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Abstract. In the first part of the paper we establish the existence of multiple positive solutions
to the nonlinear second-order three-point boundary value problem on time scales,

u∆∇(t) + f(t, u(t)) = 0, u(0) = 0, αu(η) = u(T )

for t ∈ [0, T ] ⊂ T, where T is a time scale, α > 0, η ∈ (0, ρ(T )) ⊂ T, and αη < T . We employ
the Leggett-Williams fixed-point theorem in an appropriate cone to guarantee the existence of
at least three positive solutions to this nonlinear problem. In the second part we establish the
existence of at least one positive solution to the related problem

u∆∇(t) + a(t)f(u(t)) = 0, u(0) = 0, αu(η) = u(T ),

using Krasnoselskii’s fixed-point theorem of cone expansion and compression of norm type.

1. preliminaries about time scales

The following definitions, that can be found in Atici and Guseinov [4] and Bohner and
Peterson [7], lay out the terms and notation needed later in the discussion. A time scale T is
any nonempty closed subset of R. It follows that the jump operators σ, ρ : T → T

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}
(supplemented by inf ∅ := sup T and sup ∅ := inf T) are well defined. The point t ∈ T is
left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) > t,
respectively. If T has a right-scattered minimum m, define Tκ := T − {m}; otherwise, set
Tκ = T. If T has a left-scattered maximum M , define Tκ := T− {M}; otherwise, set Tκ = T.
The forward graininess is µ(t) := σ(t)− t. Similarly, the backward graininess is ν(t) := t−ρ(t).

For f : T → R and t ∈ Tκ, the delta derivative [7] of f at t, denoted f∆(t), is the number
(provided it exists) with the property that given any ε > 0, there is a neighborhood U of t such
that

|f(σ(t))− f(s)− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|
for all s ∈ U . For T = R, we have f∆ = f ′, the usual derivative, and for T = Z we have the
forward difference operator, f∆(t) = f(t+ 1)− f(t).

For f : T → R and t ∈ Tκ, the nabla derivative [4] of f at t, denoted f∇(t), is the number
(provided it exists) with the property that given any ε > 0, there is a neighborhood U of t such
that

|f(ρ(t))− f(s)− f∇(t)[ρ(t)− s]| ≤ ε|ρ(t)− s|
for all s ∈ U . For T = R, we have f∇ = f ′, the usual derivative, and for T = Z we have the
backward difference operator, f∇(t) = f(t)− f(t− 1).
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A function f : T → R is left-dense continuous or ld-continuous provided it is continuous
at left-dense points in T and its right-sided limits exist (finite) at right-dense points in T. If
T = R , then f is ld-continuous if and only if f is continuous. If T = Z, then any function is
ld-continuous. It is known [7] that if f is ld-continuous, then there is a function F (t) such that
F∇(t) = f(t). In this case, we define∫ b

a

f(t)∇t = F (b)− F (a).

2. introduction to the boundary value problem

We will be concerned with proving the existence of solutions to the second-order three-point
nonlinear boundary value problem on a time scale T given by

(1) u∆∇(t) + f(t, u(t)) = 0 t ∈ (0, T ) ⊂ T

(2) u(0) = 0, αu(η) = u(T ),

where ∆ is the delta derivative and ∇ is the nabla derivative. Throughout the paper we
assume η ∈ (0, ρ(T )) ⊂ T for 0 ∈ Tκ, T ∈ Tκ, α > 0, and αη < T . We likewise assume that
f : [0, T ] × [0,∞) → [0,∞) is left-dense continuous, and f(t, ·) does not vanish identically on
any subset of [0, T ] ⊂ R of positive measure. This boundary value problem (1), (2) was studied
by He and Ge [11] and Ma [14],[15],[16] in the case of T = R, on the unit interval; consequently
these results are new for difference equations as well as for the general time scale that contains
0. We seek to show the existence of at least three positive solutions for (1), (2). Some papers
in this area include [1],[2],[3],[5],[6],[8],[9]. In this paper we will apply the existence theorem of
Leggett and Williams, given below, that is an application of fixed-point index theory.

3. leggett-williams theorem

In this brief section we introduce the main terminology needed for discussion of fixed points
for operators on cones in a Banach space; the theorem below is the Leggett-Williams fixed
point theorem, whose proof can be found in Guo and Lakshmikantham [10], or Leggett and
Williams [13].

A nonempty closed convex set P contained in a real Banach space E is called a cone if it
satisfies the following two conditions:

(i) if x ∈ P and λ ≥ 0 then λx ∈ P ;
(ii) if x ∈ P and −x ∈ P then x = 0.

The cone P induces an ordering ≤ on E by x ≤ y if and only if y − x ∈ P . An operator A
is said to be completely continuous if it is continuous and compact (maps bounded sets into
relatively compact sets). A map ψ is a nonnegative continuous concave functional on P if it
satisfies the following conditions:

(i) ψ : P → [0,∞) is continuous;
(ii) ψ(tx+ (1− t)y) ≥ tψ(x) + (1− t)ψ(y) for all x, y ∈ P and 0 ≤ t ≤ 1.
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Let
Pc := {x ∈ P : ‖x‖ < c}

and
P (ψ, a, b) := {x ∈ P : a ≤ ψ(x), ‖x‖ ≤ b}.

Theorem 1. Let P be a cone in the real Banach space E, A : Pc → Pc be completely continuous
and ψ be a nonnegative continuous concave functional on P with ψ(x) ≤ ‖x‖ for all x ∈ Pc.
Suppose there exists 0 < a < b < d ≤ c such that the following conditions hold:

(i) {x ∈ P (ψ, b, d) : ψ(x) > b} 6= ∅ and ψ(Ax) > b for all x ∈ P (ψ, b, d);
(ii) ‖Ax‖ < a for ‖x‖ ≤ a;

(iii) ψ(Ax) > b for x ∈ P (ψ, b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2, and x3 in Pc satisfying:

‖x1‖ < a, ψ(x2) > b, a < ‖x3‖ with ψ(x3) < b.

4. background lemmas

To prove the main existence result we will employ several straightforward lemmas. These
lemmas are based on the linear boundary value problem

(3) u∆∇(t) + y(t) = 0, t ∈ (0, T ) ⊂ T

(4) u(0) = 0, αu(η) = u(T ).

Lemma 2. If αη 6= T , then for y ∈ Cld[0, T ] the boundary value problem (3), (4) has the unique
solution

(5) u(t) := −
∫ t

0

(t− s)y(s)∇s− αt

T − αη

∫ η

0

(η − s)y(s)∇s+
t

T − αη

∫ T

0

(T − s)y(s)∇s.

Proof. Let u be as in (5). Routine calculations verify that u satisfies the boundary conditions
in (4). By Theorem 2.10 (iii) in [4] or Theorem 8.50 (iii) in [7, p333],(∫ t

a

f(t, s)∇s
)∆

= f(σ(t), σ(t)) +

∫ t

a

f∆(t, s)∇s

if f , f∆ are continuous. Using this theorem to take the delta derivative of (5) we have

u∆(t) = −(σ(t)−σ(t))yσ(t)−
∫ t

0

y(s)∇s− α

T − αη

∫ η

0

(η−s)y(s)∇s+ 1

T − αη

∫ T

0

(T−s)y(s)∇s.

Taking the nabla derivative of this expression yields u∆∇(t) = −y(t), so that u given in (5) is
a solution of (3), (4).

Briefly consider the boundary value problem

(6) x∆∇ = 0, x(0) = 0, αx(η) = x(T ).

A solution x must be linear, and the first boundary condition implies x = mt. Applying the
second boundary condition, we see that m(αη − T ) = 0. Since αη 6= T , m = 0. Therefore (6)
has only the trivial solution. Now suppose u and w are solutions of (3), (4); set x := u − w.
Then x satisfies (6), so that x ≡ 0. Thus u = w and u in (5) is the unique solution. �
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Lemma 3. If u(0) = 0 and u∆∇ ≤ 0, then u(T )
T

≤ u(t)
t

for all t ∈ (0, T ] ⊂ T.

Proof. Let h(t) := u(t) − tu(T )
T

. Then h(0) = h(T ) = 0 and h∆∇ ≤ 0 so that h(t) ≥ 0 on
[0, T ]. �

Lemma 4. Let 0 < α < T/η. If y ∈ Cld[0, T ] and y ≥ 0, the unique solution u of (3), (4)
satisfies

u(t) ≥ 0, t ∈ [0, T ] ⊂ T.

Proof. From the fact that u∆∇(t) = −y(t) ≤ 0, we know that the graph of u is concave down
on (0, T ). If u(T ) ≥ 0, then the concavity of u and the boundary condition u(0) = 0 imply
that u(t) ≥ 0 for t ∈ [0, T ]. If u(T ) < 0, then we have u(η) < 0 and

u(T )/T = αu(η)/T > u(η)/η,

a contradiction of Lemma 3. �

Lemma 5. Let αη > T . If y ∈ Cld[0, T ] and y ≥ 0, then (3), (4) has no nonnegative solution.

Proof. Assume (3), (4) has a nonnegative solution u. If u(T ) > 0, then u(η) > 0 and

u(T )/T = αu(η)/T > u(η)/η,

a contradiction of Lemma 3. If u(T ) = 0 and u(τ) > 0 for some τ ∈ (0, T ), then u(η) = u(T ) =
0, where τ 6= η. If τ ∈ (0, η), then u(τ) > u(η) = u(T ), a contradiction of the concavity of
u. If τ ∈ (η, T ), then u(0) = u(η) < u(τ), another violation of the concavity of u. Therefore
u(T ) < 0, so that no nonnegative solution exists. �

Remark 6. In view of Lemma 5, in the rest of this paper we assume αη < T . The work will
be in the Banach space Cld[0, T ] with the sup norm.

Lemma 7. Let 0 < α < T/η. If y ∈ Cld[0, T ] and y ≥ 0, then the unique solution u as in (5)
of (3), (4) satisfies

(7) inf
t∈[η,T ]

u(t) ≥ r‖u‖,

where

(8) r := min

{
α(T − η)

T − αη
,
αη

T
,
η

T

}
> 0.

Proof. First consider the case where 0 < α < 1. By the second boundary condition we know
that u(η) ≥ u(T ). Pick t0 ∈ (0, T ) such that u(t0) = ‖u‖. If t0 ≤ η < T , then

min
t∈[η,T ]

u(t) = u(T )

and

u(t0) ≤ u(T ) +
u(T )− u(η)

T − η
(0− T )

=
−ηu(T ) + Tu(η)

T − η

=
(T − αη)u(T )

α(T − η)
.
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Therefore

min
t∈[η,T ]

u(t) ≥ α(T − η)

T − αη
‖u‖.

If η ≤ t0 < T , again we have u(T ) = mint∈[η,T ] u(t). As in Lemma 3, u(η)/η ≥ u(t0)/t0. Using
the boundary condition αu(η) = u(T ), we find that u(T ) > αηu(t0)/T , so that

min
t∈[η,T ]

u(t) >
αη

T
‖u‖.

Now consider the case 1 ≤ α < T/η. The boundary condition this time implies u(η) ≤ u(T ).
Set u(t0) = ‖u‖. Note that by the concavity of u we have t0 ∈ [η, T ] and mint∈[η,T ] u(t) = u(η).
Once again by Lemma 3 it follows that u(η)/η ≥ u(t0)/t0, so that

min
t∈[η,T ]

u(t) ≥ η

T
‖u‖.

�

Remark 8. Below we will make use of the constants

(9) m :=

(
2T − αη

T − αη

∫ T

0

(T − s)∇s+
αT

T − αη

∫ η

0

(η − s)∇s
)−1

and

(10) δ := min

{
η

T − αη

∫ T

η

(T − s)∇s, αη

T − αη

∫ T

η

(T − s)∇s
}
,

where δ > 0 since 0 < η < ρ(T ) and αη < T . (If η = ρ(T ), then the nabla integral would be
zero.) For example, if T = R, then m is given by

m =

(
2T − αη

T − αη

∫ T

0

(T − s)ds+
αT

T − αη

∫ η

0

(η − s)ds

)−1

=
2(T − αη)

T (2T 2 − αηT + αη2)

and

δ = min

{
η(T − η)2

2(T − αη)
,
αη(T − η)2

2(T − αη)

}
.

If T = Z, then m is given by

m =

(
2T − αη

T − αη

T∑
s=1

(T − s) +
αT

T − αη

η∑
s=1

(η − s)

)−1

=
2(T − αη)

T (2T 2 − 2T − αηT + αη2)

and

δ = min

{
η(T − η)(T − η − 1)

2(T − αη)
,
αη(T − η)(T − η − 1)

2(T − αη)

}
.

For a general time scale, however, these constants are difficult to calculate; see Bohner and
Peterson [7] for a thorough introduction to the calculus on time scales and its computational
limitations.
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5. triple positive solutions

Let the Banach space E = Cld[0, T ] be endowed with the sup norm, and define the cone
P ⊂ E by

P = {u ∈ E : u concave and nonnegative valued on [0, T ]}.

Let the nonnegative continuous concave functional ψ : P → [0,∞) by defined by

(11) ψ(u) = min
t∈[η,T ]

u(t), u ∈ P.

Note that for u ∈ P , ψ(u) ≤ ‖u‖, and by Lemma 2 u is a solution of the boundary value
problem (1), (2) if and only if u has the form given in (5).

Theorem 9. Suppose that there exist constants 0 < a < b < b/r ≤ c such that

(D1) f(t, u) < ma for t ∈ [0, T ], u ∈ [0, a],
(D2) f(t, u) ≥ b/δ for t ∈ [η, T ], u ∈ [b, b/r],
(D3) f(t, u) ≤ mc for t ∈ [0, T ], u ∈ [0, c],

where r, m and δ are as defined in (8), (9), and (10), respectively. Then the boundary value
problem (1), (2) has at least three positive solutions u1, u2, u3 satisfying

‖u1‖ < a, b < ψ(u2), ‖u3‖ > a with ψ(u3) < b.

Proof. Define the operator A : P → E by

Au(t) = −
∫ t

0

(t− s)f(s, u(s))∇s− αt

T − αη

∫ η

0

(η − s)f(s, u(s))∇s

+
t

T − αη

∫ T

0

(T − s)f(s, u(s))∇s.

Note that if u ∈ P , the fact that f is nonnegative and Lemma 4 imply that Au(t) ≥ 0 for
t ∈ [0, T ]. Since (Au)∆∇(t) = −f(t, u(t)) for t ∈ (0, T ), we see that Au ∈ P ; i.e., A : P → P .
Moreover, A is completely continuous.

We now show that all of the conditions of Theorem 1 are satisfied. For all u ∈ P we have
ψ(u) ≤ ‖u‖. If u ∈ Pc, then ‖u‖ ≤ c and assumption (D3) implies f(t, u(t)) ≤ mc for t ∈ [0, T ].
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As a result,

‖Au‖ = max
t∈[0,T ]

−
∫ t

0

(t− s)f(s, u(s))∇s

− αt

T − αη

∫ η

0

(η − s)f(s, u(s))∇s+
t

T − αη

∫ T

0

(T − s)f(s, u(s))∇s

≤ max
t∈[0,T ]

∫ t

0

(t− s)f(s, u(s))∇s

+
αt

T − αη

∫ η

0

(η − s)f(s, u(s))∇s+
t

T − αη

∫ T

0

(T − s)f(s, u(s))∇s

≤ max
t∈[0,T ]

(∫ t

0

(t− s)∇s+
αt

T − αη

∫ η

0

(η − s)∇s+
t

T − αη

∫ T

0

(T − s)∇s
)
mc

=

(∫ T

0

(T − s)∇s+
αT

T − αη

∫ η

0

(η − s)∇s+
T

T − αη

∫ T

0

(T − s)∇s
)
mc

= c.

Therefore A : Pc → Pc. In the same way, if u ∈ Pa, then assumption (D1) yields f(t, u(t)) < ma
for t ∈ [0, T ]; as in the argument above, it follows that A : Pa → Pa. Hence, condition (ii) of
Theorem 1 is satisfied.

To check condition (i) of Theorem 1, choose uP (t) ≡ b/r for t ∈ [0, T ], where r is given in
(8). Then uP ∈ P (ψ, b, b/r) and ψ(uP ) = ψ(b/r) > b, so that {u ∈ P (ψ, b, b/r) : ψ(u) > b} 6= ∅.
Consequently, if u ∈ P (ψ, b, b/r), then b ≤ u(s) ≤ b/r for s ∈ [η, T ]. From assumption (D2) we
have that

f(t, u(t)) ≥ b/δ

for t ∈ [η, T ]; by the definitions of ψ and the cone P , we must distinguish two cases: ψ(Au(t)) =
Au(η) and ψ(Au(t)) = Au(T ).

First, suppose ψ(Au(t)) = Au(η). Then

ψ(Au) = Au(η)

= −
∫ η

0

(η − s)f(s, u(s))∇s− αη

T − αη

∫ η

0

(η − s)f(s, u(s))∇s

+
η

T − αη

∫ T

0

(T − s)f(s, u(s))∇s

= − T

T − αη

∫ η

0

(η − s)f(s, u(s))∇s+
η

T − αη

∫ T

0

(T − s)f(s, u(s))∇s

=
ηT

T − αη

∫ T

η

f(s, u(s))∇s+
T

T − αη

∫ η

0

sf(s, u(s))∇s− η

T − αη

∫ T

0

sf(s, u(s))∇s

>
η

T − αη

∫ T

η

Tf(s, u(s))∇s− η

T − αη

∫ T

η

sf(s, u(s))∇s

≥ bη

δ(T − αη)

∫ T

η

(T − s)∇s

≥ b,
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for δ as in (10).

Next, suppose ψ(Au(t)) = Au(T ). Then

ψ(Au) = Au(T )

= −
∫ T

0

(T − s)f(s, u(s))∇s− αT

T − αη

∫ η

0

(η − s)f(s, u(s))∇s

+
T

T − αη

∫ T

0

(T − s)f(s, u(s))∇s

=
αη

T − αη

∫ T

0

(T − s)f(s, u(s))∇s− αT

T − αη

∫ η

0

(η − s)f(s, u(s))∇s

=
αηT

T − αη

∫ T

η

f(s, u(s))∇s+
αT

T − αη

∫ η

0

sf(s, u(s))∇s− αη

T − αη

∫ T

0

sf(s, u(s))∇s

>
αη

T − αη

∫ T

η

Tf(s, u(s))∇s− αη

T − αη

∫ T

η

sf(s, u(s))∇s

≥ bαη

δ(T − αη)

∫ T

η

(T − s)∇s

≥ b,

again for δ as in (10). In either case we have

ψ(Au) > b, u ∈ P (ψ, b, b/r),

so that condition (i) of Theorem 1 holds.

Lastly we consider Theorem 1 (iii). Suppose u ∈ P (ψ, b, c) with ‖Au‖ > b/r. Then, using
the definition of ψ and Lemma 7, we see that

ψ(Au) = min
t∈[η,T ]

Au(t)

≥ r‖Au‖
> rb/r

= b.

�

6. one positive solution

Now we study the related boundary value problem

(12) u∆∇(t) + a(t)f(u(t)) = 0 t ∈ (0, T ) ⊂ T

(13) u(0) = 0, αu(η) = u(T ),

where again η ∈ (0, ρ(T )) ⊂ T for 0 ∈ Tκ, T ∈ Tκ, α > 0, and αη < T . Here

(A1) a ∈ Cld[0, T ] is nonnegative such that a(t0) > 0 for at least one t0 ∈ [η, T )
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(A2) f : [0,∞) → [0,∞) is continuous such that

f0 := lim
u→0+

f(u)

u
and f∞ := lim

u→∞

f(u)

u

both exist.

To establish the existence of at least one positive solution we will employ the following
fixed-point theorem due to Krasnoselskii [12], that can also be found in the book by Guo [10].

Theorem 10. Let E be a Banach space, K ⊆ E be a cone, and suppose that Ω1, Ω2 are bounded
open balls of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose further that A : K ∩ (Ω2 \ Ω1) → K is a
completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2, or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2

holds. Then A has a fixed point in K ∩ (Ω2 \ Ω1).

The boundary value problem (12), (13) has a solution u if and only if u is a fixed point of
the operator

Au(t) = −
∫ t

0

(t− s)a(s)f(u(s))∇s− αt

T − αη

∫ η

0

(η − s)a(s)f(u(s))∇s

+
t

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s.

Let B denote the Banach space Cld[0, T ] with the norm ‖x‖ = supt∈[0,T ] |x(t)|. Define the cone
P ⊂ B by

P = {x ∈ B : x(t) ≥ 0, inf
t∈[η,T ]

x(t) ≥ r‖x‖}

for r given in (8). By Lemma 7, AP ⊆ P , and A : P → P is completely continuous.

Theorem 11. Assume (A1) and (A2) hold. If either

(i) f0 = 0 and f∞ = ∞ (f is superlinear), or
(ii) f0 = ∞ and f∞ = 0 (f is sublinear),

then (12), (13) has at least one positive solution.

Proof. First suppose f is superlinear. Since f0 = 0, there exists an H1 > 0 such that f(u) ≤ εu
for 0 < u < H1, where ε is such that

ε

T − αη

∫ T

0

(T − s)a(s)∇s ≤ 1

T
.

If u ∈ P with ‖u‖ = H1, then

Au(t) ≤ t

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ t

T − αη

∫ T

0

(T − s)a(s)εu(s)∇s

≤ ε‖u‖T
T − αη

∫ T

0

(T − s)a(s)∇s

≤ H1.
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It follows that if

Ω1 := {u ∈ Cld[0, T ] : ‖u‖ < H1},

then ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1. Since f∞ = ∞, there exists an Ĥ2 > 0 such that f(u) ≥ ku

for u ≥ Ĥ2, where k > 0 is chosen such that

kηr

T − αη

∫ T

η

(T − s)a(s)∇s ≥ 1.

Set H2 = max{2H1,
Ĥ2

r
} and

Ω2 := {u ∈ Cld[0, T ] : ‖u‖ < H2}.

If u ∈ P with ‖u‖ = H2, then

min
t∈[η,T ]

u(t) ≥ r‖u‖ ≥ Ĥ2,

so that

Au(η) = −
∫ η

0

(η − s)a(s)f(u(s))∇s− αη

T − αη

∫ η

0

(η − s)a(s)f(u(s))∇s

+
η

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

= − T

T − αη

∫ η

0

(η − s)a(s)f(u(s))∇s+
η

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

=
ηT

T − αη

∫ T

η

a(s)f(u(s))∇s+
T

T − αη

∫ η

0

sa(s)f(u(s))∇s

− η

T − αη

∫ T

0

sa(s)f(u(s))∇s

>
η

T − αη

∫ T

η

Ta(s)f(u(s))∇s− η

T − αη

∫ T

η

sa(s)f(u(s))∇s

≥ kηr‖u‖
T − αη

∫ T

η

(T − s)a(s)∇s

≥ ‖u‖.

In other words, if u ∈ P ∩ ∂Ω2, then ‖Au‖ ≥ ‖u‖. Thus by the first part of Theorem 10, it
follows that A has a fixed point u in P ∩ (Ω2\Ω1) with H1 ≤ ‖u‖ ≤ H2.

Now suppose f is sublinear. Since f0 = ∞, there exists an H3 > 0 such that f(u) ≥ mu for
0 < u < H3, where m is such that

ηrm

T − αη

∫ T

η

(T − s)a(s)∇s ≥ 1.
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Then as above,

Au(η) ≥ η

T − αη

∫ T

η

(T − s)a(s)f(u(s))∇s

≥ ηr‖u‖m
T − αη

∫ T

η

(T − s)a(s)∇s

≥ ‖u‖
≥ H3.

Thus we let

Ω3 := {u ∈ Cld[0, T ] : ‖u‖ < H3}
so that ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω3.

Next consider f∞ = 0. By definition there exists Ĥ4 > 0 such that f(u) ≤ λu for u ≥ Ĥ4,
where λ > 0 satisfies

(14)
λ

T − αη

∫ T

0

(T − s)a(s)∇s ≤ 1

T
.

Suppose f is bounded. Then f(u) ≤M for all u ∈ [0,∞) for some constant M > 0. Pick

H4 := max

{
2H3,

TM

T − αη

∫ T

0

(T − s)a(s)∇s
}
.

If u ∈ P with ‖u‖ = H4, then

Au(t) ≤ t

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ TM

T − αη

∫ T

0

(T − s)a(s)∇s

≤ H4,

and ‖Au‖ ≤ ‖u‖.
Now suppose f is unbounded. From (A2) there exists H4 ≥ max{2H3,

Ĥ4

r
} such that f(u) ≤

f(H4) for 0 < u ≤ H4. If u ∈ P with ‖u‖ = H4, then

Au(t) ≤ t

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ T

T − αη

∫ T

0

(T − s)a(s)f(H4)∇s

≤ λH4T

T − αη

∫ T

0

(T − s)a(s)∇s

≤ H4

using (14).

Consequently, in either case we take

Ω4 := {u ∈ Cld[0, T ] : ‖u‖ < H4}
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so that for u ∈ P ∩ ∂Ω4 we have ‖Au‖ ≤ ‖u‖. Thus by the second part of Theorem 10, it
follows that A has a fixed point u in P ∩ (Ω4\Ω3) with H3 ≤ ‖u‖ ≤ H4. �
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