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Abstract

We investigate the unsteady flow of a viscous fluid near a vertical heated plate. The

momentum and energy equations are considered as fractional differential equations

with respect to the time t. Solutions of the initial-boundary values problem are

determined by means of the Laplace transform technique and are represented by

means of the Wright functions. The fundamental solution for the temperature field is

obtained. This allows obtaining the temperature field for different conditions on the

wall temperature. A numerical case is analyzed in order to obtain information

regarding the influence of the fractional parameters on the temperature and velocity

fields. Some physical aspects of the fluid behavior are presented by graphical

illustrations.
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1 Introduction

Fluid convection at vertical plates, resulting from buoyancy forces, has found applications

in several industrial and technological fields such as heat exchangers, electronic cooling

equipments, aeronautics, and nuclear reactors. Free convection flow occurs not only due

to temperature difference, but also due to concentration difference or combination of these

two. Many transport processes exist in nature and in industrial applications, in which the

simultaneous heat and mass transfer occur as a result of combined buoyancy effects and

diffusion of chemical species.

The flows of free convection are common in environmental heat transfer processes. As a

result, many investigations have beenmade by considering awide range ofmechanical and

thermal boundary conditions []. Using the Laplace transform technique, Soundalgekar

[] has obtained an exact solution to the flow of a viscous fluid past an impulsively started

semiinfinite isothermal vertical plate. Effects of heating or cooling of the plate on the flow

field were analyzed through Grashof number. Transient free convection flow past an infi-

nite vertical plate has been studied by Ingham []. Merkin [] gave the similarity solutions

for the same problem. Seth and Ansari [] analyzed the natural convection flows past an

impulsively moving vertical plate with ramped wall temperature in the presence of ther-

mal diffusion with heat absorption. Narahari and Nayan [] studied the free convection
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flow past an impulsively started vertical plate with Newtonian heating in the presence of

thermal radiation andmass diffusion. The problem of free convection under the influence

of a magnetic field has attracted the interest of researchers in view of its applications in

geophysics, astrophysics, petroleum industries, and cooling of nuclear reactors. Georgan-

topoulos et al. [] studied the magnetohydrodynamic free convection flow past an impul-

sively started vertical plate with constant temperature. Raptis and Singh [] have studied

the effect of a uniform transverse magnetic field on the free convection flow of an electri-

cally conducting fluid past an accelerated vertical plate. Tokis [] have obtained a class of

exact solutions of the unsteady free convection flowof an electrically conducting fluid near

a moving infinite vertical plate in the presence of uniform transverse magnetic field fixed

to the fluid or to the plate. Narahari and Debnath [] studied the unsteady magnetohy-

drodynamic free convection flow past an accelerated vertical plate with constant heat flux

and heat generation or absorption. Toki and Tokis [] obtained an elegant exact solution

for the unsteady free convection flows on a porous plate with time-dependent heating.

In last time, the fractional calculus has become an interesting mathematical method for

solution of diverse problems in mathematics, science, and engineering [–]. Fractional

calculus involves the computation of integrals or derivatives of any real order. This calcu-

lus has applications in study of the heat flux, temperature and entropy generation, diffu-

sion phenomena, modeling control systems, viscoelasticity, biology, etc. The advantage of

the fractional derivatives in theory of viscoelasticity is that it affords possibilities for ob-

taining constitutive equations for elastic complex modulus of viscoelastic materials with

only few experimentally determined parameters []. Debnath [] obtained solutions for

the Stokes and Rayleigh problems for a viscous fluid with time-fractional derivatives. For

the same model of fluid, the unsteady Couette flow was analyzed. The well-known time-

fractional diffusion equations have been treated in different contexts by many authors

[–]. Other studies regarding the flow of complex fluids whose governing equations

contain time-fractional derivatives can be found in [–].

In this paper we investigate the unsteady free convection flow of a Newtonian fluid near

a vertical heated plate in the case of the time-fractional derivatives models. Solutions of

the temperature and velocity fields are obtained, in the case of the oscillatingmotion of the

vertical plate, bymeans of the Laplace transform technique. By using theWright functions

and the generalized G-Lorenzo-Hartley functions elegant closed forms for temperature

and fluid velocity were obtained. The fundamental solution corresponding to the temper-

ature is also obtained. This allows obtaining the temperature field for different conditions

on the wall temperature. Some numerical examples were analyzed. To check the accuracy

of the obtained results, we have used the Stehfest algorithm to the inverse Laplace trans-

form []. The values found with the analytical solutions and with the Stehfest algorithm

are in good agreement. Also, the influence of the fractional parameters on the temperature

and velocity is studied.

2 Statement of the problem

Let us consider the unsteady free convection flow of an incompressible viscous fluid with

time-fractional derivatives, in the vicinity of an infinite vertical wall with time-dependent

temperature. Initially, the wall and the fluid are at rest at the constant temperature T∞.

The wall is situated in the (x, z)-plane of a Cartesian coordinate system Oxyz, the x-axis

being the ascendant vertical. After time t = +, the plate has a translational motion along
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the vertical axis with the velocity uw(t) = U sin(wt), and the plate temperature changes

according with the ramp-type function Tw(t) = T∞ +T(t/t). The flow is considered to be

laminar without any pressure gradient in the flow direction. Because the plate is infinite

in x- and z-directions, all physical quantities, except possibly the pressure, are functions

of y and t only. Assuming that the convective effects and viscous dissipation are negligible

and using the boundary layer and Bussinesq approximations, the governing equations for

such flows are [, , ]

cDα
t u(y, t) = να

∂u(y, t)

∂y
+ gβα

[

T(y, t) – T∞
]

, y, t > ,α ∈ (, ], ()

cD
γ
t T(y, t) = kγ

∂T(y, t)

∂y
, y, t > ,γ ∈ (, ], ()

where

cDα
t f (y, t) =

{


Ŵ(–α)

∫ t


(t – τ )–α ∂f (y,τ )

∂τ
dτ , α ∈ (, ),

∂f (y,t)
∂t

, α = ,
()

is the time-fractional derivative in the Caputo sense [, ]. In the above equations, u(y, t)

is the fluid velocity along the x-axis, T(y, t) is the temperature field, g is the acceleration

due to gravity, and να[m
/sα], βα[s

–α/K], and kγ [m
/sγ ] are the coefficients of the ma-

terial. Obviously, for α = γ = , these coefficients become the kinematic viscosity ν = ν ,

the volumetric coefficient of thermal expansion β = β , and k = k/ρcp (k is the thermal

conductivity, ρ is the density, and cp is the specific heat), corresponding to an ordinary

viscous fluid.

We consider the following initial and boundary conditions:

u(y, ) = , T(y, ) = T∞, y≥ , ()

u(, t) = uw(t) =U sin(ωt), t ≥ ,U > , ()

T(, t) = T∞ + T(t/t), t ≥ ,T �= , ()

u(y, t) → , T(y, t) → T∞ as y → ∞ ()

and the nondimensional

t∗ =
t

t
, y∗ =

y
√

ναt
α


, u∗ =
u

U

, T∗ =
T – T∞

T

, ω∗ = ωt, ()

with a characteristic time t > . Dropping the star notation, we obtain the next dimen-

sionless initial-boundary-value problem:

cDα
t u(y, t) =

∂u(y, t)

∂y
+GαT(y, t), y, t > ,α ∈ (, ], ()

cD
γ
t T(y, t) =



Pαγ

∂T(y, t)

∂y
, y, t > ,γ ∈ (, ], ()

u(y, ) = , T(y, ) = , y≥ , ()
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u(, t) = f (t) = sin(ωt), T(, t) = h(t) = t, t ≥ , ()

u(y, t) → , T(y, t) →  as y→ ∞, ()

where Gα = 
U

βαgt
α
 , and Pαγ =

να t
α


kγ t
γ

are the dimensionless constants.

For α = γ = , these coefficients are the Grashof and Prandtl numbers, respectively.

3 Solution of the problem

In order to determine solutions of the initial-boundary-value problem ()-(), we use the

Laplace transform with respect to variable t []. The transform domain problem is given

by

sαū(y, s) =
∂ū(y, s)

∂y
+GαT̄(y, s), ()

Pαγ s
γ T̄(y, s) =

∂T̄(y, s)

∂y
, ()

ū(, s) = f̄ (s) =
ω

s +ω
, T̄(, s) = h̄(s) =



s
, ()

ū(y, s) → , T̄(y, s)→  as y→ ∞, ()

where ū(y, s), T̄(y, s), f̄ (s), and h̄(s) are the Laplace transforms of the functions u(y, t),

T(y, t), f (t), and h(t), respectively.

3.1 Temperature field

The solution of problem (), (), and () is given by

T̄(y, s) = s– exp
(

–y
√

Pαγ s
γ /

)

. ()

Using the formula []

L–
{

s–β exp
(

–asσ
)}

= tβ–�
(

β , –σ ; –at–σ
)

, a,β ≥ , < σ < , ()

we obtain the next (y, t)-solution for the temperature:

T(y, t) = t�

(

,–
γ


;–y

√

Pαγ t
–γ /

)

, ()

where

�(a, –b; z) =

∞
∑

n=

zn

n!Ŵ(a – bn)
,  < b < , ()

is the Whright function [, ].

Function () satisfies the initial condition () and the natural condition () at infinity.

Also, the boundary condition () is satisfied. Indeed, we have

lim
y→+

t�

(

,–
γ


;–y

√

Pαγ t
–γ /

)

= L–
{

lim
y→+

s– exp
(

–y
√

Pαγ s
γ /

)

}

= L–
{

s–
}

= h(t).
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.. Fundamental solution

The expression of the temperature field was determined by the Laplace transform tech-

nique. It is useful, however, to determine the fundamental solution GT (y, t) for the tem-

perature field, namely, solution corresponding to the problem (), the second condition

(), and the second condition (), with the Dirichlet boundary condition T(, t) = δ(t),

δ(t) being the Dirac distribution.

Using the Laplace transform with respect to time t and the Fourier sine transform with

respect to the space coordinate x, we obtained the following equivalent forms of the fun-

damental solution GT (y, t) for the temperature field:

GT (y, t) = t–�
(

,–γ /;–y
√

Pαγ t
–γ /

)

=



γ y

√

Pαγ t
––γ /Mγ /

(

y
√

Pαγ t
–γ /

)

=
tγ–

πPαγ

∫ ∞



ξ sin(yξ )Eγ ,γ

(

–P–
αγ ξ tγ

)

dξ , y, t > ,GT (, t) = δ(t), ()

whereMα(z) is the auxiliaryWright-type function, introduced by Mainardi et al. [] and

Eα,β (z), defined as tβ–Eα,β (–bt
α) = L–( s

α–β

sα+b
), is the generalized Mittag-Leffler function

[]. Now, by means of the fundamental solution, we find the temperature field corre-

sponding to several boundary condition T(, t) = h(t). Indeed, it is easy to see that the

function T(y, t) = h(t) ∗GT (y, t) =
∫ t


h(τ )GT (y, t – τ )dτ is a solution of problem (), and

the second condition from equations (), (), (). In the problem studied in this work,

we have

T(y, t) = h(t) ∗GT (y, t)

= L–
[

h̄(s)GT (y, s)
]

= L–
[

s– exp
(

–y
√

Pαγ s
γ /

)]

= t�
(

,–γ /;–y
√

Pαγ s
γ /

)

, ()

and we recover Eq. ().

.. The Nusselt number

As a measure of the heat transfer rate at the plate, the Nuselt number is given by

Nu = –
∂T(y, t)

∂y

∣

∣

∣

∣

y=

= lim
y→+

√

Pαγ t
(–γ /)–�

(

 – γ /,–γ /;–y
√

Pαγ t
–γ /

)

=
√

PαγL
–

{

lim
y→+

s–(–γ /) exp
(

–y
√

Pαγ s
γ /

)

}

=
√

PαγL
–

{

s–(–γ /)
}

=

√

Pαγ t
–γ /

Ŵ( – γ /)
. ()

.. Particular case γ = 

For comparison between ordinary model and the fractional models, it is important to

present solutions corresponding to the case γ = . In this particular case, the fundamental
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solution becomes

GT (y, t) =
y
√
Pα

t
√
t
M/

(

y
√

Pαt
–/

)

. ()

By using the formula M/(z) =
√
π

exp(–z



) [] we obtain the known expression of the

fundamental solution

GT (y, t) =
y
√
Pα

t
√

π t
exp

(

–yPα

t

)

. ()

The temperature field is given by the convolution

T(y, t) =
y
√
Pα


√

π

∫ t



t – τ

τ
√

τ
exp

(

–yPα

τ

)

dτ , ()

which can be written in the elegant form (see [], Appendix B)

T(y, t) =

(

t +
yPα



)

erfc

(

y
√
Pα


√
t

)

–
y
√
Pα


√

π
exp

(

–yPα

τ

)

, ()

where erfc(·) is the complementary error function.

The Nusselt number is obtained from Eq. () making γ = :

Nu =

√
Pαt

Ŵ(/)
=

√
Pαt√
π

. ()

3.2 Velocity field

Using the expression of Laplace transform of the temperature, given by Eq. (), we obtain

a solution of the set of Eqs. (), (), and () in the form

ū(y, s) = f̄ (s) exp
(

–ysα/
)

–
Gα[exp(–ysα/) – exp(–y

√

Pαγ s
γ /)]

s(sα – Pαγ sγ )

= f̄ (s) exp
(

–ysα/
)

+
Gαs

–γ–

sα–γ – Pαγ

exp(–y
√

Pαγ s
γ /) – exp(–ysα/)

s
. ()

Applying the inverse Laplace transform, the (y, t)-domain velocity is given by

u(y, t) = f (t) ∗
[

t–�
(

,–α/;–yt–α/
)]

+GαGα–γ ,–γ–,(Pαγ , t) ∗
[

�
(

,–γ /;–y
√

Pαγ t
–γ /

)

–�
(

,–α/;–yt–α/
)]

, ()

where

Ga,b,c(d, t) = L–
{

sb

(sa – d)c

}

=

∞
∑

j=

djŴ(c + j)

Ŵ(c)Ŵ(j + )

t(c+j)a–b–

Ŵ[(c + j)a – b]
, ()

Re(ac – b) > ,Re(s) > ,
∣

∣sa
∣

∣ > |d|,
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Table 1 Comparison of the temperature values at the time t = 15 for α = 0.75

y γ = 0.628 γ = 0.785

T(y, t) Eq. (20) T(y, t) Eq. (36) T(y, t) Eq. (20) T(y, t) Eq. (36)

0.0 15.000000 14.999974 15.000000 14.999974

0.1 12.389940 12.389940 13.161314 13.161330

0.2 10.205969 10.205947 11.523626 11.523640

0.3 8.384067 8.384039 10.068354 10.068355

0.4 6.868772 6.868765 8.778190 8.778163

0.5 5.612234 5.612234 7.637068 7.637067

0.6 4.573338 4.573334 6.630126 6.630121

0.7 3.716893 3.716888 5.743665 5.743671

0.8 2.435875 2.435674 4.965081 4.965072

0.9 1.964265 1.964266 4.282854 4.282853

1.0 1.579894 1.579892 3.686454 3.686456

Table 2 Comparison of the velocity values at the time t = 2, for α = 0.873 and γ = 0.628

y Velocity u(y, t), Eq. (20) Velocity u(y, t), Eq. (36)

0.0 0.866025 0.866027

0.1 0.807456 0.807502

0.2 0.750369 0.750418

0.3 0.695395 0.695446

0.4 0.642952 0.642982

0.5 0.593246 0.593258

0.6 0.546370 0.546369

0.7 0.502341 0.502338

0.8 0.461120 0.461107

0.9 0.422634 0.422628

1.0 0.386790 0.386787

is the generalized G-function introduced by Lorenzo and Hartley [], and the symbol ‘∗’
represents the convolution product.

In the particular case α = γ = , Eq. () becomes

u(y, t) =


√
π

∫ ∞

y/(
√
t)

f

(

t –
y

x

)

exp
(

–x
)

dx

+
G

 – P

[

t – P
y




erfc

(

y
√
P


√
t

)

+
y

√
Pt(y

P – t)


√

π
exp

(

–yP

t

)]

–
G

 – P

[

t – y


erfc

(

y


√
t

)

+
y

√
t(y – t)


√

π
exp

(

–y

t

)]

,

P �= . ()

.. Skin friction on the wall

Expression of the skin friction on the vertical plate in the x-direction is given by

Cfx =
∂u(y, t)

∂y

∣

∣

∣

∣

y=

= L–
{

lim
y→+

∂ū(y, s)

∂y

}

= L–
{

–ωsα/

s +ω

}

+GαL
–

{

s––γ+α/

sα–γ – Pαγ

–
√

Pαγ

s––γ /

sα–γ – Pαγ

}

= –ωG,α/,

(

–ω, t
)

+Gα

[

Gα–γ ,α/–γ–,(Pαγ , t) –Gα–γ ,–γ /.(Pαγ , t)
]

. ()
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Figure 1 Variations in temperature field. (a), (b), (c) represent the variation of the temperature T (y, t) for

t = 15 and various values of the fractional coefficients α and γ .

In the case α = γ and Pαγ �= ,

Cfx = L–
{

–ωsα/

s +ω
+

Gα

( +
√
Pαα)s+α/

}

= –ωG,α/,

(

–ω, t
)

+
Gα

 +
√
Pαα

t+α/

Ŵ( + α/)
. ()

4 Numerical results

To obtain some information on the fluids behavior, the authors analyzed some numerical

examples using the coefficient values t = ,U = ., βα = × –, kγ = ., and να =

.× –. The numerical simulations were done using the subroutines of the software

packageMathcad. For the temperature field,we have used the expressions given by the Eqs.

() and (), and for the velocity, expressions given by Eqs. () and (). To check the

accuracy of the obtained results, we have used the Stehfest algorithm [] for calculating

the inverse Laplace transform, namely:

T(y, t) =
ln

t

p
∑

j=

djT̄

(

y, j
ln

t

)

, u(y, t) =
ln

t

p
∑

j=

djū

(

y, j
ln

t

)

,

dj = (–)j+p
min(j,p)
∑

i=[
j+
 ]

ip(i)!

(p – i)!i!(i – )!(j – i)!(i – j)!
.

()

Here [r] denotes the integer part of a real number r, and p is a positive integer.
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Figure 2 Variations in velocity field for time t = 5.

(a), (b), (c) represents the variation of velocity u(y, t)

for t = 5, ω = π /6, and various values of the fractional

parameters α and γ .

Tables  and  show that the numerical values obtained by the Eqs. () and the first

formula () and by Eqs. () and the second formula (), respectively, are in good agree-

ment.

In Figure  we plotted the curves corresponding to the temperature field T(y, t) versus

the spatial coordinate y for t =  and for various values of the fractional coefficients α

and γ . It is important to point out that, in comparison with the ordinary case α = γ = ,

the thermal boundary layer thickness is smaller for α,γ ∈ (, ). Also, for a fixed value

of the fractional parameter α, the thickness of the thermal boundary layer is decreasing

according to the fractional parameter γ . An opposite effect is observed if values of the

parameter α are decreasing. In this case, the thermal boundary layer thickness is greater

for lower values of the fractional parameter α. In Figures  and  we sketched the graphs

of velocity u(y, t) versus y for two values of time t and for several values of the fractional

parameters α and γ . From these figures we see that, for α = γ =  (the ordinary case),

the fluid flows are faster than in the cases modeled by the time-fractional derivatives. The

velocity boundary layer thickness decreases for small values of fractional coefficient α. On

the other hand, the thickness of the velocity boundary layer increases depending on the

fractional parameter γ .
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Figure 3 Variations in velocity field for time

t = 15. (a), (b), (c) represents the variation of velocity

u(y, t) for t = 15, ω = π /6, and various values of the

fractional coefficients α and γ .

5 Concluding remarks

In this paper we studied the unsteady free convection flow of a viscous fluid near a heated

vertical plate. Both governing equations, the momentum equation and energy equation,

are considered as time-fractional differential equations of order α ∈ (, ] and γ ∈ (, ],

respectively. Based on the Laplace transform technique and using the Wright functions

and G-Lorenzo-Hartley functions, the closed forms of the temperature and velocity fields

were determined. The fundamental solution corresponding to the temperature, the Nus-

selt number, and the friction coefficient on the wall are obtained. Some physical aspects of

the fluid behavior were studied by numerical simulation and graphical illustrations. As a

general result, it should be noted that for decreasing values of the fractional coefficient α,

the fluid velocity and boundary layer thickness are decreasing. The fluid temperature de-

creases if the values of the fractional coefficient γ decreases and increases for decreasing

values of α.
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