(b): 

( 9 a =  

f(x) - f (x-a) 
a 

X-7 



f ( x + a )  
0 

f ( x - a )  

/ 
/ 

/ 
/ 

( a )  

Figure 5. Derivative Approximations. (a) The first derivative 

approximation and (b) the second derivative approximation. 

, ' 



The second derivadive may be calculated: 

These are only approximations and are good for "a" so small that the 

change in f(x) is small from x to *a. This condition j.s fulfilled with 

the exception of permeability variations, which require special treat- 

ment;. Figure 6 shows how v,  a~/ax, and a/a~(l/~), and A vary in one 

direction. For this type of f'unction, it is more accurate to represent 
. . 

.the derivatives by a one-sided difference equation. The difference 

equations are : 

The f'unction at any point may be represented: 

In this manner the various terms in equation (2.19, page 9) may be 

approximated, using equations (4.5), (4.6), and (4.7) for the first 

derivatives and equation (4.4) for the second derivatives. Solving 



Figure 6. Parameter variations across a boundary of a magnetic 
maberial. 



equation (2.19, page 9 )  f o r  the  vector po t en t i a l  a t  any point  A i n  
r, z9 

terms of t he  vector  p o t e n t i a l  a t  the  four neares t  neighbors, we obtain:  

2 J ) + { : ! + a + $ +  r r  'r, z + pry z + j a 2 ~ p r , Z " r , Z ~  , (4 9 )  
+ a 'r,z r , z  

1 
',+a, z 'r , z+a 

where J i s  t h e  applied current  densi ty  a t  t he  point  (??,a) i n  the  c o i l .  
r, z 

Application of Technique 

I n  solving f o r  t h i s  po ten t ia l ,  t h e  problem i s  f i r s t  l a i d  out i n  a 

two-dimensional mesh of points ,  which have a specif ied value of J 
r, z' 

a a t  each po in t ,  r and z. It i s  su f f i c i en t  t o  work the  problem 
p,,z, r , z  

i n  one-half plane only, due t o  the a x i a l  symmetry, a s  shown i n  Figure 7. 

Equation (4 .9)  w i l l  simplify somewhat, depending on the locat ion 

of t he  p a r t i c u l a r  po in t .  For example, a = 0 everywhere except i n  the  
r ,z  

conductor and i n  some instances i n  t h e  c o i l ;  J = 0 everywhere except 
r , z  

i n  t he  c o i l ,  and p 
r, z/'r+a, z 

= 1 f o r  a l l  nonmagnetic materials .  With 

t h e  help of a l a r g e  d i g i t a l  computer, the  value of A can be calcu- 
r , z  

l a t e d  a t  every po in t .  Along the  boundaries of t h e  mesh, the  values of 

A a r e  held t o  zero. This i s  exact along t he  c o i l  ax i s  and the  
r , z  

remaining boundary should be f a r  enough away t o  approximate i n f i n i t y .  

A dis tance of two c o i l  diameters i s  adequate f o r  most cases. The 

computer s t a r t s  a t  a po in t  i n  the mesh and works through point  by point ,  

us ing t h e  proper values f o r  a 
r , z J  'r,z9 and J rjZ i n  equation (4.9).  

Af te r  going through t h e  entire 'mesh many times ( i t e r a t i o n s ) ,  the  vector 



Figure 7. Layout of problem on a l a t t i c e  of po in t s .  



p o t e n t i a l  w i l l  converge t o  a value determined by Maxwell's equations 

[Binns and Lawreson (1963)l .  The f i n e r  the  mesh, the  g rea te r  the  

accuracy and t he  longer and more expensive the  problem. Typically, f o r  

a 70 by 70 mesh, it takes  500 i t e r a t i ons  t o  converge within one per  cent 

a t  a cos t  of two hundred do l la r s .  

Once a p a r t i c u l a r  shape of c o i l  and conductor has been chosen, the  

problem i s  solved f o r  t h a t  case only. One main disadvantage of t h i s  tech- 

nique. i s  t h i s  i n f l e x i b i l i t y .  A whole s e r i e s  of re laxat ions  must be per-  

formed i n  order t o  observe t h e  e f f ec t  of varying only one parameter. 

However, the re  s t i l l  e x i s t  two degrees of freedom a f t e r  the  re laxat ion 

has  been completed. These involve t he  two products i n  equation (4.9, 

page 36), a2pr,ZJr,z and a 2 w  r ,z  0 r ,z '  Frequency and conductivity may be 

varied,  i n  general,  a s  long a s  t h e i r  products remain constant. .Also i n  

t h e  f i n i t e  d i f ference equations, a 2  and the  product wr,Zar,  may be var- 

ied ,  provided a 2 w  a remains constant. Then, however, the  driving . 
r , z  r , ~  

cur ren t  densi ty  must be var ied  t o  keep t he  product a2CI r , z  J r , z  the  same. 

This means, f o r  example, t h a t  the  solut ion f o r  the  vector po t en t i a l  a t  

each po in t  f o r  a c o i l  one inch i n  diameter above a copper plane of 

conductivity 1.732 pohm-cm with a dr iving current' of one ampere a t  a 

frequency of one ki locycle  i s  the  same a s  t he  vector p o t e n t i a l  of a 

one-inch c o i l  above an aluminum plane of conductivity 3.464 pohm-cm with 

a dr iving current  of one ampere a t  500 cycles per  second. Also, the  

so lu t ion  i s  the  same f o r  a 0.707-inch c o i l  above a 3.464 pohm-cm aluminum 

plane with two amperes dr iving current  a t  a frequency of one kilocycle.  

Thus, equation (4 .9)  can be used t o  solve f o r  the  vector po ten t ia l ,  a t  
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any point in space, produced by a sinusoidal driving current. Any 

physically observable electromagnetic phenomenon can then be calculated 

from the vector potential. 

Linear Medium and Pulsed Currents 

In principle, the vector potential produced by any continuous time- 

varying current pulse could be calculated by a Fourier synthesis of the 

results of computations for sinusoidal driving currents. However, this 

would require solutions of a given problem at many different frequencies, 

particularly for sharp pulses. In fact, a pulse of finite duration 
,.. 

theoretically req&.res an infinite number of Fourier comporients. For, 

this reason and because of storage problems in the computer and the 

existence of nonlinear media, we prefer to solve the differential equa- 

tion for the vector potential directly without assuming sinusoidal time 

variation. Hence, we return to equation (2.18, page 9). 

Now .J(t) can be approximated in time for any current wave form, as 

shown in Figure 8. 

Appropriate to a time-sequential current, we will perform a time- 

sequential relaxation. The term a~/at will become: 

,- 

- 
a~/at = 

Ar, z, t Ar, z ,  t-r 

7 

The solution will have to start where ~ ( t )  is constant and 

aA/at = 0 and proceed to values of t where ~ ( t )  varies. Using the ., 

finite difference approximations given in equation (4.10) for the other 



t =O 4 2 3 4 5 6 7 - 8  9 40 . 1 4  

TIME = t T 

Figure 8. Approximation of a current pulse. 
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partial derivatives in equation (2.18, page 9) and solving for Ar 
3 9 

yield 

'r, z 
Ar, z, t ria, z )Ar+a,z,t+Ar-a,z,t + ( 'r, z+a/ ') A r, z+a, t 

2 a 
+ Ar, z-a, t 

+ -  u 
+ a Pr,zJr,z,t .r 'r,~ r , ~  Ar,~,t-~ } 

Equation (4.11) is the general relaxation equation and can be used 

to solve for the vector potential everywhere in space at each value of t. 

Although equation (4.9, page 36) is, in principle, derivable from this 

equation if Jr , varies sinusoidally with time and with T -, o, the 
9 9 

derivation given earlier avoids some of the difficulties encountered in 

trying to reduce equation (4.11). For an arbitrary time variation, the 

solution for the previous value of t, must be stored in the 
Ar,z, t-r' 

computer. Also a large number of iterations must be made for each 

value of t. 

A Nonlinear Medium and Pulsed Currents 

Up to this point, we have been assuming that the permeability was 

constant any point in the medium, varying only from point to point. 

+ 
This is an approximation which is good for weak fields. In general, B 

+ 
varies with H as shown in Figure 9(a). 

The incremental permeability is defined as: 



--c Figure 9. Magnetic parameter variations. (a) Variation of 5 with 
H; (b) incremental permeability. 
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This i s  shown a s  a function of B i n  Figure 9(b) .  Note t h a t  t h i s  i s  a 

function not only of B, but a l so  of the  h i s tory  of previous magnetiza- 

t ion.  It sQould a l so  be noted tha t  W(B) i s  affected by temperature, cold 

working, a l loy  content, heat treatment, and a large number of other 

factors .  However, p can be measured a s  a function of B and stored i n  

the computer memory, point  by point.  I n  our program we use the c u r l  of 

+ 
A ra ther  than 5. Expanding . the cu r l  of and noting t h a t  2 has only a 

8 component, we have [Morse and Feshbach (1953)]: 

I n  f i n i t e  difference form, t h i s  becomes: 

This would be computed a t  each point  i n  the  nonlinear medium a t  the  end 

of each i t e r a t i on .  The proper value of p a t  t h a t  point  f o r  the  next 
r? z 

i t e r a t i o n  would then be determined from the stored curve and placed in' the  

memory. The ambiguity i n  sign i n  equation (4.14) would have t o  be removed 

here by knowing the pas t  his tory.  By applying ,equation (4.14) between 

each i t e r a t i o n  of equation (4.11, page 41), we can calculate A a t  
=' ,Z , t  

every point  i n  space a t  any time i n  the presence of a nonlinear medium. 



CHAPTER V 

OBSERVABLE PHYSICAL PHENOMENA 

Once the  vector po ten t i a l  has been determined, e i t he r  by a ffclosed 

formf' solution o r  by a relaxation technique, any physically observable 

electromagnetic phenomenon can be calculated from it. I n  t h i s  chapter 

we s h a l l  give the  equations, both i n  the  d i f f e r e n t i a l  and the f i n i t e  ' 

difference forms, of some of these phenomena. 

D i s s i ~ a t e d  Power 

From the vector potential,.-the diss ipated power density due t o  the 

eddy currents can be calculated: 

where A i s  the root mean square.vector potent ia l .  The negative sign 

denotes a power l o s s  from the. f i e ld .  

Coil Im'edance 

Another physical  quanti ty t h a t  can be calculated i s  the impedance 

of the  c o i l  i n  the  presence of a metal. This i s  of pa r t i cu l a r  importance 

i n  t he  t e s t i ng  of materials.  When the  vector po ten t ia l  i s  obtained, it 

i s  in tegrated [Reitz and Milford (1960)l over the c o i l  t o  obtain the 

induced voltage: 

o r  i n  f i n i t e  difference terms, 

V = j w  L 2'IrA 
r, = 

c o i l  
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v 
The impedance i s  Z = - so equations (5.3) and (5.4) become: 

I' 

This impedance i s  usual ly  normalized so t h a t  many values w i l l  f i t  on a 

small  p l o t .  This i s  done by dividing by t h e  magnitude of the  c o i l  

impedance i n  a i r :  

+. -? -? +. 
Aodc (conductor p resen t )  s / co i l  A*ds(coi l  alone) , (5.7) 

or,  i n  f i n i t e  d i f ference terms: 

Zn = j L 2nrA (conductor) + L 2nrA ( a i r )  . 
r > z  r > z  

c o i l  c o i l  

We have obtained the  impedance of a c o i l  i n  the  presence of a .: :;f 

metal without defects .  Once the  vector po t en t i a l   ha^ been determined . , ,  

f o r  a p a r t i c u l a r  c o i l  and metal, we can use superposit ion t o  determine 

the  solut ion with a defect  present  (even though the  defect  v io l a t e s  our 

assumption of axial syxunetry). A defect  can be represented a s  a 

current  equal i n  magnitude and flowing i n  t he  opposite d i rec t ion  t o  t he  

induced eddy currents.  The vector po t en t i a l  of a c o i l  with a defect  

present i s  the  sum of vector po t en t i a l s  of the  c o i l  and conductor alone 

and the  defect  alone (provided t he  current  which the  defect  produces 

around i t s e l f  can be solved). The addi t ion of t he  current  of t h e  defect  

t o  the  induced eddy current  gives, of course, zero current  flowing 

through the  defect .  Although t h e  impedance change due t o  an ac tua l  



defect is difficult to calculate in general, we may approximate it. 

The impedance change due to a small, spherical defect not too close to 

the surface [Burrows (1964)l is: 

where A is the vector potential at the defect and "vol" is the 
defect 

volume of the defect. 

Electromagnetic Forces 

We can also calculate the electromagnetic forces in any conductor 

which may be present. These forces are given [Stratton (1941)l as:. 

 his-is the force exerted by an electromagnetic field on a unit volume 

of isotropic matter, neglecting electro- and magnetostrictive forces. 

The neglecting of these latter forces is justifiable since they produce 

deformation of the material but no net force. The first term vanishes 

when the charge density p is summed over the electrons and ions. The 

third term is also taken to be zero for the interior of a metal. The ' 

last term is due to the light pressure and is negligibly small. Thus, 

the force reduces to: 

or: 



We s h a l l  f i r s t  consider only nonmagnetic materials ,  which require  

only the  f i r s t  term i n  equation (5.11). 

We have, from Ohm's law: 

Using t h i s ,  t he  force  becomes: 

+ ax + 
F = - U - X ( V X A )  . a t  

Expanding t he  c u r l  of i n  cy l indr ica l  coordinates: 

so t h a t  

I n  t he  z di rect ion,  force  densi ty  w i l l  always be away from the  c o i l  

s ince  aA/az w i l l  be negative, making F pos i t ive .  I n  the  r direct ion,  
z 

it can be e i t h e r  pos i t ive  o r  negative, depending upon t he  s ign of &A/&. 

The z component of fo rce  of any volume dv = 2firdrdz 2fira2 i s :  

The r component of force  is:  



Sinusoidal forces.  If we assume a sinusoidal driving current,  

then the forces become: 

Fr 
= -2 jnawo A L(r-1-8) Ar+a,z 

r , z  r ,z  r, z 
r, = 

Taking the r e a l  p a r t s  of the force we have: 

The angle @ represents the  phase s h i f t  of I A ,  I from zero and the 
r, z 

angle 9' represents the  phase s h i f t  of I A ~ , ~ + ~  - A  1. When 
r , z  

equation (5.23) i s  expanded i n  terms of the r e a l  and imaginary p a r t s  of 

the  vector po ten t ia l ,  we get :  

2 

Z 
= n- a wa {(R' ~ r , z  1m ~ r , z - a  - ~ r n  A RI A + sin2wt 

a r,z r,z r, z-a 
r , z  

X [ R ~ A ~ , ~ ( R ~ A  r ,z  - R ~ A  r, z-a ) + I m A r , z  r, z-a )I + c o s ~ w t  

x [ ~ r n  A r , z ( ~ ' ~ r , z - ' ' ~  r, z-a ) + R1 (RI A r ,z  - RI A r, z-a )]) (5-24) 



The ne t  force  i n  t h e  z d i rec t ion  i s :  

m ~ ~ a l  

FZ 
= na2w ( r / a ) [ ~ l  A I m  Ar,z-a - I m  A R1 A 

r, z-a 
] . (5.25) 

r , z  r , z  r , z  
r , z  

Time sequential  forces.  I f  we assume a pulse  of current  and - 
perform a time sequent ia l  re laxat ion we have f o r  the  time dependence: 

The z and r components of fo rce  then become: 

This gives t he  value of the  force  a t  any time ( t i m e = t ~ )  and a t  any 

point .  The t o t a l  impulse a t  any point  would be: 

The t o t a l  force  on the  metal would be: 

metal 
7 

For the  case of a s inusoidal  current ,  i f  we took t h e  absolute value 

of F a f t e r  summing, we would g e t  the  peak force  per  cycle. For a time 
z 



sequential relaxation, the absolute value gives the total force on the 

metal at any time, t. The total impulse on the metal would be: 

t=o 

Due to the cylindrical symmetry, there will be no net r component of 

force. 

Forces - in magnetic materials. The first term in equation (5.11, 

page 4 6 )  gives the Lorentz force density which we have already calculated; 

the ~econd term ic due to magnetic materials, and we shall now consider it. 

+ --* 

Substituting the curl of A for B and expanding: 

The finite difference terms are: 



.5 1 

The t o t a l  magnetic force  i s  the  suy over a l l  r and z .  Again, 

the re  i s  no ne t  force  i n  t he  r direct ion.  The t o t a l  force  i s  the  sum 

of the  eddy-current forces  and t he  magnetic forces.  



CHAPTER V I  

APPLICATIONS 

The re laxa t ion  technique has been applied t o  a l a rge  number of 

p r ac t i c a lp rob l ems .  The r e s u l t s  of some of these  a re  given i n  t h i s  

chapter.  

Figure 10 [Dodd (1965)l shows t he  phase and amplitude contours of 

t h e  vector  p o t e n t i a l  produced by a long co i l .  The contours a r e  p lo t t ed  

i n  a plane containing t he  c o i l  ax i s  due t o  t he  a x i a l  symmetry. Since 

t h e  eddy-current densi ty  i s  d i r e c t l y  proportional  t o  the  vector poten- 

t i a l ,  i n  t he  conductor these  a re  a l so  contours of eddy-current density.  

Figure 11 [Dodd (1965)l shows the  contours of eddy-current heating den- 

s i t y  f o r  the  same c o i l .  Figure 12 shows t he  vector po t en t i a l  produced 

by a c o i l  enc i rc l ing  a conducting rod. Figure 1 3  shows how the  vector 

p o t e n t i a l  i s  changed when t he  conducting rod i s  ferromagnetic. Note 

how t h e  vector p o t e n t i a l  i s  "a t t racted"  by t h e  rod. Also, the  eddy- 

current  densi ty  i s  r e l a t i v e l y  constant over a l a rge  out.er por t ion of 

t h e  rod and rap id ly  decreases toward the  center  of t he  rod. 

Figure 14 shows t h e  phase and amplitude contours of t he  vector 

p o t e n t i a l  produced by a square cross-section c o i l .  A family of four  

of  these  c o i l s  having t he  sane r e l a t i v e  dimensions but d i f f e r en t  s i z e s  

was b u i l t .  The impedance was measured (see  Chapter VII) f o r  the  c o i l s  

a t  various frequencies and f o r  various spacings ( l i f t - o f f )  between the  

c o i l  and the  conductor. Figure 15 shows how these  measured values 

agree with values calcula ted by t he  re laxat ion technique. The accuracy 



Figure 10. Phase and amplitude of the  vector po t en t i a l  of a c o i l  
above a metal plane. 



Figure 11. Contours of eddy-current heating density. 



Figure 12. Coil encircling a conducting rod. 



Figure 13. Coil encircling a ferromagnetic rod. 



Figure 14.. Coil above a conducting plane. 
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\ 

0.0476 6 
/ 

t/ I 
/?=RADIUS S= LIFT-OFF/RADIUS 

w=ANGULAR FREQUENCY 

p=PERMEABILITY 

c=CONDUCTIVITY 
I 



59 

of the  measured values i s  ra ther  poor i n  the  low frequency regions and 

b e t t e r  i n  the  high frequency regions. The calcula ted values had some 

inaccuracy along the  spacing d i rec t ion  (along l i n e s  of constant R ~ ~ J u ) .  

This i s  due t o  the  f a c t  t h a t  impedance i s  a f fec ted  so  strongly by spacing 

( l i f t - o f f ) ,  and the  re laxat ion technique does not define t he  exact 

loca t ion  of the  c o i l  and the  metal. The e r ro r  i s  always l e s s  than one 

l a t t i c e  space. The agreement i n  values of ~ ~ w p a  i s  qui te  good f o r  the 

higher frequencies. 

Another problem of i n t e r e s t  i n  t he  t e s t i n g  of metals i s  t he  

shaping of f i e l d s  by t he  use of f e r r i t e s .  Figure 16 shows how the  f i e l d  

of the  c o i l  i n  Figure 10, page 53, i s  "focused" .by t he  addi t ion of a 

f e r r i t e  cup. This tends t o  concentrate the eddy currents i n t o  a smaller 

volume and make t he  c o i l  more sens i t ive  t o  defects .  

Figure 17 shows the  contour of net  downward force  produced i n  a 

conducting ring.  

Since the  force  i s  d i r e c t l y  proportional  t o  t h e  square of the  

current ,  both the  calculated and measured ( see  Chapter VII) forces  were 

normalized by dividing them by t h e  square of the  current .  The values 

a r e  compared below. 

Frequency Force, g/anrp2, RMS Per  cent 
( ~ e r t z  ) Measured Calculated Error 

138 2.65 2.98 12.5 



FERRitE ,CONSTANT 
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Figure 16. Coil  with a f e r r i t e  cup a-bove a conducting plane. 



Figure 17. Eddy-current force contours. 
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The large'percentage error is probably due to the value of the 

relative permeability chosen for the ferrite and the size of the mesh 

used to represent the problem. The value of the relative permeability 

used in the calculations was 1000 while the actual value was about 

fifteen per cent lower. The largest part of the error is probably due 

to the fact that the force is a very sensitive function of the spacing 

between the coil and metal, as indicated in Table IV of Chapter VII. 

The relaxation technique only defines the position of the coil and 

metal to within one lattice spacing. Also, a relatively coarse 70 by 

70 mesh was used. A finer mesh would have given more accuracy, but at 

an increased cost. 



CHAPTER VII 

A number of coils were constructed as accurately as possible, and 

measurements have been made of the coil impedances and the forces 

generated in the presence of a large semi-infinite conductor of known 

conductivity. These measurements are described in thio chapter. 

Impedance Measurements 

. A family of four coils, having the same relative dimensions but 

different sizes, was constructed. The dimensions and other parameters 

of the coils are given in Table I. 

The dimensions of all these coils can be expressed in terms of a 

- 
mean coil radius, r, If this is done, all the coils have a square cross 

section of r/3, and have values of r of 0.300, 0.600, 0.900, and 

1.200 inches. The impedance .of the coils was' measured at various dis- 

tances above an aluminum disk 2 inches thick and 12 inches in diameter, 

having .a measured resistivity of 4.2 micro-ohm cm. The system used to 

measure the impedance is shown in Figure 18. Voltage readings were made 

on either side of the precision low inductance resistor. Then the coil 

.and the resistor were electrically interchanged, and the voltage between 

the precision resistor and ground was measured, giving the current 

through the resistor. From the first. two voltages and the current, we 

can calculate the coil impedance as follows. 

The voltages may be written: 

+ 4 

V 1 = I Z  , (7.1) 



' . 
d i '  

T A B U  I 
I .  

.. * COIL PARAMETERS 
- + ' ,  

Coil 

Inner 
Diameter 

r 
1 

(inches) 

Outer 
Diameter 

r 
2 

(inches ) 

Length 

4 2 - 4  

( inches ) 

Wire 
Size 

(A.w.G. ) 

Number 
of 

Turns 

A 0.500 min 0.706min 0.100min No. 40 622 

0.503 max 0.710 max 0.103 max 

B 1.000 min . 1.417 min 0.200 min No. 34 718 

1.003 max 1.430max 0.204- 

C 1.500 min 2.100 min 0.306min No. 32 925 

1.503 max 2.115 max 0.322 max 

D 2.000 min 2.820min 0.402min No. 30 1392 

2.002 max 2.830- 0.405max 
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Figure 18. Diagram of impedance measurement apparatus. 



+ + 
Now, since 1 ,  Iv, 1 ,  and I are known, we can calculate the real and 

+ 
imaginary parts of z: 

The impedance was then normalized by subtracting off the direct- 

current coil resistance and dividing by the magnitude of the coil 

reactance tn air. Subtracting the direct-current coil resistance 

eliminates the part of the coil that is not affected by vector poten- 

tial, and dividing by the coil reactance allows the impedance of the 

entire family of coils to be plotted on a common graph. Table I1 shows 

the resistance and inductance of the various coils in air at different 

frequencies. The frequencies are chosen for common values of T@. 

Table I11 shows the coil resistive component and ind~.r..ctance for the 

coils at various spacings above the aluminum disk and at the same 

frequencies. The spacings for the different coils are chosen to have 

the same value of distance divided by mean coil radius. 

Each value in Tables I1 and I11 represents the average of ten 

readings at different current levels, and the standard deviation of 

these readings is given after each (average) value in the tables. In 

some instances there was wave distortion due to an impedance mismatch 

for some of the values, and these values have been omitted. 



TABLE I1 

MEASUREMENTS OF COIL RESISTANCE AND INDUCTANCE 
I N  A I R  AS A FUNCTION OF FREQUENCY 

Resis t ive  Inductive 

Coil  
Frequency 

Component Standard Component Standard 
(her tz )  

( 0llmE 
Deviation ( m i l l i -  Deviation 

henr ies  ) 



MEASUREMENTS OF COIL RESISTANCE AND INDUCTANCE 
AS A FUNCTION OF FREQUENCY AND LIFT-OFF 

Resistive 
Inductive 

coil Frequency Lift-Off 
Component 

Standard Component Standard 
(hertz) (inches) 

( ol-,ms 
Deviation (milli- Deviation 

henries ) 
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TABLE I11 (continued) 

~esistive 
Inductive 

Coil 
Frequency Lift-Off 

Component Standard Component Standard 
(hertz) (inches) 

(ohms 
Deviation (milli- Deviation 

henries) 
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TABLE I11 ( continued) 

Resistive Standard 
Inductive 

Frequency Lift-off Component Standard 
Coil 

(hertz) (inches) 
Component 

( 0 ~ ~ s  
Deviation (milli- Deviation 

henries ) 



A summary of the  r e su l t s  l i s t e d  i n  the  tab les  i s  p lo t ted  i n  

Figure 15, page 58, where it i s  compared with data calculated by the  

relaxation method. Each experimental point  represents the  average of 

a l l  four coi ls ,  weighted according t o  t h e i r  standard deviations. 

Discussion of Errors i n  Impedance Measurements 

One l imi ta t ion  i n  the accuracy was the  accuracy of the  a l te rna t ing  

current d i g i t a l  voltmeter (which reads t o  four places)  used. This was 

specified t o  be p lus  o r  minus two d i g i t s  i n  the l a s t  place, plus  o r  

minus 0.1 per cent of the reading from 50 her tz  t o  20 ki loher tz ,  p lus  

o r  minus 0 . 1 p e r  cent of f u l l  scale  from 20 ki loher tz  t o  50 kilohertz; 

and plus  or  minus 0 .3  per cent of f u l l  scale  from 50 ki loher tz  t o  

100 kilohertz.  The voltmeter had an input impedance of 10 megohms 

shunted by 20 picofarads. The maximum decrease i n  the  reading i n  the  

worst possible case i s  l e s s  than 0 . 1 p e r  cent, so the e f fec t s  of the  

voltmeter loading were neglected. Thus, the basic  accuracy on most of 

the measurements was on the order of plus  o r  minus 0 . 1 p e r  cent. 

The interwinding capacitance and the  coil-to-metal capacitance 

probably contributed some er ror  t o  the measurements, but these were 

generally quite small. The f i r s t -order  e f fec t  of the  interwinding 

capacitance should have been canceled out due t o  the f a c t  t h a t  we 

normalized the data a t  a pa r t i cu l a r  frequency using the  values measured 

i n  a i r  a t  the same frequency. 

The heating.of the co i l s  caused a res is tance change of about 

0.35 per  cent per  degree centigrade. Also it caused some small increase 



(approximately 20 x 10'~ inches per inch per degree centigrade) in the 

dimensions of the coils. The maximum temperature change was less than 

Perhaps the largest error was due in some cases to harmonic distor- 

tion. The specifications on the oscillator and the power amplifier were 

for less than one per cent total harmonic distortion from 50 hertz to 

20 kilohertz. However, for certain frequencies outside this band, this 

distortion level was exceeded. 

The dimensional tolerances on the coils were fairly close, in most 

cases less than one per cent. The error in spacing was generally less 

than 0.001 inch. Also the variations in coil dimensions will probably 

produce second-order errors in the results and cancel when the average 

of the four coils is taken. 

The,results are rather inaccurate when the frequency is low, for, 

in the normalization, one large number is subtracted from another, 

giving a number with a relatively large standard deviation. The accuracy 

of the resistive component decreases at higher frequencies. However, it 

is divided .by a large number in the normalization, which reduces the 
. , 

error to a small value relative to the inductive 'component. As the 

frequency is increased, the accuracy improves, becoming quite good for 

the last four frequencies. 

Force Measurements 

The net eddy-current force on a conductor was measured as outlined 

in Figure 19. The force that a coil encased in a ferrite cup exerted 



Figure 19. Force measurement apparatus. 
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on a copper ring was measured at three frequencies and various current 

levels. 

The weight of the copper disk was exactly balanced by a counter- 

weight. Then a small additional weight was added, and the current 

needed to rebalance the weight was recorded. A small weight was run up 

and down the pointer, adjusting the sensitivity of the balance by 

moving the center of gravity. The system could be adjusted from stable 

to bi-stable by moving the center of gravity from below the balance 

point to above the balance point. 

Since the force is directly proportional to the square of the 

applied current, the force divided by the current squared should,be a 

constant. Table IV gives a summary of the force measurements. 

Discussion of Errors in Force Measurements 

Some of the same errors exist in the force measurement as occurred 

in the impedance measurements. The digital voltmeter again limited the 

overall accuracy to plus or minus 0.1 per cent plus or minus two digits. 

The error due to heating the coil was considerably smaller, due to the 

higher Q of the coil. This was offset, however, by more heating of the 

copper disk, due to the higher powers used. The harmonic distortion 

was less than one per cent. 

The balance used to measure the force had a sensitivity of about 

plus or minus 0.001 gram. 

The overall accuracy of the force measurements was on the order of 

one per cent. The measured forces are compared with the results of a 

relaxation calculation at the end of Chapter VI. 



TABLE IV 

FORCE ON A COPPER RING 

I 

Lift-Off Frequency Force 
L/l  

(inches ) (he r tz )  (grams) ( roo t  mean ( roo t  mean 
square) square) 

(amps) (grams/wPs 2, 



CHAPTER VIII 

RECOMMENDATIONS AND CONCLUSIONS 

This thesis has presented two different methods of determining the 

vector potential of a cylindrical coil in the presence of conductors. 

From this vector potential, any electromagnetic induction phenomenon 

can be determined. The relaxation solution has the advantage that it 

is very versatile. It can be solved for any size and shape coil and 

conductor (so long as axial symmetry is retained) with any type of 

driving current in an inhomogeneous, nonlinear medium. However, it 

does have the disadvantage that it is an expensive process. The closed 

form solution, although more restricted in its use, should be more 

accurate and cheaper to apply. If a simple and accurate approximation 

could be made for the closed form integral equations, these calcula- 

tions could be made quickly and cheaply with only a pencil and paper. 

We can use superposition of solutions to overcome some of the 

restrictions of axial symmetry in both cases. 

These two methods should allow us to solve a very large mimber of 

difficult electromagnetic induction problems. 
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'LIST OF S W O L S  

In the first column the symbol used is given, and in the second 

column the name. In the third column the meter-kilogram-second (MKS) 

units are given. In the last column the dimensions are given in terms 

of mass (M), length (L), time (T), and electric charge (Q). 

Symbol Name MKS Units  Dimensions 

vector potential 
webers 
meter 

distance between mesh points meters 

webers 

meter2 
magnetic induction 

coulomb 

meter2 
electric displacement 

volt 
electric intensity 

meter 

force ' 

ampere 

meter 
magnetic intensity 

applied current ampere 

I impulse newton-sec 
ML - 
T 

Jo 
applied current density 

ampere 

meter2 

J 
ampere 

current density Q - 
meter T L ~  

j . square root of minus one 
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Name MKS Units Dimensions Symbol 

seconds time 

farad 

meter 
d i e l e c t r i c  constant 

r e l a t ive  permit t ivi ty  ( € 1 ~ ~ )  

henry 

meter 
permeability 

re la t ive  permeability (p/vo) 

coulomb 
charge density 

+ -+ 
poynting vector (E X H )  

watts 

meter2 

mho - 
meter 

conductivity 

seconds time in terva l  

angular frequency 
radians 
second 



INTERNAL DISTRIBIJTION 

Central  Research Library 46.  
ORNL Y-12 Technical Library 47.  
Document Reference Section 48-50. 

Laboratory Records Department 51. 
Laboratory Records, ORNL-RC 5 2. 
ORNL Patent  Office 53.  
G. M. Adamson, Jr. 54.  
R. J. Beaver 55.  
D. S. Bill ington 56.  

T. V. Blalock 57.  
G. E. Boyd 58.  
J. H. Coobs 59.  
F. L. Culler 60.  
J. E. Cuntiingham 61. 
J. H. DeVan 62.  
5. E. Dismuke 63. 
C. V. Dodd 64. 

EXTERNAL DISTRIBUTION 

J. H Frye, Jr. 
W. 0. Harms 
M. R. H i l l  
H. Inouye 
E. J. Kennedy 
A. L. Lot ts  
H. G. MacPherson 
W. R. Martin 
R. W. McClung 
E. C. Mil ler  
Ronald Nutt 
P.  Pa t r i a r ca  
H. C. Schweinler 
J. L. Scot t  
G. M. S l a w h t e r  
A. M. Weinberg 
J. R. Weir, Jr. 

S. Aveyard, AERE-Harwell, Didcot, Berkshire, England 
R. L. Brown, Jr., GE-Hanford 
D. F. Cope, RDT, SSR, AFC, Oak Ridge National Laboratory 
W. E. Deeds, Universi ty of Tennessee 
D. A. Douglas, S t e l l i t e  Division, Kokomo, Indiana 
J. L. Gregg, Bard Hall, Cornell Universi ty 
E. G. Harris ,  Universi ty of Tennessee 
W. J. Larkin, AEC, Oak Ridge Operations 
H. L. Libby, GE- anf ford' 
,T. F. Pierce ,  Universi ty of .Tennessee 
C. J. Renken, ANL 
J. Simmons, AEC, Washington 
E. E. Stansbury, Universi ty of Tennessee 
Division of Research and Development, AEC, OR0 
Division of Technical Information Extension 


