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INTRODUCTION

A standard test set for numerical approximations to the shallow water equations in

spherical geometry has been proposed by Williamson et. al. (1992). The present technical

note contains solutions to those test cases that were obtained using the spectral transform

method. The detailed mathematical formulation of the numerical test set are not included

in this report. Thus, this technical note relies strongly on Williamson et al. (1992) for a

detailed mathematical description of the test cases and the requested performance metrics.

The spectral transform method was first introduced by Orszag (1970) and Eliasen,

Machenhauer and Rasmussen (1970), and is summarized in the review by Machenhauer

(1979). The solutions in this report were produced by a spectral transform shallow water

model, whose specific algorithm and numerical approximations are described in Hack and

Jakob (1992). The spectral transform shallow water model (STSWM) is coded in the

Fortran 77 programming language (ANSI X3J3, 1978) and is available via anonymous

FTP from the authors. A more detailed description is available in electronic form from

ftp.ucar.edu (IP address: 128.117.64.4)

in the plain text file'
/chammp/shallow/docu/description.txt

Reference solutions for Test Case 5 (Zonal flow over an isolated mountain), Test Case

6 (Rossby-Haurwitz wave) and Test Case 7 (Analyzed 500 mb height and wind field initial

conditions) were computed using the STSWM since the solutions to these test cases are not

analytic. The model code was compiled using the Cray Fortran CFT77 compiler, version

5.0.4.1 and executed under operating system UNICOS, version 6.1 on a Cray Y-MP 8/864.

Real and integer variables used a word length of 64 bits, which equals about 15 decimal

digits accuracy for the mantissa of real variables. Further detail on how these reference

solutions were obtained, along with measures of their uncertainty, are provided in Appendix
A. The solutions themselves are provided in the form of spectral expansion coefficients

using the portable NetCDF data format. Fortran code to project these coefficients onto

an arbitrary grid is also included. Instructions on how to obtain the solutions and code

can be found in the plain text file

/chammp/shallow/docu/refsol.txt

The reference solutions and codes are also available at Oak Ridge National Laboratory.
One can obtain a list of available material by mailing "send index from chammp" to

netlib@ornl.gov. Instructions on how to obtain the solutions and code can be obtained by

mailing "send README from chammp" to netlib@ornl.gov. Difficulties in accessing the
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files at NCAR should be reported to the NCAR computer consulting office at 303-497-
1278 (email: consultl@ncar.ucar.edu). Difficulties in accessing files at ORNL should be
reported electronically to bbd@ornl.gov. Software bugs, alongwith suggested fixes, should
be reported electronically to stswm@ncar.ucar.edu.

All solutions have been computed using triangular spectral truncations, which have

become the most commonly adopted spectral truncation, due to the isotropic nature of the
underlying spectral representation. Alternative truncation strategies, such as rhomboidal
truncation, are generally used for extremely low resolution models, and are not considered
here. Table 1 lists the spectral truncations employed in the following numerical experiments
and the corresponding number of meridional and longitudinal points for the transform
grid. The longitudinal distribution of the grid points is equiangular, but the meridional
distribution is not equiangular. The meridional grid points are located at the Gaussian
latitudes 0j, which are the J roots of the Legendre polynomial: Pj(sin j) = 0. The
number of grid points in each direction is determined by aliasing considerations. To allow
unaliased representation of quadratic terms,

I > 3M+1 (1)

J > (3K + 1)/2 (2)

where I and J are the number of longitude and latitude grid points, respectively, and M

and K are the highest wavenumbers retained in the longitudinal Fourier and latitudinal
Legendre representations respectively. Furthermore, the model requires an even number
of latitudes to make convenient use of the associated Legendre function symmetry. The
number of longitudes are also constrained to have only the prime factors 2, 3 and 5 to
allow use of the highly efficient FFT library developed by Temperton (1983).

Spectral Number of

Truncation Grid Points

M meridional: J longitudinal: I

42 64 128

63 96 192

106 160 320

170 256 512

213 320 640

Table 1: Spectral Transform Grid Resolution

2



Table 2 lists the time steps that have been used to produce the solutions presented
in this document, unless specifically stated otherwise in the text. The time step scales
approximately as 1/N for reasons associated with linear stability.

Table 2: Model Time Step as a Function of Truncation

The global integral (Eq. 81 in Williamson et. al., 1992), used in many of the errors
measures

>2 T
ft

I(h)= j J h(A, ) cos0d0dA,

is approximated by the discrete double sum
is approximated by the discrete double sum

I= i J' iI2
I(h) h(Ai,0j)Wj,

i=1 j=l

where wj are the weights of the Gaussian quadrature given by

2 cos2 0j

= [JPJ-l (sin Oj)]2

(3)

(4)

(5)

The approximation is exact up to zonal wavenumber I/2 and degree 2J + 1 of the associated
Legendre functions. For a discussion of the effects of grid sampling and spectral truncation,
also see Sections 1 and 3.

The optional Asselin time filter, which is included with the code, has not been used
for the solutions presented here, unless specifically stated otherwise, since no significant
even-odd temporal mode splitting was observed during relatively short integration periods.
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Spectral Timestep

Truncation (Seconds)

42 1200

63 900

106 600

170 450

213 360



Test Case 5 of Williamson et al. (1992) uses an irregular lower boundary (i.e. surface
topography) requiring changes to the shallow water equations and numerical algorithms

in Hack and Jakob (1992) (hereafter referred to as HJ92). Let hs denote the height of the

mountains, h* the depth of the fluid, and h = h* + h, the height of the free surface. In the

momentum equation (2.1) of HJ92, the pressure gradient force is based on the gradient of

the free surface
dV
dt =-fkxV-V((b + b*), (6)

where the surface geopotential ,- = ghs and 4* = gh*. The mass continuity equation

(2.2) of HJ92 applies only to the fluid itself

=-=-*.V V. (7)
dt

As in HJ92, the geopotential *n is divided into a time-invariant spatial mean b and
a time-dependent deviation V' = -b-. After applying the curl and div operators, the
prediction equations (2.12)-(2.14) of HJ92 are now:

at -U7^W -i (V77) (8 )at - a(1 - I2) A ) - a ( V ) (8)

06_ 1 -0 1 0U 2 +V 20
dS I^(V77) -_(U7)-,a ( ,, + U2+V 2 (9)

at a(l1 -2)OA a(V7) aO- (U l 7)V 2 ( + 2(1- C,2) (

_ _ _ _ 10)
-- (VV -l6 (10)

a't - a(1 2 ) (U ')- a

The generalized equations only add the surface topography term P, in the divergence

tendency equation. The changes to the numerical algorithm are thus relatively small.
Only the definition of the intermediate variable E in (5.11) of HJ92 must be changed to

U 2 + V 2

E _ s + £ 2(1 - /2)

A diffusion operator, of the type typically applied to atmospheric general circulation

models, has been added to the shallow water model to deal with spectral blocking for Test
Cases 5, 6, and 7. Diffusion is important for the lower resolution model integrations where
the initial data have significant energy near the truncation limit. Thus the prediction
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equations (2.12)-(2.14) of HJ92 are expanded to include a parameterization of sub-grid

scale mixing in the form of a dissipation term F D i ff, FEDiff and F iff

ir _ 1 -(U7) -- (V7r) + Fiff2)a(1 ^- V ^2) a (12)
at -- a - -/2) OA PO a / .

35 13 13'
02 (V) - 1a 0 (V(U)-U V2 [(u ++ + ) + F f f (13)

aOt a(1 - 2) A a Oa-L2(1 -L2)

1 (U - (V' )-b + F Dff (14)
at a(1- 2 )--(') -a +

The form of the dissipation term is equivalent to the horizontal diffusion used in the NCAR

Community Climate Model (Williamson et al., 1987). The diffusion term is given by

4
FDiff = -K 4 [V4 -4]' (15)FW^ ~-K^IV 4 ^ ^],~~~ ~(15)

4
aF i ff = -K4[V46-- 46], (16)

F ff = -K4V 4 + ' + . . (17)

The linear correction term has been added to the vorticity and divergence operator to

prevent damping of solid body rotation. The geopotential diffusion operator is applied to

the free surface geopotential to prevent spurious damping caused by surface topography.

The linear diffusion operator is applied in spectral space

{F ff} m K [n(n + 1)]2 -4 (18)

FDiff }m = [n(nt + 1)12 - 4(19)
*n a4

{F F } = -K 4_a[- 4 (19)

n a4{F>'iff}- = K [(n1)]2 ({a} + {$.C) X (20)

and as follows for the case n = 0:

{FfDiff} = 0 (21)

{F'ff} = o (21)

6F =0 (22)
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The spectral terms are computed implicitly in the code after the spectral coefficients for
the new time level have been computed, i.e.,

[n(n +1)]2- 4 4}{ 7 Diff mm _. ifP ,,

{ if}rn = 2 tK4 [n(n + )]2 4 {Diff}

{ n } =n +

{IDif fI m = Vm -2AtK 4 [ 1]({DIDiff n+{D}r)

(23)

(24)

(25)

Table 3 lists values of the diffusion coefficients K 4 that have been used in the model
runs unless specifically stated otherwise. The coefficients scale as [N(N + 1)]-2 (because
of spectral form of V4 operator), so that the smallest scales (highest wavenumber) are
damped at about the same rate. The effect of diffusion on the solutions is discussed in
Appendix A.

Spectral K 4

Truncation (m 4/s)

42 0.50 x 1016

63 1.00 x 1015

106 1.25 x 014

170 2.00 x 1013

213 8.00 x 1012

Table 3: Diffusion Coeffidient K 4 as a Function of Spectral Truncations

The reader is referred to Williamson et al., (1992) for complete descriptions of the
test cases and their associated error measures, and the values for all physical constants.

Sequential and parallel performance results for the STSWM code on the Cray Y-MP
vector multiprocessor can be found in Jakob (1993), which also includes a performance
model for the spectral transform algorithm and its implementation. Table 4 contains rep-
resentative execution times and execution rates for a semi-implicit time step as a function
of model resolution for Test Case 2 (see Williamson et al., 1992, section 3).
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Table 4: Representative CPU time (seconds) and floating point execution rate (in
millions of floating point operations per second or MFLOPS) on a single processor of a

CRAY Y-MP per semi-implicit time step as a function of horizontal spectral resolution.
Execution time for a five day integration (as discussed in Williamson et al., 1992) can be
obtained by combining this data with the time step data in Table 2.
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Spectral truncation T-42 T-63 T-106 T-170 T-213

Execution time 0.019 0.053 0.184 0.598 1.140

Execution rate 162 169 198 214 215





1. Advection of Cosine Bell over the Pole

This test case is designed to test the advective component of a numerical scheme in iso-
lation; i.e., it does not deal with the complete shallow water system. For this test case a co-
sine bell is advected once around the sphere, directly around the equator, directly over the
poles, and at slight angles to these two extremes, to expose any problems associated with
asymmetries. Examples of the initial height field, which should be maintained throughout
the course of one rotation, and the initial height truncated to T42 resolution are shown in
Figure l.la and b respectively, for the a = 7r/2 - 0.05 case. For all rotation angles, a, the
final height fields after one rotation (288 hours or 864 time steps of 1200 seconds) are visibly
indistinguishable from each other so only the a = 7r/2 - 0.05 case is shown in Figure 1.2a.
Even the error fields for the different rotation angles (a = 0, 0.05, 7r/2 - 0.05, and 7r/2)
are extremely similar to each other, so it is only necessary to show the 7r/2 - 0.05 error in
Figure 1.2b. The 11,12, and lo error measures are shown in Figure 1.3 for the 7r/2 - 0.05
rotation angle with a T42 truncation and 1200 sec time step (once again, these curves are
very similar for all four rotation angles, only the details of the high frequency noise com-
ponent differ). These error estimates show a significant error associated with the initial
representation of the cosine bell, followed by a systematic monotonic increase as the cosine
bell is advected around the sphere.

In addition to the global error estimates, this test case requests the time dependent
behavior of the normalized mean, variance, minimum and maximum values in the height
field. These curves are quite different in character for each of the four rotation angles,
and are therefore presented individually for the T42 case in Figures 1.4 - 1.7. In all
cases the relative errors are very small, but exhibit uniquely different modulations of the
high frequency behavior. By manipulating the analytic solution in various ways it can
be demonstrated that the high frequency behavior seen in these figures is attributable
to sampling the solution on a discrete grid. For example, the expanding envelope seen
in the normalized maximum height error is a consequence of sampling a solution with a
very small phase error introduced by time truncation (and can be reproduced by sampling
the analytic solution with a slight phase error). Thus, the running average represents
the fundamental amplitude error. Note the clear signature of a pole crossing in all the
error estimates for the 7r/2 - 0.05 and 7r/2 rotation angle solutions. Once again, this is a
consequence of sampling on the discrete grid, arising from a significantly larger meridional
grid interval at the polar cap.

Finally, in Figure 1.8 we show the standard global error estimates as a function of
horizontal truncation at the 7r/2 - 0.05 rotation angle to illustrate the convergence prop-
erties of the solution. The time steps used were 600, 900, 600 and 450 sec for the T42,
T63, T106 and T170 truncations respectively. These are the standard values listed in the
introduction with the exception of the T42 value. For this figure, the value was chosen to
be the same as the T106 value to illustrate the role of the time truncation error. Error
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CONTOUR FROM 100 TO 900 BY 100

Initial height field (a) and height field truncated to T42 (b) for a = 7r/2 - 0.05

case. Contour interval is 100 m.

CONTOUR FROM 100 TO 900 BY 100 CONTOUR FROM -32.5 TO 25 BY 2.5

Figure 1.2 Height field (a) and height field error (b) after one rotation for a = r/2 - 0.05

case. Contour interval is 100 m for the field and 2.5 m for the error.
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estimates with the T42 standard time step of 1200 were shown earlier in Figure 1.3. The

curves in Figure 1.8 show large differences in all measures at the initial state (associated

with spectral runcation), with significantly smaller values at the higher resolutions. The

growth in the error estimates (i.e., the slope of these measures with respect to time) appears

to be dominated by time truncation error. This can be clearly seen by comparing the T106

and T42 results with each other since both were run with the same time step. In addition,

comparison with the T42 case in Figure 1.3 with a 1200 sec time step also shows the faster

growth with the longer time step. Thus, the selected time step is an important component

in the error estimates reported for this test case.

0.08
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L-

0 0.04
N

0

E
L.
0o
C

0.02

0.00

hours

Figure 1.3 11 (long dash), 12 (short .dash), and lo (solid) errors versus time during one

rotation for a = 7r/2 - 0.05 case.
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2. Global Steady State Nonlinear Zonal Geostrophic Flow

This zonal geostrophic flow case is a trivial problem for the spectral transform method.

The height and wind fields are represented exactly by the basis functions of degree n <

1. The errors reflect the accumulation of rounding errors associated with the particular

implementation and computer rather than truncation errors of the method. Therefore there

is no point in performing a convergence study, and we present details for T42 resolution

only. The errors in the following discussion are extremely small and there is clearly no

need for competitive schemes to do anywhere near as well to be considered viable for

atmospheric models. We consider these errors simply to explore the characteristics of the

particular implementation of the STSWM code.

Figure 2.1 shows the 11,12 and loo height and wind errors, for the T42 cases for

each of the four rotation angles. The thicker solid line is for a = 0, the thin line for

a = 0.05, the thin dashed line is for a = 7r/2 - 0.05, and the thick dashed line for a = ir/2.

The h error for the a = 0.0 and 0.05 cases are very close to each other and in many

instances the thin and thick lines overlay each other. The a = 1r/2 and 7r/2 - 0.05 are

also close to each other but with smaller values than the other pair. The wind errors

have similar characteristics. Figures 2.2 and 2.3 illustrate the nature of the error. Figure

2.2 shows the initial and analytic solution and Figure 2.3 shows the northern hemisphere

(with respect to the rotational system) errors at Day 5. With a = 0.0 and 0.05 the error is

concentrated near the representational poles and coincident or nearly coincident with the

rotational poles. (Here we define the representational pole to be the pole associated with

the spectral representation or computational grid, and the rotational pole to be associated

with the rotating geometry of the physical problem.) When the representational pole is

near the rotational equator, the errors are more evenly distributed (Figure 2.3c and d).

Figure 2.4 helps to explain the source of these errors. This figure shows the errors as in

Figure 2.3 but for time 0, after the spectral truncation of the initial data. In all cases the

errors are associated with the representational pole and are associated with the discrete

computational non-normality and non-orthogonality of the polynomials. The codes which

generated the associated Legendre functions used in these tests produce functions with

orthogonality and normality errors which can be as large as 1000 e where c is machine

accuracy (1.4 x 10- 14 ) for CRAY floating point format. The largest orthogonality and

normality errors are given in Table 2.1 for the resolutions in this study. These errors

are defined as the largest Gaussian quadrature of any associated Legendre function with

any other of same order m and the largest of one minus the quadrature of any function

with itself. The errors are not equally distributed but are particularly large for order

m=O and m=1 and relatively large degree n for those two wave numbers. Thus the

initial representational errors maximize at the representational poles. The errors remain

concentrated there and grow in the two cases in which the flow is concentric to this error

(a=0.0 and 0.05). In the other cases (a = 7r/2 - 0.05 and 7r/2) the initial error, located
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in the center of the jet, is advected zonally (in the rotational sense) by the jet and then
propagates meridionally.

Resolution Orthogonality Normality

T42 9.0 x 10-12 8.5 x 10-12

T63 1.7 x 10- 11 1.6 x 10-11

T106 8.5 x 10- 11 8.5 x 10-11

T213 3.2 x 10- 10 3.2 x 10- 10

Table 2.1: Maximum error

As would be expected, the orthonormality errors are reduced using double precision for
the calculation of the Gaussian latitudes, weights and polynomials. At T42 the maximum
orthogonality and normality errors are reduced to 8.0 x 10-14 and 2.2 x 10-13 respectively
when the latitudes and weights are calculated in double precision and to 3.5 x 10-14 and
6.8 x 10-14 respectively, when in addition the polynomials themselves are calculated in

double precision. In both cases the quadrature continues to be in single precision. Thus the
orthonormality is still not to machine accuracy because of rounding error in the quadrature
itself.
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CONTOUR FROM 1100 TO 2900 BY 100

Initial and analytic solution height field plotted on a North polar (with respect
to the rotational system) stereographic projection (outer circle is the equator).
Contour interval is 100 m.
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Figure 2.2



CONTOUR FROM -.000001 TO .000016 BY .000001

CONTOUR FROM -.000000375 TO .000000175 BY .000000025 CONTOUR FROM -.000000375 TO .00000015 BY .000000025

Height errors at day 5 for T42 case plotted on a North polar (with respect to
the rotational system) stereographic projection (outer circle is the equator).
(a) a = 0, (b) a = 0.05, (c) a = 7r/2 - 0.05, and (d) a = r/2. Contour intervals
are 1 x 10-6 for (a) and (b), and 2.5 x 10-8 for (c) and (d).
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CONTOUR FROM 0 TO .000000155 BY .000000005

CONTOUR FROM -7.5x10- TO 0 BY 0.5xlO- CONTOUR FROM -7.5xl0-' TO 0 BY 0.5xlO
-
f

Figure 2.4 Height errors at day 0 after initial spectral truncation for T42 case plotted on
a North polar (with respect to the rotational system) stereographic projection
(outer circle is the equator). (a) a = 0, (b) a = 0.05, (c) a = 7r/2 - 0.05, and
(d) a = 7/2. Contour interval is 5 x 10- 9.
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3. Steady State Nonlinear Zonal Geostrophic Flow with Compact Support

The zonal geostrophic flow with compact support is also essentially a trivial problem

for the spectral transform method at resolutions in use today. During the 5 day integration,

the errors reflect truncation rather than roundoff at T42, but initially they are only one

order of magnitude larger for the height and two orders for the wind than the discrete

orthonormality errors seen in the previous section, and thus are insignificant with regard

to practical problems. As with Test Case 2, competitive schemes do not have to do equally

well to be considered for practical applications. Figure 3.1 shows the 11,12 and loo height

and wind errors for the T42 case with a = 0 (wide solid line) and a = 7r/3 (dashed line)

along with the T63 case with a = 7r/3 (narrow solid line). Compared to the global scale

zonal flow of the previous section the T42, a = 0 height errors are larger initially, then

grow as they do in the global case. In the a = 7r/3 case the height errors are larger in the

compact support case than the global case for the entire period, as the global case shows

slow growth for the 5 day period. The noise superimposed on the T42 curves is probably

attributable to the lack of initialization in this integration. Very small amplitude gravity

waves are present due to errors in the calculation of the integral involved in determining the

height field. These waves propagate meridionally (as defined by the rotational pole, rather

than the representational pole) and are present to the same extent in the both the a = 0

and 7r/3 cases. The noise observed is due to the discrete sampling of these waves as their

maxima and minima fall near and between the discrete grid points. The T63 case shows a

growth behavior similar to the rounding accumulation in the global zonal case. This is not

inconsistent with the larger orthonormality errors observed with and smaller truncation

errors expected with higher resolution. In addition, the noise associated with the discrete

sampling of the erroneous gravity waves is significantly smaller because the gravity waves

themselves are smaller. The integral defining the initial conditions is approximated more

accurately on the T63 grid. The 11,12 and loo wind errors for the T42 case (Figure 3.1)

are up to two orders of magnitude larger than the errors in the global case and show little

growth during the 5 day integration.

Figure 3.2 shows the true height fields in the upper row and height errors at 5 days

in the lower row. The a = 0 case is on the left and the a = 7r/3 case is on the right.

The errors are clearly associated with the rotational pole in both cases and thus represent

truncation error rather than the orthonormality error associated with the representational

pole seen in the global case. Further evidence that the errors are truncation-based rather

than roundoff is provided in Figure 3.3. The top row shows the initial T42 truncation

error due solely to the initial spectral representation for a = 0 (a) and 7r/3 (b). Figure

3.3c shows the initial error for the T63, a = 7r/3 case. The truncation error is reduced

(as expected) to a level at which the discrete orthonormality error becomes evident at

the representational pole. Further evidence that this is the case is provided by Figure

3.3d, which is also T63, a = 7r/3, but with the Gaussian latitudes and weights and the

associated Legendre functions calculated in double precision. The quadrature remains in

single precision. The error is now dominated by truncation error.
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CONTOUR FROM 2100 TO 2950 BY 50

CONTOUR FROM -.000002 TO .00002 BY .000001 CONTOUR FROM - 000008 TO 00002 BY .000001

Figure 3.2 Analytic height field for (a).a = 0, (b) a = 7r/3. Contour interval is 50 m. Height

error at day 5 from T42 case for (c) a = 0, (d) a = 7r/3. Contour interval is

1 x 10-6 m. All plotted on an orthographic projection centered on 90W, 45N of

the representional coordinates.
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CONTOUR FROM -.0000045 TO .000004 BY .0000005

CONTOUR FROM -8x10-' TO 6xl10' BY 05w10-' CONTOUR FROM -32x10- TO 3.6x10- BY 04x10-'

Height error at day 0 after spectral truncation from T42 case for (a) a = 0,

(b) a = 7r/3. Contour intervals are (a) 5 x 10 - 7 and (b) 1 x 10- 6. Height error

at day 0 after spectral truncation from T63, a = wr/3 case for (c) normal preci-

sion, (d) double precision latitude Gaussian weights and polynomials. Contour

intervals are (c) 5 x 10 - 9 and (d) 4 x 10 - 9 .

26

Figure 3.3

CONTOUR FROM -.000005 TO .000011 BY .000001



4. Forced Nonlinear System with a Translating Low

This test case presents more of a challenge to the spectral scheme in terms of repre-
senting the initial state and analytic forcing. The horizontal scales of both the initial state
and the forcing are considerably more complex than in the earlier test cases, and are less
accurately represented with comparable spectral truncations. This truncation error can be
seen in all the error measures at t = 0. The 11,12, and loo error for the initial height field
are illustrated in Figure 4.1 (left to right in each grouping) as a function of four horizontal
truncations for the uo = 20m/sec case. This figure shows that even though the solution
is reasonably well represented at T42, a modest improvement in horizontal resolution can
yield significantly better results. A curious behavior is seen for the T106 truncation where
all error estimates are worse than at T63. This is a consequence of the degree to which
the basis functions are orthonormal, as previously discussed in some detail in Section 2.
For all practical purposes, the representation has converged to machine accuracy at T63.

Figures 4.2 and 4.3 show the initial height and wind fields for the uo=20 (top panel)
and uo=40 m/sec (bottom panel) cases. Figures 4.4 and 4.5 show the corresponding height
and wind errors at day 5.

Figure 4.6 presents the error norms for the two cases. The high frequency temporal
noise appearing in the various error measures occurs because the initial data have not been
properly initialized; i.e., the mass and momentum fields have been specified independently
and the corresponding truncation errors result in small imbalances contributing to gravity-
wave activity. Another important source of this noise arises from discrete sampling of the
solution on the Gaussian grid.

The 11 error in the height field grows rapidly during the first day of integration, after
which it grows monotonically but at less than 1/lOth the initial rate. A similar, although
less exaggerated behavior is seen in the 11 wind error. The growth in these error curves
is predominantly attributable to time truncation error, although in the early stages of the
integration it is also associated with the geostrophic adjustment process. For example,
during the period of rapid 11 error growth, the lo, error shows a rapid decrease followed by
a rebound as the slowly forced mass and momentum fields come into a consistent internal
balance.

As mentioned above, the error is dominated by the time truncation component. In
T42 integrations with the discrete time step halved (not shown), the growth in all error
estimates is reduced by nearly a factor of four. Integrations using a T63 truncation but
the same time step as for T42 truncation produce remarkably similar results in the global
error estimates, although the detailed structure of the errors is noticeably different. The
maximum departures are in the vicinity of the translating low pressure cell.

The 12 and loo, errors in both the height and wind field generally show a monotonic
increase in time after the initial adjustment, but begin to exhibit signs of an oscillation
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after about 4 days. This behavior is most apparent in the u0 =40 m/s case, for which all
the error estimates are systematically larger than the u0 =20 m/s case (another indication
of the dominance of time truncation error). We believe that this behavior is attributable to
secondary nonlinearities associated with the growing inconsistency between the evolving

state and the analytically specified forcing, seen initially as a phase error. One would
expect this type of behavior to be more pronounced in the case of larger departures of the
simulated state from the analytic state, which is the case for u0o=40 m/s.

10-'

10-2

10- 3

c)

aI,

0 -8-O10- 5L,
0

-' 10 - 6

0

= 10 7

10-8
0
cC,_O

10-12

T31 T42 T63 T106

Figure 4.1 Initial normalized height errors for Test Case 4 as function of resolution. Each
grouping shows 11, 12, and lo,, from left to right.
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a

b

CONTOUR FROM 10100 TO 10625 BY 25

CONTOUR FROM 10200 TO 11100 BY 50

Initial height field for (a) uo = 20 m/sec and (b) uo = 40 m/sec plotted on an

orthographic projection centered at 45N and the longitude of the trough of the

analytic solution. Contour intervals are (a) 25 m and (b) 50 m.
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a

b

CONTOUR FROM -.48 TO .16 BY .04

CONTOUR FROM -2.2 TO 1 BY .2

Figure 4.4 Height errors at day 5 from T42 case for (a) uo = 20 m/sec and (b) uo = 40

m/sec plotted on an orthographic projection centered at 45N and the longitude

of the trough of the analytic solution. Contour intervals are (a) 0.04 m and (b)
0.2 m.
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Figure 4.5 Wind errors at day 5 from T42 case for (a) uo = 20 m/sec and (b) uo = 40 m/sec

plotted on an orthographic projection centered at 45N and the longitude of the

trough of the analytic solution.
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5. Zonal Flow over an Isolated Mountain

This test case consists of the zonal flow in Case 2 impinging on a mountain. Although
the wind and height field are the same as for a = 0 in Case 2, the height ho is changed to
5960 m. The surface or mountain height is given by

h = ho (1 - r/R)

where hso = 2000 m, R = 7r/9 and r2 = min[R 2 , (A - AC)2 + (0- 0c)2]. The center is taken

as Ac = 31r/2 and 0c = -7/6. A qualitative sense for the horizontal scale and location of
the mountain feature can be gleaned from the error estimates shown in Figures 5.2 b and
d, which are discussed later in this section.

Because there is no analytic solution, this case is in the same class as Test Cases 6
and 7, which follow. For each of these test cases, we use a high resolution integration
of the spectral model to generate a reference solution. The various model configurations,
including the configuration used for the reference solution, is consistent with the way the
model would be configured in real applications. An explicit linear horizontal diffusion term
is included to deal with the effects of spectral blocking, as discussed in Appendix A. In
practice, the magnitude of the diffusion coefficient increases with lower spectral truncation
meaning that the rate of internal dissipation is not necessarily the same for each of the
resolutions presented. The time step selected is determined according to the particular
horizontal truncation where lower resolution integrations may make use of longer time
steps. Thus, the results contain a mix of factors (e.g., time truncation, space truncation,
etc.) contributing to differences with the high resolution reference solution. We will
qualitatively discuss the relative roles of various sources of "error" when possible. Our
principal focus, however, will be on the net error since the various examples are configured
as they would be in practical meteorological applications.

The representation of the mountain height and thus the depth of the fluid for this test
case is a challenge for the spectral scheme at all resolutions. Significant fluid depth errors
occur initially in the vicinity of the mountain. These rapidly translate into local errors
in the height of the fluid which are comparable in order of magnitude to the downstream
errors which form during the integration. The height field for the T213 reference solution
truncated to T106 (the resolution at which the reference solution is archived) and plotted
on the T63 Gaussian grid (for direct comparison with the T63 results) is shown in Figure
5.1a-d for the initial state, day 5, day 10, and day 15, respectively. These results show a
rapid evolution from a meridionally smooth zonally symmetric flow to an irregular high
wavenumber state by day 15. Note the evidence of "spectral ringing" in the solution near
the imposed mountain (i.e., upstream from the mid-latitude northern hemisphere trough).
Simulation using T42 and T63 truncation are compared with this reference solution. The
detailed solutions and differences with the reference solution are presented in Figure 5.2
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for day 15. The upper row contains the T42 results, the lower row the T63 plots. Subjec-
tive inspection of the solutions after 15 days suggests remarkable agreement between the
reference solution and the T63 results. The T42 results appear to be almost as good with
evidence of more severe spectral representation problems in the vicinity of the mountain.
Nevertheless, the location and magnitude of the major flow features are very accurately
captured. The difference maps clearly show the problems that each of the lower resolution
models has in representing the solution over the imposed mountain. Away from this re-
gion, however, the structure and magnitude of the error field are quite similar, even after
15 days.

This subjective characterization of the low resolution solutions is evidenced by most
all of the global error estimates illustrated in Figure 5.3. All error measures exhibit rapid
increases during the first few days as the fluid system adjusts to the initially large im-
balances (with respect to the reference solution) attributable to the accuracy with which
the mountain feature can be resolved. This adjustment is illustrated most clearly in the
lo(v), suggesting a larger adjustment of the momentum field toward the mass field which
would be expected at these scales and mean fluid depth (Rossby, 1939, Matsumoto, 1961).
Note that these data are sampled daily, making it difficult to ascribe significance to the
variability exhibited in the latter part of the integrations (i.e., this may be nothing more
than a consequence of the sampling interval). In general, after the initial adjustment is
complete, the global error estimates show a relatively small increasing trend with the T63
error estimates modestly smaller than the T42 results.

Global integrals of mass, energy, and potential enstrophy, as a function of time, are
shown in Figure 5.4. Both resolutions exhibit comparable systematic increases in mass
during the course of the integration, which is of the same order as machine rounding.
Total energy and potential enstrophy drop off as a consequence of internal dissipation, with
expectedly larger dissipation in the lower resolution result. The unnormalized integrals of
relative vorticity and divergence, shown in Figure 5.5, are reasonably well maintained (i.e.,
order machine roundoff), but begin to exhibit signs of a slowly increasing oscillation after
about 20 days (not shown).
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a

CONTOUR FROM 5000 TO 5950 BY 50

b

CONTOUR FROM 5000 TO 5950 BY 50

c d

CONTOUR FROM 5050 TO 5950 BY 50

Figure 5.1 T213 reference height solution for Test Case 5 at (a) day 0, (b) day 5, (c) day 10, and

(d) day 15 on a cylindrical equidistant projection. Contour interval is 50 m.
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a b

c d

CONTOUR FROM 5050 TO 5900 BY 50

Figure 5.2 Height fields at day 15 for (a) T42 and (c) T63 and differences with reference solution for

(b) T42 and (d) T63. Contour intervals are (a) 50 m, (c) 50 m, and (d) 2.5 m.
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6. Rossby-Haurwitz Wave

Rossby-Haurwitz waves are an ideal test of numerical solutions of the nonlinear

barotropic vorticity equation, since they represent exact analytic solutions. They are not
closed form solutions for the divergent barotropic system, however, and thus cannot be
regarded as a rigorous test for the correct numerical solution of this system of equations.
Nevertheless, they are a frequently used meteorological test and have been included in the
test case suite for this reason.

Because no analytic solution is known, we use a high resolution integration of the
spectral model to generate a reference solution. As mentioned in the previous section, the
results contain a mix of factors (e.g., time truncation, space truncation, etc.) contributing

to differences with the high resolution reference solution. We will qualitatively discuss the
relative roles of various sources of "error" when possible. Our principal focus, however,
will be on the net error results since the model for the basic experiments is configured as
it would be in practical meteorological applications.

The representation of the initial condition for this test case is not a challenge to the
spectral scheme. As the solution evolves, however, the impact of horizontal resolution

becomes more apparent since the flow field does not maintain its initial structure. Figure

6.1a-d shows the height field for the T213 reference solution truncated to T106 and plotted
on the T63 Gaussian grid for the initial state, day 1, day 7, and day 14, respectively.
The time step for this integration is 180 seconds which is smaller than the default listed
in the introduction (due to very strong winds associated with this test case), while the
horizontal diffusion coefficient K 4 = 8 x 1012m 4 /s is the default value. As can be seen
in these maps, there is a noticeable tendency for some sharpening of the mid-latitude
troughs in the solution with a hint of some erosion of the tropical ridges. As mentioned
earlier, the "errors" associated with the lower resolution integrations are a consequence
of horizontal and spatial truncation errors, as well as the choice of the linear horizontal
diffusion coefficent. To help quantify the role of horizontal diffusion in the high-resolution
T213 reference solution, the diffusion term was eliminated in a second high-resolution
integration. The 12(h) difference in the two solutions is shown in Figure 6.2. This measure
illustrates that the first five days are'essentially unaffected by the diffusion. After 14 days,
this term leads to only a 0.08% 12(h) difference in the solution, and clearly plays a minor
role in the reference solution results.

Figures 6.3 to 6.5 show solutions of the height field for T42 (top) and T63 (bottom),
along with the differences from the high-resolution reference solution at day 1,7 and 14.
The global error norms are shown in Figure 6.6. The T42 and T63 used time steps of 600
and 450 seconds, respectively. The diffusion coefficients were 5 x 105m 4 /s and 1 x 1015m 4 /s
respectively. At each of the two resolutions we see similar structures in the error field with
a general erosion of zonal and meridional gradients that increases with lower resolution. In

41



general, the T63 errors are about half the size of the errors exhibited by the T42 integration.
In each case, the phase of the wave structure is very well represented.

With regard to conservation properties (Figures 6.7 - 6.8) the T42 and T63 models
do reasonably well. Both resolutions exhibit a comparable systematic relative increase in
mass during the course of the integration which is of the same order as machine rounding.
Total energy and potential enstrophy drop off as a result of internal dissipation, with
proportionally larger dissipation in the lower resolution result. The unnormalized integrals
of relative vorticity and divergence are reasonably well maintained (i.e., order machine
roundoff).

Integration of the T42 and T63 models with a 180 second time step suggests that time
truncation is playing some role in the detailed structure of the error. The height fields
and differences with the T213 reference solution are shown in Figure 6.9 for the T42 run
with 180 second time step at days 7 (top) and 14 (bottom). Comparison with Figures 6.4
and 6.5 shows the sensitivity to time step. The general characteristics of the global error
estimates (not shown) are not affected by the time step, however, the details are. For
example, the initial growth is a little slower, but the same plateau is reached around hours
144 to 240 followed by the rapid growth to the same level at hour 336. Thus the results
are dominated primarily by spectral truncation and internal dissipation.

The effect of horizontal diffusion is seen in Figure 6.10, which shows the T42 solution
with no diffusion and a 600 sec time step at days 7 (top) and 14 (bottom). The character
of the error is noticeably different compared to Figure 6.5 at day 14.

Finally, we have selected wave number 4 for this test case because it is empirically
known to be a stable solution to the equations. Thus small perturbations introduced
by truncation error should not grow so rapidly in 14 days so as to produce a solution
dominated by any particular perturbations introduced. However, since the flow structure
does not maintain itself, as in the nondivergent barotropic system, and since the change
in structure is a function of the horizontal resolution, one might ask how long the initial
solution should be expected to remain stable. To address this question we have integrated
the T42 model with diffusion and the 600 sec time step for a period of 60 days. The height
field is shown in Figure 6.11a and b for day at 30 and 60, respectively. Clearly, the pattern
maintains its basic wave number 4 structure throughout this period while the details of
the pattern change. Consequently, it is quite reasonable to assume that the true solution
is nowhere near the point of breaking down at the end of the 14 day integration period
selected for the test case, and viable numerical methods should be able to maintain the
wave number 4 structure for the 14 day period at a minimum.
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Figure 6.1 T213 reference height solution for Test Case 6 at (a) day 0, (b) day 1, (c) day 7, and
(d) day 14 on a cylindrical equidistant projection. Contour interval is 100 m.
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Figure 6.3 Height fields at day 1 for (a) T42 and (c) T63 and differences with reference solution for
(b) T42 and (d) T63. Contour intervals are (a) 100 m, (c) 100 m, (b) 1 m and (d) 0.5 m.
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Figure 6.4 Height fields at day 7 for (a) T42 and (c) T63 and differences with reference solution for
(b) T42 and (d) T63. Contour intervals are (a) 100 m, (c) 100 m, (b) 5 m, and (d) 2.5 m.
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Figure 6.5 Height fields at day 14 for (a) T42 and (c) T63 and differences with reference solution for
(b) T42 and (d) T63. Contour intervals are (a) 100 m, (c) 100 m, (b) 10 m, and (d) 5 m.
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-4.0x10-2
0 -

- 6.0x10
-20

-8.OxlO-
20 -- T42

O -- T65

-1.x10-_
19

.0- -......... .
0 48 96 144 192 240 288 336

hours

Figure 6.8 Global average (a) vorticity and (b) divergence for T42 and T63 resolutions.

s

-O

0

>

I

i

·

i



a b

CONTOUR FROM 8300 TO 10500 BY 100 CONTOUR FROM -20

c d

CONTOUR FROM 8200 TO 10500 BY 100 CONTOUR FROM -80 '

Figure 6.9 Height field at (a) day 7 and (c) day 14 for T42 case with 180 second time step and difference
with T213 reference solution at (b) day 7 and (d) day 14. Contour intervals are (a) 100 m,
(c) 100 m, (b) 2.5 m, and (d) 10 m.
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Figure 6.10 Height field at (a) day 7 and (c) day 14 for T42 case with no diffusion and difference with
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7. Analyzed 500 mb Height and Wind Field Initial Conditions

These cases start from analyses of observed data after being initialized with nonlin-
ear normal mode initialization. Details of the initialization are provided in Appendix C.
Horizontal diffusion was included in the model for all forecasts. The implications of this
diffusion on the forecasts and reference solutions are discussed in the Appendix A.

The 11,12 and loo errors from the forecasts with T42, T63 and T106 are graphed in
Figure 7.1. In all figures the short dashed curves are from the T42 forecasts, the solid
are from the T63 and the longer dash from the T106. The circle line marker denotes the
21 Dec 1978 Case, the square the 9 Jan 1979 and the triangle 16 Jan 1979. The 11(h)
and 11(v) errors improve with resolution as expected. The relative standing of the three
cases varies with the different resolutions. The 12(h) and 12(v) errors as a general rule also
improve with resolution. There is an example where a particular T63 forecast is not as
good as a T42 forecast for a different case, although for any given case, the 12 errors always
decrease with increasing resolution. The oo(h) and loo(v) errors show much more spread
with significant overlap between resolutions and increased resolution does not always result
in monotonic decrease in error.

The global integrals of mass were saved to only 10 digits. The variation in the mass
over the 5 day forecasts is only 1 or 2 in the last digit. Thus we do not include graphs
of the normalized global average mass, as they would basically be straight horizontal lines
with a few steps. For an example, see the appendix which shows the normalized global
average mass from a 30 day forecast with T213 truncation.

The global average vorticity and divergence are graphed in Figure 7.2. The line codes
and markers are the same as in the previous graphs. The global averages are better for
lower resolution, i.e. T42 is marginally better than T63 and T63 is noticeably better than
T106. Comparison with a T213 run in the appendix shows that T106 is better than T213.
The decrease in degree of conservation is attributable to the lack of discrete orthonormality
in the Legendre functions as implemented in the code used here and discussed earlier in
Test Case 2.

The normalized global average total energy and potential enstrophy are graphed in
Figure 7.3 with the same line codes and markers as above. Energy and enstrophy are
conserved better with increased resolution associated with the decreased diffusion, as ex-
pected. Comparison with the appendix shows that this improvement is also observed when
going from T106 to T213 as well. The degree of conservation is case dependent with the
relative standing of the three cases being the same with all resolutions.

Figures 7.4a and b present north and south polar stereographic maps, respectively,
of the initialized height fields for the 2i December 1978 Case. For comparison, Appendix
C shows the north hemisphere before and after initialization. To save space we include
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contour maps only for one case. We have chosen the one which is in the middle with
respect to the error measures, and which has the strong flow over the pole. Figures 7.5 -
7.6 present north polar stereographic maps of the 1 day height forecasts and errors from
the 21 December 1978 Case. The figures show the T42 fields or errors in the upper left,
T63 in the upper right, and T106 in the lower left. The reference solution from the T213
is in the lower right. The fields are plotted from the equator to pole but the errors are
plotted only poleward of 30 degrees since the error fields show little of interest equatorward
of 30 degrees. The reference solution is from a T213 integration with diffusion coefficient
K4 = 8.0x10 12 m 4 /s and a 360s time step. The contour interval is 50m for the height fields
and 10m, 5m and 2.5m for the T42, T63 and T106 errors, respectively. Figures 7.7 and 7.8
show the corresponding south polar stereographic maps. Figures 7.9 - 7.12 present north
and south polar stereographic maps of the 5 day height forecasts and errors. The contour
interval is again 50m for the height fields, but 25m, 25m and 12.5m for the T42, T63 and
T106 errors, respectively.

Figure 7.13 shows the trace of the height field at the grid points closest to (40N,
105W) for the 21 Dec 1978, 9 Jan 1979, and 16 Jan 1979 Cases. The actual locations
of the grid points are (40.77N, 106.0W) for T42, (40.1N, 105.0W) for T63 and (40.93N,
104.63W) for T106. The line codes for the different resolutions are the same as used
earlier, with the short dash for T42, solid for T63, and long dash for T106. The data
are plotted every hour rather than every iteration. Since in the T42 case this is an odd
number of time steps, any significant 2At signal caused by even-odd splitting in the leap
frog time stepping would appear in the graphs. There is no indication of such a signal.
The other resolutions also showed no 2At signal when we examined them during the runs.
The figures also indicate that high frequency gravity wave motion is not present in the
forecasts. The three resolutions do not track each other identically, even initially, because
the grid point locations are not identical, and even if they were identical the grid values
could differ because of the different truncations.
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Figure 7.4 Initial height field for 21 December 1978 Case. (a) North polar stereographic

projection, (b) South polar stereographic projection. Contour interval is 50 m.
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Height field for day 1 of 21 December 1978 Case on North polar stereographic

projection for (a) T42, (b) T63, (c) T106, and (d) reference solution. Contour

interval is 50 m.
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Figure 7.6 Differences with reference solution of height field for day 1 of 21 December 1978
Case on North polar stereographic projection for (a) T42, (b) T63, and (c) T106,
and (d) reference solution itself. Contour intervals are (a) 10 m, (b) 5 m,

(c) 2.5 m, and (d) 50 m.
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Figure 7.7 Height field for day 1 of 21 December 1978 Case on South polar stereographic

projection for (a) T42, (b) T63, (c) T106, and (d) reference solution. Contour

interval is 50 m.
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Differences with reference solution of height field for day 1 of 21 December 1978

Case on South polar stereographic projection for (a) T42, (b) T63, and (c) T106,

and (d) reference solution itself. Contour intervals are (a) 10 m, (b) 5 m,

(c) 2.5 m, and (d) 50 m.
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Height field for day 5 of 21 December 1978 Case on North polar stereographic

projection for (a) T42, (b) T63, (c) T106, and (d) reference solution. Contour

interval is 50 m.
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Figure 7.10 Differences with reference solution of height field for day 5 of 21 December 1978
Case on North polar stereographic projection for (a) T42, (b) T63, and (c) T106,
and (d) reference solution itself. Contour intervals are (a) 25 m, (b) 25 m,
(c) 12.5 m, and (d) 50 m.
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Figure 7.11 Height field for day 5 of 21. December 1978 Case on South polar stereographic
projection for (a) T42, (b) T63, (c) T106, and (d) reference solution. Contour
interval is 50 m.
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Figure 7.12 Differences with reference solution of height field for day 5 of 21 December 1978

Case on South polar stereographic projection for (a) T42, (b) T63, (c) T106, and

(d) reference solution itself. Contour intervals are (a) 25 m, (b) 25 m, (c) 12.5 m,

and (d) 50 m.
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(b) 9 January 1979, and (c) 16 January 1979.
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Appendix A Reference Solutions

In this appendix we present various properties of the real data forecasts with the
high resolution model to indicate the uncertainties associated with using it as a reference
solution. In particular, we examine the uncertainty associated with including diffusion
in the equations. Certainly any errors less than the difference in the reference solutions
with and without diffusion indicates that the test solution is within the uncertainty of the
reference solution, and any solution reasonably close to the reference solution should also
be considered as within the uncertainty.

1. Kinetic Energy Spectra

As mentioned in Williamson et al. (1992), the addition of an explicit diffusion term
may be desirable and may lead to improvement in some of the error measures. Figure
Al(a) shows the kinetic energy spectra from day 5 of the T213 forecasts from the initial
(21 December 1978) data of Test Case 7 with (lower curve ) and without (upper curve)
diffusion. The equations used to calculate the kinetic energy spectrum are presented in
Appendix B. The diffusion coefficient was chosen to give a reasonably straight tail to the
spectra. With the coefficient chosen, the tail is slightly steeper than the -3 line plotted for
reference. The diffusion has no discernable effect in this plot on wavenumbers less than
40.

Figure Al(b) shows the spectra for the same case from the T106 forecasts. Here, there
is no discernable difference for wavenumbers less than 15. Figures Al(c) and (d) compare
the spectra from the T106 and T213 forecasts without and with diffusion respectively.
In both cases, although the small wavenumbers are very similar, there are observable
differences in wavenumbers as small as 8. With the diffusion chosen, the characteristics of
the T106 forecast spectrum is very similar to the T213. There is less similarity with either.
the T63 and T42 spectra compared to the T213. The comparison is shown in Figures
Al(e) and (f) for the T63 and T42, respectively. The tail in both is steeper than the
corresponding portion of the T213, indicating the diffusion could probably be reduced.

2. Dependence of error, measures on parameters defining reference solution

We have performed a few experiments to quantify the uncertainty in the reference
solution due to the choice of values for some of the arbitrary parameters. These experiments
indicate that the reference solution can be no better than the differences indicated but
do not indicate that it is necessarily as good as these differences. The differences are
summarized in Table A.1. The experiments were all carried out at T213 truncation for
the 21 December 1978 initial data set in Test Case 7. The first experiment compares
the solution truncated to T106 with the complete T213 representation and indicates the
contribution to the norms from neglecting waves 107 through 213. The second experiment
compares the forecasts with and without diffusion and indicates the uncertainty introduced
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by the arbitrary diffusion. The third experiment compares the standard 360 sec time step
with a 450 sec one and provides some indication of the time truncation error.

| ____lIl_(h) 12(h) l (h)

Difference due to 106 truncation 1.0 x 10 - 5 2.0 x 10 - 5 2.5 x 10- 4

Difference due to diffusion 8.0 x 10 - 5 1.5 x 10 - 4 2.5 x 10 - 3

Difference due to time step 3.5 x 10-5 5.5 x 10- 5 6.0 x 10- 4

Table A.I: Approximate differences after 5 days

Any errors calculated with respect to the reference solution that are smaller than these
indicate only that the alternate is within the uncertainty of the reference solution.

3. Effect of diffusion on error measures

Fig. A.2 compares the normalized 11(h), 12(h) and loo(h) errors for the T106 solutions
from the 21 December 1978 initial data of Test Case 7 with (dashed) and without (solid)
diffusion. They are calculated against the T213 reference solution with diffusion, retaining
all 213 waves in the grid representation. The differences in the normalized 11,12 and

,oo norms grow to 1.8 x 10-4 , 3.6 x 10-4 , and 2.2 x 10- 3 respectively, at day five. The
diffusion decreases the errors slightly by damping the erroneous small scales. This damping
is evident in the kinetic energy spectra shown earlier. Any test scheme with an error in
this range should probably be considered to be comparable to the T106 spectral.

4. Effect of diffusion on global integrals

When diffusion is added to the shallow water equations, mass, vorticity and divergence
continue to be conserved by the continuous equations but energy and enstrophy are no
longer conserved quantities. In the following, we present the global integrals from 30
day integrations with T213 truncation with and without diffusion. Fig. A.3a shows the
normalized mass from the two integrations. Mass is conserved to 9 digits for the 30 days.
The curves show a step structure because we only saved the unnormalized mass integrals
to 10 digits. Thus, the curves sh6w a step as the last digit changes by one. Fig. A.3b
and c also show the vorticity and divergence, respectively. The global average vorticity
remains around 2 x 10-14s1 for the 30 days without diffusion and becomes almost one
order of magnitude larger at the end of the 30 days with diffusion. Divergence behaves the
same way in the two cases, becoming -4 x 10-16s-1 at the end of the period. Fig. A.4a
and b show the normalized total energy without and with diffusion. Without diffusion
(a) the energy remains conserved to 7 digits whereas with diffusion (b) it is conserved to
only 5 and decreases as expected. Fig. A.4c and d also show the normalized potential
enstrophy without and with diffusion. It remains conserved to 4 digits without diffusion
(c) and slightly better than 1 digit with diffusion (d), again decreasing as expected.
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5. Effect of neglecting waves 107 through 213 of the reference solution

Table A.1 above indicated the uncertainty in the reference solution due to neglecting

waves 107 through 213. The errors in the T106 solution are large enough that for practical
purposes they can be determined using the T213 solution truncated to T106. The normal-
ized 11 error graphs (not shown) for the two cases fall on top of each other as do those for

the 12 error. The largest difference occurs with the normalized oo(h) error shown in Fig.
A.5 in which the solid line is from the complete T213 solution and the dashed is from the
T213 solution truncated to T106.

6. Effect of time step on error

The errors in the T106 solutions are dominated by spatial truncation, not by temporal.
Fig. A.6 shows the normalized 11(h) for the T106 solution with the standard 600 sec time
step (solid) and with a 300 sec step (dashed). Of the norms, the 11 shows the largest
difference, the two normalized 12 errors lie on top of each other as do the two loo norms.
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Appendix B. Calculation of Kinetic Energy Spectrum

This appendix contains the derivation of the equations for computing the kinetic
energy spectrum from the spectral coefficients of divergence and vorticity. The specific
kinetic energy per volume element is defined as

1
KE = v.v (B.1)

where the horizontal vector velocity v can be represented (using the Helmholtz theorem)
by the scalar streamfunction bp and scalar velocity potential X as

v k x V + VX (B.2)

The relative vorticity C and divergence 6 are defined as

-k (V x v) V2 ?b (B.3)

and
6 V v=V 2X (B.4)

Substituting (B.2) into (B.1) and using the vector identities

V - (VO) = (V) 2 + ~(V2I) (B.5)

and
(k x Vb)VX = (V4 x VX) * k (B.6)

the specific kinetic energy becomes

KE = [V . (V + XVX) - ( + X6)] + (V x VX) k (B.7)

The global integrals of the first and last terms vanish because V * (OV7 + XVX) is
irrotational and V' x VX is solenoidal. The global mean of the specific kinetic energy
reduces to

KE = 1 j - (C + XS)cos0dAdO (B.8)

In spectral space, velocity potential and divergence, as well as relative vorticity and stream-
function, are related by

En =- a,2 Xn B.9)

a 2

- a-(n±) , (B.10)
(nm 2 O
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Also, since the fields are real-valued

Xn-m = (-l)m (XM) (B.11)

xn = (-1) (n) (B.12)

where ( )* denotes the complex conjugate. Finally, the orthogonality property of the
spherical basis functions is

1 27r

j P(,I)eimA (P (p)eikA)dd = 2 6r6nlm,k (B.13)

where 6n,, and 6m,k are Kronecker-6 functions. Substituting the last five equations into

(B.8), the global mean kinetic energy can be computed as

M N(m)

K E = E (n + )4 ( ) +x m(x ) (B.14)
m=-M n=Iml

Assuming triangular truncation (N(m) = M), the global mean kinetic energy KEn for
spherical wavenumber 1 < n < M is thus

KE n = 4n(n ( + + 2 E ( ( +2 E () ] (B.15)
KE i4n(n tl w) equation n(1) of n-- 196)

This result is consistent with equation (19) of Merilees (1968).m=

This result is consistent with equation (19) of Merilees (1968).
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Appendix C. Normal Mode Initialization

The initial data were obtained from NCAR history tape files that Trenberth and Olson

(1988) compiled from ECMWF analyses. The data are available as grid point data on a

T-42 spectral grid. However, the data were interpolated from the ECMWF data using

cubic splines, and are therefore not spectrally truncated at T-42. In fact, the initial data

contain waves up to T-63. The mean height of the 500 mb equivalent geopotential was

changed to 10 km. The data were then initialized using a Machenhauer Nonlinear Normal

Mode Initialization (NNMI) with Hough functions appropriate for an equivalent depth of

10 km. After an initial linear step zeroing the gravity wave amplitudes, five iterations of

the NNMI were used. This procedure has been described by Errico (1987) and Errico and

Eaton (1987) for the NCAR Community Climate Model. The actual initialization code for

the shallow water model was provided by Andy van Tuyle (personal communication).

Figure C.1 shows the height time series for a point near Boulder, Colorado (40N,105W)

computed from the uninitialized data and from the initialized data. A comparison shows

that the high frequency variations in the height field have been filtered out without chang-

ing the larger scale features of the flow. Figure C.2 shows the height field before and after

the NNMI and the difference initialized versus uninitialized.
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Figure C.1 Height time series without (noisy) and with (smooth)
Initialization at the grid point closest to (40N, 105W).
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Figure C.2 Height field before (a) and after (b) Nonlinear Normal Mode Initialization, and
the difference, uninitialized minus initialized (c). Contour interval is 50 m for the
fields and 5 m for the difference.
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