

Title	Solvability of groups of order 2^a p^b
Author(s)	Matsuyama, Hiroshi
Citation	Osaka Journal of Mathematics. 10(2) P.375-P.378
Issue Date	1973
Text Version	publisher
URL	https://doi.org/10.18910/9541
DOI	10.18910/9541
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Matsuyama, H. Osaka J. Math. 10 (1973), 375-378

SOLVABILITY OF GROUPS OF ORDER 2"p"

HIROSHI MATSUYAMA

(Received October 13, 1972)

1. Introduction

At the beginning of this century Burnside proved his famous $p^a q^b$ -theorem by the help of character theory. Group-theoretic proof of the theorem was given by Goldschmidt [2] for odd primes in 1970.

The object of this paper is to give a simple group-theoretic proof of the following

Theorem.¹⁾ Groups of order $2^{a}p^{b}$ are solvable.

Lemma 1, 4 and 5 are due to Goldschmidt [2]. Notation used here follows Gorenstein [3].

2. Preliminaries

Lemma 1. Suppose \mathfrak{P} is a p-subgroup of the p-solvable group \mathfrak{G} . Then $0_{p'}(N_{\mathfrak{G}}(\mathfrak{P})) \subseteq 0_{p'}(\mathfrak{G})$

Proof. See Goldschmidt [2], lemma 2. Next lemma plays an important role in this paper.

Lemma 2. Suppose \mathfrak{G} is a p-group and \mathfrak{H} is a subgroup of \mathfrak{G} . Then $\mathfrak{H} \trianglelefteq \mathfrak{G}$ or $N_{\mathfrak{G}}(\mathfrak{H}) \supseteq \mathfrak{H}^{\mathbb{X}}(\mathfrak{s},\mathfrak{H})$ for some $X \in \mathfrak{G}$.

Proof. Let Δ be a \mathfrak{G} -conjugate class containing \mathfrak{H} . If $|\Delta| \neq 1$, then \mathfrak{H} acts on $\Delta - {\mathfrak{H}}$ by conjugation. Since $p \not\upharpoonright |\Delta - {\mathfrak{H}}|$, \mathfrak{H} fixes some element $\mathfrak{H}^{\mathfrak{X}^{-1}}$. Then $\mathfrak{H} \mathfrak{G} \mathfrak{H}(\mathfrak{H}^{\mathfrak{X}^{-1}})$ and hence $\mathfrak{H}^{\mathfrak{H}} \mathfrak{G} \mathfrak{H}(\mathfrak{H})$.

Lemma 3. (Suzuki-Thompson) Suppose Δ is a conjugate class of a group \mathfrak{G} . If any two elements of Δ generate a p-group, then $\Delta \subseteq O_{\mathfrak{p}}(\mathfrak{G})$.

Proof. See [3], 3.8.2.

¹⁾ After finishing this work the author has found that Bender [1] has also obtained a group-theoretic proof of the theorem in the general case.

3. The Minimal counter example

In this section let ^(S) be a minimal counter example to the theorem. It is immediate to show that ^(S) is simple and any proper subgroup of ^(S) is solvable.

Let r be either prime divisor of $|\mathfrak{G}|$.

Lemma 4. A sylow r-subgroup of \mathfrak{G} normalizes no non-identity r'-subgroup of \mathfrak{G} .

Proof. See Goldschmidt [2], Lemma 3.

Lemma 5. (Bender) Suppose \mathfrak{M} is a maximal subgroup of \mathfrak{G} . Then the Fitting subgroup of \mathfrak{M} is an r-group.

Proof. We set $\mathfrak{F}=F(\mathfrak{M})$, the Fitting subgroup of \mathfrak{M} . Let $\mathfrak{F}=\mathfrak{F}_2\times\mathfrak{F}_p$ be the primary decomposition, and $\mathfrak{Z}=Z(\mathfrak{F})=\mathfrak{Z}_2\times\mathfrak{Z}_p$, the center of \mathfrak{F} .

Suppose lemma 5 is false, then $\mathfrak{F}_2 \neq 1$, $\mathfrak{F}_p \neq 1$. We first prove the next assertion [A].

[A] \mathfrak{F}_r has two distinct subgroups of order r, for some $r \in \{2, p\}$.

Suppose [A] is false, then \mathcal{F}_p is cyclic, and \mathcal{F}_2 is cyclic or a quaternion group. (i) In the case \mathcal{F}_2 is cyclic.

Let \mathfrak{P} be a Sylow *p*-subgroup of \mathfrak{M} . Since $\mathfrak{P}/C_{\mathfrak{P}}(\mathfrak{F}_2)$ is a 2-group, $\mathfrak{P} = C_{\mathfrak{P}}(\mathfrak{F}_2)$. Then $Z(\mathfrak{P}) \subseteq C_{\mathfrak{M}}(\mathfrak{F})$, and hence $Z(\mathfrak{P}) \subseteq \mathfrak{F}_p$ by Fitting's theorem. (See [3], 6.1.3.) Since \mathfrak{F}_p is cyclic, $Z(\mathfrak{P})$ is a characteristic subgroup of \mathfrak{F}_p . Then $\mathfrak{M} = N_{\mathfrak{G}}(Z(\mathfrak{P}))$ and \mathfrak{P} is a Sylow *p*-subgroup of \mathfrak{G} , contrary to lemma 4.

(ii) In the case \mathcal{F}_2 is a quaternion group.

Let \mathfrak{Q} be a Sylow 2-group of \mathfrak{M} . Since $\mathfrak{Q}/C\mathfrak{Q}(\mathfrak{F}_p)$ is abelian, $\mathfrak{Q}' \subseteq C\mathfrak{Q}(\mathfrak{F}_p)$. Then $Z(\mathfrak{Q}) \cap \mathfrak{Q}' \subseteq \mathfrak{F}_2$. $Z(\mathfrak{Q}) \cap \mathfrak{Q}'$ contains a unique subgroup \mathfrak{G} of order 2. So \mathfrak{G} is a chatacteristic subgroup of \mathfrak{Q} . Since $\mathfrak{M}=N\mathfrak{G}(\mathfrak{G})\supseteq N\mathfrak{G}(\mathfrak{Q})$, it follows that \mathfrak{Q} is a Sylow 2-subgroup of \mathfrak{G} . A contradiction.

By (i) and (ii), we have [A].

Next we prove the following statement [B].

[B] Let $\overline{\mathfrak{M}}$ be a maximal subgroup of \mathfrak{B} containing \mathfrak{Z} . Then $\overline{\mathfrak{M}} = \mathfrak{M}$

Let $\overline{\mathfrak{F}} = F(\overline{\mathfrak{M}}) = \overline{\mathfrak{F}}_2 \times \overline{\mathfrak{F}}_p$ be the Fitting subgroup of $\overline{\mathfrak{M}}$ and $\overline{\mathfrak{Z}} = \overline{\mathfrak{Z}}_2 \times \overline{\mathfrak{Z}}_p$ be the centre of $\overline{\mathfrak{F}}$. Since $\mathfrak{Z}_2 \times \mathfrak{Z}_p$ is contained in $\overline{\mathfrak{M}}$, $O_p(N\overline{\mathfrak{m}}(\mathfrak{Z}_2)) \subseteq \overline{\mathfrak{F}}_p = O_p(\overline{\mathfrak{M}})$ by lemma 1. Now \mathfrak{Z}_p is a normal subgroup of $N\overline{\mathfrak{m}}(\mathfrak{Z}_2)$ we have $\mathfrak{Z}_p \subseteq O_p(N\overline{\mathfrak{m}}(\mathfrak{Z}_2))$. Then $[\mathfrak{Z}_p, \overline{\mathfrak{F}}_2] = 1$. So $\overline{\mathfrak{F}}_2 \subseteq N\mathfrak{G}(\mathfrak{Z}_p) = \mathfrak{M}$. In the same way, we have $\overline{\mathfrak{F}}_p \subseteq \mathfrak{M}$. Then in the same way as above we have $\overline{\mathfrak{F}}_2 \subseteq O_2(N\mathfrak{m}(\overline{\mathfrak{F}}_p)) \subseteq \overline{\mathfrak{F}}_2$. Interchanging \mathfrak{M} and $\overline{\mathfrak{M}}$ in the above argument, we obtain $\mathfrak{F}_2 \subseteq \overline{\mathfrak{F}}_2$. Then $\mathfrak{F}_2 = \overline{\mathfrak{F}}_2$ and we have $\overline{\mathfrak{M}} = \mathfrak{M}$. Thus [B] holds.

Now we prove lemma 5. By [A] we may assume that \mathcal{F}_r contains an abelian subgroup \mathfrak{A} of type (r, r). Let \mathfrak{R} be a Sylow *r*-subgroup of \mathfrak{M} . If \mathfrak{R} is an *r'*-subgroup of \mathfrak{G} normailized by \mathfrak{R} , then $\mathfrak{R} = \prod_{x \in \mathcal{I}^{-}\{1\}} C_{\mathfrak{R}}(X)$. (See [3], 5.3.16.) Since

376

 $C_{\Re}(X) \subseteq C_{\mathfrak{G}}(X)$ and $C_{\mathfrak{G}}(X) \supseteq \mathfrak{Z}, C_{\Re}(X) \subseteq \mathfrak{M}$ by [B]. It follows $\mathfrak{R} \subseteq \mathfrak{M}$. Then $\mathfrak{F}_{r'}$ is the unique maximal r'-subgroup of \mathfrak{G} normalized by \mathfrak{R} . So $N_{\mathfrak{G}}(\mathfrak{R}) \subseteq N_{\mathfrak{G}}(\mathfrak{F}_{r'}) = \mathfrak{M}$. Then \mathfrak{R} is a Sylow r-subgroup of \mathfrak{G} . A contradiction.

q.e.d.

Lemma 6. \mathfrak{G} contains a maximal subgroup \mathfrak{M} which satisfies the following condition;

$$\mathfrak{M} \cap Z(\mathfrak{P}) \neq 1, \ \mathfrak{M} \cap Z(\mathfrak{Q}) \neq 1$$

for some Sylow p-subgroup \mathfrak{P} and Sylow 2-subgroup \mathfrak{O} of \mathfrak{G} .

Proof. Let \mathfrak{Q} be a Sylow 2-subgroup of \mathfrak{G} and X be an involution contained in $Z(\mathfrak{Q})$. Suppose Δ is a conjugate class of \mathfrak{G} containing X. By lemma 3, Δ contains two elements X_1, X_2 such that $\langle X_1, X_2 \rangle$ is not a 2-group. Since $\langle X_1, X_2 \rangle$ is a dihedral group, $|X_1 \cdot X_2|$ is not a power of 2. Then $\langle X_1 \cdot X_2 \rangle$ contains a unique subgroup \mathfrak{P} of order P. Let \mathfrak{M} be a maximal subgroup containing $N_{\mathfrak{G}}(\mathfrak{P})$. It is immediate to show that \mathfrak{M} satisfies the condition of the lemma. q.e.d.

Proof of the theorem. Let \mathfrak{M} be a maximal subgroup of \mathfrak{G} which satisfies the condition of lemma 6. By lemma 5 $F(\mathfrak{M})$ is an r-group. Let G be an element of \mathfrak{M} contained in the centre of some Sylow r'-subgroup $\overline{\mathfrak{R}}$ of \mathfrak{G} , and let \mathfrak{R} be a Sylow r-subgroup of \mathfrak{G} containing $\mathfrak{F}_r = F(\mathfrak{M})$. Since $\mathfrak{M} = N_{\mathfrak{G}}(\mathfrak{F}_r)$, it follows $Z(\mathfrak{R}) \subseteq \mathfrak{F}_r$ by Fitting. Then $\mathfrak{R}_{\mathfrak{g}} = \langle Z(\mathfrak{R})^X : X \in \langle G \rangle \rangle \subseteq \mathfrak{F}_r$ and hence it is an *r*group normalized by G. Let Ω be a complete \mathfrak{G} -conjugate class containing $Z(\Re)$ and $\Omega = \Omega_1 + \dots + \Omega_s$ be a disjoint sum of $\langle G \rangle$ -orbits. Let \Re_i be a group generated by Ω_i . For some element $Y \in \Re$, $Z(\Re)^Y \in \Omega_i$, then $\Omega_i = \langle Z(\Re)^{YX}$: $X \in \langle G \rangle \geq \langle Z(\mathfrak{R})^{XY}; X \in \langle G \rangle \rangle$. It follows that $\mathfrak{N}_i = \mathfrak{N}_0^Y$. Then \mathfrak{N}_i is an rgroup normalized by $G^{Y}=G$ for $i=1, \dots, S$. So there exist $\Omega_{i_1}, \dots, \Omega_{i_r}$ such that the group generated by $\Omega_{i_1} \cup \cdots \cup \Omega_{i_r}$ is an *r*-group normalized by G. $(l \ge 1)$ Let *l* be maximal. We may assume $\{i_1 \cdots i_l\} = \{1, \cdots, l\}$ and $\mathfrak{N} = \langle \Omega_1 \cup \cdots \cup \Omega_l \rangle$. It is trivial to show that $N_{\mathfrak{G}}(\mathfrak{N}) \supseteq G$. Let \mathfrak{R}_0 be a Sylow *r*-subgroup of \mathfrak{B} containing \mathfrak{N} . By lemma 2, $\mathfrak{N} \leq \mathfrak{R}_0$ or $N_{\mathfrak{G}}(\mathfrak{N}) \supseteq \mathfrak{N}^{\mathfrak{X}}(\pm \mathfrak{N})$ for some $X \in \mathfrak{R}_0$. If $\mathfrak{N} \leq \mathfrak{R}_0$, then $N_{\mathfrak{G}}(\mathfrak{R})$ contains a complete conjugate class of \mathfrak{G} containing G. A contradiction. If $N_{\mathfrak{G}}(\mathfrak{N}) \supseteq \mathfrak{N}^{X}(\pm \mathfrak{N})$, then since $\Omega_{1}^{X} \cup \cdots \cup \Omega_{l}^{X} \subseteq \mathfrak{N}$, there exists some element Y of \mathfrak{R} such that $Z(\mathfrak{R})^Y \subseteq \mathfrak{R}^X$ and $Z(\mathfrak{R})^Y \subseteq \mathfrak{R}$. Suppose $Z(\mathfrak{R})^Y$ is an element of Ω_i . (i > l), then $\mathfrak{N}_i \subseteq N\mathfrak{S}(\mathfrak{N})$ from $N\mathfrak{S}(\mathfrak{N}) \supseteq G$ and $N\mathfrak{S}(\mathfrak{N}) \supseteq Z(\mathfrak{R})^Y$. Now $\mathfrak{N} \cdot \mathfrak{N}_i$ is an *r*-group normalized by G and generated by $\Omega_1 \cup \cdots \cup \Omega_l \cup \Omega_i$, contrary to our choice of \mathfrak{N} . Thus we proved the theorem. q.e.d.

OSAKA UNIVERSITY

377

H. MATSUYAMA

References

- H.Bender: A group theoretic proof of Burnside's p^aq^b-theorem, Math. Z. 126 (1972), 327-338.
- [2] D.M. Goldschmidt: A group-theoretic proof of the p^aq^b-theorem for odd primes, Math. Z. 113 (1970), 373-375.
- [3] D. Gorenstein: Finite Groups, New York, Harper & Row, 1968.

378