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Solvability of elliptic systems with square
integrable boundary data

Pascal Auscher, Andreas Axelsson and Alan McIntosh

Abstract. We consider second order elliptic divergence form systems with complex mea-

surable coefficients A that are independent of the transversal coordinate, and prove that the set

of A for which the boundary value problem with L2 Dirichlet or Neumann data is well posed, is

an open set. Furthermore we prove that these boundary value problems are well posed when A is

either Hermitean, block or constant. Our methods apply to more general systems of partial dif-

ferential equations and as an example we prove perturbation results for boundary value problems

for differential forms.

1. Introduction

We first review the situation for scalar equations. Consider the divergence form
second order elliptic equation

(1) divt,x A(x)∇t,xU(t, x) =
n∑

j,k=0

∂jAj,k(x)∂kU(t, x)= 0,

on the upper half space R1+n
+ :={(t, x)∈R×Rn ;t>0}, n≥1, where the matrix

A=(Aj,k(x))n
j,k=0 ∈L∞(Rn; L(C1+n)) is assumed to be t-independent and strictly

accretive with complex coefficients. In this generality, when no regularity is as-
sumed of the coefficients, the natural conditions to impose on U at the boundary
Rn are one of the following:

• Dirichlet problem (Dir-A): U(0, x)=u(x) for a given function u(x).
• Neumann problem (Neu-A): −

∑n
k=0 A0,k(x)∂kU(0, x)=φ(x), where φ(x) is

given.
• Dirichlet regularity problem (Reg-A): ∂jU(0, x)=∂ju(x), 1≤j ≤n, where

u(x) is given.
In this paper, we consider these boundary value problems (BVPs) in L2(Rn),

i.e. the boundary data are u∈L2(Rn), φ∈L2(Rn) and u∈Ḣ1(Rn) respectively, and
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for well-posedness a unique function U(t, x) with certain L2 estimates is required.
Detailed definitions are given in Section 2.

These BVPs arise naturally when considering BVPs for the Laplace equation
on a Lipschitz domain Ω in Rn. As the main problem here is a local one, the result
for such domains can be derived from the scale invariant case of a Lipschitz graph
domain, i.e. we assume that Ω={(t, x);t>g(x)} is the domain above the graph of
some Lipschitz function g. Through the change of variables U(t, x):=V (t+g(x), x),
a harmonic function V in Ω corresponds to U in Rn+1

+ satisfying (1) with coefficients
A=(1+| ∇xg|2, −∇xgt; −∇xg, I), and the respective boundary conditions carry over
from ∂Ω to Rn. The coefficients appearing from this pullback technique are referred
to as being of Jacobian type, and are in particular real and symmetric, as well as
independent of the transversal coordinate t. In this case, solvability of the Dirichlet
problem was first proved by Dahlberg [15], and solvability of the Neumann and
regularity problems was first proved by Jerison and Kenig [23]. Later Verchota [34]
showed that these BVPs are solvable with the layer potential integral equation
method. For general real symmetric matrices A, not being of the Jacobian type,
well-posedness of the Dirichlet problem was first proved by Jerison and Kenig [24],
and of the Neumann and regularity problems by Kenig and Pipher [27].

It is natural to ask whether the BVPs for the fundamental elliptic equation
(1) are well posed for more general coefficients. Obvious generalizations are coeffi-
cients A(t, x) with t-dependence, as well as more general non-symmetric or complex-
coefficient matrices. In both cases, it is known that well-posedness does not hold
in general. Caffarelli, Fabes and Kenig [11] observed that some regularity in the
t-coordinate is necessary for well-posedness, and Kenig, Koch, Pipher and Toro [26]
and Kenig and Rule [28] gave examples where well-posedness fail in any Lp for
sufficiently non-symmetric, but t-independent, real coefficients in the plane which
are discontinuous at x=0. However, on the positive side they show that, for given
real non-symmetric coefficients in the plane, the Dirichlet problem is well posed in
Lp for sufficiently large p, whereas the Neumann and regularity problems are well
posed for p sufficiently close to 1.

In this paper, we consider only t-independent coefficients, but allow on the
other hand for arbitrary complex, strictly accretive coefficients A∈L∞(Rn; L(C1+n)).
As remarked, well-posedness does not hold in general for the BVPs in this case. But
our main result Theorem 2.2 shows that the sets of well-posedness

(2) WP(X) := {A ; X −A is well posed in L2(Rn)} ⊂ L∞(Rn; L(C1+n)),

where X denotes one of the three BVPs Dir, Neu or Reg, are all open sets. As
discussed above, the sets of well-posedness contain all real symmetric coefficients.
Our theorem thus in particular shows well-posedness for small complex perturba-
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tions of real symmetric coefficients. This has also been proved in [2] by Alfonseca,
Auscher, Axelsson, Hofmann and Kim, with other methods using layer potential
operators, and in [3] by Auscher, Axelsson and Hofmann. In fact, our methods here
give the new result that well-posedness holds for complex Hermitean matrices and
their perturbations.

One may ask what is the motivation for considering complex coefficients. How-
ever interesting it may be to know well-posedness for complex matrices, a main
motivation is that this feeds back to give perturbation estimates for real matrices.
In fact, to show that the solution U varies continuously, for fixed boundary data,
as A(x) varies continuously in L∞ within the subspace of real symmetric matrices,
there is no known method which does not use bounds for complex BVPs. The ob-
servation being used is that bounds for complex BVPs imply analytic dependence
on A and in particular Lipschitz regularity with respect to A∈L∞.

Turning to other consequences of Theorem 2.2, well-posedness is well known
to hold for all constant coefficients A(x)=A, and our theorem thus yields well-
posedness for perturbations here as well. The Dirichlet problem was first shown
to be well posed for small perturbations of constant matrices, by Fabes, Jerison
and Kenig [20], using the method of multilinear expansions. The Neumann and
regularity problems were tackled in [2] and [3].

It is also known that (Neu-A) and (Reg-A) are well posed in L2 for complex
matrices of block form, i.e. such that A0,j =0=Aj,0 for all 1≤j ≤n. This is a non-
trivial result and is in fact equivalent to the Kato square root problem, proved
by Auscher, Hofmann, Lacey, McIntosh and Tchamitchian [5]. Our theorem thus
yields well-posedness for small perturbations of complex block form matrices, and
is in this sense a generalization of the Kato square root estimate. With the further
assumption of pointwise resolvent kernel bounds, this result is also implicit in [2].
However, our methods in this paper require no such pointwise estimates.

Let us now discuss the methods underlying Theorem 2.2. For the proof we use,
following [3], boundary equation methods involving a Cauchy operator EA. The
name Cauchy operator is used since EA coincides with the Cauchy singular integral
operator when A=I and n=1. The first step of the proof is to rewrite the second
order equation (1) as the equivalent first order system

{
divt,x A(x)F (t, x)=0,

curlt,x F (t, x)=0,
(3)

taking the gradient vector field F (t, x):=∇t,xU(t, x) as the unknown function in-
stead of the potential U . The Cauchy operator EA is related to (3) in the same
way that the classical Cauchy integral operator is related to the Cauchy–Riemann
equations. Just as the Cauchy singular integral operator is a Fourier multiplier
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with symbol sgn(ξ), that is, belongs to the functional calculus of d/dx, the opera-
tor EA belongs to the functional calculus of a first order differential operator TA.
The bisectorial operator −TA in L2(Rn;C1+n) is the infinitesimal generator for the
system (3) in the sense that these equations are equivalent to ∂tF +TAF =0. The
fundamental problem is to prove that this operator TA has a bounded holomorphic
functional calculus, and as a consequence that the Cauchy operator EA is bounded.
Given this, the perturbation results for BVPs follow as a consequence.

In [3], it was proved that ‖EA‖<∞ when ‖A−A0‖ ∞ <ε and A0 is either real
symmetric, block or constant. This paper made use of a rather lengthy perturba-
tion argument, and also used square function estimates of Dahlberg, Jerison and
Kenig [16] and estimates of harmonic measure of Jerison and Kenig [24], for solu-
tions to (1) in the real symmetric case.

In this paper we prove the boundedness of the holomorphic functional calculus
of TA, for all complex A, directly from the quadratic estimates proved by Axelsson,
Keith and McIntosh [10]. In this way, our results build on the proof of the Kato
square root problem [5]. That ‖EA‖<∞ for all complex A may come as a surprise,
in view of the above mentioned counterexamples to well-posedness of the BVPs
for non-symmetric coefficients. However, it is important to note that EA itself
has nothing to do with BVPs, it is an infinitesimal generator associated with the
differential equation, and is not related to the boundary conditions (except in the
case of block form matrices). As a consequence of the boundedness of EA=sgn(TA),
we prove in Theorem 2.3 that there is a Hardy type splitting

L2(Rn;C1+n) 	 f =F + |Rn +F − |Rn

of boundary functions f into traces of F ± satisfying (3) in R1+n
± , with estimates

‖f ‖2 ≈ ‖F + |Rn ‖2+‖F − |Rn ‖2. That a BVP is well posed is the question whether
the full traces F + |Rn of solutions to the equations in Rn+1

+ are in one-to-one cor-
respondence with the normal components (Neumann problem) or tangential parts
(Dirichlet regularity problem), respectively. It is this one-to-one correspondence
which may fail for some complex A. What we prove here and use for the proof of
Theorem 2.2, is that the Hardy subspaces {F + |Rn }, and the projections f �→F + |Rn

onto them, depend analytically on A.
Finally we note that the methods developed here go beyond scalar elliptic

equations like (1). The natural framework here is rather BVPs for elliptic systems
of partial differential equations, as should be clear from (3). Thus we shall formulate
our results for divergence form elliptic systems of m second order equations (but
the reader interested in scalar equations only can set m=1 throughout). In this
setting, our well-posedness results are mostly new. Previously known results are
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limited to systems with coefficients of Jacobian type, or more generally constant
coefficient systems on Lipschitz domains.

Well-posedness of (Dir-A), (Reg-A) and (Neu-A) with L2 boundary values
have been obtained for the Stokes’ system by Fabes, Kenig and Verchota [21], and
of (Dir-A) and (Reg-A) for the Lamé system by Dahlberg, Kenig and Verchota [18].
For general constant coefficient symmetric second order systems, solvability results
for (Neu-A) and (Reg-A) are found in Fabes [19]. Under the weaker Legendre–
Hadamard ellipticity condition, (Dir-A) and (Reg-A) where solved by Gao [22].
As for non-symmetric systems, Verchota and Vogel [35] obtained Lp solvability
results for (Dir-A), (Reg-A) and (Neu-A) in the spirit of [26] and [28] for certain
non-symmetric constant coefficient Legendre–Hadamard systems of two equations
on C1 polygons in the plane. For general elliptic systems, the Kato problem was
solved by Auscher, Hofmann, McIntosh and Tchamitchian [6], a consequence being
the well-posedness of (Neu-A) and (Reg-A) for elliptic systems with block form
coefficients.

Note that the pullback technique, from the Lipschitz domain Ω to Rn+1
+ , de-

scribed above, works for more general divergence form equations or systems. In this
case, coefficients Ã(x) in Ω are transformed into coefficients

A(x) :=
(

1 −(∇xg(x))t

0 I

)
Ã(x)

(
1 0

−∇xg(x) I

)

in Rn+1
+ . We also remark that our methods are by no means limited to divergence

form equations. In Section 6, we give solvability results for exterior differential
systems (22) for differential forms, as an example of this. This generalizes the first
order system (3), which is the special case of (22) for 1-forms. Furthermore, we
note that time-harmonic Maxwell’s equations on a Lipschitz domain can be written
as a system of equations (22) for 1- and 2-forms with lower order terms added,
through the above pullback technique. Thus, although not directly applicable,
(22) is closely related to Maxwell’s equations. Solvability of Maxwell’s equations on
Lipschitz domains is due to Mitrea [32], and more general BVPs for Dirac equations
were solved by McIntosh and Mitrea [30]. In fact, the Cauchy integral boundary
equation method used in this paper, as well as in [3], was developed for solving
BVPs for Maxwell’s and Dirac’s equations in the Ph.D. thesis [7] of the second
author. Further elaborations of the ideas presented in this paper, along the lines
of thought in [3] and [9], working with general inhomogeneous differential forms
taking values in the full exterior algebra and allowing lower order terms, one should
be able to extend the theory to cover both Dirac’s and Maxwell’s equations.
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2. Notation and results

We begin by giving the precise definition of well-posedness of the BVPs dis-
cussed in the introduction, or rather the corresponding BVPs for systems. Through-
out this paper, we use the notation X ≈Y and X�Y for estimates to mean that
there exists a constant C>0, independent of the variables in the estimate, such that
X/C ≤Y ≤CX and X ≤CY , respectively.

We write {e0, e1, ..., en} for the standard basis for R1+n with e0 “upward”
pointing into R1+n

+ , and write t=x0 for the vertical coordinate. For the vertical
derivative, we write ∂0=∂t. For vectors v=(vα

j )1≤α≤m
0≤j≤n , we write v0 and v‖ for the

normal and tangential parts of v, i.e. (v0)α
0 =vα

0 and (v0)α
j =0 when 1≤j ≤n, whereas

(v‖)α
j =vα

j when 1≤j ≤n and (v‖)α
0 =0. Frequently, we shall identify normal vector

fields v=v0 with the corresponding scalar functions v0=(vα
0 )m

α=1.
For systems, gradient and divergence act as (∇t,xU)α

j =∂jU
α and (divt,x F )α=∑n

j=0 ∂jF
α
j , with corresponding tangential versions ∇xU=(∇t,xU)‖ and (divx F )α=∑n

j=1 ∂jF
α
j . With curlt,x F =0 we understand that ∂kFα

j =∂jF
α
k , for all j, k=

0, ..., n, α=1, ..., m. Similarly, write curlx F‖ =0 if ∂kFα
j =∂jF

α
k , for all j, k=1, ..., n,

α=1, ..., m.
We consider divergence form second order elliptic systems

(4)
n∑

j,k=0

m∑

β=1

∂jA
α,β
j,k (x)∂kUβ(t, x)= 0, α =1, ..., m,

on the half spaces R1+n
± :={(t, x)∈R×Rn ;±t>0}, n≥1, where the matrix A=

(Aα,β
j,k (x))α,β=1,...,m

j,k=0,...,n ∈L∞(Rn; L(C(1+n)m)) is assumed to be t-independent with
complex coefficients and strictly accretive on N(curl‖), in the sense that there exists
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ˇ>0 such that

(5)
n∑

j,k=0

m∑

α,β=1

∫

Rn

Re
(
Aα,β

j,k (x)fβ
k (x)fα

j (x)
)
dx ≥ ˇ

n∑

j=0

m∑

α=1

∫

Rn

∣∣fα
j (x)

∣∣2 dx

for all f ∈N(curl‖):={g ∈L2(Rn;C(1+n)m);curlx(g‖)=0}.
Equivalently, this means that the G̊arding inequality

∫

Rn

Re(A(divx u‖ +∇xu0), (divx u‖ +∇xu0)) dx ≥ ˇ

∫

Rn

(|divx u‖ |2+| ∇xu0|2) dx

holds for u=(u0, u‖)∈Ḣ1(Rn;C(1+n)m), since divx has dense range in L2(Rn;Cm)
and ∇x has dense range in {g ∈L2(Rn;Cnm);curlx g=0}. Splitting C(1+n)m into
normal parts Cm and tangential parts Cnm, we write

A(x)v =
(

A00(x) A0‖(x)
A‖0(x) A‖ ‖(x)

) (
v0

v‖

)
.

It is then clear that (5) implies that A00 is pointwise strictly accretive and that A‖ ‖

satisfies the strict G̊arding inequality

(6)

{
Re(A00(x)v, v)≥ˇ|v|2, v ∈Cm, a.e. x∈Rn,
∫
Rn Re(A‖ ‖ ∇xu0, ∇xu0) dx≥ˇ

∫
Rn | ∇xu0|2 dx, u0 ∈Ḣ1(Rn;Cm).

The condition (5) lies between pointwise strict accretivity, i.e.

(7) Re(A(x)v, v) ≥ ˇ|v|2 for all v ∈ C(1+n)m and a.e. x ∈ Rn,

and the Rn+1
+ G̊arding inequality

(8)
∫∫

Rn+1
+

Re(A(x)∇t,xg(t, x), ∇t,xg(t, x)) dt dx ≥ ˇ

∫∫

Rn+1
+

| ∇t,xg(t, x)|2 dt dx

for g ∈Ḣ1(Rn+1
+ ;Cm). Clearly, (7) implies (5), which in turn implies (8), as is seen

by taking f(x)=∇t,xg(t, x) for fixed t and then integrating over t. Furthermore (8),
implies (6), which is seen by taking g(t, x):=ψ(εt)u0(x) and integrating away t, for
some ψ ∈C∞

0 (R+). Letting ε→∞ and ε→0, respectively, proves (6). In fact, only
the G̊arding inequality (8) for g ∈H1

0 (Rn+1
+ ;Cm) is needed for this argument.

When n=1, (5) is equivalent to strong accretivity (7) since in this case ∇x

has dense range in L2(R;Cm) and N(curl‖)=L2(R;C2m). On the other hand, if
A is of block form, i.e. A0‖ =A‖0=0, then (5) is equivalent to (6) and to the Rn+1

+

G̊arding inequality (8), for H1(Rn+1
+ ;Cm) as well as for H1

0 (Rn+1
+ ;Cm), since (6)

implies (5). It is also known that the Rn+1
+ G̊arding inequality (8) implies strong

accretivity (7) when m=1, so for scalar equations (5), (8) and (7) are all equivalent.
On the functions U=(Uα)m

α=1 satisfying (4), we impose one of the following
boundary conditions.
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• (Dir-A): Uα(0, x)=uα(x) for a given function u∈L2(Rn;Cm).
• (Neu-A): −

∑n
k=0

∑m
β=1 Aα,β

0,k (x)∂kUβ(0, x)=φα(x), where φ∈L2(Rn;Cm)
is given.

• (Reg-A): ∂jU
α(0, x)=∂ju

α(x), 1≤j ≤n, where u∈Ḣ1(Rn;Cm) is given.
The boundary value problems (Neu-A) and (Reg-A) can be viewed as problems

concerning a first order partial differential system, and this is the point of view we
take here. Indeed, consider the gradient vector fields

F (t, x) = ∇t,xU(t, x) : R1+n
+ −→C(1+n)m.

Since the scalar potentials U are in one-to-one correspondence with the curl-free vec-
tor fields F (t, x), modulo constants, we can take F rather than U as the unknown,
and equation (4) for U is rewritten as the equivalent first order system (3) for F .
Since the coefficients A(x) are independent of t, it is natural to view F from the
semigroup point of view F (t, x)=Ft(x)=∇t,xU(t, x)∈C1(R+; L2(Rn;C(1+n)m)).

Definition 2.1. (i) We say that the boundary value problem (Neu-A) is well
posed if for each boundary data φ∈L2(Rn;Cm), there exists a unique function

F (t, x) =Ft(x) = ∇t,xU(t, x) ∈ C1(R+; L2(Rn;C(1+n)m))

which satisfies (3) for t>0, and has limits limt→∞ Ft=0 and limt→0 Ft=f in L2

norm, where the full boundary trace f satisfies the boundary condition −(Af)0=φ.
More precisely, by F satisfying (3), we mean that ∂t(AF )0=− divx(AF )‖, ∂tF‖ =
∇xF0 and curlx F‖ =0, where ∂t is taken in the strong sense, and x-derivatives in
the distributional sense.

(ii) We say that the boundary value problem (Reg-A) is well posed if for each
boundary data ∇xu∈L2(Rn;Cnm), there exists a unique function

F ∈ C1(R+; L2(Rn;C(1+n)m))

which satisfies (3) for t>0, and has limits limt→∞ Ft=0 and limt→0 Ft=f in L2

norm, where the full boundary trace f satisfies the boundary condition f‖ =∇xu.
(iii) The Dirichlet problem (Dir-A) is said to be well posed if for each u∈

L2(Rn;Cm), there is a unique function

Ut(x) =U(t, x) ∈ C1(R+; L2(Rn;Cm))

such that ∇xU ∈C0(R+; L2(Rn;Cnm)), where U satisfies (4) for t>0, limt→0 Ut=u,
limt→∞ Ut=0, limt→∞ ∇t,xUt=0 in L2 norm, and

∫ t1
t0

∇xUs ds converges in L2 when
t0→0 and t1→∞. More precisely, by U satisfying (4), we mean that

∫ ∞

t

((A∇s,xUs)‖, ∇xv) ds= −((A∇t,xUt)0, v)

for all v ∈C∞
0 (Rn;Cm).
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The Dirichlet problem (Dir-A) will also be rewritten as a BVP for the first
order system (3). However, here it is not appropriate to consider the gradient
vector field ∇t,xU , since the boundary condition is a condition on the potential
U itself. Instead we use the point of view of harmonic conjugate functions, and
write F =Ue0+F‖, where the tangential vector fields F‖ are conjugate functions in
a generalized sense and F satisfies (3), which is viewed as a generalized Cauchy–
Riemann system. Details of this are given in Lemma 4.2, where it is shown that
the Dirichlet problem (Dir-A) for U is equivalent to an auxiliary Neumann problem
(Neu⊥-A) for F .

Our main result, which we prove in Section 4, is the following.

Theorem 2.2. The sets WP(Reg), WP(Neu) and WP(Dir), as define d in
(2), are all open subsets of L∞(Rn; L(C(1+n)m)). Each of the sets of well-posedness
contains

(i) all Hermitean matrices A(x)=A(x)∗ (and in particular all real symmetric
matrices),

(ii) all block matrices where Aα,β
0,j (x)=0=Aα,β

j,0 (x), 1≤j ≤n, 1≤α, β ≤m, and
(iii) all constant matrices A(x)=A.

The notion of well-posedness used here departs from the standard variational
one. However, we show in Section 5 that the solutions obtained here coincide with
the solutions obtained through the Lax–Milgram theorem when A belongs to the
connected component of WP which contains I . This connected component includes
the three classes (i), (ii) and (iii) specified in Theorem 2.2. The notion of well-
posedness used here coincides with that in [3] for the BVPs (Neu-A) and (Reg-A).
However, for (Dir-A) the meaning of well-posedness differs slightly from that in [3],
as we impose an extra integrability condition on ∇xU here.

A natural function space for solutions Ft(x)∈C1(R+; L2(Rn;C(1+n)m)) to the
BVPs is L∞(R+; L2), with norm supt>0 ‖Ft‖2. Two other norms which are impor-
tant are the square function norm |||Ft|||2 :=

∫ ∞
0

‖Ft‖2
2 t−1 dt and the norm ‖Ñ ∗(F )‖2,

using the modified non-tangential maximal function

Ñ ∗(F )(x) := sup
t>0

t−(1+n)/2‖F ‖L2(Q(t,x)),

where Q(t, x):=[(1−c0)t, (1+c0)t]×B(x; c1t) for some fixed constants c0 ∈(0, 1) and
c1>0.

The key result underlying Theorem 2.2, which we prove in Section 3, is the
following result on Hardy type splittings of L2(Rn).



262 Pascal Auscher, Andreas Axelsson and Alan McIntosh

Theorem 2.3. Let A∈L∞(Rn; L(C(1+n)m)) be a t-independent, complex ma-
trix function which is strictly accretive on N(curl‖).

Then each f ∈N(curl‖) is in one-to-one correspondence with a pair of vector
fields F ±

t (x)=F ±(t, x)∈C1(R±; L2(Rn;C(1+n)m)) in R1+n
± satisfying (3) and hav-

ing L2 limits limt→0± F ±
t =f ± and limt→± ∞ F ±

t =0, such that

f = f++f −.

This splitting is topological, i.e. ‖f ‖2 ≈ ‖f+‖2+‖f − ‖2, and the vector fields F ± sat-
isfy the norm equivalences

‖f ‖2 ≈ sup
t>0

‖Ft‖2 ≈ |||t∂tFt||| ≈ ‖Ñ ∗(F )‖2.

Moreover, the Hardy projections E±
A : f �→F ± =F ±

A depend locally Lipschitz contin-
uously on A in the sense that

‖F ±
A2

−F ±
A1

‖ X ≤ C‖A2 −A1‖L∞(Rn)‖f ‖2,

where C=C(ˇA1 ,ˇA2 , ‖A1‖ ∞, ‖A2‖ ∞) and where ‖F ‖ X denotes any of the four
norms above.

In particular, for the Neumann problem we have the following estimates of
solutions. If A∈WP(Neu), then the solution F =∇t,xU with boundary data φ=
−(Af)0, where f :=F |Rn , has estimates

∫

Rn

|φ|2 dx ≈
∫

Rn

|f |2 dx ≈ sup
t>0

∫

Rn

|Ft|2 dx

≈
∫

Rn

|Ñ ∗(F )|2 dx ≈
∫∫

R1+n
+

|∂tF |2t dt dx.

Similar estimates hold for the solution to the Dirichlet regularity problem with
boundary data ∇xu. For the Dirichlet problem, Theorem 2.3 shows the following
estimates.

Corollary 2.4. Let A∈L∞(Rn; L(C(1+n)m)) be a t-independent, complex ma-
trix function which is strictly accretive on N(curl‖) and assume that A∈WP(Dir).
Then any function Ut(x)=U(t, x)∈C1(R+; L2(Rn;Cm)) solving (4), with proper-
ties as in Definition 2.1, has estimates

∫

Rn

|u|2 dx ≈ sup
t>0

∫

Rn

|Ut|2 dx ≈
∫

Rn

|Ñ ∗(U)|2 dx ≈
∫∫

R1+n
+

| ∇t,xU |2t dt dx,
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where u=U |Rn . If furthermore A is real (not necessarily symmetric) and m=1,
then Moser’s local boundedness estimate [33] gives the pointwise estimate Ñ ∗(U)(x)≈
N∗(U)(x), where the standard non-tangential maximal function is N∗(U)(x):=
sup|y−x|<ct |U(t, y)|, for fixed 0<c<∞.

Theorem 2.2 shows in particular that A∈WP(Dir) if A is real symmetric. Even
for real symmetric A our methods yield a new proof of the estimate between the
square function and the non-tangential maximal function above, first proved by
Dahlberg, Jerison and Kenig [16], using estimates of harmonic measure by Jerison
and Kenig [24], in the scalar case m=1. In [3], these estimates were used to prove
that ‖EA‖<∞ for real symmetric A. Here we reverse the argument: we prove that
‖EA‖<∞ independently and deduce from this the equivalences of norms.

In the case m>1 of systems, Dahlberg, Kenig, Pipher and Verchota [17] have
shown equivalence in Lp norm of the non-tangential maximal function and the
square function, for general constant coefficient real symmetric systems on Lipschitz
domains. Also, such equivalence has been shown for certain non-symmetric systems
of two equations in the plane by Verchota and Vogel [36].

3. Cauchy operators and Hardy spaces

The boundary equation methods for solving BVPs which are used here and
in [3], are based on Cauchy operators EA, with associated Hardy type subspaces. In
this section we prove quadratic estimates for EA and deduce from this Theorem 2.3.
How these Cauchy operators are used to prove Theorem 2.2 is shown in Section 4
and in particular in Lemma 4.3. Note that the operators EA themselves depend
only on the differential system (3), and have nothing to do with the boundary
conditions. Thus they are the same for both Neumann and Dirichlet problems.

We start by rewriting the equations (3) in terms of an “infinitesimal gen-
erator” TA. Write v ∈C(1+n)m as v=(v0, v‖)t, where v0 ∈Cm and v‖ ∈Cnm, and
introduce the auxiliary matrices

Ā :=
(

A00 A0‖

0 I

)
and A :=

(
1 0

A‖0 A‖ ‖

)
, if A=

(
A00 A0‖

A‖0 A‖ ‖

)

in the normal/tangential splitting of C(1+n)m. Recall that A being strictly accre-
tive on N(curl‖), as in (5), implies the accretivity estimates (6) for the diagonal
blocks A00 and A‖ ‖. Since A00 is pointwise strictly accretive, it is invertible, and
consequently Ā is invertible. This is not necessarily true for A.
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Splitting normal and tangential derivatives in (3), we see that this system of
equations is equivalent to

{
∂t(AF )0+divx(AF )‖ =0,

∂tF‖ − ∇xF0=0,

together with the constraint curlx F‖ =0. Since

(9) ĀF =(AF )0+F‖ and AF =F0+(AF )‖,

we have shown that (3) is equivalent to
{

∂t(ĀF )0+divx(AF )‖ =0,

∂t(ĀF )‖ − ∇x(AF )0=0,

together with the tangential constraint curlx F‖ =0. Combining the two equations,
we get

(10) ∂tF +TAF =0,

where TA is the following operator.

Definition 3.1. Let D be the self-adjoint differential operator D :=
( 0 divx

− ∇x 0

)

in L2(Rn;C(1+n)m) with domain

D(D) := {(f0, f‖)t ∈ L2(Rn;C(1+n)m) ; ∇xf0, divx f‖ ∈ L2}.

Define the infinitesimal generator for (3) to be the operator

TA := Ā−1DA =
(

A−1
00 (A0‖ ∇x+divx A‖0) A−1

00 divx A‖ ‖

−∇x 0

)
,

with domain D(TA):=A−1D(D). Let the transformed coefficient matrix be

Â :=AĀ−1 =
(

A−1
00 −A−1

00 A0‖

A‖0A
−1
00 A‖ ‖ −A‖0A

−1
00 A0‖

)

so that

(11) TA = Ā−1(DÂ)Ā.

The following is the main algebraic result of the paper. Recall that N(curl‖)=
{g ∈L2(Rn;C(1+n)m);curlx(g‖)=0} and note that N(curl‖)=R(D).
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Proposition 3.2. The transformed coefficient matrix Â is bounded and strictly
accretive on N(curl‖), i.e. satisfies (5), if and only if A is bounded and strictly

accretive on N(curl‖). Moreover ˆ̂
A=A.

Proof. Assume that A is bounded and strictly accretive on N(curl‖). As noted
above, Ā is invertible and thus Â is bounded. Since Ā acts as identity on tangen-
tial vector fields, it is clear that Ā:N(curl‖)→N(curl‖) is an isomorphism. Strict
accretivity of Â on N(curl‖) now follows from the formula

Re(Â(Āf), Āf) = Re(Af, Āf)=Re((f0, A00f0+A0‖f‖)+(A‖0f0+A‖ ‖f‖, f‖))

= Re((A00f0+A0‖f‖, f0)+(A‖0f0+A‖ ‖f‖, f‖)) =Re(Af, f).

The identity ˆ̂A=A is straightforward to verify, and this shows that the above argu-
ment is reversible. �

We are now in a position to analyze the operator TA. Due to (11), it suffices to
study operators of the form DB in L2(Rn;CN ), where D is a self-adjoint homoge-
neous first order differential operator with constant coefficients, and B is a bounded
multiplication operator which is strictly accretive on R(D), i.e. there exists ˇ>0
such that

(12) Re(BDu, Du) ≥ ˇ‖Du‖2 for all u ∈ D(D).

The applications we have in mind are the specific operators D and B=Â from
Definition 3.1, in which case R(D)=N(curl‖), as well as generalizations of these in
Section 6.

Define closed and open sectors and double sectors in the complex plane by

Sω+ := {z ∈ C ; |arg z| ≤ ω} ∪ {0}, Sω :=Sω+ ∪(−Sω+),

So
ν+ := {z ∈ C ; z =0 and |arg z| <ν}, So

ν :=So
ν+ ∪(−So

ν+),

and define the angle of accretivity of B to be

ω := sup
f ∈R(D)

f �=0

|arg(Bf, f)| <π/2.

Proposition 3.3. Let D be a self-adjoint operator and let B be a bounded
operator in L2(Rn;CN ) which satisfies (12).

(i) The operator DB is a closed and densely defined ω-bisectorial operator,
i.e. σ(DB)⊂Sω , where ω is the angle of accretivity of B. Moreover, there are
resolvent bounds ‖(λI −DB)−1‖�1/dist(λ, Sω) when λ /∈Sω .
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(ii) The operator DB has range R(DB)=R(D) and null space N(DB)=
B−1N(D), where B−1 denotes the inverse image, such that

L2(Rn;CN ) =R(DB)⊕N(DB)

topologically (but in general non-orthogonally).
(iii) The restriction of DB to R(D)=R(DB) is a closed and injective operator

with dense range in R(D), with estimates on spectrum and resolvents as in (i).

Proof. As a consequence of (12), it is verified that DB and B∗D are closed
and densely defined adjoint unbounded operators, and the topological splitting

L2(Rn;Cm) =N(D)⊕B∗R(D)

follows from perturbing the orthogonal splitting L2=N(D)⊕R(D) with B∗, which
satisfies (12) as well. Since R(DB)=N(B∗D)⊥ =N(D)⊥ =R(D) and N(DB)=
R(B∗D)⊥ =(B∗R(D))⊥, the splitting (ii) for DB follows, by stability of splittings
under taking orthogonal complements.

Since DB=(DB)|
R(D)

⊕0 in the splitting (ii), it suffices to prove resolvent

bounds for DB on R(D). To this end, let u∈R(D)∩D(DB) and f=(λI −DB)u.
Then

Im(Bu, λu−DBu)= Im(Bu, f).

Since D is self-adjoint, (Bu, DBu)∈R and we get an estimate |Im(λ(Bu, u))|�
‖u‖‖f ‖, from which the resolvent bound ‖u‖�‖f ‖/dist(λ, Sω) follows. �

These properties of closed operators of the form DB have been known for some
time, see for example [1] and [14], at least in the case when B is strongly accretive.
The following theorem has also been known for some time in the case when D is
injective, as it derives from the special case D=−i d/dx developed in [31] (see also
Lecture 8 of [1]). In this case DB is similar to the operator d/dz|γ of differentiation
on a Lipschitz graph γ, and the boundedness of sgn(DB) is equivalent to the bound-
edness of the Cauchy singular integral on γ, proved originally by Calderón when
B −I is sufficiently small [12], and in general by Coifman, McIntosh and Meyer [13].

The proof of the following theorem however is more involved when D is not in-
jective. In the general case it was proved in [10, Theorem 3.1(iii)], building on results
for the Kato problem by Auscher, Hofmann, Lacey, McIntosh and Tchamitchian [5].
It is also possible to give a direct proof, as shown in [4].

Theorem 3.4. Let D be a self-adjoint homogeneous first order differential
operator with constant coefficients such that

‖Df ‖ � ‖ ∇f ‖ for all f ∈ R(D)∩D(D),
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and let B be a bounded multiplication operator in L2(Rn;CN ) which satisfies (12).
(i) The operator DB satisfies the quadratic estimates

∫ ∞

0

∥∥tDB(1+(tDB)2)−1f
∥∥2 dt

t
≈ ‖f ‖2 for all f ∈ R(D).

(ii) The operator DB has a bounded holomorphic functional calculus in R(D),
i.e. for each bounded holomorphic function b(z) on a double sector So

ν , ω<ν<π/2,
the operator b(DB) in R(D) is bounded with estimates

‖b(DB)‖L2→L2 � ‖b‖L∞(So
ν).

For the precise definition of the operators b(DB) in the functional calculus of
DB we refer to [1]. Note that the map H∞(So

ν)	b �→b(DB)∈ L(R(D)) is a contin-
uous algebra homomorphism.

We now return to the operator TA of Definition 3.1. Note that the isomorphism
Ā in (11) maps the subspace R(D) onto itself.

Definition 3.5. Let H denote the closed subspace

H :=R(D) =N(curl‖) = {f ∈ L2(Rn;C(1+n)m) ; curlx f‖ =0}

of L2(Rn;C(1+n)m).

In this notation, Proposition 3.3 and Theorem 3.4 with B=Â, thus have the
following corollary.

Corollary 3.6. The operator TA from Definition 3.1 is an ω-bisectorial oper-
ator in L2(Rn;C(1+n)m), where ω is the angle of accretivity of Â. Furthermore we
have a splitting

L2(Rn;C(1+n)m) =R(TA)⊕N(TA) = H ⊕ {(0, f‖)t ; divx A‖ ‖f‖ =0}

in which TA=TA| H ⊕0. The restriction of TA to H is an injective operator with
dense range in H, which satisfies quadratic estimates and has a bounded holomorphic
functional calculus.

Note that the restriction of TA to H, which we continue to denote by TA,
coincides with the operator TA used in [3] for m=1.

Of importance to us are the following operators, which are bounded operators
in H because they belong to the functional calculus of TA.
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• The characteristic functions

χ±(z) =
{

1, if ± Re z>0,

0, if ± Re z<0

which give the generalized Hardy projections E±
A :=χ±(TA).

• The signum function sgn(z)=χ+(z)−χ−(z) which gives the generalized
Cauchy operator EA :=sgn(TA)=E+

A −E−
A.

• The exponential functions e−t|z|, t>0, which give the operators e−t|TA |. Note
that |z|:=z sgn(z) does not denote absolute value for non-real z, but z �→|z| is holo-
morphic on So

π/2.
Note that the quadratic estimates in Corollary 3.6 can be written as

(13)
∫ ∞

0

‖ψ(tTA)f ‖2 dt

t
≈ ‖f ‖2, f ∈ R(D),

where ψ(z):=z/(1+z2). The estimate � remains valid for any holomorphic ψ(z) on
So

ν such that |ψ(z)|�min(|z|α, |z| −α) for some α>0. If furthermore ψ|So
ν+

=0 and
ψ|So

ν−
=0, then the estimate ≈ holds. See [1].

Proof of Theorem 2.3. By Corollary 3.6, the infinitesimal generator has a
bounded holomorphic functional calculus. With the notation introduced above,
define Hardy type subspaces E±

A H:={E±
Af ;f ∈ H }, so that

H =E+
AH ⊕E−

A H.

In terms of the operator TA, the vector fields f and F ± are related as

f = f++f − ←→E±
Af = f ± =F ± |Rn ←→ e∓t|TA |f ± =F ±.

Indeed, differentiating F ± =e∓t|TA |f ± at (t, x)∈R1+n
± , we have

∂tF
± = ∓|TA|F ± = −TAe∓t|TA |(±EAf ±) = −TAe∓t|TA |f ± = −TAF ±

since f ± ∈E±
A H. Thus F ± satisfies (10), which we have seen at the beginning of

this section is equivalent to (3). Conversely, each vector field

F ∈ C1(R+; L2(Rn;C(1+n)m))

which satisfies (10) for t>0 and has limits limt→∞ Ft=0 and limt→0 Ft=f in L2

norm, is of the form F (t, x)=e−t|TA |f , where f ∈E+
AH. To see this, split

Ft=F +
t +F −

t , where F ±
t ∈E±

A H. Applying E±
A to (10) gives the equations ∂tF

±
t ±

|TA|F ±
t =0. Multiplying with suitable exponentials shows that, for fixed t>0,

e(s−t)|TA |F +
s is constant for s∈(0, t) and e(t−s)|TA |F −

s is constant for s∈(t, ∞). Thus
F −

t =0 and F +
t =e−t|TA |f , where f=limt→0 Ft. The corresponding result for F − is

proved similarly.
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The equivalences of norms follow from the quadratic estimates for TA as follows.
Boundedness of the complementary projections E±

A shows that ‖f ‖ ≈ ‖f+‖+‖f − ‖,
the uniform boundedness of e−t|TA |, t>0, shows that ‖f ± ‖ ≈sup±t>0 ‖F ±

t ‖, and the
quadratic estimates for TA shows that |||t∂tF

±
±t||| ≈ ‖f ± ‖. Finally ‖f ± ‖ ≈ ‖Ñ ∗(F ±)‖

was proved in [3, Proposition 2.56] for m=1. The extension to divergence form
systems is straightforward.

To verify Lipschitz continuity, one shows that the operators

f �−→ b(TA)f : H −→ H,(14)

f �−→ (b(tTA)f)t>0 : H −→L2((a, b); H),(15)

f �−→ (ψ(tTA)f)t>0 : H −→L2(R+, dt/t; H)(16)

depend analytically on A, where b and ψ are bounded holomorphic functions on
So

ν , ψ decays at 0 and ∞ as in (13), and the interval (a, b) is finite. One proceeds
similar to [10, Theorem 6.4] and [3, Lemma 2.41], starting from the analyticity of
resolvents A �→(λI −TA)−1, using the quadratic estimates from Corollary 3.6 for the
operator TA and the fact that uniform limits of analytic functions are analytic.

Lipschitz continuity can now be deduced from analyticity. Given A1 and A2 ∈
L∞(Rn;C(1+n)m) which are strictly accretive on H, define

A(ζ) :=A1+
ζ(A2 −A1)

‖A2 −A1‖ ∞

so that ζ �→A(ζ) is analytic in a neighborhood Ω of the interval [0, ‖A2 −A1‖ ∞].
Consider the analytic function ζ �→A(ζ) �→F ±

t =b(tTA(ζ))f , where b(z):=e−t|z|χ±(z),
which has bounds ‖F ±

t ‖2�‖f ‖2 in Ω. Thus ‖dF ±
t /dζ‖2�‖f ‖2 in Ω, from which

Lipschitz continuity of A �→Ft follows, uniformly for all t>0.
Lipschitz continuity of A �→Ft for the square function norm and the norm of

the non-tangential maximal function are proved similarly, using analyticity of (16),
with ψ(z)=ze− |z|χ±(z), and (15), with b(z)=e−t|z|χ±(z), respectively. For the non-
tangential maximal function, we refer to the proof of [3, Theorem 1.1] for further
details. �

4. Dirichlet and Neumann boundary value problems

In this section, we return to the Dirichlet and Neumann BVPs and use The-
orem 2.3 to prove Theorem 2.2. We start by translating (Dir-A) to an auxiliary
Neumann problem (Neu⊥-A), which consists in finding V solving (4) with boundary
condition.
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• Neumann problem (Neu⊥-A): −∂tV (0, x)=ϕ(x), where ϕ∈L2(Rn;Cm) is
given.

More precisely, we use the following first order formulation of well-posedness.

Definition 4.1. We say that the boundary value problem (Neu⊥-A) is well posed
if for each boundary data ϕ∈L2(Rn;Cm), there exists a unique vector field

F (t, x) =Ft(x) = ∇t,xV (t, x) ∈ C1(R+; L2(Rn;C(1+n)m))

which satisfies (3) for t>0, and has limits limt→∞ Ft=0 and limt→0 Ft=f in L2

norm, where the full boundary trace f satisfies the boundary condition −f0=ϕ.

Lemma 4.2. Given u=−ϕ∈L2(Rn;Cm), we have a one-to-one correspon-
dence

U(t, x) =F0(t, x)←→F (t, x) = −
∫ ∞

t

∇s,xU(s, x) ds

between solutions U(t, x) to (Dir-A) and solutions F (t, x) to (Neu⊥-A). In partic-
ular WP(Dir)=WP(Neu⊥), where

WP(Neu⊥) := {A ; (Neu⊥-A) is well posed } ⊂ L∞(Rn;C(1+n)m).

Proof. Assume that F solves (Neu⊥-A) with boundary condition f0=u, and let
U :=F0. Then Ut ∈C1(R+; L2) and ∇xU=∂tF‖ ∈C0(R+; L2). The limits limt→0 Ut=
u, limt→∞ Ut=0 and limt→∞ ∇t,xUt=0 are direct consequences of the limits
limt→0 Ft=f , limt→∞ Ft=limt→∞ t∂tFt=0, whereas

∫ t1

t0

∇xUs ds=
∫ t1

t0

∂sF‖ ds=F‖(t1)−F‖(t0)→ −f‖, as (t0, t1)→ (0, ∞).

The function U satisfies (4) since
∫ ∞

t

(∇xv, (A∇s,xUs)‖) ds =
∫ ∞

t

∂s(∇xv, (AFs)‖) ds= −(∇xv, (AFt)‖)

= (v, divx(AFt)‖) = −(v, ∂t(AFt)0) = −(v, (A∇t,xUt)0).

Conversely, assume that U solves (Dir-A) with boundary condition U |Rn =
−ϕ, and let F (t, x):=−

∫ ∞
t

∇s,xU(s, x) ds. This gives a well-defined function since
F =U −limt1→∞

∫ t1
t

∇xUs ds, and F ∈C1(R+; L2). Clearly, we have limt→∞ Ft=0
and limt→0 Ft=−ϕ−h, where h:=

∫ ∞
0

∇xUs ds. The vector field F satisfies (3) as
curlx

∫ ∞
t

∇xU(s, x) ds=0, ∂tF‖ =∇xU=∇xF0 and
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(v, divx(AFt)‖) =
(

∇xv,

∫ ∞

t

(A∇s,xUs)‖ ds

)

=
∫ ∞

t

(∇xv, (A∇s,xUs)‖) ds= −(v, (A∇t,xUt)0) = −(v, ∂t(AFt)0),

for all v ∈C∞
0 (Rn;Cm), so that ∂t(AFt)0=− divx(AFt)‖. �

As in the proof of Theorem 2.3, we denote the upper Hardy type subspace of
H by

E+
AH =

{
f ; F ∈ C1(R1+n

+ ; H) solves (10) in R1+n
+ , lim

t→0+
‖Ft −f ‖2 = lim

t→∞
‖Ft‖2 =0

}
.

Proof of Theorem 2.2. By Theorem 2.3, the spectral projection E+
A=χ+(TA)

onto this subspace is bounded and depends Lipschitz continuously on A. We now
observe that (Reg-A), (Neu-A) and (Neu⊥-A) are well posed if and only if

E+
AH −→ {g ∈ L2(Rn;Cnm) ; curlx g =0} : f �−→ f‖,

E+
AH −→L2(Rn;Cm) : f �−→ (Af)0,

E+
AH −→L2(Rn;Cm) : f �−→ f0,

are isomorphisms, respectively. Since E+
A depends continuously on A, by Theo-

rem 2.3, the following lemma shows that the sets of well-posedness are open.

Lemma 4.3. Let Pt be bounded projections in a Hilbert space H which depend
continuously on a parameter t∈(−δ, δ), and let S : H→K be a bounded operator into
a Hilbert space K. If S : P0H→K is an isomorphism, then there exists 0<ε<δ, such
that S : PtH→K is an isomorphism when |t|<ε.

Proof. Consider the family of operators P0H 	f �→SPtf ∈ K between fixed
spaces. By assumption and continuous dependence, they are invertible when |t|
is small. Thus it suffices to prove that Pt : P0H→PtH is invertible when |t| is small.
This holds since (I −P0(P0 −Pt))−1P0, P0(I −Pt(Pt −P0))−1 : PtH→P0H are seen
to be left and right inverses respectively. �

What remains to be proved is that the three maps are isomorphisms when A

is either Hermitean, block or constant. In fact, it suffices to prove this for (Reg-A)
and (Neu-A), due to the following result proved in [3, Proposition 2.52].

Proposition 4.4. The boundary value problem (Neu⊥-A) is well posed if and
only if (Reg-A∗) is well posed.



272 Pascal Auscher, Andreas Axelsson and Alan McIntosh

That (Reg-A) and (Neu-A) are well posed for Hermitean, block and constant
coefficients, follows from [3, Section 3] when m=1. For Hermitean and block form
coefficients, these proofs are readily adapted to systems, but to be self contained,
we give simplified proofs below.

Define the operator N :=
( −1 0

0 I

)
, which reflects a vector in Rn. Write N+=

1
2 (1+N)=

(
0 0
0I

)
for the tangential projection and N − = 1

2 (1−N)=
(

1 0
00

)
for the nor-

mal projection, so that N=N+ −N −.

4.1. Hermitean matrices

Let f ∈E+
AH. This means that there is a vector field Ft in R1+n

+ such that
∂tFt=−TAFt, limt→∞ Ft=0 and limt→0 Ft=f . Recall that

TA = Ā−1DA

and note that DN+ND=0. Furthermore, assuming that A∗ =A, it is seen from
the definition of Â that the Hermitean condition translates to (Â)∗ =NÂN . The
Rellich type identity which is useful here is the following.

(NAf, Āf) = −
∫ ∞

0

∂t(NAFt, ĀFt) dt

=
∫ ∞

0

(NATAFt, ĀFt)+(NAFt, ĀTAFt) dt

=
∫ ∞

0

(NÂDAFt, ĀFt)+(NAFt, DAFt) dt

=
∫ ∞

0

((ND+DN)AFt, AFt) dt

= 0.

Thus ((Af)0, (Āf)0)=((Af)‖, (Āf)‖), or in view of (9),

(17) ((f)0, (Af)0)= ((Af)‖, (f)‖).

Consider first the Neumann problem. From (17) it follows that

‖f ‖2 ≈ Re(Af, f)=Re((Af)0, f0)+((Af)‖, f‖)) = 2 Re((Af)0, f0) � ‖(Af)0‖‖f ‖.

This shows that ‖f ‖�‖(Af)0‖ holds for the Neumann map E+
AH 	f �→(Af)0, which

implies that this map is injective with closed range.
It remains for us to prove surjectivity of this map. Note that the above

estimates also show that E+
At

H 	f �→(Atf)0 is injective with closed range when
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At :=(1−t)I+tA, 0≤t≤1. It follows from the proof of Lemma 4.3 and the method
of continuity that all these maps have the same index. Since I=A0 ∈WP, it follows
that A∈WP.

Well-posedness for (Reg-A) and (Neu⊥-A) is proved in a similar way, by keeping
the factor f‖ and f0 respectively from (17).

4.2. Block matrices

Note that in this case the Neumann problems (Neu-A) and (Neu⊥-A) coincide,
and that the operator TA has the form

TA =
(

0 A−1
00 divx A‖ ‖

−∇x 0

)
.

Note further that in this case, the accretivity condition (5) splits into the two
independent assumptions Re(A00u, u)�‖u‖2

2 and Re(A‖ ‖ ∇xv, ∇xv)�‖∇xv‖2
2 for all

u∈L2(Rn;Cm) and ∇xv ∈L2(Rn;Cnm). Since the diagonal elements in TA are zero,
so are the diagonal elements of EA as

(18) EA =TA

(
T 2

A

)−1/2 =
(
T 2

A

)−1/2
TA =

(
0 L−1/2A00 divx A‖ ‖

−∇xL−1/2 0

)
,

where L:=−A00 divx A‖‖ ∇x. Another way to see this is from the calculation

NEA =N sgn(TA)N −1N =sgn
(
NTAN −1

)
N =sgn(−TA)N = −EAN.

To prove well-posedness, we need to prove that N+ : E+
AH→N+ H and N − : E+

AH→
N − H are isomorphisms. From EAN+NEA=0, we obtain explicit inverses as

2E+
A : N+ H −→E+

AH and 2E+
A : N − H −→E+

AH.

For example, to see that N+(2E+
Ag)=g when g ∈N+H, we calculate

2N+E+
Ag = N+(I+EA)g = g+N+EAg

= g+ 1
2 (1+N)EAg = g+ 1

2 (EAg −EANg) = g.

In fact well-posedness of the Neumann and regularity problems for block coef-
ficients is equivalent to the Kato square root estimate

∥∥√
Lu

∥∥
2

≈ ‖ ∇xu‖2,

as was first observed by Kenig [25, Remark 2.5.6]. To see this, we deduce from (18)
that f ∈E+

AH, i.e. f=EAf , if and only if f‖ =−∇xL−1/2f0, or inversely

f0 =L−1/2A00 divx A‖ ‖f‖

and curlx f‖ =0. This can be used to construct f=f0+EAf0=EAf‖ +f‖ from either
f0 or f‖. Note that the Kato estimate translates to ‖f0‖ ≈ ‖f‖ ‖.
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4.3. Constant matrices

If A is a constant matrix, we can make use of the Fourier transform.
(i) First consider the simpler case when m=1. In this case, the solutions to the

BVPs can be explicitly computed on the Fourier transform side, since the problem
reduces to an eigenvector calculation. At the frequency point ξ =0, the space H
corresponds to the two-dimensional space Hξ :={ze0+wξ ;z, w ∈C} of vectors with
tangential part parallel to ξ. The operator D corresponds to Dξ :=

(
0 iξt

−iξ 0

)
. Com-

pressing the constant matrix Â to Hξ , we define the 2×2 strictly accretive matrix

(
a b

c d

)
:=

(
Â00 Â0‖ξ

ξtÂ‖0 ξtÂ‖ ‖ξ

)

so that

DξÂ ∼ i

(
c d

−a −b

)
.

Computing eigenvalues and vectors shows that ze0+wξ ∈χ±(DξÂ) if and only if

(19) az+bw =
(

1
2 (c−b)±i

√
ad− 1

4 (b+c)2
)
w.

Applying the similarities in (11), we characterize well-posedness as follows. That
(Neu-A), (Reg-A) and (Neu⊥-A) are well posed means that ze0+wξ ∈χ±(DξÂ) is
determined by z, w and az+bw, respectively. This is straightforward to verify using
(19).

(ii) Next consider the case m>1. In this case, we perform a Rellich type
argument on the Fourier symbol, or rather we make a “reverse Rellich estimate”.

The space Hξ is now isomorphic to C2m since z, w ∈Cm. In view of Propo-
sition 4.4, it suffices to prove a-priori estimates ‖f ‖�‖f‖ ‖ and ‖f ‖�‖(Af)0‖ for
f ∈χ+(Tξ)Hk

ξ uniformly for almost all ξ ∈Rn, where Tξ :=Ā−1DξA. However, since
χ+(tTξ)=χ+(Tξ) for t>0, it suffices to consider the unit sphere |ξ|=1. By conti-
nuity and compactness, we need only verify that no non-zero vector f such that
f‖ =0 or (Af)0=0 can be in the Hardy space, i.e. be of the form f=F (0), where
F : R+→Hk

ξ satisfies ∂tF =−TξF and limt→∞ F =0. To prove this, we use the fact
that D2

ξ =I to obtain

(DξĀf, Āf) = −
∫ ∞

0

∂t(DξĀF (t), ĀF (t)) dt

= 2
∫ ∞

0

Re(AF (t), ĀF (t)) dt =2
∫ ∞

0

Re(AF (t), F (t)) dt.
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We now observe that the left-hand side vanishes if f‖ =0 or (Af)0=0, and from the
right-hand side we then see that F =0 identically, and therefore f=0. The method
of continuity, perturbing A to I now shows that the maps f �→f‖ and f �→(Af)0 are
surjective, and thus isomorphisms.

We have now completed the proof of Theorem 2.2. �

Proof of Corollary 2.4. As in Lemma 4.2 a function U solving (4), with prop-
erties as in Definition 2.1, is the normal part of a vector field F =U+F‖ solving (3),
with properties as in Definition 2.1. Theorem 2.3 shows that F =e−t|TA |f , where
f=F |Rn ∈E+

AH, and that estimates

‖f ‖2 ≈ sup
t>0

‖Ft‖2 ≈ ‖Ñ ∗(F )‖2 ≈ |||t∂tFt|||

hold. If A∈WP(Dir)=WP(Neu⊥), then ‖f ‖2 ≈ ‖u‖2 and ‖Ft‖2 ≈ ‖Ut‖2 for all t>0,
since Ft ∈E+

AH. For the square function norm we observe that ∂tF =∇t,xU , and
for the non-tangential maximal function clearly ‖Ñ ∗(F )‖2�‖Ñ ∗(U)‖2 holds. As
‖u‖2 ≈supt>0 ‖Ut‖2 for solutions to (4) has been shown, we have ‖Ut‖2�‖Us‖2

when t>s. The reverse estimate ‖Ñ ∗(F )‖2�‖Ñ ∗(U)‖2 now follows from

‖Ñ ∗(U)‖2 � sup
t>0

∫

Rn

∫

|y−x|<c1t

∫

|s−t|<c0t

|U(s, y)|2 ds dy dx

= sup
t>0

∫

|s−t|<c0t

‖Us‖2ds� sup
t>0

‖U(1+c0)t‖2 ≈ ‖u‖2.

This proves the corollary. �

5. Uniqueness of solutions

In this section we compare the solutions to the BVPs (Neu-A), (Dir-A) and
(Reg-A) in the sense of Definition 2.1, with the standard solutions obtained from the
Lax–Milgram theorem. This uses the homogeneous Sobolev space Ḣ1(R1+n

+ ;Cm),
equipped with the norm ‖U ‖2

Ḣ1 :=
∫
R1+n

+
| ∇t,xU |2, and the subspace of functions

with vanishing trace. Continuing our first order approach to BVPs via (3), we
make the following definition.

Definition 5.1. Introduce spaces of vector fields

L∇
2 (R1+n

+ ;C(1+n)m) := {F ∈ L2(R1+n
+ ;C(1+n)m) ; curlR1+n

+
F =0} and

L∇0
2 (R1+n

+ ;C(1+n)m) := {F ∈ L2(R1+n
+ ;C(1+n)m) ; curlR1+n(Fz)= 0}.
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The condition curlR1+n(Fz)=0 here means that the extension by zero Fz , of F to
R1+n, is curl free, or formally: curlR1+n

+
F =0 and the boundary trace of F is normal

to Rn. If F ∈L∇
2 (R1+n

+ ;C(1+n)m), it is seen that there exists U ∈Lloc
2 (R1+n

+ ;Cm),
unique up to constants among the distributions on R1+n

+ , such that ∇t,xU=F .
Define Hilbert spaces

Ḣ1(R1+n
+ ;Cm) := {U ∈ Lloc

2 (R1+n
+ ;Cm) ; ∇t,xU ∈ L∇

2 (R1+n
+ ;C(1+n)m)},

Ḣ1
0 (R1+n

+ ;Cm) := {U ∈ Lloc
2 (R1+n

+ ;Cm) ; ∇t,xU ∈ L∇0
2 (R1+n

+ ;C(1+n)m)},

with norms so that the correspondence U↔F =∇t,xU is an isometry.

It is straightforward to verify that a function U ∈Ḣ1(R1+n
+ ;Cm) belongs to

the subspace Ḣ1
0 (R1+n

+ ;Cm) if and only if there exists a constant C such that U

extended by C to R1+n belongs to Ḣ1(R1+n;Cm).
Functions U ∈Ḣ1(R1+n

+ ;Cm) are well defined only up to constants, whereas for
U ∈Ḣ1

0 (R1+n
+ ;Cm), we will choose the constant so that U |Rn =0. It is not true that

Ḣ1
0 (R1+n

+ ;Cm)⊂L2(R1+n
+ ;Cm), as a scaling argument readily shows. However,

Poincaré’s inequality shows that
∫∫

R1+n
+

|U(t, x)|2 dt dx

1+t2+|x|2 �
∫∫

R1+n
+

| ∇t,xU(t, x)|2 dt dx, U ∈ Ḣ1
0 (R1+n

+ ;Cm).

If F =∇t,xU solves (3), then we formally have

JA(U, V ) :=
∫∫

R1+n
+

(A∇t,xU, ∇t,xV ) dt dx= −
∫

Rn

((Af)0, v) dx,

where f=F |Rn and v=V |Rn . As pointed out in Section 2, the standing assumption
that A is strictly accretive on N(curl‖), i.e. (5), implies that the G̊arding inequality
(8) in Rn+1

+ holds, i.e. |JA(U, U)|�‖U ‖2
Ḣ1 .

Note that V �→
∫
Rn(φ(x), v(x)) dx in (20) below defines a bounded functional

on Ḣ1(R1+n
+ ;Cm) if φ=divx w, where φ∈L2(Rn;Cm) and w ∈L2(Rn;Cnm), since∫

Rn |φ̂(ξ)|2 max(|ξ| −1, 1) dξ<∞ and the trace map V �→v maps Ḣ1(R1+n
+ ;Cm)→

Ḣ1/2(Rn;Cm). Furthermore V �→JA(Ptu, V ) defines a bounded functional on
Ḣ1

0 (R1+n
+ ;Cm) if u∈H1(Rn;Cm) since

∫∫
R1+n

+
|ξe−t|ξ|û(ξ)|2 dt dξ ≈ ‖u‖2

H1(Rn)<∞,
where Pt denotes the Poisson extension

Ptu(x) :=
Γ((1+n)/2)

π(1+n)/2

∫

Rn

tu(y) dy

(t2+|x−y|2)(1+n)/2
.

The Lax–Milgram theorem proves the existence and uniqueness of the following Ḣ1

solutions U .



Solvability of elliptic systems with square integrable boundary data 277

Definition 5.2. We say that φ is good boundary data for (Neu-A) if

L2(Rn;Cm) 	 φ =divx w,

where w ∈L2(Rn;Cnm). If φ is good, we define the Ḣ1 solution to the Neumann
problem to be the unique function U ∈Ḣ1(R1+n

+ ;Cm) such that

(20) JA(U, V ) =
∫

Rn

(φ(x), v(x)) dx for all V ∈ Ḣ1(R1+n
+ ;Cm).

We say that u is good boundary data for (Dir-A), or equivalently that ∇xu

is good boundary data for (Reg-A), if u∈H1(Rn;Cm). If u is good, we define
the Ḣ1 solution to the Dirichlet (regularity) problem to be the unique function
U ∈Ḣ1(R1+n

+ ;Cm) such that

(21) JA(U, V ) = 0 for all V ∈ Ḣ1
0 (R1+n

+ ;Cm),

and U(t, x)−Ptu(x)∈Ḣ1
0 (R1+n

+ ;Cm).

The goal in this section is to prove the following uniqueness result.

Theorem 5.3. Assume that A belongs to the connected component of
WP(Neu)/WP(Reg)/WP(Dir) that contains I . If the boundary data is good, then
the solutions to (Neu-A)/(Reg-A)/(Dir-A) in the sense of Definition 2.1, coincide
with the Ḣ1 solutions.

Remark 5.4. For general A in the set of well-posedness, the solutions con-
structed in this paper using the boundary equation method do not necessarily co-
incide with the Ḣ1 solutions. Examples of this were shown in [8]. Note that these
examples combined with Theorem 5.3 proves the existence of many coefficients that
do not have well posed BVPs (even when n=m=1 with real A), sufficiently many
to disconnect these A with non-Ḣ1 solutions from the identity.

The proof of Theorem 5.3 uses the following lemma with A0=I .

Lemma 5.5. Let A0 be a block matrix. Then there exists ε>0, such that if
‖A−A0‖ ∞ <ε and the boundary data is good, then the solutions to the BVPs in the
sense of Definition 2.1, coincide with the Ḣ1 solutions.

Proof for (Neu-A). Let F =∇t,xU=e−t|TA |f be the boundary equation solution
to (Neu-A) in R1+n

+ with data φ=divx w=−(Af)0. Using the isomorphism Ā from
(11), we define the similar Hardy function f̃ :=Āf ∈χ+(DÂ)H.
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Let N − and N+ be the normal and tangential projections from Section 4. The
boundary condition on f̃ can be written N −f̃=−φ. We solve for f̃ by making the
ansatz f̃=2χ+(DÂ)h, where h∈N − H (i.e. h‖ =0). This yields the equation

−φ =N −f̃ =2N −χ+(DÂ)h =(I+N − sgn(DÂ))h

for h, in the normal subspace N − H. We note the following properties of “the
double layer type operator” KA :=N − sgn(DÂ)N −. (See [7] for explanations of
this terminology.) When A=A0, then as in Section 4.2 it follows that KA0 =0,
since the diagonal entries of sgn(DÂ) are zero in the normal/tangential splitting
of the space. Theorem 2.3 shows that KA depends continuously on A. Moreover
KA(R(D))⊂R(D) since

KADg =N − sgn(DÂ)DN+g =N −D sgn(ÂD)N+g =D(N+ sgn(ÂD)N+g)

when g ∈D(D). Therefore, when ‖A−A0‖ ∞ is small, we can expand (I+KA)−1 in
a Neumann series and deduce that h∈R(D) since −φ=−Dw ∈R(D). Indeed

N∑

k=0

(−KA)k(−Dw) =D

(
−

N∑

k=0

(−N+ sgn(ÂD)N+)kw

)
=: DwN ,

where wN and DwN →h converges in L2. Since D is closed, h∈R(D). This shows
that f̃=2χ+(DÂ)h∈R(DÂ), and thus f ∈R(TA). In particular f=|TA|1/2f0 for
some f0 ∈ H. Quadratic estimates for the operator TA now shows that

∫∫

R1+n
+

| ∇t,xU |2 dt dx =
∫ ∞

0

‖Ft‖2 dt

=
∫ ∞

0

‖(t|TA|)1/2e−t|TA |f0‖2 dt

t
≈ ‖f0‖2 < ∞.

Thus U ∈Ḣ1(R1+n
+ ;Cm). To verify (20), let V ∈Ḣ1(R1+n

+ ;Cm) and consider the
function

g(t) :=
∫

Rn

((AFt)0, Vt) dx, t > 0,

where we view t �→(AFt)0 as a C∞ curve in R(divx; L2) and t �→Vt as a continuous
curve in Ḣ1/2(Rn;Cm). If Vt ∈C1(R+; Ḣ1/2), then

g′(t) =
∫

Rn

((− divx AFt, Vt)+(AFt, ∂tVt)) dx=
∫

Rn

(AFt, ∇t,xV ) dx.

Therefore g(T )−g(ε)=
∫∫

ε<t<T
(AFt, ∇t,xV ) dt dx. This also holds for general

V ∈Ḣ1(R1+n
+ ;Cm), which can be shown by mollifying t �→Vt. Taking limits (ε, T )→

(0, ∞) proves (20). �
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Proof for (Reg-A). Similar to the proof for the Neumann problem, we consider
the equation

∇xu =N+f̃ =2N+χ+(DÂ)h =(I+N+ sgn(DÂ))h

for h∈N+H, in the tangential subspace. We deduce that the trace f of the solution
is in the range of TA, and therefore U ∈Ḣ1(R1+n

+ ;Cm) and (21) follows as in the
proof for the Neumann problem.

To prove that U −Ptu∈Ḣ1
0 (R1+n

+ ;Cm), it suffices to show that ∂0Hj =∂jH0 on
R1+n, for j=1, ..., n, when H is ∇t,x(U −Ptu) extended by zero. To this end, let
Φ∈C∞

0 (R1+n) and consider the function

gj(t) :=
∫

Rn

Hj(t, x)Φ(t, x) dx, t > 0.

Since H is curl-free on R1+n
+ , we have ∂0gj =

∫
Rn H0(−∂jΦ) dx+Hj∂0Φ. As we have

L2(Rn) convergence

Hj = ∂jUt −∂jPtu→ ∂ju−∂ju =0, as t→ 0,

integration of ∂0gj over t∈(0, ∞) shows that
∫∫

R1+n
+

Hj∂0Φ dt dx=
∫∫

R1+n
+

H0∂jΦ dt dx

for all Φ∈C∞
0 (R1+n), i.e. ∂0Hj =∂jH0. �

Proof for (Dir-A). Let F =∇t,xU be the boundary equation solution to
(Neu⊥-A) with data ϕ=−u∈H1(Rn;Cm), and recall that U=F0 is the solution to
(Dir-A). Consider the boundary trace f=F |Rn ∈E+

AH. We now instead use the iso-
morphism A from (11), and define the similar Hardy function f̃ :=Af ∈R(χ+(ÂD)).
Note that A is an isomorphism from R(TA)=H onto R(ÂD)=AH since Ā is an
isomorphism on H and Â is strictly accretive on H.

The boundary condition on f̃ can be written N −f̃=N −f=u. We solve for f̃

using the ansatz f̃=2χ+(ÂD)h, where h∈N − H. This yields the equation

u =N −f̃ =2N −χ+(ÂD)h =(I+N − sgn(ÂD))h

for h. We note that the double layer type operator KA :=N − sgn(ÂD)N − maps
KA(D(D))⊂D(D) since

DKAg =N+D sgn(ÂD)N −g =N+ sgn(DÂ)DN −g =N+ sgn(DÂ)N+(Dg)

when g ∈D(D). As above, since ‖KA‖ is small when ‖A−A0‖ ∞ is small, we can ex-
pand (I+KA)−1 in a Neumann series and deduce that h∈D(D) since u∈D(D). This
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shows that f̃=2χ+(ÂD)h∈D(ÂD), and thus f ∈D(TA). In particular f ∈D(|TA|1/2).
Quadratic estimates for the operator TA now shows that
∫∫

R1+n
+

| ∇t,xU |2 dt dx =
∫ ∞

0

‖∂tFt‖2dt =
∫ ∞

0

‖TAFt‖2 dt

=
∫ ∞

0

‖(t|TA|)1/2e−t|TA |(|TA|1/2f)‖2 dt

t
≈

∥∥|TA|1/2f
∥∥2

< ∞.

Thus U ∈Ḣ1(R1+n
+ ;Cm), and (20) follows as in the proof for the Neumann problem.

Finally, note that ∇t,xU=−TAFt=−e−t|TA |(TAf). This shows L2 convergence

∇xUt → −(TAf)‖ = ∇xf0 = ∇xu.

As in the proof for the regularity problem, U −Ptu∈Ḣ1
0 (R1+n

+ ;Cm) follows. �

Remark 5.6. (i) Note that for any L2 boundary data, the solutions to the
Neumann and regularity problems always satisfy

∫ 1

0
‖∇t,xU ‖2 dt<∞, whereas the

solution to the Dirichlet problem always satisfies
∫ ∞
1

‖∇t,xU ‖2 dt<∞. Thus the
problem whether good boundary data give Ḣ1 solutions concerns large t for the
Neumann and regularity problem, and small t for the Dirichlet problem.

(ii) The structure of the problem in Lemma 5.5 is best explained abstractly
as follows. Let H1 ↪→H0 be a continuous and dense inclusion of Hilbert spaces.
Assume that T0 : H0→H0 is an isomorphism which restricts to a bounded operator
T1 : H1→H1. It follows from [29, Theorem 11.1] that we have regularity H1=
T −1

0 (H1) if and only if T1 is a Fredholm operator and has index zero. See also [7,
Proposition 3.2.16].

In our situation, T0=I+K, H0=N ± H and H1 is either R(D)∩N ± H or D(D)∩
N − H. In principle, the technique of Lemma 5.5 could be used to prove regularity
for more general A in the component of WP containing I . The problem though is
that in general the well-posedness of two different BVPs, for the matrix A, is needed
both for the proof that T0 is an isomorphism and that T1 is Fredholm. Index zero
for T1 could then be proved by the method of continuity, perturbing A to I .

Proof of Theorem 5.3. Fix good boundary data and let 0<a<b<∞. For all
A with the assumed properties, let F =FA=∇t,xU be the solutions given by The-
orem 2.2, and let F 0=F 0

A=∇t,xU denote the standard Ḣ1 solutions constructed
with the Lax–Milgram theorem as in Definition 2.1.

From the quadratic estimates for TA it follows with arguments as in [3, proof of
Theorem 1.1] that A �→FA ∈L2(Rn ×(a, b);C(1+n)m) is analytic on WP. The main
result this uses is the analyticity of A �→b(TA) for operators b(TA) in the functional
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calculus of TA. This was proved in [10, Theorem 6.4]. Moreover, it is straight-
forward to verify that A �→F 0

A ∈L2(R1+n
+ ;C(1+n)m) is analytic. This means that

whenever A0 ∈WP, C⊃D ∈z �→A(z) are coefficients depending analytically on a
complex variable z, and A(0)=A0 and H ∈L2(Rn ×(a, b);C(1+n)m), then the scalar
function z �→h(A(z)), where

h(A) :=
∫∫

(a,b)×Rn

(FA −F 0
A, H) dt dx,

is analytic on D.
Consider one of the BVPs and fix A in the connected component of WP contain-

ing I . Pick a sequence of balls Bk=B(Ak; rk)⊂WP, k=0, 1, ..., N , such that A0=I ,
AN =A and Bk−1 ∩Bk =∅. We may take r0<ε, so that h=0 on B0 by Lemma 5.5.
Now assume that h=0 on Bk−1 and pick any A1 ∈Bk. Let A0 ∈Bk−1 ∩Bk and let
A(z):=(1−z)A0+zA1. Then h(A(z)) vanishes on a neighborhood of 0. By analytic
continuation h(A1)=h(A(1))=0, and since A1 ∈Bk was arbitrary, h=0 on Bk. We
arrive at the conclusion that h(A)=0. Since a, b and H are arbitrary, it follows that
FA=F 0

A. �

6. Boundary value problems for differential forms

In this section, we demonstrate how Theorems 2.2 and 2.3 generalize to exte-
rior/interior differential systems for k-vector fields, i.e. differential forms of order
k.

We use the notation from [3, Section 2.1]. In particular, for fixed k ∈ {1, 2, ..., n},
we consider functions

F (t, x) =
∑

F{s1,...,sk }(t, x) es1 ∧...∧esk
,

taking values in the space
∧k=

∧k R1+n of complex k-vectors on R1+n. The vector
fields in (3) is the special case k=1. We point out that we assume the component
functions Fs to be scalar-valued here (m=1), although the methods apply, mutatis
mutandis, to systems of exterior differential systems. A natural generalization of
the first order system (3) is the interior/exterior differential system

(22)

{
d∗

t,xBF (t, x)=0,

dt,xF (t, x)=0,

where F : R1+n
+ →

∧k. Here the exterior and interior derivative operators are
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dt,xF = ∇t,x ∧F =
n∑

j=0

ej ∧∂jF =μ∂tF +dxF,

d∗
t,xF = −∇t,x�F = −

n∑

j=0

ej�∂jF = −μ∗∂tF +d∗
xF,

where ∧ denotes exterior product, � denotes (left) interior product, μf=e0 ∧f and
μ∗f=e0�f . The matrix function B ∈L∞(Rn; L(

∧k)) is assumed to be t-independent
and pointwise strictly accretive in the sense that

Re(B(x)w, w) ≥ ˇ|w|2 for all w ∈
∧k and a.e. x ∈ Rn.

To prove an analogue of Theorem 2.3 for (22), we proceed as in Section 3 and
introduce auxiliary matrices

˙B :=
(

B⊥ ⊥ B⊥ ‖

0 I

)
and B :=

(
I 0

B‖ ⊥ B‖‖

)
, if B =

(
B⊥ ⊥ B⊥‖

B‖ ⊥ B‖‖

)

in the normal/tangential splitting of
∧k. Recall that a basis k-vector es1 ∧...∧esk

is
normal if one of the factors is e0, and tangential otherwise. Denote the tangential
and normal parts of f by f‖ and f⊥. Splitting each of the equations (22) into normal
and tangential parts and using the analogue of (9), shows that (22) is equivalent to

{
∂t(˙BF )⊥ −μd∗

x(BF )‖ =0,

∂t(˙BF )‖ +μ∗dx(BF )⊥ =0,

together with the constraints dxF‖ =0=d∗
x(BF )⊥. These tangential derivatives in

the equations define the appropriate function space

Hk
B := {f ∈ L2(Rn;

∧k) ; dxf‖ =0= d∗
x(Bf)⊥ }

generalizing H from Definition 3.5. Note that when k ≥2, the space Hk
B depends

on B, unlike the case k=1.
The normal derivatives in the equation give an equation ∂tF +TBF =0, where

the infinitesimal generator is

(23) TB := ˙B−1DB.

Here D :=μ∗ dx −μd∗
x is a self-adjoint differential operator. The operator TB has

similarities
˙B−1(DB̂)˙B =TB =B−1(B̂D)B,

where B̂ :=B˙B−1 is shown to be pointwise strictly accretive as in Proposition 3.2.
Thus Proposition 3.3 applies and proves that TB=˙B−1(DB̂)˙B is an ω-bisectorial



Solvability of elliptic systems with square integrable boundary data 283

operator, ω being the angle of accretivity of B̂. Moreover, TB restricts to an injective
ω-bisectorial operator in Hk

B =˙B−1R(D) with dense range, and in the splitting

L2(Rn;
∧k) =R(TB)⊕N(TB) = Hk

B ⊕ {(f⊥, f‖)t ; dxf⊥ =0= d∗
x(Bf)‖ },

we have TB=TB | Hk
B

⊕0.
Similar to the proof of Theorem 2.3, Theorem 3.4 proves the boundedness of

the Cauchy operator
EB := sgn(TB)

and the Hardy projections E±
B :=χ±(TB). To handle perturbation theory for the

variable space Hk
B , we extend this operator to L2(Rn;

∧k) by defining E±
Bf=EBf=

0 when f ∈N(TB).
We obtain the following result on Hardy space splittings of Hk

B ⊂L2(Rn;
∧k).

Theorem 6.1. Let B ∈L∞(Rn; L(
∧k)) be a t-independent, complex coefficient

matrix function which is pointwise strictly accretive.
Then each f ∈ Hk

B is in one-to-one correspondence with a pair of k-vector fields
F ±

t =F ±(t, · )∈C1(R±; L2(Rn;
∧k)) in R1+n

± satisfying (22) and having L2 limits
limt→0± F ±

t =f ± and limt→± ∞ F ±
t =0, such that

f = f++f −.

Under this correspondence, we have equivalences of norms ‖f ‖2 ≈ ‖f+ ‖2+‖f − ‖2 and

(24) ‖f ± ‖2 ≈ sup
±t>0

‖F ±
t ‖2 ≈ |||t∂tF

±
±t|||.

Moreover, the Hardy space projections L2(Rn;
∧k)	f �→F ± =F ±

B :=e∓t|TB |E±
Bf de-

pend locally Lipschitz continuously on B in the sense that

‖F ±
B2

−F ±
B1

‖ X ≤ C‖B2 −B1‖L∞(Rn)‖f ‖2,

where C=C(ˇB1 ,ˇB2 , ‖B1‖ ∞, ‖B2‖ ∞) and where ‖ · ‖X denotes any of the three
norms in (24).

We remark that the proof of the non-tangential maximal estimate ‖Ñ ∗(F )‖2 ≈
‖f ‖2 from [3, Proposition 2.56] in Theorem 2.3 uses the divergence form structure
of the second order system. This technique does not generalize to more general
exterior differential systems.

Finally we extend the results in Section 4 and show how Theorem 6.1 gives
perturbation results for BVPs for k-vector fields. The natural BVPs are the fol-
lowing. We are looking for a k-vector field Ft ∈C1(R+; L2(Rn;

∧k)) solving (22) in
R1+n

+ with L2 limits limt→0+ Ft=f and limt→∞ Ft=0, where the boundary trace f

satisfies one of the following conditions:
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• Tangential boundary condition (Tan-B): f‖ =g, where the given boundary
data g ∈L2(Rn;

∧k) is tangential and satisfies dxg=0.
• Conormal boundary condition (Nor-B): (Bf)⊥ =g, where the given bound-

ary data g ∈L2(Rn;
∧k) is normal and satisfies d∗

xg=0.
Note that when k=1, (Tan-B) coincides with the Dirichlet regularity problem

(Reg-B) and (Nor-B) coincides with the Neumann problem (Neu-B).

Theorem 6.2. The sets of well-posedness WP(Tan) and WP(Nor) are both
open subsets of L∞(Rn; L(

∧k)) and each contains
(i) all Hermitean matrices B(x)=B(x)∗ (and in particular all real symmetric

matrices),
(ii) all block matrices

B(x) =
(

B⊥⊥(x) 0
0 B‖‖(x)

)
, and

(iii) all constant matrices B(x)=B.

What is new here as compared with [3], is the perturbation result around Her-
mitean and constant matrices, as well as the openness of the sets of well-posedness.
The proof of Theorem 6.2 is similar to the proof Theorem 2.2. We observe that
(Tan-B) and (Nor-B) are well posed if and only if

E+
B Hk

B −→ {g ∈ L2(Rn;
∧k); μ∗g =0 and dxg =0} : f �−→ f‖,

E+
B Hk

B −→ {g ∈ L2(Rn;
∧k); μg =0 and d∗

xg =0} : f �−→ (Bf)⊥,

are isomorphisms, respectively. Theorem 6.1 shows that EB depends continuously
on B, so we obtain from Lemma 4.3 that WP(Tan) and WP(Nor) are open sets.

That Hermitean and block matrices belong to WP is shown as in Sections 4.1
and 4.2, mutatis mutandis. For constant matrices, the reverse Rellich argument
used for second order divergence form elliptic systems m>1 applies. For exterior
differential systems, the symbol of the operator is

Tξ := ˙B−1DξB and Dξ := i(μ∗μξ+μμ∗
ξ),

acting in the 2
(
n−1
k−1

)
-dimensional space Hk

ξ :={f ∈
∧k ;μμξf=0=μ∗μ∗

ξBf }. The
proof uses that if μμξf=0=μ∗μ∗

ξf , i.e. f ∈R(Dξ), then

D2
ξf = −(μ∗μξμμ∗

ξ +μμ∗
ξμ

∗μξ)f =(μξμ
∗μμ∗

ξ +μ∗
ξμμ∗μξ)f(25)

= (μξ(I −μμ∗)μ∗
ξ +μ∗

ξ(I −μ∗μ)μξ)f =(μξμ
∗
ξ +μ∗

ξμξ)f = |ξ|2f.

For the anticommutation relations, we refer to [3, Lemma 2.3].
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