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Solutions to the Allen Cahn Equation and
Minimal Surfaces

Manuel del Pino and Juncheng Wei

Abstract. We discuss and outline proofs of some recent results on application of
singular perturbation techniques for solutions in entire space of the Allen-Cahn
equation Δu + u − u3 = 0. In particular, we consider a minimal surface Γ in R

9

which is the graph of a nonlinear entire function x9 = F (x1, . . . , x8), found by
Bombieri, De Giorgi and Giusti, the BDG surface. We sketch a construction of a
solution to the Allen Cahn equation in R

9 which is monotone in the x9 direction
whose zero level set lies close to a large dilation of Γ, recently obtained by M.
Kowalczyk and the authors. This answers a long standing question by De Giorgi
in large dimensions (1978), whether a bounded solution should have planar level
sets. We sketch two more applications of the BDG surface to related questions,
respectively in overdetermined problems and in eternal solutions to the flow by
mean curvature for graphs.

Keywords. Minimal surfaces, Infinite dimensional Lyapunov-Schmidt reduction,
Jacobi operator.

1. Introduction

The Allen-Cahn equation in R
N is the semilinear elliptic problem

Δu + u− u3 = 0 in R
N . (1.1)

Originally formulated in the description of bi-phase separation in fluids and ordering
in binary alloys [1], Equation (1.1) has received extensive mathematical study. It is
a prototype for the modeling of phase transition phenomena in a variety of contexts.

Introducing a small positive parameter ε and writing v(x) := u(ε−1x), we get
the scaled version of (1.1),

ε2Δv + v − v3 = 0 in R
N . (1.2)
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On every bounded domain Ω ⊂ R
N , (1.1) is the Euler-Lagrange equation for the

action functional
Jε(v) =

∫
Ω

ε

2
|∇v|2 +

1
4ε

(1− v2)2.

We observe that the constant functions v = ±1 minimize Jε. They are idealized as
two stable phases of a material in Ω. It is of interest to analyze configurations in
which the two phases coexist. These states are represented by stationary points of
Jε, or solutions vε of Equation (1.2), that take values close to +1 in a subregion of Ω
of and −1 in its complement. Modica and Mortola [29] and Modica [28], established
that a family of local minimizers vε of Jε for which

sup
ε>0

Jε(vε) < +∞ (1.3)

must satisfy as ε→ 0, after passing to a subsequence,

vε → χΛ − χΩ\Λ in L1
loc(Ω). (1.4)

Here Λ is an open subset of Ω with Γ = ∂Λ ∩ Ω having minimal perimeter, being
therefore a (generalized) minimal surface. Moreover,

Jε(vε) → 2
3

√
2Hn−1(Γ). (1.5)

Γ is then intuitively a surface close to the nodal set of vε (or more generally, for a
given λ ∈ (−1, 1), any level [vε = λ] for small ε). Scaling back into equation (1.1),
it is then plausible that a certain connection between the level sets of the initial u
and the minimal surface ε−1Γ actually takes place, at least when u corresponds to
a local minimizer of the energy on each given compact set.

What condition guarantees the locally minimizing (or stability) character of u?
For a solution u of (1.1), this is implied by the fact that the linearized operator
Δ + (1 − 3u2) is positive in the sense of maximum principle. Since the directional
derivatives e · ∇u lie in the kernel of this operator, the assumption that the solution
is monotone in some direction, say ∂xNu > 0 is sufficient for this. De Giorgi’s
conjecture for the Allen Cahn equation is a statement partly motivated by the above
facts, which we state below.

For n = 1 the function

w(t) := tanh
(

t√
2

)
connects monotonically the stable values −1 and +1 and solves (1.1):

w′′ + w − w3 = 0, w(±∞) = ±1, w′ > 0.

This solution generates a class of solutions to (AC) in the following manner: For any
p, ν ∈ R

N , |ν| = 1, the functions

u(x) := w(z), z = (x− p) · ν
solve equation (1.1). Here z represents the normal coordinate to the hyperplane
through p, with unit normal ν. A question is whether or not there exist solutions
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connecting the values −1 and 1 along some direction, which are different from these
trivial ones.

De Giorgi [15] raised the following conjecture in 1978.

De Giorgi’s conjecture: Let u be a bounded solution of equation

(AC) Δu + u− u3 = 0 in R
N ,

which is monotone in one direction, say ∂xNu > 0. Then, at least when N ≤ 8, there
exist p, ν such that

u(x) = w( (x− p) · ν).

This statement is equivalent to:

At least when N ≤ 8, all level sets of u, [u = λ] must be hyperplanes.

De Giorgi’s conjecture is actually a parallel to Bernstein’s Problem for minimal
surfaces which are entire graphs.

An entire minimal graph in R
N is a surface of the form

Γ = {(x′, F (x′)) ∈ R
N−1 × R / x′ ∈ R

N−1}
where F solves the minimal surface equation in entire space

∇ ·
(

∇F√
1 + |∇F |2

)
= 0 in R

N−1. (1.6)

Bernstein’s problem (by Fleming, 1962): Is it true that all entire minimal graphs are
hyperplanes, namely any entire solution of (1.6) must be a linear affine function?

This claim turns out to be True for N ≤ 8:

• Bernstein [8] (1917), Fleming [24] (1962) N = 3.
• De Giorgi [14] (1965) N = 4.
• Almgren [2] (1966), N = 5.
• Simons [35](1968), N = 6, 7, 8.

It is False for N ≥ 9: Bombieri-De Giorgi-Giusti [9] (1969) found a counterexample.

De Giorgi’s Conjecture: u bounded solution of (1.1), ∂xNu > 0, then level sets [u = λ]
are hyperplanes.

• True for N = 2. Ghoussoub and Gui [25] (1998).

• True for N = 3. Ambrosio and Cabré [1] (1999).

• True for 4 ≤ N ≤ 8. Savin [33] (2009), thesis (2003), if in addition

lim
xN→±∞

u(x′, xN ) = ±1 for all x′ ∈ R
N−1.

A counterexample to De Giorgi’s conjecture in dimension N ≥ 9 was believed
to exist for a long time. Partial progress in this direction was made by Jerison and
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Monneau [27] and by Cabré and Terra [10]. See also the survey article by Farina and
Valdinoci [22].

1.1. The Bombieri-De Giorgi-Giusti minimal graph

The negative example for Berntein’s problem in [9] corresponds to an ingenious, and
fairly explicit construction by super and sub-solutions of a non-trivial solution to
(1.6) when N = 9:

H(F ) := ∇ ·
(

∇F√
1 + |∇F |2

)
= 0 in R

8. (1.7)

The solution in [9] has the form

F : R4 × R
4 → R, (u,v) �→ F (|u|, |v|).

In addition, F (|u|, |v|) > 0 for |v| > |u| and

F (|u|, |v|) = −F (|v|, |u|).

Let us introduce polar coordinates:

|u| = r cos θ, |v| = r sin θ, θ ∈ (0,
π

2
).

Computing the mean curvature operator H(F ) in (1.7) at F = F (r, θ) we get

H[F ] =
1

r7 sin3 2θ
∂r

⎛
⎝ Frr

7 sin3 2θ√
1 + F 2

r + r−2F 2
θ

⎞
⎠

+
1

r7 sin3 2θ
∂θ

⎛
⎝ Fθr

5 sin3 2θ√
1 + F 2

r + r−2F 2
θ

⎞
⎠ .

Let us look for an approximate solution by separation of variables F0(r, θ) = r3g(θ).
We compute

H[F0] =
1

r7 sin3 2θ
∂r

(
3r7g sin3 2θ√
r−4 + 9g2 + g′2

)

+
1

r sin3 2θ
∂θ

(
g′ sin3 2θ√

r−4 + 9g2 + g′2

)
.

As r →∞ we impose the equation H(F0) = 0 satisfied. This becomes the ODE

21g sin3 2θ√
9g2 + g′2

+

(
g′ sin3 2θ√
9g2 + g′2

)′
= 0 in

(π
4
,
π

2

)
,

g
(π
4

)
= 0 = g′

(π
2

)
.

This problem has a solution g positive in (π4 ,
π
2 ), see [16].

We check directly that
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• F0(r, θ) = r3g(θ) is a subsolution of the minimal surface equation H(F ) = 0:
H(F0) ≥ 0

• F0(r, θ) accurate approximation to a solution of the minimal surface equation:

H(F0) = O(r−5) as r → +∞.

The supersolution of Bombieri, De Giorgi and Giusti can be refined to yield
that F0 gives the precise asymptotic behavior of F . The following was established
in [16].

For θ ∈ (π4 ,
π
2 ) we have, for 0 < σ < 1 and all large r,

F0(r, θ) ≤ F (r, θ) ≤ F0(r, θ) + Ar−σ as r → +∞. (1.8)

The following result, by M. Kowalczyk and the authors “disproves” De Giorgi’s
conjecture in dimension 9 (and hence in any dimension higher).

Theorem 1 ( [16, 17]). Let Γ be a BDG minimal graph in R
9 and Γε := ε−1Γ.

Then for all small ε > 0, there exists a bounded solution uε of (AC), monotone in
the x9-direction, with

uε(x) = w(ζ) + O(ε), x = y + ζν(εy), y ∈ Γε, |ζ| < δ

ε
,

lim
x9→±∞

u(x′, x9) = ±1 for all x′ ∈ R
8.

We shall devote the main part of the remaining of this paper to describing
the proof of the above result. We will introduce in certain detail some necessary
background and related notation concerning minimal hypersurfaces in R

n and then
carry out the proof omitting the proof of some intermediate steps which are contained
in [16].

In the last part of the paper we will state some closely related results for ques-
tions related to two well-known problems: construction of solutions to overdeter-
mined semilinear equations (a joint work with F. Pacard), and solutions to the
mean curvature flow for entire graphs (with P. Daskalopoulos and M. Kowalczyk).

2. Preliminaries

2.1. Preliminaries I: The Laplacian near a hypersurface

Let Γ be a hypersurface embedded in R
n+1 and let ν designate a choice of unit

normal. Local coordinates near Γ:

x = y + zν(y), y ∈ Γ, |z| < δ.

We will establish the following formula:

Δx = ∂zz + ΔΓz − HΓz(y) ∂z (2.1)
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Here
Γz := {y + zν(y) / y ∈ Γ}.

ΔΓz is the Laplace-Beltrami operator on Γz and HΓz(y) its mean curvature. Let
k1, . . . , kn be the principal curvatures of Γ. Then, as we shall see

HΓz =
n∑

i=1

ki
1− zki

(2.2)

x = y + zν(y), y ∈ Γ, |z| < δ.

Assume that an open region of Γ can be described by means of the parametriza-
tion

y ∈ ω ⊂ R
n �→ y = y(y) ∈ R

n+1

which induce local coordinates

x = y(y) + zν(y),

To compute the Laplacian, we describe the Dirichlet integral (with no region of
integration specified)

I =
∫
|Dxϕ(x)|2 dx.

For a function f(x) we write f̃(y, z) = f(x(y, z)). Let us set

Yi = ∂iy, Bi = ∂iν

where ∂i = ∂yi and write

Y = Dy = [Y1 · · · Yn] , B = Dν = [B1 · · · Bn] .

Then
X = Dx(y, z) = [Y1 + zB1 · · · Yn + zBn ν] .

Let us observe that

XTX =
[
[Y + zB]T [Y + zB] 0

0 1

]
.

Then ∫
|Dϕ|2 dx =

∫
(Dϕ̃)T (XTX)−1(Dϕ̃)

√
det(XTX) dy dz.

Denote
g(0) := Y TY, g(z) = [Y + zB]T [Y + zB]

whose coefficients are those of the metric respectively on Γ and Γz. We shall also
denote, as customary gij(z), the coefficients of the matrix g(z)−1. Then∫

|Dϕ|2 dx =
∫

(gij(z) ∂iϕ̃∂j ϕ̃ + |∂zϕ̃|2)
√

det g(z) dy dz.

Let us analyze further the matrix

g(z) = [Y + zB]T [Y + zB] = YTY + z(BTY + YTB) + z2BTB.
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Differentiating the equalities Yj · ν = 0 = Yi · ν we find

BTY = YTB.

Also,
Y[YTY]−1YTB = B

since the columns of B are in the space spanned by the columns of Y. Using these
two facts we easily get

g(z) = [Y + zB]T [Y + zB] = g(0)
[
I − zA ]2

where A is the (symmetric) matrix

A = −[YTY]−1YTB.

The shape operator is the linear map L of the tangent space TyΓ given by

e ∈ TyΓ �→ L[e] = −∇eν(y) ∈ TyΓ,

where ∇eν(y) is the directional derivative at y of the normal vector field ν along
e. The matrix of L in the basis Y1, . . . , Yn is A with

L[Yj ] = −Bj = YA.j .

Hence we have precisely
A = −[YTY]−1YTB.

This matrix also represents the second fundamental form AΓ in the basis Y1, . . . , Yn,
which is the symmetric bilinear map of TyΓ defined as

AΓ[e1, e2] = L[e1] · e2.

The eigenvalues of the matrix A (or just AΓ) do not depend on the particular
parametrization chosen. They are by definition the principal curvatures of Γ at y,
k1(y), . . . , kn(y). Since

g(z) = g(0) (I − zAΓ)2

we get √
det g(z) =

√
det g(0) det(I − zAΓ) =

√
det g(0)

n∏
i=1

(1− kiz).

By taking first variation of the Dirichlet integral we find∫
∇ϕ · ∇ψ dx =

∫
gij(z) ∂iϕ̃ ∂jψ̃

√
det g(z) dy dz

+
∫

∂zϕ̃ ∂zψ̃
√

det g(z) dy dz.

So by integration by parts we get∫
Δϕψ dx =

∫
1√

det g(z)
∂j

(√
det g(z)gij(z) ∂iϕ̃

)
ψ̃
√

det g(z) dy dz

+
∫

1√
det g(z)

∂z
(√

det g(z)∂zϕ̃
)
ψ̃
√

det g(z) dy dz.
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Now, the Laplace-Beltrami operator of the manifold Γz in coordinates y is
precisely

ΔΓz =
1√

det g(z)
∂j

(√
det g(z)gij(z) ∂i

)
while

1√
det g(z)

∂z
(√

det g(z)∂z
)

= ∂zz + ∂z log det(I − zAΓ) ∂z.

On the other hand

∂z log det(I − zAΓ) =
n∑

i=1

∂z log(1− kiz) = −
n∑

i=1

ki
1− kiz

.

By the mean curvature HΓ(y) of Γ at y we designate the trace of the second
fundamental form, namely

HΓ(y) =
n∑

i=1

ki(y).

Similarly one can compute the mean curvature HΓz of the manifold Γz as the sum
of the eigenvalues of the matrix

AΓz = −[(Y + zB)T (Y + zB)]−1(Y + zB)TB.

It is easy to check

AΓz = −[I − zAΓ]−1AΓ

from where we get

HΓz(y) =
n∑

i=1

ki
1− kiz

and (2.2) holds.

Thus we have found

Δ = ∂zz + ΔΓz −HΓz(y) ∂z,

that is the validity of (2.1). For later reference, let us expand

HΓz(y) = HΓ(y) + z |AΓ(y)|2 + z2
N∑
i=1

k3
i + · · ·

where

HΓ =
8∑

i=1

ki︸ ︷︷ ︸
mean curvature

, |AΓ|2 =
8∑

i=1

k2
i .︸ ︷︷ ︸

norm second fundamental form
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2.2. Preliminaries II: Minimal hypersurface and its Jacobi operator

The area of a portion of the surface Γ is simply represented by the quantity

A[Γ] =
∫ √

[det g(0)] dy

integrated on a bounded region which we do not specify.
Let us consider a small normal perturbation of Γh of Γ (a normal graph over

Γ), described as
yh = y + h(y)ν(y), y ∈ Γ

where h is a small smooth function on Γ.

We expand in h the quantity A[Γh]. The metric g(h) is described in coordinates
y as

g(h) = g(0)[I − hAΓ]2 (In + [I − hAΓ]−2g(0)−1(Dh)TDh ).

Neglecting terms cubic in h (or Dh) we then find√
det g(h) =

√
det g(0)

n∏
i=1

(1− kih)
√

det[ I + g(0)−1(Dh)TDh ] + O(h3).

We compute

det[ I + g(0)−1(Dh)TDh ] = 1 + [g(0)−1(Dh)TDh]ii = 1 + gij ∂jh ∂ih.

On the other hand,

log
n∏

i=1

(1− kih) =
∑
i

log(1− kih)

=
∑
i

(−kih− 1
2
k2
i h

2 + O(h3))

= −HΓh +
1
2
|AΓ|2h2 + O(h3).

Thus
n∏

i=1

(1− kih) = exp(−HΓh− 1
2
|AΓ|2h2 + O(h3) )

= 1−HΓh− 1
2
|AΓ|2h2 +

1
2
|HΓ|2h2 + O(h3).

Hence √
det g(h) =

√
det g(0)

(
1−HΓh +

1
2
|AΓ|2h2 +

1
2
|HΓ|2h2 )

× (1 +
1
2
gij ∂jh ∂ih) + O(h3).

Thus we find√
det g(h) =

√
det g(0)

(
1−HΓh− 1

2
|AΓ|2h2 +

1
2
|HΓ|2h2 +

1
2
gij ∂jh ∂ih + O(h3)
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A[Γh] = A[Γ]−
∫

HΓh
√

det g(0) dy +
1
2

∫
gij(0) ∂jh ∂ih− |AΓ|2h2

√
det g(0) dy

+
1
2

∫
|HΓ|2h2

√
det g(0)dy + O(h3).

Setting
√

det g(0)dy = dσ(y) we get

A(Γh) = A[Γ]−
∫

HΓh dσ − 1
2

∫
( ΔΓh + (|AΓ|2 − |HΓ|2)h )h dσ + O(h3).

Thus, we obtain the formulas for the first and second variations of area with
respect to normal perturbations.

δA(Γ)[h] :=
d

dt
A(Γth)

∣∣
t=0 = −

∫
HΓh dσ(y)

δ2A(Γ)[h, h] :=
d2

dt2
A(Γth)

∣∣
t=0 = −

∫
( ΔΓh + |AΓ|2h− |HΓ|2 )h dσ(y).

Γ is a minimal surface if δA(Γ) = 0, or

HΓ(y) =
n∑

i=1

ki(y) = 0 for all y ∈ Γ.

If Γ is minimal then

δ2A(Γ)[h, g] =
∫
JΓ[h] g dσ

where JΓ is the Jacobi operator

JΓ[h] = ΔΓh + |AΓ|2h.

2.3. Preliminaries III: Mean curvature and its linearization in the case of a graph

Let us consider the special case in which Γ is parametrized as graph,

y(y) =
[

y

F (y)

]
, Y =

[
In

DF (y)

]
.

Then
g(0) = YTY = In + DF (y)TDF (y).

Then we easily compute

det(g(0)) = det(In + DF (y)TDF (y)) = 1 +
n∑

i=1

|∂iF |2

or
dσ(y) =

√
1 + |DF |2 dy.

Hence

A(F ) =
∫ √

1 + |DF |2 dy.
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Variations of area along vertical perturbations of F

δA(F )[φ] :=
d

dt
A(F + tφ)

∣∣
t=0 = −

∫
∇ ·

(
∇F√

1 + |∇F |2

)
φ dy,

and

δ2A(F )[φ, φ] :=
d2

dt2
A(F+tφ)

∣∣
t=0 = −

∫
∇·

(
∇φ√

1 + |∇F |2 −
(∇F · ∇φ)∇F

(1 + |∇F |2) 3
2

)
φ dy.

For certain normal perturbation h̃(t) with h̃(0) = 0 we have

A(F + tφ) = A(Γh̃(t)).

Thus writing h = ˙̃
h(0) we find

δA(F )[φ] = δA(Γ)[h].

Given y, then for certain ỹ(t) with ỹ(0) = y we have[
ỹ(t)

F (ỹ(t))

]
+ h̃(t)ν(ỹ(t)) =

[
y

F (y) + tφ(y)

]
.

Differentiating in t at t = 0 and taking dot product with ν(y) we find

h = ˙̃
h(0) = νn+1φ

or
φ =

√
1 + |∇F |2h.

Thus ∫
HΓh dσ =

∫
∇ ·

( ∇F

1 + |∇F |2
)

φ dy.

Hence

HΓ = ∇ ·
(

∇F√
1 + |∇F |2

)
.

Similarly, since

δ2A(F )[φ, φ] = δ2A(Γ)[h, h] + δA(Γ)[¨̃h(0)]

it follows that if Γ is a minimal surface then setting

LF [φ] = ∇ ·
(

∇φ√
1 + |∇F |2 −

(∇F · ∇φ)∇F

(1 + |∇F |2) 3
2

)

we get the identity

LF [φ] = JΓ[h], φ =
√

1 + |∇F |2 h.

Letting f(u) = u− u3 the equation

Δu + f(u) = 0 in R
9
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becomes, for

u(y, ζ) := u(x), x = y + ζν(εy), y ∈ Γε, |ζ| < δ/ε,

ν unit normal to Γ with ν9 > 0,

S(u) := Δu + f(u) = ΔΓζ
ε
u− εHΓεζ (εy) ∂ζu + ∂2

ζu + f(u) = 0.

• We look for a solution of the form (near Γε)

uε(x) = w(ζ − εh(εy)) + φ, x = y + ζν(εy)

for a function h defined on Γ, left as a parameter to be adjusted and φ small.
• Let r(y′, y9) = |y′|. We assume a priori on h that

‖(1 + r3)D2
Γh‖L∞(Γ) + ‖(1 + r2)DΓh‖L∞(Γ) + ‖(1 + r)h‖L∞(Γ) ≤ M

for some large, fixed number M .

Let us change variables to t = ζ − εh(εy), or

u(y, t) := u(x) x = y + (t + εh(εy)) ν(εy).

The equation becomes

S(u) = ∂ttu + ΔΓζ
ε
u− εHΓεζ (εy) ∂tu + ε4|∇Γεζh(εy)|2∂ttu

− 2ε3 〈∇Γεζh(εy), ∂t∇Γεζu〉 − ε3ΔΓεζh(εy) ∂tu + f(u) = 0,

ζ = t + εh(εy).

Look for solution uε of the form

uε(t, y) = w(t) + φ(t, y)

for a small function φ.

The equation in terms of φ becomes

∂ttφ + ΔΓεφ + Bφ + f ′(w(t))φ + N(φ) + E = 0,

where B is a small linear second order operator, and

E = S(w(t)), N(φ) = f(w + φ)− f(w)− f ′(w)φ ≈ f ′′(w)φ2.

The error of approximation is then given by the quantity

E := S(w(t)) = ε4|∇Γεζh(εy)|2w′′(t)− [ε3ΔΓεζh(εy) + εHΓεζ (εy)]w′(t),

and

εHΓεζ (εy) = ε2(t + εh(εy))|AΓ(εy)|2 + ε3(t + εh(εy))2
8∑

i=1

k3
i (εy) + · · · .

A crucial fact for estimating the size of this error is the following result by L. Simon
[34] (1989): ki = O(r−1) as r → +∞. In particular

|E(y, t)| ≤ Cε2r(εy)−2.
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A fact we have to take care of is that equation

∂ttφ + ΔΓεφ + Bφ + f ′(w(t))φ + N(φ) + E = 0.

makes sense only for |t| < δε−1. A gluing procedure reduces the full problem to

∂ttφ + ΔΓεφ + Bφ + f ′(w)φ + N(φ) + E = 0 in R× Γε, (2.3)

where E and B are the same as before, but cut-off far away. N is modified by the
addition of a small nonlocal operator of φ.

We find a small solution to Problem (2.3) in two steps which constitute an
Infinite dimensional Lyapunov-Schmidt reduction:

Step 1: Given the parameter function h, find a a solution φ = Φ(h) to the problem

∂ttφ + ΔΓεφ + Bφ + f ′(w(t))φ + N(φ) + E = c(y)w′(t) in R× Γε,∫
R

φ(t, y)w′(t) dt = 0 for all y ∈ Γε.

Step 2: Find a function h such that for all y ∈ Γε,

c(y) :=
1∫

R
w′2 dt

∫
R

(E + BΦ(h) + N(Φ(h)))w′dt = 0.

For Step 1 we solve first the linear problem

∂ttφ + ΔΓεφ + f ′(w(t))φ = g(t, y)− c(y)w′(t) in R× Γε∫
R

φ(y, t)w′(t) dt = 0 in Γε, c(y) :=

∫
R
g(y, t)w′(t) dt∫

R
w′2 dt

.

There is a unique bounded solution φ := A(g) if g is bounded. Moreover, for any
ν ≥ 0 we have

‖(1 + r(εy)ν)φ‖∞ ≤ C ‖(1 + r(εy))νg‖∞.

Γε ≈ R
N−1 around each of its points as ε → 0, in uniform way. The problem is

qualitatively similar to Γε replaced with R
N−1.

Fact: The linear model problem

∂ttφ + Δyφ + f ′(w(t))φ = g(t, y)− c(y)w′(t) in R
N∫

R

φ(y, t)w′(t) dt = 0 in R
N−1, c(y) :=

∫
R
g(y, t)w′(t) dt∫

R
w′2 dt

has a unique bounded solution φ if g is bounded, and

‖φ‖∞ ≤ C ‖g‖∞.

Let us prove first the a priori estimate: If the a priori estimate did not hold,
there would exist

‖φn‖∞ = 1, ‖gn‖∞ → 0,

∂ttφn + Δyφn + f ′(w(t))φn = gn(t, y),
∫
R

φn(y, t)w′(t) dt = 0.
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Using maximum principle and local elliptic estimates, we may assume that φn →
φ �= 0 uniformly over compact sets where

∂ttφ + Δyφ + f ′(w(t))φ = 0,
∫
R

φ(y, t)w′(t) dt = 0.

Claim: φ = 0, which is a contradiction.

To establish this claim, a basic one-dimensional fact is needed: the spectral gap
estimate. Let

L0(p) := p′′ + f ′(w(t))p.

Then there is a γ > 0 such that if p ∈ H1(R) and
∫
R
pw′ dt = 0 then

−
∫
R

L0(p) p dt =
∫
R

(|p′|2 − f ′(w)p2) dt ≥ γ

∫
R

p2 dt .

Using maximum principle we find |φ(y, t)| ≤ Ce−|t|. Set ϕ(y) =
∫
R
φ2(y, t) dt. Then

Δyϕ(y) = 2
∫
R

φΔφ(y, t) dt + 2
∫
R

|∇yφ(y, t)|2 dt

≥ −2
∫
R

φ∂ttφ + f ′(w)φ2 dt = 2
∫
R

(|φt|2 − f ′(w)φ2) dt ≥ γϕ(y).

Note that
−Δyϕ(y) + γϕ(y) ≤ 0, and ϕ ≥ 0 bounded,

implies ϕ ≡ 0, hence φ = 0, a contradiction. This proves the a priori estimate.

Existence: take g compactly supported. Set H be the space of all φ ∈ H1(RN ) with∫
R

φ(y, t)w′(t) dt = 0 for all y ∈ R
N−1.

H is a closed subspace of H1(RN ).

The problem: φ ∈ H and

∂ttφ + Δyφ + f ′(w(t))φ = g(t, y)− w′(t)
∫
R
g(y, τ)w′(τ) dτ∫

R
w′2 dτ

,

can be written variationally as that of minimizing in H the energy

I(φ) =
1
2

∫
RN

|∇yφ|2 + |φt|2 − f ′(w)φ2 +
∫
RN

gφ.

I is coercive in H thanks to the 1d spectral gap estimate. Existence in the general
case follows by the L∞-a priori estimate and approximations.

We write the problem of Step 1,

∂ttφ + ΔΓεφ + Bφ + f ′(w(t))φ + N(φ) + E = c(y)w′(t) in R× Γε,∫
R

φ(t, y)w′(t) dt = 0 for all y ∈ Γε,

in fixed point form
φ = A(Bφ + N(φ) + E).
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The contraction mapping principle implies the existence of a unique solution φ :=
Φ(h) with

‖(1 + r2(εy))φ‖∞ = O(ε2).

Finally, we carry out Step 2. We need to find h such that∫
R

[E + BΦ(h) + N(Φ(h))] (ε−1y, t)w′(t) dt = 0 ∀ y ∈ Γ.

Since

−E(ε−1y, t) = ε2tw′(t) |AΓ(y)|2 + ε3[ΔΓh(y) + |AΓ(y)|2h(y) ]w′(t)

+ ε3t2w′(t)
8∑

j=1

kj(y)3 + smaller terms

the problem becomes

JΓ(h) := ΔΓh + |AΓ|2h = c

8∑
i=1

k3
i +N (h) in Γ,

where N (h) is a small operator.

Fact: Let 0 < σ < 1. Then if

‖(1 + r4+σ) g‖L∞(Γ) < +∞
there is a unique solution h = T (g) to the problem

JΓ[h] := ΔΓh + |AΓ(y)|2h = g(y) in Γ

with

‖(1 + r)2+σ h‖L∞(Γ) ≤ C ‖(1 + r)4+σ g‖L∞(Γ) .

We want to solve

JΓ(h) := ΔΓh + |AΓ|2h = c

8∑
i=1

k3
i +N (h) in Γ,

using a fixed point formulation for the operator T above. In N (h) everything decays
O(r−4−σ), but we only have

8∑
i=1

k3
i = O(r−3).

Two more facts:

• There is a function p smooth, with p(π2 − θ) = −p(θ) for all θ ∈ (0, π4 ) such
that

8∑
i=1

ki(y)3 =
p(θ)
r3 + O(r−4−σ).
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• There exists a smooth function h0(r, θ) such that h0 = O(r−1) and for some
σ > 0,

JΓ[h0] =
p(θ)
r3 + O(r−4−σ) as r → +∞,

JΓ(h) := ΔΓh + |AΓ|2h = c

8∑
i=1

k3
i + O(r−4−σ) in Γ.

Our final problem then becomes h = h0 + h1 where

h1 = T (O(r−4−σ) +N (h0 + h1))

which we can solve for h1 = O(r−2−σ), using contraction mapping principle, keeping
track of Lipschitz dependence in h of the objects involved in in N (h).

As we have discussed, the Jacobi operator

JΓ[h] = ΔΓh + |AΓ(y)|2h,
is the linearization of the mean curvature, when normal perturbations are consid-
ered. In the case of a minimal graph x9 = F (x′), if we linearize along vertical
perturbations we get

H ′(F )[φ] = ∇ ·
(

∇φ√
1 + |∇F |2 −

(∇F · ∇φ)

(1 + |∇F |2) 3
2

∇F

)
.

As we have seen, these two operators are linked through the relation

JΓ[h] = H ′(F )[φ], where φ(x′) =
√

1 + |∇F (x′)|2 h(x′, F (x′)).

Next we discuss the proofs of the facts used above:
1. If g = O(r−4−σ) there is a unique solution to JΓ[h] = g with

‖(1 + r)2+σ h‖L∞(Γ) ≤ C ‖(1 + r)4+σ g‖L∞(Γ) .

2. There is a function p smooth, with p(π2 − θ) = −p(θ) for all θ ∈ (0, π4 ) such
that

8∑
i=1

ki(y)3 =
p(θ)
r3 + O(r−4−σ).

3. There exists h0(r, θ) such that h0 = O(r−1) and

JΓ[h0] =
p(θ)
r3 + O(r−4−σ) as r → +∞.

The closeness between JΓ0 and JΓ . The following statement is proven in [16].

Let p ∈ Γ with r(p) � 1. There is a unique π(p) ∈ Γ0 such that π(p) = p + tpν(p).
Let us assume

h̃(π(y)) = h(y), for all y ∈ Γ, r(y) > r0.

Then

JΓ[h](y) = [JΓ0 [h0] + O(r−2−σ)D2
Γ0
h0 + O(r−3−σ)DΓ0h0 + O(r−4−σ)h0 ] (π(y)).
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The operator JΓ0 [h] does not exactly coincide with H ′(F0)[
√

1 + |∇F0|2h] but they
differ only on terms with very rapid decay. This allows us to make explicit compu-
tations for approximate solutions and barriers.

We compute explicitly

H ′(F0)[φ] =
1

r7 sin3(2θ)

{
(9g2 w̃r3φθ)θ + (r5g′2 w̃φr)r

− 3(gg′ w̃r4φr)θ − 3(gg′ w̃r4φθ)r
}

+
1

r7 sin3(2θ)

{
(r−1 w̃φθ)θ + (rw̃φr)r

}
,

where

w̃(r, θ) :=
sin3 2θ

(r−4 + 9g2 + g′2)
3
2

.

Further expand
L[φ] := H ′(F0)[φ] := L0 + L1,

with

L0[φ] =
1

r7 sin3(2θ)

{
(9g2 w̃0r

3φθ)θ + (r5g′2 w̃0φr)r

− 3(gg′ w̃0r
4φr)θ − 3(gg′ w̃0r

4φθ)r
}

+
1

r7 sin3(2θ)

{
(r−1 w̃0φθ)θ + (rw̃0φr)r

}
,

where

w̃0(θ) :=
sin3 2θ

(9g2 + g′2)
3
2

.

An important fact: If 0 < σ < 1 there is a positive supersolution φ̄ = O(r−σ) to

−L[φ̄] ≥ 1
r4+σ

in Γ.

We have that

L0[r−σq(θ)] =
1

r4+σ

9g
4−σ
3

sin3 2θ

[
g

2
3 sin3 2θ

(9g2 + g′2)
3
2

( g
σ
3 q )′

]′
=

1
r4+σ

if and only if q(θ) solves the ODE[
g

2
3 sin3 2θ

(9g2 + g′2)
3
2

( g
σ
3 q )′

]′
=

1
9
sin3 2θg(θ)−

4−σ
3 , .

A solution in (π4 ,
π
2 ):

q(θ) =
1
9
g−

σ
3 (θ)

∫ θ

π
4

( 9g2 + g′2 )
3
2

g
2
3 sin3(2s)

ds

∫ π
2

s
g−

4−σ
3 (τ) sin3(2τ) dτ .
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Since g′(π4 ) > 0, q is defined up to π
4 and can be extended smoothly (evenly) to

(0, π4 ). Thus and φ̄ := q(θ)r−σ satisfies

−L0(φ̄) = r−4−μ in R
8.

We can show that also −L(φ̄) ≥ r−4−σ for all large r. Thus

−JΓ0 [h̄] ≥ r−4−σ, h̄ =
φ√

1 + |∇F0|2
∼ r−2−σ.

The closeness of JΓ and JΓ0 makes h̄ to induce a positive supersolution ĥ ∼
r−2−σ to

−JΓ[ĥ] ≥ r−4−σ in Γ.

We conclude by a barrier argument that Fact 1 holds: if ‖(1+ r4+σ) g‖L∞(Γ) < +∞
there is a unique h with JΓ[h] = g and

‖(1 + r)2+σ h‖L∞(Γ) ≤ C ‖(1 + r)4+σ g‖L∞(Γ) .

Let k0
i (y) be the principal curvatures of Γ0.

The following hold:

•
8∑

i=1

ki(y)3 =
8∑

i=1

k0
i (π(y))3 + O(r−4−σ)

•
8∑

i=1

k0
i (y)

3 =
p(θ)
r3 + O(r−4−σ)

p smooth, p(π2 − θ) = −p(θ) for all θ ∈ (0, π4 ).

We claim: there exists a smooth function h∗(r, θ) such that h∗ = O(r−1) and for
some σ > 0,

JΓ0 [h∗] =
p(θ)
r3 + O(r−4−σ) as r → +∞.

Setting h0(y) = h∗(π(y)) we then get h0 = O(r−1) and

JΓ(h) := ΔΓh + |AΓ|2h = c
8∑

i=1

k3
i + O(r−4−σ) in Γ,

namely the validity of Fact 2.

Construction of h∗.
We argue as before (separation of variables) to find q(θ) solution of

L0(r q(θ)) =
p(θ)
r3 , θ ∈ (

π

4
,
π

2
),

q(θ) = −1
9
g

1
3 (θ)

∫ θ

π
4

( 9g2 + g′2 )
3
2

g−
2
3ds

sin3(2s)

∫ π
2

s
p(τ)g−

5
3 (τ) sin3(2τ) dτ .
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Let η(s) = 1 for s < 1, = 0 for s > 2 be a smooth cut-off function. Then

φ0(r, θ) := (1− η(s)) r q(θ) in (
π

4
,
π

2
), s = r2g(θ).

satisfies

L(φ0) =
p(θ)
r3 + O(r−4− 1

3 ).

Finally, the function

h∗ =
φ0√

1 + |∇F0|2
= O(r−1)

extended oddly through θ = π
4 satisfies

JΓ0 [h∗] =
p(θ)
r3 + O(r−4− 1

3 )

as desired. �

3. Some further results on entire solutions

Loosely speaking, the method of construction of solutions described so far applies to
finding an entire solution uε to Δu+ u− u3 = 0 with transition set near Γε = ε−1Γ,
whenever Γ is a minimal hypersurface embedded in R

N , that splits the space into
two components, and for which enough control at infinity is present to invert globally
its Jacobi operator.

3.1. An important example for N = 3: finite Morse index solutions

We have the validity of the following result

Theorem 2 ([19]). Let Γ be a complete, embedded minimal surface in R
3 with finite

total curvature:
∫
Γ |K| <∞, K Gauss curvature.

If Γ is non-degenerate, namely its bounded Jacobi fields originate only from rigid
motions, then for small ε > 0 there is a solution uε to (AC) with

uε(x) ≈ w(t), x = y + tνε(y).

In addition i(uε) = i(Γ) where i denotes Morse index.

For example: nondegeneracy and Morse index are known for the catenoid and
the Costa-Hoffmann-Meeks surfaces (found in [12, 26]), see (Nayatani [31] (1990),
Morabito [30], (2008)).

3.2. An example with infinite total curvature
∫
Γ |K| = ∞

The helicoid, is a classical embedded minimal surface whose total curvature is infi-
nite: this surface, dependent on a parameter λ can be described as follows.

Hλ = {(r cos θ, r sin θ, z) ∈ R
3 / z =

λ

π
θ}.

The following result holds:
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Theorem 3. [20]
• If λ > π There exists a solution to the Allen Cahn equation in R

3 whose zero level
set is exactly Hλ

• If λ ≤ π then any solution which vanishes on Hλ must be identically zero.

The zero-level set of u: the helicoid z =
λ

π
θ.

As r → +∞, v(r, s) ≈ w(s) where w is the unique solution of

w′′ + f(w) = 0, w(λ) = 0 = w(0)

w �= 0 exists and it is unique up to translations if and only if λ > π.

Those found in the above result are Screw-motion invariant solutions. If λ > π,
there exists a solution u(r, θ, z), whose zero set corresponds exactly to the helicoid
z = λ

πθ, invariant under screw motion:

u(r, θ, z) = u(r, θ − α, z − λ

π
α) = u(r, 0, z − λ

π
θ) for all α.

which reduce the equation to

u(r, θ, z) ≡ v(r, z − λ

π
θ),

vss + vrr +
vr
r

+
λ2

r2π2 vss + f(v) = 0, v(r, 0) = 0 = v(r, λ).

3.3. The stable De Giorgi conjecture

A question related with De Giorgi conjecture is the following:
Is it true that a bounded, stable solution to (1.1) must have planar level sets?

Stability of a solution u means that∫
|∇φ|2 + (1− 3u2)φ2 ≥ 0 for all φ ∈ C∞0 (Rn).

This condition is implied by the fact that ∂xnu > 0 as it is standard to check. The
result in [16] implies that the above assertion is false for dimension N ≥ 9. On the
other hand, the conjecture is true for n = 2, see Dancer [13].

In [32] it is found stable solutions with non planar level sets in dimension
n = 8, using the existence of minimal cones in this dimension, and a foliation of
stable minimal surfaces stemming from them.

4. Another application of the BDG minimal graph:
overdetermined semilinear equation

Let Ω be a smooth domain, and f a Lipschitz function. We consider the problem

Δu + f(u) = 0, u > 0 in Ω, u ∈ L∞(Ω) (4.1)

u = 0, ∂νu = constant on ∂Ω.
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Since this problem is overdetermined, it is natural to believe that solvability of such
a problem may imply constraints on the geometry of the domain.

Serrin (1971) proved that if Ω is bounded and there is a solution to (4.1) then
Ω must be a ball.

Let us consider now the case of an entire epigraph

Ω = {(x′, xN ) / x′ ∈ R
N−1, xN > ϕ(x′)}, Γ = ∂Ω.

• Berestycki, Caffarelli and Nirenberg [6] (1997) proved that if ϕ is Lispchitz and
asymptotically flat then it must be linear and u depends on only one variable.
They conjecture that this should be true for any arbitrary smooth function ϕ.

• Farina and Valdinoci [23] (2009) lifted asymptotic flatness for N = 2, 3 and for
N = 4, 5 and f(u) = u− u3.

Theorem 4 ([21]). In Dimension N ≥ 9 there exists a solution to Problem (4.1) with
f(u) = u− u3, in an entire epigraph Ω which is not a half-space.

The proof consists of finding the region Ω for which

∂Ω = {y + εh(εy)ν(εy) / y ∈ Γε}.
for h a small decaying function on Γ, with Γ a BDG graph. The construction carries
over for more general surfaces Γ.

Let us set

u0(x) = w(t), x = y + (t + εh(εy))ν(εy) Ω = {t > 0}.
Again for x = y + ε(t + εh(εy)), we look for a solution for t > 0 with u(t, y) =
w(t) + φ(t, x). Then at main order φ should satisfy

∂ttφ + ΔΓεφ + f ′(w(t))φ ≈ E

φ(0, y) = 0, φt(0, y) ≈ α ∀y ∈ Γε,

E = Δu0 + f(u0)

= ε4|∇Γεζh(εy)|2w′′(t)− [ε3ΔΓεζh(εy) + εHΓεζ (εy)]w′(t),

E = εHΓ(εy)w′(t) + O(ε2).

Integrating the equation for φ we find

−w′(0)φt(0, y) ≈
∫ ∞

0
E(y, t)w′(t)dt = −εHΓ(εy)

∫ ∞

0
w′(t)2dt + O(ε2).

We need
HΓ ≡ H = constant.

Namely Γ should be a constant mean curvature surface. Then we solve imposing
α = ε(H/w′(0))

∫∞
0 w′(t)2dt.

Let us assume that that Γ is a smooth surface such that

HΓ ≡ H = constant.
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The approximation can be improved as follows: For x = y + ε(t + εh(εy)), we look
now for a solution for t > 0 with

u(t, y) = w(t) + φ(t, y), φ(0, y) = 0.

Imposing α = (H/w′(0))
∫∞
0 w′(t)2dt. we can solve

ψ′′ + f ′(w(t))ψ = Hw′(t), t > 0, ψ(0) = 0, ψ′(0) = α

which is solvable for ψ bounded. Then the approximation u1(x) = w(t) + εψ(t)
produces a new error of order ε2. And the equation for φ = εψ(t)+φ1 now becomes

∂ttφ1 + ΔΓεφ1 + f ′(w(t))φ1 = E1 = O(ε2)

φ1(0, y) = 0, φ1,t(0, y) = 0.

The construction follows a scheme similar to that for the entire solution, but it
is more subtle in both theories needed in Steps 1 and 2.

5. Another application of the BDG surface: Self-translating
graph solutions to mean curvature flow

A family of graphs

Σ(t) = {(x, F (x, t)) / x ∈ R
N} ⊂ R

N+1

evolves by mean curvature iff F solves the graphical mean curvature flow, given by
the parabolic PDE

∂F

∂t
=

√
1 + |∇F |2∇ ·

(
∇F√

1 + |∇F |2

)
. (5.2)

Self-translating solution with speed c:

F (x, t) = ct + G(x)

F (x, t) = ct + F (x) solves (5.2) iff

∇ ·
(

∇F√
1 + |∇F |2

)
=

c√
1 + |∇F |2 in R

N . (5.3)

A Bernstein problem for (5.3):

(B) Is it true that entire solutions of (5.3) for c ≥ 0 need to be convex?

This statement for c = 0 reduces to Bernstein’s problem: If F solving (5.3) was
necessarily convex, then so would be −F . Hence F would be a linear affine function.

True for N = 2 (X.-J. Wang [36] 2010). Solutions are radial.
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Examples of self-translating graphs:

• Altschuler and Wu [3], Clutterbuck, Schnürer and Schulze [11]: A unique radi-
ally symmetric solution (for c = 1, N ≥ 2)

F (|x|) =
|x|2

2(N − 1)
− log |x|+ O(|x|−1) as |x| → ∞.

• X.-J. Wang [36] has found examples for N ≥ 3 of convex, non-radial solutions.

Note: For c �= 0 F solves (5.3) iff G(x) = cF (c−1x) solves (5.3) for c = 1:

∇ ·
(

∇G√
1 + |∇G|2

)
=

1√
1 + |∇G|2 in R

N .

xN+1 = F (|x|) =
|x|2

2(N − 1)
− log |x|+ O(|x|−1).

The answer to (B) is negative for c > 0 and N ≥ 8, in analogy to the result of
Bombieri, De Giorgi and Giusti:

Theorem 5 ([18]). Assume that N ≥ 8. Then there exists a one-parameter family of
non-convex entire solutions Fε(x), ε > 0. to Equation (MCG) for c = 1.

Replacing Fε(x) with ε−1Fε(εx) we are reduced to finding a non-convex solu-
tion Fε of the equation

∇ ·
(

∇F√
1 + |∇F |2

)
=

ε√
1 + |∇F |2 in R

N . (MCG)ε

When ε = 0 there is a nontrivial solution (the BDG graph) of the form

x = (u,v) ∈ R
4 × R

4 �−→ F̄ (u, v), u = |u|, v = |v|,
F̄ (x) = O(|x|3) as |x| → ∞.

For small ε > 0 we find
Fε(x) = F̄ (x) + εφε(x).

with
|φε(x)| ≤ C(|x|2 + 1) in R

8,

Fε(x) = F̄ (x) + O(ε|x|2).
The method: construction of ordered sub and super solutions for the equation

M [F ] := ∇ ·
(

∇F√
1 + |∇G|2

)
− ε√

1 + |∇F |2 = 0 in R
8.

The equation M [F̄ + ϕ] = 0 is at main order, for r large,

LF̄ [ϕ] =
ε√

1 + |∇F0|2
≈ εp1(θ)

r2 .
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We can solve by barriers equations of the form

LF̄ [ϕ] = g = O(r−4−σ).

where σ > 0. The barrier procedure however does not work for decays O(r−4) or
slower, and the main error term only has decay O(r−2).

To overcome this difficulty, we need to improve the approximation:

There is a smooth function ϕ∗(r, θ) = O(εr2) as r →∞ such that for some σ > 0

M [F + ϕ∗] = O(r−4−σ).

The function ϕ∗(r, θ) is found by setting first

ϕ∗(r, θ) = εϕ1(r, θ) + ε2ϕ2(r, θ) + ε3ϕ2(r, θ) + · · ·
and solving (explicitly, up to fast decaying terms) the linear equations for the first
3 coefficients (which at main order separate variables).

This and a refinement of the asymptotic behavior of F̄ − F0 yields the result.

After the above is achieved, the second step is the following.

There exists a smooth function φ with φ(r, θ) = O(εr−σ) as r →∞ for some σ > 0,
such that globally

M [F̄ + ϕ∗ + φ] ≤ 0, M [F + ϕ∗ − φ] ≥ 0.

In essence, φ is a positive supersolution for the equation

LF̄ [φ] = −M [F̄ + ϕ∗] = O(εr−4−σ).

Using the above fact, the proof of our main result can be concluded as follows.
We consider an arbitrary R and the equation

∇ ·
(

∇F√
1 + |∇F |2

)
− ε√

1 + |∇F |2 = 0 in BR(0),

F = F̄ + ϕ∗ − φ on ∂BR(0).

By super-subsolutions, this problem has a smooth solution FR with

F̄ + ϕ∗ − φ ≤ FR ≤ F̄ + ϕ∗ + φ in BR(0).

GR is increasing in R on each fixed ball BR0(0).

Regularity theory for the mean curvature operator yields |∇FR| ≤ C(R0) on
this ball. Hence FR → F in local C2-sense. Thus F solves

∇ ·
(

∇F√
1 + |∇F |2

)
− ε√

1 + |∇F |2 = 0 in R
8,

F̄ + ϕ∗ − φ ≤ F ≤ F̄ + ϕ∗ + φ in R
8.
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2807 CNRS)
Universidad de Chile
Casilla 170 Correo 3
Santiago
Chile.
e-mail: delpino@dim.uchile.cl

Juncheng Wei
Department of Mathematics
Chinese University of Hong Kong
Shatin
Hong Kong
e-mail: wei@math.cuhk.edu.hk

Received: May 28, 2011.

Author's personal copy


	Solutions to the Allen Cahn Equation and Minimal Surfaces
	Abstract
	1. Introduction
	1.1. The Bombieri-De Giorgi-Giusti minimal graph

	2. Preliminaries
	2.1. Preliminaries I
	2.2. Preliminaries II
	2.3. Preliminaries III

	3. Some further results on entire solutions
	3.1. An important example for N = 3
	3.2. An example with infinite total curvature intGamma|K| = ∞

	3.3. The stable De Giorgi conjecture

	4. Another application of the BDG minimal graph: overdetermined semilinear equation

	5. Another application of the BDG surface: Self-translating graph solutions to mean curvature flow

	References


