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Abstract

The purpose of this paper is to study the existence of solutions set of

integrodifferential problems in Banach spaces. We obtain our results by using fixed

point theorems for multivalued mappings, under new contractive conditions, in the

setting of complete b-metric spaces. Also, we present a data dependence theorem for

the solutions set of fixed point problems.
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1 Introduction

Measure theory is a classical topic in mathematical analysis which is usually studied in the

setting of real and complex numbers and functions. Indeed, measures have applications in

the foundations of integration, probability and ergodic theories. On the other hand, the-

ory of multivalued mappings has an important role in various branches of mathematics

because of its applications in optimal control problems involving integrodifferential inclu-

sions. As a matter of fact, the theory of integrodifferential equations and inclusions has

undergone rapid development over the last decades (see, for instance, [] and the refer-

ences therein). Indeed, this theory has increased its significance in modern applied math-

ematical models of real processes arising in many engineering and scientific disciplines

such as physics, biology, economics, signal processing and data fitting.

Notice that in the literature there aremany papers focusing on the solution of differential

problems approached via fixed point theory (see, for example, [–] and the references

therein). On the other hand, it is well known that metric spaces and their generalizations

furnish an useful tool for the study of multivalued mappings. In this regard, Nadler []

was the first author who combined the ideas of contractions and multivalued mappings

by providing a fixed point existence result.

Theorem . ([]) Let (X,d) be a complete metric space and let T : X → CB(X) be a mul-

tivalued mapping satisfying H(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X, where k is a constant such

that k ∈ (, ), and CB(X) denotes the family of non-empty, closed and bounded subsets

of X. Then T has a fixed point, that is, there exists a point u ∈ X such that u ∈ Tu.

Later on, many generalizations, extensions and applications of this theorem have ap-

peared in the literature (see, for instance, [–]). In this literature review, we start from
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looking at the paper of Wardowski [] who introduced a new concept of contraction,

called F-contraction. Consequently,Wardowski proved fixed point theorems generalizing

the Banach-Caccioppoli fixed point theorem (of whichTheorem . is themultivalued ver-

sion) in a new way than in the previous known theorems of the same class. Subsequently,

Sgroi and Vetro [] extendedWardowski’s ideas to the case of multivalued mappings and

studied the solution of certain functional and integral equations under a suitable set of

hypotheses. Yet another inspiration for our work comes from Feng and Liu’s paper []

providing useful tools to establish both global and local fixed point theorems. Finally, we

recall that the concept of metric space has been generalized in many directions to include

measurements in a much more general sense. Here, we focus our attention on the notion

of b-metric spaces, which aremetric spaces satisfying a relaxed form of triangle inequality,

see Czerwik [] and Bakhtin []. Several researchers followed the idea of Czerwik and

proved interesting results [–].

In this paper, we study the existence of solutions for certain integral problems of Fred-

holm type in Banach spaces. Also, we present a data dependence theorem for the solutions

set of fixed point problems. We obtain our results by using fixed point theorems for mul-

tivalued mappings, under new contractive conditions, in the setting of complete b-metric

spaces. Clearly, the presented theorems extend well-known results in the literature to b-

metric spaces.

2 Preliminaries

In this section, we collect some basic definitions, lemmas and notations which will be used

throughout the paper (see [, , , ] and the references therein). Let R+ denote the

set of all nonnegative real numbers and N denote the set of positive integers.

Definition . Let X be a non-empty set and let s ≥  be a given real number. A func-

tion d : X × X → R
+ is said to be a b-metric if and only if for all x, y, z ∈ X the following

conditions are satisfied:

() d(x, y) =  if and only if x = y;

() d(x, y) = d(y,x);

() d(x, z) ≤ s[d(x, y) + d(y, z)].

Then the triplet (X,d, s) is called a b-metric space.

Clearly, a (standard) metric space is also a b-metric space, but the converse is not always

true.

Example . Let X = [, ] and d : X × X → R
+ be defined by d(x, y) = |x – y| for all

x, y ∈ X. Clearly, (X,d, ) is a b-metric space that is not a metric space.

Again, let (X,d, s) be a b-metric space. The following notions are natural deductions

from the corresponding metric versions:

(i) A sequence {xn} ⊆ X converges to x ∈ X if limn→+∞ d(xn,x) = .

(ii) A sequence {xn} ⊆ X is said to be a Cauchy sequence if, for every given ε > , there

exists a positive integer n(ε) such that d(xm,xn) < ε for all m,n≥ n(ε).

(iii) A b-metric space (X,d, s) is said to be complete if and only if each Cauchy sequence

converges to some x ∈ X .

Next, we give two significant examples of b-metric spaces from the literature.
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Example . ([]) Let p ∈ (, ). Then the set lp(R) := {{xn} ⊂ R :
∑∞

n= |xn|p < ∞} en-
dowed with the functional d : lp(R)× lp(R)→R given by

d
(

{xn}, {yn}
)

=

( ∞
∑

n=

|xn – yn|p
)/p

for all {xn}, {yn} ∈ lp(R) is a b-metric space with s = /p.

Example . ([]) Let p ∈ (, ). Then the space Lp([, ]) of all real functions f : [, ] →
R such that

∫ 


|f (t)|p dt < ∞ endowed with the functional d : Lp([, ]) × Lp([, ]) → R

given by

d(f , g) =

(∫ 



∣

∣f (t) – g(t)
∣

∣

p
dt

)/p

for all f , g ∈ Lp([, ]) is a b-metric space with s = /p.

Now, we give a brief background for multivalued mappings defined in a b-metric space

(X,d, s). For A,B ∈ CB(X), define the function H : CB(X)×CB(X)→R
+ by

H(A,B) = max
{

δ(A,B), δ(B,A)
}

,

where

δ(A,B) = sup
{

d(a,B),a ∈ A
}

, δ(B,A) = sup
{

d(b,A),b ∈ B
}

with

d(a,C) = inf
{

d(a,x),x ∈ C
}

.

Note that H is called the Hausdorff b-metric induced by the b-metric d.

We recall the following properties from [, , ].

Lemma . Let (X,d, s) be a b-metric space. For any A,B,C ∈ CB(X) and any x, y ∈ X, we

have the following:

(i) d(x,B)≤ d(x,b) for any b ∈ B;

(ii) δ(A,B)≤ H(A,B);

(iii) d(x,B)≤ H(A,B) for any x ∈ A;

(iv) H(A,A) = ;

(v) H(A,B) =H(B,A);

(vi) H(A,C) ≤ s[H(A,B) +H(B,C)];

(vii) d(x,A)≤ s[d(x, y) + d(y,A)].

Lemma . Let (X,d, s) be a b-metric space and A,B ∈ CB(X). Then, for each h >  and

for each a ∈ A, there exists b(a) ∈ B such that d(a,b(a))≤ hH(A,B).
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Lemma . Let (X,d, s) be a b-metric space. For A ∈ CB(X) and x ∈ X, we have

d(x,A) =  ⇐⇒ x ∈ A = A,

where A denotes the closure of the set A.

We conclude this section with two useful lemmas.

Lemma. Let (X,d, s) be a b-metric space and let {xn} be a sequence in X. If limn→+∞ xn =

y and limn→+∞ xn = z, then y = z.

Lemma . Let (X,d, s) be a b-metric space and let {xn} be a sequence in X such that

d(xn,xn+) ≤ λd(xn–,xn)

for some λ ∈ (, s–) and each n ∈N. Then {xn} is a Cauchy sequence in X.

3 Fixed point theory in b-metric spaces

3.1 Wardowski type theorem

We study the existence of fixed points for multivalued mappings by adapting the ideas

in [] to the b-metric setting. The motivation of this research is to solve certain classes

of integrodifferential problems. First, inspired by Wardowski [], we give the following

definitions.

Definition . Let s ≥  be a real number. We denote by Fs the family of all functions

F :R+ → R with the following properties:

(F) F is strictly increasing;

(F) for each sequence {αn} ⊂R
+ of positive numbers limn→+∞ αn =  if and only if

limn→+∞ F(αn) = –∞;

(F) for each sequence {αn} ⊂R
+ of positive numbers with limn→+∞ αn = , there exists

k ∈ (, ) such that limn→+∞(αn)
kF(αn) = ;

(F) for each sequence {αn} ⊂R
+ of positive numbers such that τ + F(sαn) ≤ F(αn–)

for all n ∈N and some τ ∈ R
+, then τ + F(snαn)≤ F(sn–αn–) for all n ∈N.

Example . Let F : R+ → R be defined by F(x) = x + lnx. Clearly, F satisfies (F)-(F).

Here we show only (F).

Assume that, for all n ∈ N and some τ ∈ R
+, we have τ + sαn + ln(sαn) ≤ αn– + lnαn–.

Since x + lnx is an increasing function, then sαn < αn–. Thus

(

sn– – 
)

sαn + ln sn– ≤
(

sn– – 
)

αn– + ln sn–

implies that

τ + snαn + ln snαn = τ + sαn +
(

sn– – 
)

sαn + ln sn– + ln sαn

≤ αn– +
(

sn– – 
)

αn– + ln sn– + lnαn–

= sn–αn– + ln
(

sn–αn–

)
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and hence (F) holds true. Note that also F : R+ → R defined by F(x) = lnx satisfies (F)-

(F).

Definition . Let (X,d, s) be a b-metric space. A multivalued mapping T : X → CB(X)

is called an F-contraction of Nadler type if there exist F ∈Fs and τ ∈R
+ such that

τ + F
(

sH(Tx,Ty)
)

≤ F
(

d(x, y)
)

for all x, y ∈ X with Tx �= Ty.

Now, we are ready to state and prove our first main theorem.

Theorem . Let (X,d, s) be a complete b-metric space and let T : X → CB(X). Assume

that there exists a continuous from the right function F ∈Fs and τ ∈ R
+ such that

τ + F
(

sH(Tx,Ty)
)

≤ F
(

d(x, y)
)

(.)

for all x, y ∈ X, Tx �= Ty. Then T has a fixed point.

Proof Let x ∈ X be an arbitrary point of X and choose x ∈ Tx. Clearly, if x ∈ Tx, we

deduce that x is a fixed point of T and so we can conclude the proof. Now, we assume

that x /∈ Tx and hence Tx �= Tx. Since F ∈ Fs is continuous from the right, there exists

a real number h >  such that

F
(

hsH(Tx,Tx)
)

< F
(

sH(Tx,Tx)
)

+ τ .

Next, from d(x,Tx) < hH(Tx,Tx), we deduce that there exists x ∈ Tx (obviously, x �=
x) such that d(x,x) ≤ hH(Tx,Tx). Therefore, we can write

F
(

sd(x,x)
)

≤ F
(

shH(Tx,Tx)
)

< F
(

sH(Tx,Tx)
)

+ τ ,

which implies

τ + F
(

sd(x,x)
)

≤ τ + F
(

sH(Tx,Tx)
)

+ τ

≤ F
(

d(x,x)
)

+ τ .

Consequently, we get

τ + F
(

sd(x,x)
)

≤ F
(

d(x,x)
)

.

Iterating this procedure, we construct a sequence {xn} ⊂ X such that xn /∈ Txn, xn+ ∈ Txn

and

τ + F
(

sd(xn+,xn+)
)

≤ F
(

d(xn,xn+)
)

for all n ∈N∪ {}. (.)
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In order to simplify the reading of calculations, let dn = d(xn,xn+) >  for all n ∈ N ∪ {}.
It follows by (.) and property (F) that

τ + F
(

snd(xn,xn+)
)

≤ F
(

sn–d(xn–,xn)
)

for all n ∈N∪ {}. (.)

Thus, by (.), we have

F
(

sndn
)

≤ F
(

sn–dn–
)

– τ ≤ · · · ≤ F(d) – nτ for all n ∈N, (.)

and so

lim
n→+∞

F
(

sndn
)

= –∞,

which in view of property (F) gives

lim
n→+∞

sndn = .

Now, by property (F) there exists k ∈ (, ) such that

lim
n→+∞

(

sndn
)k
F
(

sndn
)

= .

By (.), for all n ∈ N, we get

(

sndn
)k
F
(

sndn
)

–
(

sndn
)k
F(d) ≤

(

sndn
)k(

F(d) – nτ
)

–
(

sndn
)k
F(d)

= –nτ
(

sndn
)k ≤ . (.)

Passing to limit as n→ +∞ in (.), we obtain

lim
n→+∞

n
(

sndn
)k

= 

and hence limn→+∞ n/ksndn = . Now, the last limit implies that the series
∑+∞

n= s
ndn is

convergent and hence {xn} is a Cauchy sequence. Since (X,d, s) is a complete b-metric

space, then there exists u ∈ X such that limn→+∞ xn = u. Finally, we prove that u is a fixed

point of T , that is, u ∈ Tu.

Firstly, we observe that if there exists an increasing sequence {nk} ⊂N such that xnk ∈ Tu

for all k ∈N, sinceTu is closed and limk→+∞ xnk = u, we deduce u ∈ Tu and hence the proof

is completed. Then we assume that there exists n ∈N such that xn /∈ Tu for all n ∈N with

n≥ n. It follows that Txn– �= Tu for all n≥ n.

Now, using (.) with x = xn and y = u, we obtain

τ + F
(

sH(Txn,Tu)
)

≤ F
(

d(xn,u)
)

,

which implies

τ + F
(

d(xn+,Tu)
)

≤ τ + F
(

sH(Txn,Tu)
)

≤ F
(

d(xn,u)
)

.
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Since F is strictly increasing and τ ∈R
+, we obtain

d(xn+,Tu) < d(xn,u).

Also, we have

d(u,Tu) ≤ s
[

d(u,xn+) + d(xn+,Tu)
]

≤ sd(u,xn+) + sd(xn,u),

and passing to limit as n→ +∞ in the previous inequality, we get

d(u,Tu) ≤ ,

which implies d(u,Tu) = . Finally, since Tu is closed, we obtain that u ∈ Tu, that is, u is a

fixed point of T . �

As an application of Theorem . we get the following proof of Nadler’s fixed point

theorem in b-metric spaces [].

Theorem . Let (X,d, s) be a complete b-metric space and let T : X → CB(X). Assume

that there exists k ∈ (, ) such that

sH(Tx,Ty)≤ kd(x, y) (.)

for all x, y ∈ X. Then T has a fixed point.

Proof Let τ ∈R
+ be such that k = e–τ . From (.), for all x, y ∈ X with Tx �= Ty, we get

F
(

sH(Tx,Ty)
)

≤ –τ + F
(

d(x, y)
)

,

that is,

τ + F
(

sH(Tx,Ty)
)

≤ F
(

d(x, y)
)

,

where F(x) = lnx. Thus we can apply Theorem . to deduce that T has a fixed point. �

Remark . Let CL(X) be the family of non-empty and closed subsets of X. Notice that

Theorems . and . hold also in the case of a multivalued mapping T : X → CL(X).

3.2 Feng-Liu type theorems

Another very interesting approach to studying the existence of fixed points formultivalued

mappings was proposed by Feng and Liu []. Here, we investigate the possibility to extend

this approach to the b-metric setting. The main reason of this research is to obtain data

dependence results for fixed points set.We recall some notions and fix notation as follows.
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Let (X,d, s) be a b-metric space and let T : X → CL(X) be a multivalued mapping. Let

Fix(T) := {x ∈ X : x ∈ Tx} denote the fixed point set ofT . Also, define the function fT : X →
R as fTx = d(x,Tx). Then, for a positive constant α ∈ (, ) and each x ∈ X, define the set

Ixα :=
{

y ∈ Tx : αd(x, y)≤ d(x,Tx)
}

.

Definition . Let (X,d, s) be a b-metric space and let T : X → CL(X) be a multivalued

mapping. A function f : X → R is called T-lower semicontinuous if, for each {xn} ⊂ X

with xn+ ∈ Txn and limn→+∞ xn = x ∈ X, we have

fx ≤ lim inf
n→+∞

fxn.

Definition . LetT : X → CL(X) be amultivaluedmapping. The graph ofT is the subset

{(x, y) : x ∈ X, y ∈ Tx} of X × X; we denote the graph of T by G(T). Then T is a closed

multivalued mapping if the graph G(T) is a closed subset of (X ×X,d∗), where the metric

d∗ is given by d∗((x, y), (u, v)) = d(x,u) + d(y, v) for all (x, y), (u, v) ∈ X ×X.

Now, we state and prove the following theorem.

Theorem . Let (X,d, s) be a complete b-metric space and let T : X → CL(X) be a mul-

tivalued mapping. Suppose that there exists r ∈ (, s–α) with α ∈ (, ) such that for any

x ∈ X there is y ∈ Ixα satisfying

d(y,Ty) ≤ rd(x, y). (.)

Then T has a fixed point in X provided that one of the following conditions holds:

(i) fT is T-lower semicontinuous,

(ii) T is closed.

Proof Since Tx is a non-empty closed set for any x ∈ X, Ixα is non-empty for any constant

α ∈ (, ). Now, for a fixed point x ∈ X, there exists x ∈ Ixα such that

d(x,Tx)≤ rd(x,x).

If x is not a fixed point of T , we choose x ∈ Ixα such that

d(x,Tx) ≤ rd(x,x).

Again, if x is not a fixed point of T (and so on), by iterating this procedure, we can get an

iterative sequence {xn}, where xn+ ∈ Ixnα and

d(xn+,Txn+) ≤ rd(xn,xn+) for all n ∈N∪ {}. (.)

On the other hand, xn+ ∈ Ixnα implies

αd(xn,xn+) ≤ d(xn,Txn) for all n ∈ N∪ {}. (.)
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The next step of the proof is to show that the sequence {xn} is a Cauchy sequence. Using
(.) and (.), we get

d(xn+,xn+) ≤
r

α
d(xn,xn+) for all n ∈ N∪ {}. (.)

Since r/α < s–, by Lemma . we deduce that {xn} is a Cauchy sequence and so, by com-

pleteness of the b-metric space (X,d, s), {xn} converges to some u ∈ X. Now we claim that

x is a fixed point of T . Therefore, we distinguish two cases.

Case : Suppose that (i) holds true. Again, by (.) and (.), we get

d(xn+,Txn+) ≤
r

α
d(xn,Txn) for all n ∈N∪ {},

which implies

d(xn,Txn) ≤
(

r

α

)n

d(x,Tx) for all n ∈N∪ {}.

Consequently,

lim inf
n→+∞

fTxn = lim
n→+∞

fTxn = lim
n→+∞

d(xn,Txn) = .

Since xn+ ∈ Txn, fT is T-lower semicontinuous and limn→+∞ xn = u, we have

fTu = d(u,Tu) = .

Since Tu is closed, we get that u ∈ Tu, that is, u is a fixed point of T .

Case : If (ii) holds true, then from xn+ ∈ Txn for all n ∈N∪ {} and

lim
n→+∞

d∗((xn,xn+), (u,u)
)

= lim
n→+∞

[

d(xn,u) + d(xn+,u)
]

= ,

we get that (u,u) ∈Gr(T) and hence u ∈ Tu. Thus u is a fixed point of T .

This completes the proof. �

Now, we show that Theorem . is a generalization of the following version of Nadler’s

fixed point theorem in b-metric spaces.

Theorem . Let (X,d, s) be a complete b-metric space and let T : X → CL(X) be a mul-

tivalued mapping such that for all x, y ∈ X, we have H(Tx,Ty) ≤ rd(x, y), where r ∈ (, s–),

then T has a fixed point.

Proof We have to show that all the hypotheses of Theorem . hold true. Firstly, we prove

that T satisfies condition (.) of Theorem .. Indeed, for all x ∈ X and y ∈ Tx, we write

d(y,Ty) ≤ H(Tx,Ty) ≤ rd(x, y)

and hence the assertion holds trivially for each x ∈ X and y ∈ Ixα with α ∈ (, ) such that

r < αs–. It would remain to show that fT : X → R defined by fTx = d(x,Tx) is T-lower
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semicontinuous. Indeed, let {xn} ⊂ X be a sequence with xn+ ∈ Txn and limn→+∞ xn =

x ∈ X. Clearly, we have

d(x,Tx)≤ s
[

d(x,xn+) +H(Txn,Tx)
]

≤ s
[

d(x,xn+) + rd(xn,x)
]

,

and hence, passing to limit as n→ +∞, we get fTx = . This implies that

fTx ≤ lim inf
n→+∞

fTxn.

This completes the proof. �

Finally, we give a local version of Theorem ..

Theorem . Let (X,d, s) be a complete b-metric space, x ∈ X, R >  and let T : X →
CL(X) be a multivalued mapping. Suppose that there exists r ∈ (, s–α) with α ∈ (, )

such that for any x ∈ B(x,R) there is y ∈ Ixα satisfying

d(y,Ty) ≤ rd(x, y).

If d(x,Tx) ≤ α
s
( – sr

α
)R, then T has a fixed point in B(x,R) provided one of the following

conditions holds:

(i) fT is T-lower semicontinuous,

(ii) T is closed.

Proof Proceeding as in the proof of Theorem ., we construct an iterative sequence {xn}
with initial point x, with xn+ ∈ Ixnα and satisfying the conditions (.)-(.) for all n ∈
N∪ {}. From (.) and d(x,Tx) ≤ α

s
( – sr

α
)R, we obtain

d(xn,xn+) ≤
(

r

α

)n

d(x,x)

≤
rn

αn+
d(x,Tx)

≤
(

r

α

)n 

s

(

 –
sr

α

)

R

for all n ∈N∪ {}.
This implies xn ∈ B(x,R). Indeed, we have

d(x,xn) ≤
n

∑

k=

skd(xk–,xk)

≤
n

∑

k=

sk
(

r

α

)k– 

s

(

 –
sr

α

)

R

<

(

 –
sr

α

)

R

+∞
∑

k=

(

sr

α

)k–

= R,

and so xn ∈ B(x,R). Thus, following the proof of Theorem ., it is easy to show that T

has a fixed point in B(x,R). �
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4 Existence of solution for integral inclusions of Fredholm type

In this section, we study the solvability of integral inclusions of Fredholm type. Precisely,

we present an existence result of solution under general conditions on multivalued oper-

ators. For more on the solution of integral inclusions and related problems, the reader is

referred to [, , ] and the references therein.

Now, we consider the following integral inclusion of Fredholm type:

x(t) ∈ f (t) +

∫ 



G
(

t, s,x(s)
)

ds for all t ∈ [, ], (.)

where G : [, ] × [, ] × R → Kcv(R) is a multivalued operator, where Kcv denotes the

family of non-empty compact and convex subsets of R.

Let I = [, ] and let C(I,R) be the space of all continuous functions f : I → R. It is well

known that such a space with the metric given by

d(x, y) = sup
t∈I

(

x(t) – y(t)
)

=
∥

∥(x – y)
∥

∥

∞ for all x, y ∈ C(I,R)

is a complete b-metric space with s = .

Adapting an idea in [], we prove the following theorem.

Theorem . Suppose that the following conditions hold:

(i) for each x ∈ C(I,R), the multivalued operator G : I × I ×R → Kcv(R) is such that

G(t, s,x(s)) is lower semicontinuous in I × I ;

(ii) f ∈ C(I,R);

(iii) there exists l(t, ·) ∈ L(I), for each t ∈ I and supt∈I
∫ 


l(t, s)ds≤

√

k

with k ∈ (, ),

such that

H
(

G(t, s,x),G(t, s, y)
)

≤ l(t, s)
∣

∣x(s) – y(s)
∣

∣

for all t, s ∈ I and for all x, y ∈R.

Then the integral inclusion (.) has at least one solution in C(I,R).

Proof Let us define the multivalued operator T : C(I,R)→ CL(C(I,R)) by

Tx(t) =

{

v ∈ C(I,R) such that v(t) ∈ f (t) +

∫ 



G
(

t, s,x(s)
)

ds, t ∈ I

}

for each x ∈ C(I,R). Let x ∈ C(I,R) and denote Gx(t, s) :=G(t, s,x(s)), t, s ∈ I . For the mul-

tivalued operator Gx : I × I → Kcv(R), by Michael’s selection theorem, we get that there

exists a continuous operator gx : I × I → R such that gx(t, s) ∈ Gx(t, s) for all t, s ∈ I . This

implies that f (t) +
∫ 


gx(t, s)ds ∈ Tx and so Tx is a non-empty set. It is an easy matter to

show that Tx is closed, and so details are omitted (see also []). This implies that Tx is

closed in (C(I,R),d).

Next, we show that the multivalued operator T satisfies all the hypotheses of Theo-

rem .. To this aim, let x, y ∈ C(I,R) be such that v ∈ Tx. Then there exists gx(t, s) ∈ Gx(t, s)

with t, s ∈ I such that v(t) = f (t) +
∫ 


gx(t, s)ds, t ∈ I . On the other hand, by hypothesis (iii),
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we get

H
(

G
(

t, s,x(s)
)

,G
(

t, s, y(s)
))

≤ l(t, s)
∣

∣x(s) – y(s)
∣

∣

for all t, s ∈ I and for all x, y ∈ R. Consequently, there exists w(t, s) ∈Gy(t, s) such that

∣

∣gx(t, s) –w(t, s)
∣

∣ ≤ l(t, s)
∣

∣x(s) – y(s)
∣

∣

for all t, s ∈ I . Now, we can consider the multivalued operator S defined by

S(t, s) =Gy(t, s)∩
{

u ∈R such that
∣

∣gx(t, s) – u
∣

∣ ≤ l(t, s)
∣

∣x(s) – y(s)
∣

∣

}

for all t, s ∈ I . Taking into account the fact that the multivalued operator G is lower semi-

continuous, it follows that there exists a continuous operator gy : I × I → R such that

gy(t, s) ∈ S(t, s) for all t, s ∈ I . We have

z(t) = f (t) +

∫ 



gy(t, s)ds ∈ f (t) +

∫ 



G
(

t, s, y(s)
)

ds, t ∈ I

and

∣

∣v(t) – z(t)
∣

∣

 ≤
(∫ 



∣

∣gx(t, s) – gy(t, s)
∣

∣ds

)

≤
(∫ 



l(t, s)
∣

∣x(s) – y(s)
∣

∣ds

)

≤
(∫ 



l(t, s)

√

(

x(s) – y(s)
)
ds

)

≤
(∫ 



l(t, s)
√

∥

∥(x – y)
∥

∥

∞ ds

)

≤
∥

∥(x – y)
∥

∥

∞

(∫ 



l(t, s)ds

)

for all t ∈ I . Thus, d(v, z)≤ k

d(x, y). Interchanging the roles of x and y, we obtain that

H(Tx,Ty) ≤ kd(x, y)

for all x, y ∈ C(I,R). Thus, all the conditions of Theorem . are satisfied and hence we

deduce the existence of a solution of (.). �

Remark . Consider the following differential inclusion:

x′(t) ∈G
(

t, s,x(s)
)

, t, s ∈ I, (.)

where x ∈ C(I,R) and G : I × I ×R → Kcv(R) is a multivalued operator. Notice that (.)

is equivalent to (.) with f (t) = . Consequently, if the operator G satisfies the hypothe-

ses of Theorem ., then the existence of a solution of (.) follows by an application of

Theorem ..
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Example . For all x ∈ C(I,R) and t, s ∈ I , let G(t, s,x(s)) = {ν ∈ R : g(t, s,x(s)) ≤ ν ≤
g(t, s,x(s))}, where g(t, s,x(s)) is upper semicontinuous in I × I and g(t, s,x(s)) is lower

semicontinuous in I × I . Consider the following differential inclusion:

x′(t) ∈G
(

t, s,x(s)
)

, t, s ∈ I

and assume that there exists l(t, ·) ∈ L(I), for each t ∈ I and supt∈I
∫ 


l(t, s)ds ≤

√


, such

that

max
∣

∣g
(

t, s,x(s)
)

– g
(

t, s, y(s)
)
∣

∣ ≤ l(t, s)
∣

∣x(s) – y(s)
∣

∣

for all t, s ∈ I and for all x, y ∈ R.

Clearly, themultivalued operatorG is compact and convex valued. Thus, all the hypothe-

ses of Theorem . are satisfied with f (t) = , and hence the above two-point boundary

value problem has at least one solution.

5 Stability of solutions set for fixed point problems

We study data dependence of solutions set for fixed point problems by using the technique

presented in Section .. Indeed, in view of Theorem ., we prove a data dependence

theorem of the fixed points set for two multivalued mappings.

Theorem . Let (X,d, s) be a complete b-metric space and let S,T : X → CL(X) be

two multivalued mappings such that supx∈X H(Sx,Tx) < +∞. Suppose that there exists

r ∈ (, s–α) with α ∈ (, ) such that for any x ∈ X there is y ∈ Ixα satisfying

d(y,Sy) ≤ rd(x, y) and d(y,Ty) ≤ rd(x, y).

Then we have

H
(

Fix(S),Fix(T)
)

≤
s

α – rs
sup
x∈X

H(Sx,Tx)

provided that one of the following conditions holds:

(i) fS and fT are, respectively, S-lower and T-lower semicontinuous,

(ii) S and T are closed.

Proof By Theorem . we deduce that Fix(S) and Fix(T) are non-empty sets. Also, notice

that Fix(S) and Fix(T) are closed. Indeed, for instance, let {un} ⊂ Fix(S) be a sequence such

that limn→+∞ un = u. Then, if S is closed, the conclusion follows easily. On the other hand,

if fSx := d(x,Sx) is S-lower semicontinuous, then we have

 ≤ d(u,Su) = fSu ≤ lim inf
n→+∞

fSun = lim inf
n→+∞

d(un,Sun) = .

It follows that u ∈ Su, that is, u ∈ Fix(S). The same holds for Fix(T).

Let us consider x ∈ Fix(S). Hence, there exists x ∈ Ixα with d(x,Tx) ≤ rd(x,x). Now,

since αd(x,x) ≤ d(x,Tx), we obtain

d(x,x) ≤ α–d(x,Tx) and d(x,Tx) ≤ rd(x,x) ≤ rα–d(x,Tx).
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Iterating this process, we can construct an iterative sequence {xn} such that

(i) x ∈ Fix(S),

(ii) d(xn,Txn) ≤ (rα–)nd(x,Tx),

(iii) d(xn,xn+) ≤ α–(rα–)nd(x,Tx).

From (iii), we deduce that {xn} is a Cauchy sequence and therefore it converges to an ele-

ment u ∈ X. From (ii), by following the same lines of proof as in Theorem ., we get that

u ∈ Fix(T). Again, ifm > n from

d(xn,xm)≤
s(rα–)n

α – rs
d(x,Tx),

lettingm → +∞, we deduce

d(xn,u) ≤
s(rα–)n

α – rs
d(x,Tx)

for each n ∈ N∪ {}. Then, for n = , we get

d(x,u) ≤
s

α – rs
d(x,Tx)

≤
s

α – rs
H(Sx,Tx)

≤
s

α – rs
sup
x∈X

H(Sx,Tx).

In a similar way we can prove that, for each y ∈ Fix(T), there exists v ∈ Fix(S) such that

d(y, v)≤
s

α – rs
sup
x∈X

H(Sx,Tx).

Thus, the proof is complete. �

Building on Theorem . and dealing with a sequence of multivalued mappings, we ob-

tain the following result.

Theorem . Let (X,d, s) be a complete b-metric space and let Ti : X → CL(X) be a se-

quence of multivalued mappings. Suppose that there exists r ∈ (, s–α) with α ∈ (, ) such

that for any x ∈ X there is y ∈ Ixα satisfying d(y,Tiy) ≤ rd(x, y) and limi→+∞ H(Tix,Tx) = 

uniformly, where i ∈N∪ {}. Then we have

lim
i→+∞

H
(

Fix(Ti),Fix(T)
)

= .

Proof Let ε >  be arbitrary and choose N ∈ N such that

sup
x∈X

H(Tix,Tx) <
α – rs

s
ε

for i≥ N and for each x ∈ X. Consequently, by Theorem . we get

H
(

Fix(Ti),Fix(T)
)

< ε

for i≥ N . Therefore, for the arbitrarity of ε, the proof is complete. �
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3. Petruşel, A: Integral inclusions. Fixed point approaches. Comment. Math. Prace Mat. 40, 147-158 (2000)
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