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Solutions to the Ginzburg-Landau Equations
for Planar Textures in Superfluid 3He

V. L. Golo, M. I. Monastyrsky and S. P. Novikov
Institute of Theoretical and Experimental Physics, Academy of Sciences, Moscow, USSR

Abstract. The Ginzburg-Landau equations for planar textures of superfluid
3 He are proved to be equivalent to a completely integrable Hamiltonian
system. General solutions to these equations are obtained by means of
hyperelliptic integrals.

1. Introduction

Superfluid 3He in the state of the p-pairing can be described in terms of a complex
3 x 3 matrix field Api (the order parameter), which minimizes the Ginzburg-
Landau free energy, [1, 3, 5],

(1)

Fd is the dipole energy density,
Fh is the magnetic energy density.
For a uniform spacial configuration of the order parameter the Fgrad terms are

absent. Then the minimization of Fb gives values of the order parameter Api for the
familiar A and B phases, which constitute smooth manifolds MA and MB.

In these two cases the order parameter is of the form:
(I) for the A phase

zl=const,



238 V. L. Golo, M. I. Monastyrsky and S. P. Novikov

(II) for the B phase

A
Λpi =Jϊj2R

PiXeiφ> Δ= C O n S t

= S0(3)xU(l)

Rpi is a rotatio
The density Fb is invariant under the transformations

where Rpi is a rotation matrix.

(2)

where Rv R2 are rotation matrices. Transformations (2) constitute the symmetry
group G = SO(3)(g)SO(3)<g)E/(l). It should be noted that the order parameter for
superίluid phases of 3 He takes its values in homogeneous spaces of the group G.

For space dependent states, Api = Λpi(x\ we have F g r a d Φ 0. Then in the London
(or hydrodynamic) limit, [3], we assume that the order parameter takes its values
in the manifold of a superfluid phase, which lies in the space of complex 3 x 3 -
matrices, and the space dependence of the order parameter is determined by the
minimization of free energy density (1) under appropriate boundary conditions.

This situation is similar to the problem of chiral fields which take values in a
homogeneous space M = G/H of the group G and generate a metric on M by the
gradient terms of the Lagrangian. But it should be noticed that the gradient terms
appearing in the theory of superfluid 3 He differ from the gradient terms of chiral
theory in that they do not generate, in general, the standard-invariant metric on
the manifold of the order parameter, while they do in chiral theory.

In this paper we assume that the order parameter depends only on a space
variable z, i.e. we consider planar textures, which describe reasonably well
superfluid 3 He confined between two parallel plates devided by a narrow gap [7].

We have found that for planar textures in the A phase of superfluid 3 He there
exists a mechanical analogy with a top that substantially differs from the top of
classical mechanics in having moments of inertia which can change. Until now
there has been only the analogy with the top of classical rigid body, which was
derived for the needs of NMR [19].

Using the SO(3)® 50(3)®ί7(l)-symmetry of superfluid 3He we have obtained
general solutions to the GL equations for the order parameter by means of
hyperelliptic integrals. These solutions fulfill only the necessary conditions of the
minimization problem and it is still necessary to select the true minima among
them.

2. Equations for the A phase

We shall consider separately two cases: (i) L<ζLd and (ii) L > L d , where L, Ld are
the characteristic and dipole lengths respectively.

(ϊ)L<Ld

In this case we may cancel out the dipole energy and take the order parameter in
the most general form

Ao= 0 0 0 Yή. (5)

1 i 0/
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We note that any value of the order parameter A for the A phase may be written in
the form

since we have the formula

( cosφ sinφ 0\

-sinφ cosφ 0 . (6)

0 0 1/
Following papers [8], [9], we shall introduce the velocities

v = idzR;ίR1; w = R-1idzR2. (7)

They take their values in the Lie algebra of the group SO(3) and we may write the
equations

where fa, a = 1, 2, 3 are the generators of SO(3) having matrix elements (fa)bc = iεabc.
With the help of v, w and their coordinates va, wa we may write down the density of
the free energy given by Eq. (1) in the form

Fgrad = ί « b ( 4 R W b + Xab(A)VaVb ,

3nA+fjbA)33. (8)

The velocities v, w are defined by Eq. (7) in the same way as the angular
velocities of a three-dimensional rigid body. The matrices Iab and χab change for
different values of A as is clearly seen from their explicit form

2){δab-dadb) (8')

)=\ -(yί+y2 + y^ΐΔ2 y^Δ^ + iy.+γ^y^Δf -yγΔ2Δ%

\

Here Δt, dp; i, p = ί, 2, 3 are the familiar complex and real vectors for the order
parameter Api.

It is convenient to define a scalar product of two complex 3 x 3-matrices by the
formula

+y3)(x+Y)33 (9)

Then we have

IJA) = <Afa\Afb>, XJA) = (faA\fbA}. (10)

Now let us notice that under variations of the rotation matrices of the order
parameter
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the velocities va, wa and the order parameter are transformed as follows

Hence we may obtain the equations of motion (or the equations for texture) in the
form

φbvc = 0, (11)
a

orh - (KAfJb\Afc> + cc.Kw c = 0, (12)

in = dFgrJdva M«rb = dFgrJdwa,

They are similar to the Euler equations for a top. Since there are no cross terms
with respect to va, wa in Eqs. (11-12) we may say that we have two 3-dimensional
tops, which nonetheless do interact with each other as follows from Eq. (8'). The
second terms in Eqs. (11-12) have appeared since our tops have changing inertia
coefficients. We may transform Eqs. (11-12) into a Hamiltonian form by means of
Poisson brackets as follows

H — F ' d Ma — iMa ' H\'
11 A grad' uzlvl spin (orb) \1V1 spin (orb) > l λ S '

{Ma

spiπ M s

6

p i n } = εabcM
c

spin ί M p ί AqJ} = 0

{ M » r b Mb

ΰtb} = - cabcM<orb. {M« o r b Mb

spin} = 0

{M"spin ;A}=- ifaA { M ° r b ;A}=- iAf

We have six conserved quantities or integrals for our system:
(1) The spin currents j " p i n , a = \, 2, 3 generated by the rotations in the spin

indices (since the dipole energy is cancelled out)
(2) The momentum along the axis OZ, i.e. the Hamiltonian H of the system
(3) The superίluid current

generated by the gauge transformation A^eίφA,
(4) M^rb, generated by the rotation in the orbital indices round the axis OZ

ί
'cosip — sinφ 0\

sintp cost/) 0

0 0 1/

We notice that the components j " p i n of spin current coincide with the spin
momenta M"pin, a = l, 2, 3.

It is easy to see that the integrals

H = Fgmd,jm, M0

3

rb, Ms

3

pin, (MVJ 2
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are in involution, i.e. the Poisson brackets among any two of them are zero. Hence
our system is completely integrable. But it should be noticed that the actual
integration requires additional consideration of the symmetry of the order
parameter, (cf. below).

It is easy to incorporate the magnetic field in Eqs. (11-12), but since the
magnetic energy is represented by the term

we lose two spin current integrals and our system is no longer completely
integrable.

(ύ)L>Ld

In this case we shall use only the superfluid velocity w = R ~1 ίdzR.
Now the function F g r a d takes the form

where <|> means scalar product (9). First we suppose that the magnetic field is
absent. Then by the considerations similar to those of the last subsection we obtain
the Euler equations in the form

;/J»wΛ=0,

(13)

The magnetic field can be incorporated in the free energy density through the
additional term

which generates the right hand side in Eq. (13). We consider only the case of the
magnetic field being parallel to the axis OZ. Then the arguments of the previous
subsection go through for obvious reasons and we have three integrals in
involution

and our system is completely integrable.
(iii) Now we shall obtain explicit formulae for the solutions by symmetry

considerations with the Euler angles. We consider separately the two cases: (i)
and (ii) L<^Ld.

(i)L>Ld

In this case the minimization of the dipole energy density reduces the order
parameter to the form

/0 0 0\

A = R~1A0R, Λ0 = lθ 0 OM.

\1 i 0/
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The free energy density is invariant under the transformation of the order
parameter

R^ARy (14)

where Rψ is a rotation round the OZ-axis by an angle ψ. We notice that

The whole point about the symmetry of the order parameter of the A-phase is
that transformations (14) generate two commuting one-dimensional subgroups of
SO(3), which act on SO(3) as follows:

From the Euler form of a rotation matrix

where R{*\ R{*] are rotations round the axis OZ by the angles φ, ψ and Rf] is a
rotation round the axis OX by the angle 5, we infer that the angles φ, ψ can be
cancelled out by transformations (14) with a suitable choice of φ, ψ.

Therefore, the coefficients Iab of the free energy density depend only on the
angle θ 1 . Hence we obtain

(15)

= \Λ \\y i + (?2 + ̂ 3 ) s i n 2 θ ) sinθ cos 5.

Here the dot denotes the derivative dz. Using the cyclic variables φ, ψ we may put
(15) in the form

sm29)}, (16)

Since Fgrad is an integral of motion we may write Eq. (16) in the form

where Φ(9) is the function in the brackets of Eq. (16).
We may incorporate the magnetic energy in the free energy density if the

magnetic field is directed along the axis OZ, since in this case the symmetry

1 This result was also obtained in papers [10, 11].



Planar Textures in Superfluid 3 He 243

considerations of Eqs. (12-14) go through. We have

We may write solutions to Eq. (18) as a hyperelliptic integral

1 / 2 f 2sm9Ί1/2(S)d9
Z - l l i(4sm23-I(9)(E-2gHH2\Δ\2cos29)-Φ(9))1'2

^ (19)
{μ{\~t2){E-2gHH2\Δ\2t2)I{t)-Φ{t)} I(t)γl2 K '

where I(ή and Φ(ή are polynomials of the 4-th and 6-th order, respectively.
We may write solutions for ψ, ψ in a similar form

dt

12 (20)

where £ = cos#, P12(ή is the polynomial under the radical in Eq. (19); X4(ί), K5{t\
K5(t) are polynomials in t of degree 4 and 5.

(it) L<Ld

This case can be treated along the same lines as the last one. We shall consider
textures in the absence of the magnetic field. We may eliminate all the Euler angles
except θ and obtain the coefficients Iab,Xab in the form

+ y3)cos2^ I23=~γίsinScosS

hi = yι+y2 + y?> + yi^2$ 7 3 3 = 7 1 + y 1 c o s 2 5

We have the conserved quantities

With their help we can put the free energy density in the form

F = Ix!S
2 +1 22 sin2S'lp2 — 2123 sinθ ψ(ψ coŝ 9 + φ)

M2

We notice that φ, \p are cyclic variables and we can derive an equation for θ. Here
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We have

. (y1+{y2+γ3)u)l(u)du

- 2 J 1-M '(«()>!

Jm 2

where w = c o s 2 9 , and

Appendix I. Equations for the B Phase

We assume that the characteristic length of a texture is much less than the dipole
length Ld. Then the order parameter is of the form

A=^=Re

1/3
where R is a rotation matrix and A is a complex number. Again we shall use the
velocities

w = R~1 ίdzR, v=—dzφ.

Then it is easy to see that the gradient part of the free energy density can be written
as

F=-(w2

ί+w2

2)+-w2

3 + -v \

(21)

We notice that Eq. (21) has the form of a Lagrangian for symmetric top with a
mass m, inertia-coefficients /, J. The velocities w = (wl5 w2, w3), v mean the velocity
of the center mass and the angular velocity of the top.

Now the integration technique for symmetric top must work for planar
textures in the B phase. Here we want to notice an interesting example. Let us take
into account the dipole energy contribution to the free-energy
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where θ is a rotation angle of the order parameter. If we assume that the rotation
axis is perpendicular to the plates confining the superfluid throughout the gap,
then there exists a solution, first found by Maki, for which the Euler equations
reduce to only one equation for 5. It has the form

and can be solved by means of the elliptic functions.

Appendix II. Singularities of the Euler Angles

We shall demonstrate that for the rotation group the Euler angles φ,ψ,9
constitute a system of coordinates having a singularity at S = 0,π.

Since the Euler angles change within range

we may say using the geometrical language that they form a product Π of a two-
dimensional torus and a segement

the angles φ, ψ taking values in the circles and the angle θ in the segment I&. The
formulae, which express a rotation matrix by the Euler angles, give a map

Π = S1

φxS1

ψxI^SO{3)9 R = R{φ9ψ,S) (22)

of the space Π onto the rotation group. We notice that Π is a manifold with the
boundary consisting of two tori

Map (22) has points of degeneracy at the boundary. To see this we may consider
the formulae for the angular velocity

ω = C

IΦ\

4 C =

sin S sin ψ

sin θ cos φ

cos #

0

0

1

cost/,

— sinφ

0

(23)

We may say that Eq. (23) gives the differential of smooth map (22) and φ, φ, S and
ω 1 , ω 2 , ω 3 are coordinates of tangent vectors on 17 and 50(3) respectively. The
matrix C in Eq. (23) is degenerate of rank 2 at 9 = 0, π i.e. at the boundary which is
mapped into the matrices

cosα sinα

R(φ,ψ,& = 0)= | —sinα

0

here

cosp

sinβ

0

smp

— cosβ

0

0

0

- 1
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To put this in geometrical terms we may say that the tori of the boundary are
contracted by map (22) into circles. On the other hand we have no contraction or
singular points for 0 < S < π. Hence the Euler angles provide a means to obtain the
manifold SO(3) as follows:

(1) two pairs (φ,ψ) and (φ + 2πn, ψ + 2πn), n is an integer, are equivalent;
(2) S changes within the segment O^Srgπ;
(3) if θ = 0 the pairs (φ, ψ) and (φ\ ψ') determine the same point of SO(3) if

if 5 = π the pairs (φ, ψ) and (φ\ ψr) determine the same point of SO(3) if

φ-ψ = φ'-ψ'
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