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Abstract. A classification is given for groups which can occur as the fundamental
group of some compact 3-manifold. In most cases we are able to determine the
topological structure of a compact 3-manifold whose fundamental group is known
to be solvable. Using the results obtained for solvable groups, we are able to extend
some known results concerning nilpotent groups of closed 3-manifolds to the more
general class of compact 3-manifolds. In the final section it is shown that each
nonfinitely generated abelian group which occurs as a subgroup of the fundamental
group of a 3-manifold is a subgroup of the additive group of rationals.

(1) Introduction. This paper is primarily concerned with the classification of
those solvable groups which can occur as the fundamental group of a compact
3-manifold. We also consider the problem of determining the structure of a
compact 3-manifold whose fundamental group is known to be solvable. Our
results are complete except in the category of almost sufficiently large 3-manifolds
and the category of 3-manifolds whose nontrivial second homotopy group is
generated by projective plane boundary components.

If M is a compact, sufficiently large 3-manifold with trivial second homotopy
group, and if ir^M) is solvable, then ^(M) appears in the following list of groups:

(1) Z,Z©Z, or Jf, the fundamental group of the Klein bottle,
(2) an extension 1 -> A -> iti(M) -> Z -> 1 where A is either Z © Z or ^T,
(3) a free product of two copies of JT amalgamated along certain subgroups

isomorphic with Z © Z. These groups may be presented by (a, b, x, y \ bab~1 = a~1,
yxy~1 = x~1, a = xpy2q, b2 = xTy2s) where//, q, r, s are integers such that//s — rq= ± 1.

Further, the above list is complete. That is, for each group G listed above, there
is a compact sufficiently large 3-manifold M with n2(M) = 0, and tt1(M)~G.

If the restrictions that M be sufficiently large and that ir2(M) = 0 are dropped,
then further groups must be added to the list. Such groups are discussed in detail
in §§3, 4, 5, and 6.

C. Thomas [16] has listed those nilpotent groups which can act as the funda-
mental group of a closed 3-manifold. Making use of the information we gain
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concerning solvable groups, we are able to simplify much of Thomas' work, and
to extend his results to the bounded case. The only group which must be added to
Thomas' list is Z©Z.

In a remarkable paper of D. Epstein [1] those finitely generated abelian groups
which occur as subgroups of the fundamental group of a 3-manifold are classified.
We complete Epstein's list by proving that each nonfinitely generated abelian
group which is a subgroup of the fundamental group of a 3-manifold is also a
subgroup of the additive group of rationals.

(2) Definitions and preliminaries. If gx and g2 are elements of the group G,
we use the notation [gx, g2] to denote the element gx1g21gxg2 of G. If H and Kare
subgroups of the group G, we use the notation [H, K] to denote the subgroup of G
generated by all elements [h, k] of G, where he H and ke K. For a group G, we
define the nth term G(n) of the commutator series of G, and the nth term C(n) of the
lower central series of G as follows: Gm = Gm = G, G<n + 1, = [G(n), C(n)], and
G(n+ !) = [(/(„), G]. A group G is said to be solvable if there is an integer n such that
G(n) is the trivial group. A group G is said to be nilpotent if there is an integer n
such that Gin) is the trivial group. Each nilpotent group is solvable. Also, each
nilpotent group has nontrivial center. Each subgroup and each factor group of a
nilpotent group is again nilpotent. Likewise, each subgroup and each factor group
of a solvable group is a solvable group. Also each extension of a solvable group by
a solvable group is again a solvable group.

We use the notation Zp to denote the cyclic group of order p and Z shall denote
the infinite cyclic group.

Free groups of rank greater than one and fundamental groups of closed 2-
manifolds of Euler characteristic less than zero are not solvable. The fundamental
group of the Klein bottle JT is solvable. But Jf is not nilpotent since it has a
centerless group Z2 * Z2 as a factor group.

A group G is said to be polycyclic if C7 has a sequence of subgroups G = G0=>GX
=> ■ ■ ■ =>Gk— 1 such that for each /, Gi + X is a normal subgroup of G¡ and GJGi+x
is a cyclic group. A polycyclic group G is said to be poly-infinite-cyclic if the series
above can be chosen so that Gi/Gi+X is infinite cyclic for each /, 0^/^/j— 1. Each
subgroup and each factor group of a polycyclic group is polycyclic. Also each
extension of a polycyclic group by a polycyclic group is again polycyclic. Each
subgroup of a polycyclic group is finitely generated. Finally we remark that each
finitely generated, torsion free, nilpotent group is poly-infinite-cyclic.

We refer the reader to the books by Marshall Hall [3] and Magnus, Karass, and
Solitar [9] for the basic notions of group theory that we shall use here.

We shall use the notation 6"" to denote the standard «-dimensional sphere, and
Pn shall denote «-dimensional real projective space.

In this paper we assume that all spaces and maps are in the piecewise linear
category. Also all subspaces are taken to be piecewise linear subspaces. If A is a
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submanifold of the manifold X, we use the notation °U(A, X) to denote a regular
neighborhood of A in X.

A 3-manifold M is said to be irreducible if each 2-sphere in M bounds a 3-cell in
M. If M is an irreducible 3-manifold and if in addition M admits no two-sided
embeddings of F2, then we say that M is F2-irreducible.

A compact 3-manifold that is homotopy equivalent to a standard 3-simplex is a
homotopy 3-cell. Of course it is not known if a homotopy 3-cell is necessarily
homeomorphic with a standard 3-simplex.

Compact 3-manifolds Mu M2 are said to be simply equivalent if M2 can be
obtained from M-, by either removing the interior of a homotopy 3-cell from the
interior of Mx or by sewing a homotopy 3-cell onto a 2-sphere boundary compo-
nent of M-,. Compact 3-manifolds M, M' are said to be equivalent if there is a
finite sequence of compact 3-manifolds M=M0, Mu ..., Mk = M' such that M¡
is simply equivalent to Mi + 1 for each i, 0^z</c. van Kampen's theorem [10]
assures us that equivalent 3-manifolds have isomorphic fundamental groups.

If M is a compact 3-manifold, we have by Kneser's theorem [7] that M is equiva-
lent to a compact 3-manifold M such that M contains no 2-sphere boundary
components, and each 3-cell in M is homeomorphic with a standard 3-simplex.
We shall find it convenient to adopt the convention suggested by the above re-
marks. That is, for each compact 3-manifold M we shall use the notation M to
denote a compact 3-manifold such that M is equivalent to M, M has no 2-sphere
boundary components, and each homotopy 3-cell in M is homeomorphic with a
standard 3-simplex.

If X is a manifold we use bd X to denote the boundary of X and int X to denote
the interior of X.

A compact 2-manifold F embedded in a 3-manifold M is properly embedded in
M ifFPx bd M = bd F. A compact 2-manifold properly embedded in a 3-manifold
M is compressible in M if there exists a disk D in M such that D n F=bd D and
bd D is not contractible in F. If F is a compact 2-manifold that is properly em-
bedded in a 3-manifold M and if F is not compressible in M, then F is said to be
incompressible in M.

Suppose F is a compact, orientable 2-manifold with nonempty boundary.
Suppose further that Fis properly embedded in a 3-manifold M. If an orientation
is assigned to F, then an orientation is induced on bd F. We may then consider
bd F with its induced orientation as an element [bd F] of /^(bd M). Since there
are exactly two distinct orientations on F, we see that the homology class [bd F]
is well defined up to a sign. If F has no boundary, we take [bd F] to denote the
trivial element of //^(bd M).

A compact 3-manifold M is sufficiently large if M contains a two-sided incom-
pressible 2-manifold other than a disk or a 2-sphere.

F. Waldhausen [17] has shown that each compact, sufficiently large, orientable,
irreducible 3-manifold has a hierarchy. That is to say that there is a sequence of
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compact 3-manifolds M = M0=>Mx^> ■ ■ ■ ̂Mk and a sequence of compact 2-
manifolds F0, Fx,..., Fk_x such that F¡ is a 2-sided, incompressible 2-manifold
properly embedded in M¡, Mi+1=cl (M¡ — "/¿(F,, MA), and Mk is a collection of
3-cells. Furthermore, the hierarchy can be chosen so that [bd F¡] is not trivial in
Hx(hd Md for each / (0</^fc-l).

We shall use / to denote the unit interval [0, 1].
Let A and B denote topological spaces. If A'is a locally trivial bundle with base

A and fiber B, then we shall refer to X as a B bundle over the topological space A.
If F is a closed 2-manifold and if M is an / bundle over F, then we say that F is a
trivial I bundle over F if M is homeomorphic with Tx /; otherwise, we say that M
is a twisted I bundle over F.

(3) Finite groups. By Corollary 8.7 of [1], each finite group which occurs as
the fundamental group of a compact 3-manifold also occurs as the fundamental
group of a closed, orientable 3-manifold. J. Milnor [11] has listed those finite
groups which can occur as the fundamental group of a closed, orientable 3-
manifold. The theorems of this section are proved by checking each group in the
list for the appropriate property.

Theorem 3.1. Let M be a compact 3-manifold such that rrx(M) is finite. Then
rrx(M) is solvable unless ttx(M) is isomorphic with the binary dodecahedral group
Px20 or the direct sum of PX20 with a cyclic group of order relatively prime to 120.

Theorem 3.2. Let M be a compact 3-manifold such that rrx(M) is a finite nil-
potent group. Then irx(M) is a finite cyclic group, a generalized quaternion group
Q(2k), or the direct sum of Q(2k) with a cyclic group of odd order.

(4) The case ir2(M) = 0 and rrx(M) infinite. We shall make extensive use of the
following lemma which appears as a problem in §4.1 of [9]. The proof is omitted.

Lemma 4.1. If A and B are nontrivial groups, then A * B is solvable if and only if
AzZ2xB.

Theorem 4.2. Let M be a compact 3-manifold such that ir2(M) = 0. Suppose
further that M has nonempty boundary. Then trx(M) is solvable if and only if M is
equivalent to a 3-manifold from the following list:

(i) a disk bundle over S1 ;
(ii) an / bundle over the torus;

(iii) an / bundle over the Klein bottle.

We shall require two lemmas before beginning the proof of Theorem 4.2.

Lemma 4.3. Let N be a compact P2-irreducible 3-manifold with nonempty com-
pressible boundary. Then ?rx(N) is solvable if and only if N is homeomorphic with a
disk bundle over S1.
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Proof. Let F be a disk properly embedded in N such that bd D is not contrac-
tible in bd N. Suppose D separates N into two components Nx and N2. As a
consequence of the projective plane theorem [1], N, Nu and N2 are all aspherical
3-manifolds. Thus in particular Lemma 8.4 of [1] assures us that ir1(/V1) contains
no elements of finite order. By van Kampen's theorem Tr1(N)x-rr1(N1) * 771(Ar2).
Observe that since bd D is not contractible in bd N, it follows that neither Nx nor
N2 is simply connected. Hence by Lemma 4.1, -rrí(N1)'2íZ2'Z,Tr1(N2). This is contrary
to the statement above that ttx(N1) contains no elements of finite order. Hence D
does not separate N. Let A*=cl (N-°l¿(D, N)). By van Kampen's theorem
7r1(A)~w1(A*) * Z. It follows that N* is simply connected. Since N is irreducible
it follows that N* is a 3-cell. The lemma follows.

Lemma 4.4. Let N be a compact, orientable, irreducible 3-manifold with nonempty,
incompressible boundary. Then tt¡_(N) is solvable if and only if N is either S1 xS1 xl
or the twisted I bundle over the Klein bottle.

Proof. Let N= A0=> N^ ■ ■ ■ => Nk be a hierarchy for N where

Nt+1 = ci (A, - <?/(Fi; A,)),       0 ^ / < k.

Assume further that the homology class [bd F¡] is not trivial in //(bd zV¡) for
each i, l¿i<k. For each /', bd A¡ is not empty. Thus the condition that [bd F¡] is
not trivial in //(bd N¡) insures that each A¡+1 is connected, O^z^/c— 1.

Since F is incompressible and two-sided in A„ it follows from the loop theorem
[14] that the inclusion induced homomorphisms /* : n^F.) —> 771(Ai) and

j%: TrANi+^^TT^Ni) are monomorphisms. Hence tt^F.) and tt^N,) are solvable
groups for each /', 0^i<k, and for each/ Oáy'áA:.

Observe that since Nk is a 3-cell, Nk-1 must have compressible boundary. Let r
be the smallest integer such that bd Ar is compressible in Ar. Then Nr is a compact,
orientable, irreducible 3-manifold with nonempty, compressible boundary.
Furthermore, 7Ti(Ar) is a solvable group. Hence by Lemma 4.3, Nr is homeomorphic
with DxS1 where D denotes the standard 2-simplex.

Through the remainder of the proof,y shall denote an arbitrary integer such that
0Sj<r. Observe that since A< is orientable and bd N) is incompressible, it follows
that each component of bd N¡ is a torus. F, is a compact 2-manifold with nonempty
boundary and solvable fundamental group. Since bd N¡ is incompressible, F¿ is
not a disk. Also F¡ is two-sided and Nj is orientable so that F3 is not a möbius band.
Hence F, is an annulus.

We identify %(Fj,N,) with Fyx[0, 1] in such a way that F¡ is identified with
Fj x \. We wish to observe that the two annuli F¡ x 0 and F¡ x 1 lie in the same
boundary component of Nj+1. If the two boundary components of F, lie in different
components of bd A,, this is clear. If both boundary components of F, lie in the
same boundary component of N,, then bd F¡ bounds an annulus A in bd N,-.
Since [bd FA is not trivial in //x(bd Nj), we see that A u F, is a Klein bottle. But
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Ay is orientable. Hence A u Ft is one-sided in N}. It follows that F¡ x 0 and F, x 1
lie in the same boundary component of Nj+X.

From the above remarks, we observe that A,- is obtained from A,+ 1 as follows.
Let a and A be a pair of disjoint simple closed curves in the same boundary com-
ponent of AJ+1 such that neither a nor b is contractible in bdAy+1. Let
ha: Fjx0 -> °il(a, bd Nj) and hb: Ffx 1—> ̂ ¿(b, bd Nj+X) be homeomorphisms.
Then A, is obtained from Nj+X by sewing F} x [0, 1] onto bd A, via the homeo-
morphisms ha and «„.

As noted above, Ar is homeomorphic with Dx S1 where D denotes the standard
2-simplex. Let /3 = (bd D) x 0, let „y0 be a point on ß, and put a = .v0 x S1. According
to the remarks above, Nr_x can be obtained from Ar by sewing Frx [0, 1] onto
bd Ar by homeomorphisms that map the annuli F¡ x 0, F¡ x 1 onto regular neigh-
borhoods of a pair of disjoint simple closed curves a and b in bd Nr. Since bd A, is a
torus and a and b are not contractible in bd Nr, it follows that a and b are parallel.
That is, up to a homotopy in bd Ar, a = apß" and b = (apßq)11 where p and q are a pair
of relatively prime integers. Then van Kampen's theorem yields the following
presentation for 7r1(Ar_1) : (x, y, z | y = xp, zyz'1=x±p). Let G be the smallest
normal subgroup of 771(Ar_1) containing the element y. Then ttx(Nt.x)/G can be
presented by (x, z \ x"= 1). Observe that this is also a presentation of the group
Z * Z77. But Trx(Nr-x) is solvable. Hence77= ± l.Thus we see that Nr_x is an /bundle
over the torus or the Klein bottle. Since Ar_j is orientable, it follows that Ar_x
is either S1 x S1 x I or the twisted / bundle over the Klein bottle.

We shall now show that z"=l and hence A=Ar_,. If r^=l then Ar_2 can be
obtained from Nr.x by sewing Fr_2x [0, 1] onto bd (Ar_,) via homeomorphisms
that map the annuli Fr_2x0, Fr_2x 1 onto regular neighborhoods of a pair of
disjoint, nontrivial curves in the same component of bd Ar_x.

If Ar_! is homeomorphic with S1xS1xI, van Kampen's theorem yields the
following presentation for irx(Nr_2) : (x, y, z, w \ [x, y] = l, z = x"yq, wzw'1
= (xpyq)±1) where (77, q) is a pair of relatively prime integers. Let G be the smallest
normal subgroup of ir1(Ar_2) containing the element z. Then ttx(Nt^2)/G can be
presented by (x, y, w \ [x,y] = l, xpyq=l). Let H be the group with presentation
(x, y | [x, y] = I, xpyq = l ). Observe that H is not the trivial group for any values of
p and 77. But irx(Nr-2)/G is isomorphic with the free product Z * H. Hence
771(Ar_2)/G is not a solvable group. It follows that if Ar_x is S1xS1x I, then r= 1
and N=S1xS1xI.

If Ar_, is the twisted /bundle over the Klein bottle, we obtain by van Kampen's
theorem the following presentation for 771(Ar_2) : (x, y, z, w \ yxy~1=x~1,
z = x"y2q, wzw~1 = (xpy2q)±1)- Let H be the smallest normal subgroup of irx(Nr-2)
containing the elements x, y2 and z. Then irx(Nr-2)/H can be presented by
(y, w I y2=l). But this is also a presentation for the nonsolvable group Z * Z2.
Hence 771(Ar_2) is not solvable. It follows that r= 1, and A is the twisted / bundle
over the Klein bottle. This completes the proof of Lemma 4.4.
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Proof of Theorem 4.2. Since -zt2(M) = 0 and each homotopy 3-cell in M is
homeomorphic with the standard 3-simplex, it follows that M is F2-irreducible.
If bd M is compressible in M, then by Lemma 4.3, M is homeomorphic with a
disk bundle over S1. If M is orientable and bd M is incompressible, then, by
Lemma 4.4, M is an / bundle over the torus or the Klein bottle. If M is non-
orientable with incompressible boundary, we let M* denote the orientable double
cover of M. Then M* is equivalent to an / bundle over either the torus or the
Klein bottle. But M contains no two-sided projective planes. Thus by Theorem 1
of [5] we have that M is equivalent to an / bundle over either the torus or the Klein
bottle. This completes the proof of Theorem 4.2.

Theorem 4.5. Let M be a closed, sufficiently large 3-manifold with ir2(M) = 0.
Then ^(/Vf) is solvable if and only if M is equivalent to a 3-manifold from the following
list:

(i) a torus bundle over S1;
(ii) a Klein bottle bundle over S1;

(iii) the union of two twisted I bundles over the Klein bottle sewn together along
their boundaries.

Proof. Since ir2(M) = 0, it follows that the associated manifold M is F2-
irreducible. Since M is sufficiently large, there is a two-sided incompressible 2-
manifold F embedded in M. Furthermore, Fis not a 2-sphere. By the loop theorem
[14], the homomorphism z'*: ir-,(F) -> irAM) induced by inclusion is a mono-
morphism. Hence ^(F) is a solvable group. Also F is not a 2-sphere, and since F
is two-sided, F is not a projective plane. Hence F is either a torus or a Klein
bottle.

Case 1. F separates M. If M is nonorientable then F can be chosen so that it
does not separate M. Thus in this case we may assume that M is orientable. Hence
F is homeomorphic with S1 x S1. The 2-manifold F separates M into two com-
ponents whose closures we denote by Mx and M2. Then Mx and M2 are compact,
F2-irreducible 3-manifolds with nonempty, incompressible boundary. Furthermore,
the groups -rr^M-,) and 7r1(/V/2) are solvable. It follows then from Lemma 4.4 that
M-, and M2 are each homeomorphic with an / bundle over either the torus or the
Klein bottle. Observe that M1 and M2 are orientable and that each manifold has
connected boundary. It follows that M-, and M2 are both homeomorphic with a
twisted / bundle over the Klein bottle.

Case 2. F does not separate M. Let Mx = cl (M—<%(F, M)). Then M-, is a
compact PMrreducible 3-manifold with nonempty, incompressible boundary.
Furthermore, ttAMA lS a solvable group. Thus M1 is homeomorphic with an /
bundle over either the torus or the Klein bottle. Observe that bd M1 is not con-
nected. It follows that Mi is homeomorphic with a product Gx[0, 1] where G
is either S1 x S1 or the Klein bottle. Hence M is either a torus or Klein bottle
bundle over S1.
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It is straightforward to show that the fundamental groups of the manifolds (i)
and (ii) are solvable.

The groups (iii) contain a normal subgroup Z@Z which is the fundamental
group of the torus separating the / bundles over the Klein bottles. The factor
group obtained by moding out this normal subgroup is the solvable group Z2 * Z2.
Hence the groups (iii) are solvable. This completes the proof of Theorem 4.5.

Let M be a closed 3-manifold with ir2(M) = 0, rrx(M) solvable and ßx(M) >0.
Then there exists an incompressible, two-sided 2-manifold embedded in M which
does not separate M. Hence we see from the proof of Theorem 4.5 that M is
equivalent to a torus or Klein bottle bundle over S1.

Corollary 4.6. The following is a complete list of all solvable groups G which
occur as the fundamental group of a compact, sufficiently large 3-manifold with
trivial second homotopy group :

(i) Z, Z@Z, or JT, the fundamental group of the Klein bottle ;
(ii) an extension 1->A^G->Z->1 where A is either Z © Z or Jf;

(iii) a free product of two copies of Jf amalgamated along certain subgroups
isomorphic with Z © Z. In this case G has the presentation (a, b, x, y \ bab~1=a~1,
yxy ~1=x~1,a = xpy2q, b2 = xry2s) where p, q, r, s are integers such that ps — rq= ± 1.

Proof. If G is the fundamental group of a compact, sufficiently large 3-manifold
with trivial second homotopy group, then, by Theorems 4.2 and 4.5, G is among the
groups listed above. Thus we need only show that each group G in the list above
actually occurs as the fundamental group of a compact, sufficiently large 3-
manifold MG with trivial second homotopy group. If G is Z, Z © Z, or JT, this is
straightforward. Let F denote either S1xS1 or the Klein bottle, and suppose G
is an extension of rrx(F) by Z. The generator of the group Z acts on rrx(F) by
conjugation to induce an automorphism 8: irx(F) -> ttx(F). By Baer's theorem [12]
there exists a homeomorphism h:F^F such that the induced automorphism
«*: 7tx(F) -> ttx(F) is 6. Let M1 = Tx[0, 1]. Let MG he the identification space
obtained from Mx by identifying (x, 0) with (h(x), 1) for each x in F. Then by van
Kampen's theorem, rrx(MG)xG.

Let G be a group with presentation (a, b, x, y \ bab~1 = a~1, yxy~1 = x~1,
a = xpy2q, b2 = xry2s), ps — rq=±l. We construct Ma as follows. Let Mx and M2
denote twisted / bundles over the Klein bottle. Then bd Mx and bd M2 are tori.
Hence ^(bd Mx)?zZ®Z^Trx(hd M2). Let h: bd Mx -> bd M2 be a homeomor-
phism such that the induced isomorphism «*: Z@Z-> Z©Z has matrix (P q).
Let Ma be the adjunction space MxUhM2. By van Kampen's theorem irx(Ma)xG.

Lemma 4.7. Let M be a compact 3-manifold with infinite, solvable fundamental
group. Then M has a finite sheeted, regular covering space (M, p) such that ßx(M) > 0.

Proof. Let G = 771(M). Since G is solvable, there exists an integer k such that
G(W= 1. Since G is infinite and G(W= 1, there is an integer i such that G(i + 1) is of
infinite index in G(i). Let 7 be the smallest such integer. Let (M,p) be the covering
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space of M associated with the normal subgroup G0) of n^M). Then (M,p) is a
finite sheeted regular covering space of M. Furthermore HAÂÏ)~ GU)/GU +1( is infinite.

We use the notation GL„(Z) to denote the multiplicative group of invertible,
nxn matrices with entries from the ring of integers.

Theorem 4.8. Let M be a closed, nonsufficiently large 3-manifold with rr2(M) = 0.
Suppose further that ttAM) is an infinite, solvable group. Then M has a finite sheeted,
regular covering space (M,p) such that M is equivalent to a torus bundle over S1.
Furthermore, (M, p) can be chosen so that the group of covering transformations of
(M,p) is a finite, solvable subgroup of GLn (Z) with n~¿3.

Proof. Observe first of all that since M is not sufficiently large, M is an orientable
3-manifold. By Lemma 4.7, M has a finite sheeted, regular covering space (M,p)
such that ß1(M)>0. Since M is orientable, we see by the remarks following
Theorem 4.5 that M is equivalent to a torus bundle over S1.

We have the exact sequence 1 -> ^(M) _>. rr^M) 1+ Q _> 1 where Q denotes
the finite group of covering transformations of (M, p). We assume that among all
finite sheeted, regular covering spaces (N,p') of M such that ßx(N)>0, (M,p) is
chosen so that the group Q of covering transformations of (M,p) has minimum order.

Since M is compact, //X(M) is a finitely generated, abelian group. Hence there
exists a positive integer a such that aH1(M) = {ax \ x e HX(M)} is torsion free.
Furthermore, since M is equivalent to a torus bundle over S1, aH^M) is iso-
morphic with Z, Z © Z or Z © Z © Z. Let r be the rank of aHAM)- Then r ^ 3.

Each covering transformation q in Q induces an automorphism

z7Hi://1(M)^//1(M).

For qe Q, let q denote the restriction of q* to a/7x(M). Let </>: Q -> GLr (Z) be the
homomorphism defined by xfi(q) = q for each q in Q. We shall show that the assump-
tion of minimum rank for Q insures that </> is a monomorphism.

Let Q' denote the kernel of the homomorphism ¡¡¡. We have the following exact
commutative diagram.

1 1

7-

1-„ 9içst)->f\Q') -4-* Q' ■-> 1

f V
1 -► rr^M)-► tt^M)-> Q-> 1

QIQ'   =   QIQ'

l l
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Let (A, p') denote the regular covering space of M associated with the normal
subgroup /" 7 Q') of rrx(M). From the spectral sequence of a covering map [8]
we obtain an exact sequence of terms of low degree. In particular we have the
following exact sequence. H2(Q')-+ HX(M) <g)Q. Z -> HX(N) -> HX(Q'). We wish
to show that HX(N) is infinite. Since Q' is finite, it follows that H2(Q') is also finite.
Hence in order to show that HX(N) is infinite, we need only show that the tensor
product HX(M) (g)Q. Z is infinite. Let K denote the subgroup of HX(M) generated
by all elements of the form x — q*(x) where x e HX(M) and qeQ'. Then
HX(M) (x)0- Z is isomorphic with HX(M)/K. Consider the subgroup (aHx(M)) n K
of HX(M). If z e (aHx(M)) n K, then there exist elements x,yx,..., yk of HX(M),
and there exist elements qx,...,qk of Q' such that ax = ^k=x y¡— qit(yd- Then
a2* = Z?=i ayi~1i.(ayi) = 2'i = i «/¡-^(«I'i)- But q^^qf) is the identity map since
q¿ is an element of the kernel of </j. Hence a2x = 0. But aHx(M) is torsion free. Thus
z = ax = 0. It follows that (uHx(M)) n K=0. Hence the restriction of the natural
projection of HX(M) onto HX(M)/K to aHx(M) is a monomorphism. Thus
HX(M) (x)Q. Z is infinite. It follows that HX(N) is also infinite.

Thus (A,77') is a finite sheeted, regular covering space of M such that ßx(N)>0.
The group of covering transformations of (A, p') is isomorphic with Q/Q'. By the
minimality assumption for (M,p), the order of Q is not greater than the order of
Q/Q'■ It follows that Q' is the trivial group. Hence <A is a monomorphism and the
proof of Theorem 4.8 is complete.

Corollary 4.9. Let G be the fundamental group of a compact, nonsufficiently
large 3-manifold with trivial second homotopy group. Suppose further that G is an
infinite solvable group. Then G is a nonsplit extension of the fundamental group of an
orientable torus bundle over S1 by a finite solvable subgroup of GLr (Z), r£3.

Looking closely at the proofs of this section, we have the following corollary.

Corollary 4.10. Let M be a compact sufficiently large 3-manifold with trivial
second homotopy group. Then rrx(M) is solvable if and only if rrx(M) contains no
free subgroup of rank two.

(5) The case 772(M)/O. Let G be a split extension of a group H by a group K.
Then each element k of K acts by conjugation on H to induce an automorphism
6k on H. We say that K acts without fixed points on H if for each k in K and each
h in H, 6k(h) = h if and only if k = 1 or h = 1.

Theorem 5.1. Suppose M is a compact 3-manifold such that 7r2(M)/0. Ifrrx(M)
is an infinite, solvable group, then precisely one of the following is true:

(i) ttx(M)zZ, Z © Z2, or Z2 * Z2.
(ii) tt2(M) is generated as a irx(M) module by the projective plane boundary

components of M, and ttx(M) is a split extension of G by Z2 where G is the funda-
mental group of a compact, orientable, irreducible, 3-manifold with solvable funda-
mental group. Furthermore, Z2 acts without fixed points on G.
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If M is a compact 3-manifold which falls into the second category of Theorem
5.1, then M can be obtained as follows. Let Abe a compact, orientable 3-manifold
with 7T2(A) = 0 such that ^(A) is an infinite, solvable group. Let/: N^ N be an
involution whose fixed point set is a finite collection of points xu . .., xk. Let Mx
be the orbit space cl (A—Uf=1 ^{xu A))// Then M is obtained from M-* by re-
moving the interiors of a finite (possibly empty) collection of 3-cells.

Numerous examples of such 3-manifolds exist. For example we can construct
an involution a on N=S1 x S1 x [0, 1] which fixes exactly four points as follows.
Let C denote the complex plane. The 2-manifold S1 x S1 is naturally embedded
in C x C as the set of ordered pairs (e2Ma, e2nie) such that 0 g « ¿ 1, 0 S ß g 1. We
define the involution r\ S1 x S1 -> S1 x S1 by

T(£2!iicc   e2aiß\   _   (e2nia-a)   e2jzi(l-/J)\

The involution t fixes exactly four points; namely x1 = (l,l), .y2 = (I, e2nil2),
x3 = (e2"il2,l), xi = (e2"il2,e2"il2). Define o: A-> A by o(x, t) = (r(x), 1 -t). Let
M be constructed from A as described above. Then •zr1(M) has presentation
(x, y, t \ [x, y] = l, txt~1 = x~1, tyt~1=y~1, t2=l). Observe that since Z2 acts
without fixed points on n1(N)xZ@Z, it follows that ttx(M) is the only split
extension of Z©Z by Z2 which occurs as the fundamental group of a compact
3-manifold.

Proof of Theorem 5.1. Since 7r2(M)^0, we have by the projective plane theorem
[1] that M contains either a noncontractible 2-sphere or a two-sided projective
plane.

Case 1. There exists a noncontractible 2-sphere S in M. If S separates M into two
components Mx and M2, then by van Kampen's theorem 7r1(M)^771(M1) * ttx(M¿).
Since S is not contractible in M and M has no 2-sphere boundary components,
it follows that neither Mx nor M2 is simply connected. Hence ^(MJ^Z^tz-^/VF,).
Thus Tr1(M)Xrr1(M)xZ2 * Z2.

If í does not separate M, then van Kampen's theorem allows us to write
tt1(M)~Z * //where His the fundamental group of M — S. Since ^(M) is solvable,
it follows that His the trivial group. Hence n1(M)xn1(AÂ)xZ.

Case 2. Each 2-sphere in M is contractible in M. Let/,. . .,/ be maps of S2
into the projective plane boundary components of M (if any exist) such that /
identifies antipodal points for each i, 1 az'Sr. Let A denote the ^(/WJ-submodule
of rr2(M) generated by/,...,/.

Case 2A. A^tt2(M). By the projective plane theorem [1] there is a map
f: S2 —- M such that/^ A and/(52) is either a 2-sphere or a two-sided projective
plane. Since each 2-sphere in M is contractible, it follows that/(5'2) is a two-sided
projective plane. Let (M, P) denote the orientable double cover of M, and let
/: iS2 -» M be a lifting off. Let t. M -> M denote the nontrivial covering trans-
formation of (M, P). Suppose f(S2) does not separate M. Let

Mx = cl (M-^/(f(S2), M)).
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Suppose f(S2) separates M. Then since M—f(S2) is connected, it follows that t
interchanges the components of M—f(S2). Let S* denote a 2-sphere in M such
that S* is parallel to f(S2). Then since t(S*) n S* = 0, it follows that P\s. is an
injection. Hence P(S*) is a noncontractible 2-sphere in M. Since each 2-sphere in
M is contractible, we have established a contradiction to the assumption that
f(S2) separates M. Let MX=P-\MX). Then irx(Ñ)xZ * nx(Mx). It follows that
tix(Mx)= 1. Since Mi is a connected, two-sheeted covering space of Mx, it follows
that ir1(M1)xZ2. Then by Theorem 5.1 of [2], Mx is homotopy equivalent with
P2x[0, 1]. It follows that 771(M)^771(M)^Z©Z2.

Suppose f(S2) separates M into two components whose closures we denote by
Mx and M2. Let MX=P~\MX), and let M2 = P~\M2). Since f(S2) is not in
P*1(A), it follows that neither Mx nor M2 is simply connected. Thus since
nx(M)X7rx(Mx) * nx(M2),v,ehavethatnx(Mx)zZ2Xnx(M2). ButP\MX: Mx^ Mx
is a two-sheeted covering map. Hence rrx(Mx) is an extension of Z2 by Z2. This is not
possible since as proved in [1], the only finite group which can occur as the funda-
mental group of a compact, nonorientable 3-manifold is Z2.

Case 2B. A = -rr2(M). Let/i,.. .,fr be liftings of the generators fx,.. .,fi of A
to the covering space M. The map /%.: ir2(M) -^n2(M) is an isomorphism of
abelian groups. Thus since for each i, 1 £i%r, P~\f(S2) is connected, it follows
that 772(A?) is generated as a -rrx(M) module by fx,.. .,fi. Hence tt2(M~) = 0. It
follows that M~ is an irreducible, orientable, compact 3-manifold with infinite,
solvable fundamental group.

Let G = ttx(M). Then Trx(M) is an extension of G by Z2. The group G is the
fundamental group of an aspherical 3-manifold. Hence by Lemma 8.4 of [1], G is
torsion free. But M has at least one projective plane boundary component. Hence
irx(M) contains a nontrivial element t of order 2. It follows that the above exten-
sion is split by a homomorphism that maps the generator of Z2 onto /.

The element / acts on G by conjugation to define an automorphism 8:G^G.
Suppose there exists a nontrivial element g in G such that 6(g) =g. Then tgt ~1=g.
Since G is torsion free, it follows that t and g generate a subgroup H of rrx(M)
such that H is isomorphic with Z® Z2. Then by Theorem 9.5 of [1], we can write
M as a connected sum M=QffR where irx(Q)xZ® Z2. By van Kampen's
theorem, irx(M)~-nx(Q) * rr,(R). Since rrx(M) is solvable, it follows that irx(M)
~Z®Z2. Then nx(M)xZ. Since M^ is irreducible and orientable, it follows that
M~ is homeomorphic with a product DxS1 where D denotes the standard 2-
simplex. Thus M has a boundary component T such that T is isomorphic with
either S^xS1 or the Klein bottle. Since rrx(M)~Z@Z2, we see that Tis com-
pressible in M. Let D be a disk in M such that D n bd M= D n T=bd D, and
bd D is not contractible in T. If D separated M, van Kampen's theorem would
allow us to write the fundamental group Z © Z2 of M as a nontrivial free product.
Thus D does not separate M. Then by van Kampen's theorem Z®Z2~trx(M)
■Z.Z * K where K is the fundamental group of M— D. This contradiction assures
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us that Z2 acts  on  G without fixed  points. The  proof of Theorem  5.1   is
complete.

We are now able to prove a general theorem about solvable fundamental groups
of compact 3-manifolds.

Theorem 5.2. If M is a compact 3-manifold then ir-AM) is solvable if and only if
tti(M) is poly cyclic.

Proof. Let M denote a compact 3-manifold with solvable fundamental group.
A finite group G is solvable if and only if G is polycyclic. Thus we need only
consider the case that ^(M) is infinite.

Case 1. tt2(M) = 0. If M has nonempty boundary, then ^(M) is either Z,
Z©Z, or the fundamental group of the Klein bottle. All these groups are poly-
cyclic. If M is closed, then we let M denote the orientable double cover of M if M
is nonorientable; otherwise, let M=M. Then M has a finite sheeted, regular
covering space M* such that M* is equivalent to a torus bundle over S1. Since
TTy(M*) is polycyclic, it follows that ttAM) is polycyclic. Hence 7r1(M)~771(M) is
also polycyclic.

Case 2. n2(M)^0. In this case tt^M) is either an extension of a polycyclic
group by Z2, or tt^M) is isomorphic with one of the polycyclic groups Z,Z@Z2
or Z2 * Z2.

(6) Seifert fiber spaces. In this section we consider again the category of closed,
F2-irreducible 3-manifolds which are not sufficiently large but which have solvable,
infinite fundamental groups. All such 3-manifolds known to the authors are Seifert
fiber spaces. We therefore devote this section to the classification of those Seifert
fiber spaces with solvable fundamental groups.

A Seifert fiber space M is constructed as follows. Let F be a closed 2-manifold
and let M-, denote a locally trivial 5"1 bundle over F. LetP: M-, -> F be the bundle
projection. We shall refer to F as the Seifert surface of M. Choose disjoint disks
Du..., Dk in Fand set M2 = cl(M1-\Jk=1 P~ ADA). Note that F - l'{J}t) is a solid
torus for each i, 1 ̂ z'á/V. We identify P~1(Di) with D¡ x S1. Put^ = (bd D¡) xO and
i\—Xi x S1 where xt is a point on q¡. We complete M by sewing solid tori D\ x S1
onto qx x hi in such a way that the curve (bd D\) x 0 is sewn to the curve qfxhf'
where (a,, ft) is a pair of relatively prime integers. If y, is the center of the disk D¡,
we refer to the simple closed curve P~1(yi) as a singular fiber of type (a¡, ft).
Observe that if o¡¡= ± 1 then M can be refibered in such a way that y¡ no longer
occurs as a singular fiber of M. Thus in the sequel, we lose no generality in
assuming that |a(| > 1 for each i, 1 fíifík.

If Fis orientable of genus g, van Kampen's theorem yields the following presenta-
tion for ttAM): (a¡, b¡, q¡, h \ FIf= i [«., b^h" n?=i Ci, [h, z7,] = l, aihai1=hEx,
bfibï1 =hxx,q'jihBi=l), Ifíiúg, iúj^k, e„ X¡=±1. In case Fis not orientable,
tt^M) may be presented as (c^q^h \ rjf-ï c2 = hbY\k=1qi, [h,q¡] = 1, cihc-1=hBx,
qphfi^l), ISiSn, lúj^k.
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A Seifert fiber space M with nonorientable Seifert surface F and k singular
fibers of types (ax, ßx),.. ., (ak, ßk) has a double cover M, a Seifert fiber space with
Seifert surface F, the orientable double cover of F, and 2k singular fibers of types
(ai> ßi), (ai, ßi), ■ ■ -, (ak, ßA, (ak, ßk)- Hence we need only consider the case where
M has orientable Seifert surface. Furthermore, irx(M) is an extension of the normal,
infinite cyclic subgroup generated by h.

Hence we have reduced the problem to classification of the planar discontinuous
groups G(g, k\ax,..., ak) with presentation (a¡, b¡, q¡ | Flf=i fa, b^ = \\k=xqi, qfi
= 1), l£i£g, lèj^k.

Lemma 6.1. If g^2, or if g=l and fe^l, then G(g, k\ax,. . ., ak) is nonsolvable.
Proof. If H is the smallest normal subgroup of G(g, k\ax,..., ak) generated by

qx,..., qk, then G/H can be presented by (au b¡ \ YlUi [«i, bi]= ')> ifkiug- This is
also a presentation of the fundamental group of a closed 2-manifold of genus g.
Thus if g^2, G(g, k\ax,..., ak) is not solvable.

If g= 1 and feèl, then G(g, k\ax,..., ak) has a factor group //with presentation
(a, b | [a, b]ai= 1). The factor group H is obtained by factoring out the smallest
normal subgroup of G(g, k\ax,..., ak) containing the elements q2,...,qk. Let
T denote a torus with the interior of a disk removed. Let K denote the 2-complex
obtained by sewing the boundary of a disk D onto bd T in such a way that bd D
wraps a] times around bd T. Then by van Kampen's theorem ttx(K)x H. K has a
two-sheeted covering space K obtained as follows. Let T denote a torus with the
interiors of two disks removed. K is completed by sewing a disk onto each boundary
component of f so that each disk wraps ax times around the boundary component
onto which it is sewn. Then nx(K) is a subgroup of -rrx(K). By van Kampen's
theorem, ttx(K) has presentation (a, b, tx, t2 | [a, b] = txt2, rfi = ifi = I). 7rx(K) has a
factor group with presentation (a, tx \ r*» = l). But this is also a presentation for
the nonsolvable group Z * Zai. This completes the proof of Lemma 6.1.

If A and B are groups, and if </>: H ^ K is an isomorphism between the sub-
groups H of A and K of B, then we denote the free product of A and B amalga-
mated along the subgroups H and K by *(A, B, H, K, <f>).

Lemma 6.2. Let G = *(A, B, H, K, </>), where Aj-H and B^K. Then G is solvable
if and only if H is solvable and H is of index two in A and K is of index two in B.

Proof. If H is of index two in A and K is of index two in B, then observe that
G = *(A, B, H, K, </>) is an extension of H by the solvable group Z2 * Z2. Thus G is
solvable if and only if H is.

The statement of the sufficiency of the lemma is a special case of a lemma of
R. J. Gregorac [2]. Gregorac has shown that if G = *(A, B, H, K, </>) satisfies some
nontrivial identity relation, then H is of index two in A and K is of index two in B.
Since each solvable group must satisfy some commutator identity (e.g. a group
that is solvable of length two must satisfy the identity [[X, Y], [Z, W/]]=l), we
may apply Gregorac's lemma above to obtain our result.
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Theorem 6.3. G(0, k\aly..., ak) is solvable in exactly the following cases:
(1) k = 4 and a1 = a2 = o¡3 = oc4 = 2;
(2) k = 3 and (au a2, a3) = (2,2, a3), (2,3,3), (2,3,4), (2,3,6), (2,4,4), or

(3,3,3);
(3) k<,2.
Lemma A. If G(0, k\au ..., ak) is solvable, then k^4. If k = 4, then a1 = a2 = 0£3

= a4 = 2.

Proof. Since k^4, we may write G = G(0, l\ax,.. .,ak) as G=*(A, B, H, K, <j>)
where A is the group presented by (qu q2 \ qfx = l), B is the group presented by
(z73,. . .,qk\ qf'=l), H is the subgroup of A generated by qxq2, K is the subgroup
of B generated by <73 • ■ -qk, and </> is the isomorphism of H onto K that maps qxq2
onto (q3- ■ •qk)rl. According to Lemma 6.2 if G is to be solvable, then H is of
index two in A and K is of index two in B. Thus A and B are each extensions of Z
by Z2. In particular both A and B are solvable groups. But A and B are free products
of finite groups and hence by Lemma 4.1 can only be solvable if A: = 4 and a1=a2
= a3 = ai = 2.

Lemma B. // al5 a2, a3 are pairwise relatively prime, then G(0, 31«!, a2, a3) is
nonsolvable.

Proof. If we abelianize G(0, 3|alf <x2, a3), we have that q"^ = 1, q22=l, qf3q23= 1.
Then ql2a3=qf2a3q2'2a3 = (ql3q2!3)c"2=l. Since at and a2a3 are relatively prime, we
have <|i = l. Similarly q2=q3= I. Hence G(0, 3|a!, a2, a3) is in fact perfect.

We are now prepared to narrow our list of solvable groups (7(0, k\au ..., ak) to
those given by Theorem 6.3. According to Lemma A, we need only consider the
case zi: = 3. Further, by Lemma B we need only consider groups (7(0, 3|ax, a2, a3)
when there exists a prime p that divides both a2 and a3. In such a case, we can
construct a homomorphism of (7(0, 3|a1( a2, a3) onto Zp by mapping qx onto the
identity element of Zp, q2 onto the generator of Zp, and q3 onto the inverse of the
generator of Zp. This map has kernel K which may be presented by (xt, q'2, q'3 \
(n?= d Xi)q2q'3 = 1, x?x = l,q'2a2= l,(73a:3=l), 0âz'</>, a'2 = a2/p, a'3 = a3/p under the
map Xi ̂ q2qiq2\ 0fii<p, q'2 \->-q$, and q'31—> ^§. Observe that K is isomorphic
With G(0,p + 2\au au .,.,«!, a2///, a3//>).

(1) C(0, 3\a,pq,pr), ## 1, r^ 1, (a, p, q, r)^(2, 2, 2, 2). This group has a non-
solvable subgroup G(0,p + 2\a,a,...,a,q, r).

(2) G(0,3\a,p,p), //S: 5 or // = 3 and a^4. If /zä5, then the subgroup
G(0,p\a,a,...,a) is not solvable. If // = 3 and «^4 then the subgroup
G(0, 3|a, a, a) is not solvable by the above if a is a prime or by (1) if a=p'q, pa
prime and ## 1.

(3) (7(0, 3|o£, p,pr), /•# l,//^5 has a subgroup G(0,p+ l|a, a,..., a, r) which is
not solvable.

(4) G(0, 3|cc, 3, 3r), r# 1 and a#2 or r/2. The subgroup G(0, 4|a, a, a, r) is not
solvable.
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(5) G(0, 3|a, 2, 2r), r^ 1 and aä5 or a = 4, rS3, or a = 3, z-^4. The subgroup
G(0, 31a, a, /•) is not solvable. If aä5 this follows from (2) if a is prime and by (1)
if a is composite. If a = 4 and r^3, this follows from (1). If a = 3 and rä4 this
follows from (4).

The only groups remaining to be considered are those listed in Theorem 6.3.
It is straightforward to show that each of these groups is solvable. We have the
following theorem.

Theorem 6.4. Let M be a Seifert fiber space such that rrx(M) is solvable. Then M
has Seifert surface F either the torus, the Klein bottle, the projective plane, or the
2-sphere. Furthermore, if F is the torus or the Klein bottle then M has no singular
fibers. If F is the projective plane, then M has no singular fibers, one singular fiber of
arbitrary type, or two singular fibers of types (2, ßx), (2, ß2). If F is the 2-sphere then
M has zero, one, or two singular fibers of arbitrary types, three singular fibers of
types (2, ßx), (2, ß2), («3, ß3); (2, ßx), (3, ß2), (3, ß3); (2, ßx), (3, ß2), (4, ß3); (2, ßx),
(3, ß2), (6, ß3); (2, ßx), (4, ß2), (4, ß3); (3, ßx), (3, ß2), (3, ß3); or four singular fibers
oftypes(2,ßx),(2,ß2),(2,ß3),(2,ßA.

In particular, we wish to call attention to the Seifert fiber spaces M with Seifert
surface a 2-sphere with three singular fibers of types (2, ßx), (3, ß2), (6, ß3); (2, ßx),
(4, ß2), (4, ß3); or (3, ßx), (3, ß2), (3, ß3) with the additional restriction that
ßxa2a3 + axß2a3 + axa2ß3+baxa2a3^Q. These manifolds have infinite, solvable
fundamental groups. However, in [18] Waldhausen has shown that these manifolds
are not sufficiently large. These manifolds constitute the complete collection of
compact, nonsufficiently large, />2-irreducible 3-manifolds with infinite, solvable
fundamental groups known to the authors.

(7) Nilpotent groups. In [16] Thomas classifies those nilpotent groups which
occur as the fundamental group of a closed 3-manifold. Here we provide a some-
what simpler proof of the results of Thomas and extend them to the bounded case.

If M is a torus bundle over S1, then we have an exact sequence 1 ->Z©Z
-> -rrx(M) -*■ Z -> 1. The generator of the infinite cyclic quotient group induces an
automorphism 8M:Z@Z^>Z@Z. The automorphism 6M determines the
fundamental group of M up to isomorphism. Each torus bundle over S1 is a P2-
irreducible, sufficiently large 3-manifold. Hence by a theorem of W. Heil [4], if
A is any other torus bundle over S1, and if 8M = 8N, then M is homeomorphic
with A.

Theorem 7.1. Let M be a compact 3-manifold such that tt2(M) = 0. Then irx(M)
is an infinite, nilpotent group if and only if M is equivalent to a manifold from the
following list:

(i) a disk bundle over S1;
(ii) ozz / bundle over S1xS1;

(iii) a torus bundle A over S1 with 6N of the form (¿ \), Y an integer.
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Proof. Since n2(M) = 0, it follows that M is P2-irreducible. If M has nonempty
boundary, then since ^(M) is solvable we may apply Theorem 4.2. Eliminating
the nonnilpotent fundamental group of the Klein bottle from the list of Theorem
4.2, we have that M is equivalent to either a disk bundle over S1 or an / bundle
over the torus.

If M is closed, we could again refer to the work in §4 on solvable groups; how-
ever, an easier approach is available. Since M is aspherical, it follows from Lemma
8.4 of [1] that ttAM) is torsion free. Hence ir^M) is a finitely generated, torsion
free, nilpotent group. It follows that ^(M) is poly-infinite-cyclic. Thus there is a
map/of iti(M) onto the infinite cyclic group. Furthermore, since ttAM) is poly-
cyclic, it follows that each subgroup of ^(M) is finitely generated. In particular
the kernel of the map/is finitely generated. It follows then from a theorem of
Stallings [15] that M is homeomorphic with a closed 2-manifold bundle over S1.
Since ttAM) is nilpotent, M is a torus bundle over S1.

We refer to Lemma 2 of Thomas' paper [16] for a proof that 6„ is of the form
(if).

Theorem 7.2. Let M be a compact 3-manifold such that rr2(M) ^0. Then -n^M)
is an infinite, nilpotent group if and only ifrr^M) is either Z or Z © Z2.

Proof. If tt2(M) is not generated as a ttx(M) module by its projective plane
boundary components, then by Theorem 5.1, irx(M) is either Z,Z®Z2 or Z2 * Z2.
Since Z2 * Z2 is centerless, it is not nilpotent.

If ir2(M) is generated by the projective plane boundary components of M, then
by Theorem 5.1, tt±(M) is a split extension of a nontrivial group G by Z2. Further-
more, Z2 acts without fixed points on G. Suppose the extension is split by a homo-
morphism that maps the generator of Z2 onto an element t of ^(/Vf). Then each
element of ttAM) can be written in the form gte where g e G and e is either 0 or 1.
Since 7Ti(M) is nilpotent, there is a nontrivial element go'6 in the center of nAM).
Since Z2 acts without fixed points on G, £=¡¿0. For otherwise g0te does not commute
with 1. Hence g0te = g0t- Then t'1g0t = t-1(got) = (got)t-1=go- Since Z2 acts
without fixed points on G, it follows that g0= 1. But then g0te = t and t does not
commute with any nontrivial element of G. Hence -n-AM) is a centerless group.
This contradiction completes the proof of Theorem 7.2.

(8) Abelian groups. In [1] Epstein lists those finitely generated abelian groups
which can occur as the fundamental group of a (possibly noncompact) 3-manifold.
In this section we prove that if M is a 3-manifold with nonfinitely generated,
abelian fundamental group, then ^(M) is a subgroup of the additive group of
rationals. The authors wish to thank William Jaco for considerable help in proving
the theorems of this section.

An abelian group G is said to be of local rank one if each finitely generated sub-
group of G is cyclic. The primary algebraic tool that we shall require is the follow-
ing theorem which is proved in [6].
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Theorem 8.1. If G is a torsion free abelian group of local rank one, then G is a
subgroup of the additive group of rationals.

Lemma 8.2. If M is a 3-manifold with nonfinitely generated abelian group then
irx(M) is torsion free.

Proof. Suppose ttx(M) contains a nontrivial element .v of order k, and let H
denote the subgroup trx(M) generated by x. Then H is isomorphic with Zk. If k
is not two, then Theorem 8.2 of [1] allows us to write M as a connected sum
M=Q§R where rrx(R) is a nontrivial finite group. By van Kampen's theorem
Trx(M)XTTX(Q) * ttx(R). Then since irx(M) is abelian we have that irx(Q) = Ç> and
Trx(M) = trx(R). This of course is contrary to the assumption that ttx(M) is not
finitely generated.

Thus we have that each element of tx(M) is either of infinite order or has order
2. Let y denote a nontrivial element of -¡rx(M) other than the torsion element x
above, and let K denote the subgroup of irx(M) generated by the elements x and y.
If y were of finite order, then as noted above we would have y2 = 1 and so K would
be isomorphic with Z2 © Z2. But Theorem 9.1 of [1 ] assures us that Z2 © Z2 is not
a subgroup of the fundamental group of any 3-manifold. Thus y must be of infinite
order and so K is isomorphic with Z@Z2. Then by Theorem 9.5 of [1] Mean be
written as a connected sum M=Q§R with irx(R)xZ@Z2. Since rrx(M) is not a
free product, we have t71(jW)~Z©Z2. This is contrary to the assumption that
irx(M) is not finitely generated.

This completes the proof of Lemma 8.2.
We are now ready to prove the main theorem of this section.

Theorem 8.3. If M is a 3-manifold and ifvx(M) is a nonfinitely generated abelian
group then rrx(M) is a subgroup of the additive group of rationals.

Proof. In view of Theorem 8.1 and Lemma 8.2, we need only prove that rrx(M)
is of local rank one. Furthermore, it suffices to prove the theorem in the case that
M is orientable. For if M is nonorientable we consider the orientable double cover
M of M. Assuming the theorem known for orientable manifolds, we have the
exact sequence 1 -> nx(M) -» irx(M) -> Z2 —> 1 where irx(M) is torsion free and
irx(M) is of local rank one. It is then a simple exercise to show that rrx(M) is also
of local rank one.

Thus we need only establish that if M is an orientable 3-manifold with non-
finitely generated, abelian fundamental group then irx(M) is of local rank one.
The proof is by contradiction. Thus we assume that M is an orientable 3-manifold
with nonfinitely generated abelian fundamental group and ttx(M) is not of local
rank one. Then ttx(M) contains a subgroup H isomorphic with Z@Z. Let (A, P)
denote the covering space of M associated with the subgroup H of rrx(M) and let C
denote the group of covering transformations of (A, P).
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Lemma A. There exists an embedding f:S1xS1^N such that /* : -nAS1 x S1)
-*■ ttAN) is an isomorphism.

Proof. Let gx : S1 x S1 -> N be a map such that gu: rr^S1 x S1)^ "-i(A) is an
isomorphism, and let Kx denote a regular neighborhood of gAS1 xS1) in N. If the
boundary of Kx is compressible in N, then there is a disk D in Asuch that D n bd K±
= bd D and bd F is a nontrivial curve in bd K-,. If fln int Kx = 0, then we set
g2 = gi, and K2 = KX u ^¿(D, A). Otherwise we have D<=K1. We change g,. by a
small isotopy if necessary so that gx is a general position map with respect to the
disk D. Then gï^gAS1 x S1) n D) consists of a collection of mutually exclusive
simple closed curves on S1xS1. If a is a component of gï1(gAS1 xS1) n D)
then gi(a)c:D so that gx(a) is contractible in A. Since gu is an isomorphism, it
follows that a is contractible on S1xS1. Thus each simple closed curve a in
gî1igAS1xS1) n F) bounds a disk Da on S1xS1. Choose new base points if
necessary so that the base point of S1 x S1 does not lie on any disk Da for a a
component of gî1(gAS1 xS1) n D). gu remains an isomorphism. Now let a
denote a fixed component of gï^gAS1 x S1) n D). Define g2: S1 x S1 -> N as
follows. We set g2\cus1xs1-Da) = gi\cns1*s1-Da), and g2\Da is a contraction of g2(a)
in D. We then change g2 by a small homotopy so that g2(Da) lies on the proper
side of a regular neighborhood of D. Now gx=g2 outside a regular neighborhood
of Da, and each loop lin S1 xS1 is homotopic relative to the base point to a loop
/' in S1xS1 such that /' n Da = 0. It follows that g2.: n^S1 x S1) -^ttx(N) is an
isomorphism. Continuing in this fashion we see that it is possible to construct a
map gr: S1xS1 -> N such that gr<: -nAS1 x S1) ->irx(N) is an isomorphism,
gr(S'1xS,1)c:*i> and D r\ gT(S1xS1) = 0. Then we set K2 = cl(Kx-W(D, N)).

If bd K2 is compressible in A, we repeat the above process to construct K3.
Eventually we arrive at a map gs: S1 x S1 -*■ A and a compact manifold Kt^N
such that gs. : tt^S1 x S1) -*■ tti(N) is an isomorphism, gs(Sr x SA^K,, and bd Kt
is incompressible in A.

Define g's: S1 xS1 -> Kt by g's(x)=gs(x). We have the following commutative
diagram where /* is induced by inclusion.

/"Ol .,   Ol\          °s.    . fLr\TT1(SLY.b)   -*■    TT^K.)

ÖS. ^v
^\^      1 '

«iW

Now gs. and z* are injections and gs, is an isomorphism. Hence g's, and z* are also
isomorphisms. Thus Kt is a compact 3-manifold with ir1(Kt)=Z © Z. It then follows
from a theorem of Heil [4] that Kt is equivalent to an / bundle over S1 x S1. Since
A is orientable we have that in fact Kt is equivalent to S1 x S1 x /. Let /: S1 x S1
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-> Kt be an embedding such that/*: rr^S1 x S1) -*■ tt^/Q is an isomorphism. Then
fis the map required by Lemma A.

Let f(Sx x SA = F. Since /*: 777T) -> rrx(N) is an isomorphism F must separate A.

Lemma B. Let t be a covering transformation of(N,p) such that F n t(T) = 0.
T/it?« Fzjwi/ r(T) cobound a manifold Kz such that Kz is homeomorphic to Fx [0, 1 ] § R
where R is a possibly noncompact, simply connected 3-manifold.

Proof. Since F and t(F) both separate A, F and r(F) cobound a manifold Kz.
Since F and t(F) are incompressible in A, we have that 7'*: rrx(Kt) ^ ttx(N) is a
monomorphism. We have the following commutative diagram of maps induced
by inclusion.

777/7 —*■*-> "AW

j*

Since each map is a monomorphism and k* is an isomorphism, we have that /*
is also an isomorphism. Thus each loop in t(F) is freely homotopic in Kz to a loop
in F. Then proceeding closely along the lines of Lemma 5.1 of [17] we are able to
construct a pair of annuli A, B such that bd A=ax u a2, bd B = bx u b2 with the
following properties:

(1) A meets B transversely in a single arc k with endpoints kx, k2,
(2) kx=a, n bx, k2 = a2n b2,
(3) ax, bx is a pair of nontrivial simple closed curves in t(F) that meet in a single

transverse intersection point kx,
(4) a2, b2 is a pair of nontrivial simple closed curves in F that meet in a single

transverse intersection point k2.
Let X denote a regular neighborhood of F u t(F) u ^4 u B in A7 We note that

bd A' is a 2-sphere in Kz. Since t71(A'i) is not a nontrivial free product, we must
have that bd X bounds a simply connected manifold R* in Kz. Lemma B follows.

Lemma C. C, the group of covering transformations of(N, p), contains an element
of infinite order.

Proof. Since C is an infinite group, there is a covering transformation t in C
such that F n T(F) = 0. Let F separate A into components Nx and A2. With no
loss of generality we assume that t(F)^Nx. We have either t(A!) = c1 (Nx — Kz) or
T(N2) = cl(Nx-Kz). If r(Nx) = cl(Nx-Kz), then • • ■ ̂ t2(Nx)^t(Nx)^Nx. Hence
t would be of infinite order. Thus we assume that t(Nx) = N2 u Kz, and t(A2)
= cl (Nx — Kz). By Lemma B we can write Kz = Kff R where AT is compact and R is
simply connected. Since for each ae C, a(F) is incompressible in A, it is not
possible that a(F)<^R for any o e C. Thus if o e C, then o-(F) n Kz^0 if and only
if o(F) n K+0. Since K is compact we have that there are only finitely many
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covering transformations a such that a(F) n K%^0. Thus we are able to find some
XeC such that X(F) r\Kz = 0.\f X(F)<=N2 we put Xx = tX; otherwise, Xx = A. Thus
we have Xxe C such that XX(F)^NX-KZ. We have either A1(A1) = cl (Aj-Ff^) or
A1(A2) = cl(A1-FAl). If Xx(Nx) = cl(Nx-K,), then ■ ■ ■ ̂X2(Nx)çXx(Nx)çNx.
Hence Xx is of infinite order. We are left with the case that A1(A2) = cl (A-l —FAl)
gcl(A1-FI) = r(A2). Then • • • S^'WMteO^AiXJVaSA2. Hence r"^
is of infinite order. This completes the proof of Lemma C.

The supposition that ttx(M) is not of local rank one has now led us to the
following situation. H is a subgroup of -rrx(M), and H is isomorphic with Z@ Z.
Furthermore, since -rrx(M)/H is isomorphic with the group of covering transforma-
tions of (A, p), we have that irx(M)/H contains an element of infinite order. It
follows that ttx(M) contains a subgroup K isomorphic with Z@Z@Z. We note
that Z©Z@Z is the fundamental group of the closed, aspherical, 3-manifold
S1 x S1 x S1. Then Theorem 8.8 of [1] allows us to write M as a connected sum,
M— Q # R where K is of finite index in ttx(R). By van Kampen's theorem, nx(M)
~ttx(Q) * ttx(R). But irx(M) is not a nontrivial free product. It follows that
Trx(M)XTrx(R) contrary to the assumption that nx(M) is not finitely generated.
Thus we have in fact that rrx(M) is a torsion free, abelian group of local rank one.
It follows that ttx(M) is a subgroup of the additive group of rationals.

We do not know if a nonfinitely generated abelian group can occur as a subgroup
of the fundamental group of a compact 3-manifold. However each subgroup of
the additive group of rationals is the fundamental group of some 3-manifold.
In order to show this, it clearly suffices to construct a 3-manifold with fundamental
group the additive group of rationals. The example that we shall provide seems to
be well known, but we include it for the sake of completeness. The example is a
noncompact 3-manifold M which is the complement of a solenoid in S3. We
construct M as follows.

Let kx be an unknotted simple closed curve in S3, and let Tí denote a regular
neighborhood of kx. Let Ff = cl (S3 — Tl). Let xx denote the generator of ttx(TI)
and yx denote the generator of -nATI). Beginning with Tl and Ff we construct two
sequences of solid tori Ff cFf <=•••, Tl=>Ti=> ■ ■ ■ where Tl+X and T2+x are
constructed as follows. Let kn + x be a simple closed curve in the interior of Tl
such that kn+1 is unknotted in S3, and kn+x is homotopic in Tl to xl + 1 where xn
is the generator of irx(Tl). Let Tl+X denote a regular neighborhood of kn+x in Tl,
and put F2+1 = cl (S3 — Tl+X). Let xn+x be the generator of ttx(TI+x), and let
yn+x be the generator of 7r!(F2+1).

Set M=iJn = i Tl. Using van Kampen's theorem we obtain a presentation for
tti(M) as a direct limit of infinite cyclic groups. rrx(M) is presented by

(yi,y2,y3,--- Iji = yl,y2 = jei,• • ■)•

Then ttx(M) is isomorphic with the additive group of rationals under a map which
takes yn onto 1/«!.
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