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ABSTRACT: Solvated interaction energy (SIE) is an end-point
physics-based scoring function for predicting binding affinities
from force-field nonbonded interaction terms, continuum sol-
vation, and configurational entropy linear compensation. We
tested the SIE function in the Community Structure—Activity
Resource (CSAR) scoring challenge consisting of high-resolu-
tion cocrystal structures for 343 protein—ligand complexes with
high-quality binding affinity data and high diversity with respect
to protein targets. Particular emphasis was placed on the
sensitivity of SIE predictions to the assignment of protonation
and tautomeric states in the complex and the treatment of metal
ions near the protein—ligand interface. These were manually

SIE (kcal/mol)

2

_2 .
b
o o

* NTM HN%NH

-10 -

14 SIE: -2.51 = —-8.44 kcal/mol]

EXP: =7.91 kcal/mol
18 - - -
18 14 0 B 2 2
EXP (kcal/mol)

curated from an originally distributed CSAR-HiQ data set version, leading to the currently distributed CSAR-NRC-HiQ version. We
found that this manual curation was a critical step for accurately testing the performance of the SIE function. The standard SIE
parametrization, previously calibrated on an independent data set, predicted absolute binding affinities with a mean-unsigned-error
(MUE) of 2.41 kcal/mol for the CSAR-HiQ version, which improved to 1.98 kcal/mol for the upgraded CSAR-NRC-HiQ version.
Half—half retraining-testing of SIE parameters on two predefined subsets of CSAR-NRC-HiQ led to only marginal further
improvements to an MUE of 1.83 kcal/mol. Hence, we do not recommend altering the current default parameters of SIE at this time.
For a sample of SIE outliers, additional calculations by molecular dynamics-based SIE averaging with or without incorporation of
ligand strain, by MM-PB(GB)/SA methods with or without entropic estimates, or even by the linear interaction energy (LIE)
formalism with an explicit solvent model, did not further improve predictions.

B INTRODUCTION

Accurate prediction of protein—ligand binding affinities is
critical for successful structure-based drug design and for under-
standing the thermodynamic aspects of molecular recognition in
biological systems. A large and ever-increasing number of bind-
ing affinity prediction methods emerged over the past few years
in order to address the “scoring problem”.'”* Current scoring
functions can be classified into three main categories: empirical,
knowledge-based, and force field—based.*

The solvated interaction energy (SIE) method belongs to the
group of end-point force field—based scoring functions that
represent a reasonable compromise between time, computa-
tional resources, and accuracy. SIE approximates the protein—
ligand binding free energy in aqueous solution by an interaction
energy contribution and a desolvation free energy contribution,
each of them further made up of an electrostatic component
and a nonpolar component.”® This approximation to binding
free energy in solution resembles the formalism used in other
physics-based binding free energy end-point calculation meth-
ods, including MM-PB(GB)/SA and linear interaction energy
(LIE).” !

Estimation of binding affinities within this formalism is
dependent on several physical properties of the system, such as
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the solute internal dielectric constant, atomic Born radii, atomic
partial charges, and nonpolar surface tension coeflicient. There is
considerable uncertainty about the exact values for some of these
physical properties in various systems. For example, solute
dielectric values adopted by practitioners for electrostatic calcu-
lations in protein—ligand systems range between 1 and 20, which
leads to dramatically varied results. While the huge effect of
different values for solute dielectric can be effectively offset by
appropriate scaling of atomic Born radii for electrostatic solva-
tion calculations, such a buffering effect is lost for electrostatic
binding calculations. This suggested the calibration of optimal
values for physical parameters directly against binding data.'”
Hence, the physical parameter space of the SIE function was
previously explored on a protein—ligand data set consisting of 99
complexes with known binding affinities and cocrystal structures
solved at high-resolution.” Because the objective was to calibrate
a generic SIE function applicable to a broad range of protein—
ligand systems, the assembled SIE training data set included

Special Issue: CSAR 2010 Scoring Exercise

Received:  January 18, 2011
Published: June 29, 2011

dx.doi.org/10.1021/ci2000242 | J. Chem. Inf. Model. 2011, 51, 2066-2081



Journal of Chemical Information and Modeling

11 diverse protein targets each with a short congeneric series of
ligands, with binding affinities curated from the literature spanning
14 kecal/mol. A training performance characterized by 1.34 kcal/mol
mean-unsigned-error (MUE) and 1.76 kcal/mol root-mean-square-
error (RMSE), with Pearson squared correlation coefficient (R*) of
0.65 and Spearman-rho rank correlation coefficient (ps) of 0.79 can
be achieved with a SIE functional form that retains the physical
meaning and interpretability of the optimal parameters (Figure
S1A). Particularly, optimal solute dielectric falls within the range of
2 to 4 in agreement with refractive index measurements of protein
powders, and there is a scaling down of the potential energy plus
solvation by about 90% likely reflecting the compensation exerted by
the configurational entropy loss arising form narrowing of the energy
wells in the complex versus the free state.'>**

There are two main application modes of the SIE function. The
first application mode, employed during SIE calibration, is based on
an energy-minimized single-conformation structure of the complex —
for example a cocrystal structure or a ligand computationally docked
to the protein.” The second application mode, called sietraj, is based
on a molecular dynamics (MD) trajectory and is similar in spirit to the
single-trajectory MM-PB(GB) /SA approach.®” In both modes, rigid
infinite separation of the complex into protein and ligand to generate
the free state is applied, with replacement of the explicit solvent by a
continuum model. Practical notes for carrying out SIE calculations
have been written."®

Several tests and applications of the calibrated SIE function
support its usefulness. First, single-structure based SIE calcula-
tions were tested for virtual screening (VS) enrichment against
estrogen receptor (ER) and thymidine kinase (TK) showing the
ability of SIE to recover true hits in a collection of decoys.” While
the ER set is considered an easier test, the TK set is more chal-
lenging partly due to weaker binding affinities for the true binders.
The SIE function was able to recover all true positives within the
top 10% of the ranked data set and half of them within the top 1%.
The SIE was clearly superior to simpler functions, e.g., buried
surface area that describes only nonpolar effects and ranked all
TK true binders near the bottom of the list.

The best way to evaluate computational methods is via blind
tests, so SIE was a participating method in the Statistical Assessment
of the Modeling of Proteins and Ligands (SAMPL), an initiative
organized by OpenEye, Inc. since 2007, which provides blind
assessments for protein and ligand modeling methods including
solvation, tautomerism, docking, virtual screening, and affinity
calculations.'®™"® We tested prospectively the calibrated SIE func-
tion in the protein—ligand binding affinity section of the SAMPL1
challenge in 2008," specifically on the Jun kinase 3 (JNK3) data set,
a target class not present in the SIE calibration data set. This data set
consisted of 49 diverse JNK3 inhibitors from 12 classes, each with its
own cocrystal structure with the kinase. The withheld binding
affinities span 4.9 kcal/mol and do not correlate with the molecular
weights (R*=0.02). Also mingled in the data set were 10 models of
known “inactive” ligands (in fact weakly active, with K; or ICso
higher than 10 #M), which were docked in duplicated enzyme
structures. Structural preparation of complexes followed the same
curation as for SIE calibration, including the standard constrained
minimization protocol restricted to the ligand and binding site
region.”'® The SIE function achieved reasonable prospective pre-
dictions for the JNK3 data set of 49 known actives, with boot-
strapped R” of 0.36, and Kendall-tau rank correlation coefficient
(tx) of 0.42, with no other submission performing better (methods
undisclosed). It was also clearly apparent that SIE can estimate
absolute binding affinities, with predicted values spanning the same

range as the actual ones (Figure S1B). The absolute errors for
SIE predictions on the subset of actives were MUE of 0.92 kcal/mol
and RMSE of 1.09 kcal/mol. These are slightly better than the null
model (the mean of experimental data taken as prediction for all
compounds). Encouragingly, the 10 measured “inactives” were
separated reasonably well from the actives, leading to an increase
in the bootstrapped R” and 7 to 0.54 and 0.55, respectively, over all
59 ligands.

The SIE function has also been applied retrospectively as well as
prospectively in several other independent laboratories that have
reported SIE predictions versus actual binding affinities.”***
Collectively, these data indicate an R” of 0.59 between the predicted
and actual absolute binding affinities (Figure S1C). As in the case of
the SAMPLI blind test, these applications reiterate that the SIE
approach returns predicted protein—ligand binding affinities well
within the range of experimental measurements. The degree of
scatter is comparable to that observed in the original calibration,
suggesting that the SIE parameters were not overfitted to the
training set.

In this report, we extend the testing the SIE function to the
Community-Structure—Activity Resource (CSAR) scoring chal-
lenge featuring a curated protein—ligand data set that is highly
diverse with respect to the protein targets. The CSAR-2010
binding affinity scoring benchmark data set consists of high-
resolution cocrystal structures for 343 protein—ligand complexes
with high-quality binding affinity data. While the data set resem-
bles the SIE calibration data set of 99 protein—ligand complexes in
terms of target diversity and curation quality, there is no single
entry in the CSAR-2010 data set that was present in the SIE cali-
bration data set. Some protein targets like trypsin, HIV protease,
and PTP-1B are however represented in both data sets. Also, this
CSAR data set includes metal-ion—mediated protein—ligand
interactions, which were absent in the SIE calibration data set,
thus allowing the testing of SIE predictions for this important type
of biological interactions.

Particular emphasis will be given to the sensitivity of SIE
predictions to the assignment of protonation and tautomeric
states and to the treatment of metal ions near the protein—ligand
interface. To this end, we directed some of our efforts toward
curating the CSAR-2010 data set in terms of protonation and
tautomeric states in the complex and contributed the CSAR-
NRC-HiQ version that is currently used by the participating
community. Testing was carried out primarily for the })ublicly
distributed original calibration of the SIE function.>®"® Cross-
validated retraining of physical parameters for the SIE function
on the CSAR data set was also be attempted and shown here to
lead to a marginal improvement in performance. This SIE
benchmark is based on single-conformation representations of
the complexes with prior constrained energy minimization in the
active site region, which is also available in the distributed CSAR-
NRC-HiQ version. In order to study the effect of conformational
averaging and ligand strain, we also applied the MD-based sietraj
mode on a sample of overestimated and underestimated SIE
outliers. The generated MD trajectories were also used to
compare the SIE predictions with those obtained with similar
end-point approaches, including MM-PB(GB)/SA without and
with entropy contributions, and LIE.

B MATERIALS AND METHODS

Data Set Preparation. Structural preparation for SIE calcula-
tions resulted in two versions of the CSAR data set. A first version
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is based on the first official release called CSAR-HiQ. A second
version starts with the prepared CSAR-HiQ version and furthers
the curation in terms of protonation, tautomerism, and proton
orientation, leading to the current official release CSAR-NRC-
HiQ. Both versions were refined by constrained minimization in
the active site region, which is required for SIE calculations.

Preparation of the CSAR-HiQ was carried out in the same way
as the preparation of the data set of 99 protein—ligand complexes
used for the calibration of the SIE function.’ This was done via an
automated protocol with a combination of Tool Command
Language (Tcl) and SYBYL (Tripos, Inc, St. Louis, MO)
Programming Language (SPL) scripts and involved minimal
visual structural examination followed by manual intervention.
General curation included disulfide bond formation, retaining all
metal ions, retaining unnatural and modified residues and
cofactor molecules, retaining the full oligomeric state as provided
(except the very large 2-257 entry that was cut down to a dimer),
and chain termini reloaded for proper atom naming and char-
ging. All water molecules were removed. Glycosylation sugar
residues far from the ligands in all but one case were removed,
and the corresponding Asn residues were capped with H atoms,
except in entry 1-163 where one sugar residue adjacent to the
ligand was retained. Minor structural corrections were made to
several unnatural and modified residues upon visual inspection
(Table S1), also improving consistency throughout the data set.
Force field charges and atom types were assigned for both energy
minimization and SIE calculations. Protein molecules were
assigned AMBER })arm94 atomic partial charges and atom types
using SYBYL.* ' Ligand and cofactor molecules were assigned
AM1-BCC atomic partial charges using MOLCHARGE (Openeye,
Inc,, Santa Fe, NM)32’33 and GAFF atom types using ANTE-
CHAMBER and PARMCHK in AMBER.**** Unusual and
modified residues were assigned AM1-BCC atomic partial
charges for blocked residues and renormalized to integer net
charge for residue units and assigned AMBER parm94 atom-
types by similarity to the natural amino-acid residues. Metal
ions were given their full net charges and AMBER-compatible
parameters (Table S2).

Preparation of the upgraded CSAR-NRC-HiQ _version was
based on visual inspection of all protein—ligand complexes from
the prepared CSAR-HiQ version. Changes were made at the
protein—ligand interface in terms of ligand and/or protein
protonation/tautomeric states, followed by recalculation of
partial charges and reassignment of force-field atom types.
Suitable protonation/tautomeric states of the ligand and protein
residues were mainly inferred from the hydrogen-bonding pat-
tern in the ligand-bound active site. In the case of the ligands, the
feasibility of the alternate protonation was verified with PKA-
TYPER (Openeye, Inc., Santa Fe, NM). These changes assumed
no change in protonation state between the free and bound
states. No acidity constants or their shifts from the expected
values (pK,, ApK,), or protonation equilibria, which depend on
the pH and the pK,’s of titratable groups, were calculated for any
of the free and bound states. Hence, no energetic correction
incurred from protonation or tautomerism was taken into
account. The source and/or related literature were generally
consulted when available, and in several cases the assignment of
alternate protonation and tautomeric states was suggested by
these reports. A listing of all protonation and tautomeric changes
between the CSAR-HiQ and CSAR-NRC-HiQ versions is
provided in Tables S3 and S4. Specific examples and statistics
are detailed in the Results section. The CSAR-NRC-HiQ_data

set also included manual reorientation followed by energy mini-
mization for specific polar H atoms that were found not optimized
for H-bonding interactions upon the energy minimization started
from their original orientation (as in CSAR-HiQ).

Single-conformation-based SIE calculations based on crystal
structures generally require energy minimization in order to
reduce the noise arising mainly from the intermolecular van der
Waals interaction energy. Several minimization protocols have
been previously tested, with restrained minimization of ligand
heavy atoms together with unrestrained minimization of hydro-
gen atoms within a 4 A per-residue sphere providing somewhat
superior results than full minimization of the complex or mini-
mization of the hydrogen atoms only.”> A similar protocol was
used in the application of SIE to the JNK-3 data set from the
SAMPLI blind challange."” Our current protocol, applied to
CSAR-HiQ and CSAR-NRC-HiQ, includes energy minimization
of the ligand and protein residues within 4 A from the ligand, and
applying harmonic restraints with force constants of 3 kcal/(mol
A?) and 20 kcal/(mol A?) for the ligand and protein, respectively,
heavy atoms in this region. The assigned AMBER/GAFF force-
field parameters and two-stage-RESP/AMI1-BCC partial charges
described earlier, together with a distance dependent dielectric
constant (4r) to crudely mimic solvent screening, were used for
energy minimization down to a gradient of 0.01 kcal/(mol A).

SIE Calculations. SIE approximates the protein—ligand bind-
ing free energy in aqueous solution, AGy;,g, by an interaction
energy contribution, Ej,.,, and a desolvation free energy con-
tribution, AG gecpe-®"> Each of the interaction and desolvation
contributions is further made up of an electrostatic component
and a nonpolar component

The electrostatic SIE component includes the Coulombic inter-
molecular interaction energy, Ef;]‘t’:rl, and the electrostatic deso-
lvation free energy, AGh..o1, due to the change in reaction field
energy upon binding. The nonpolar SIE component includes the
van der Waals intermolecular interaction energy, Eﬁg, and the
nonpolar desolvation free energy, AGgbr, that results from
changes in the solute—solvent van der Waals interactions and
changes in the work of maintaining the solute-size cavity in
water. In keeping with the philosophy of the AMBER force
field,***>*¢ hydrogen-bond formation is not considered ex-
plicitly but rather treated as an electrostatic effect. Internal
strain that may be incurred upon binding is typically not taken
into account in the common application modes of SIE, with
the free state of the system obtained from the infinite rigid
separation of the protein and ligand conformations from their
complexed state. Entropy is not explicitly included; however,
calibration of the SIE function on binding affinities leads to an
empirical overall scaling factor of the solvated potential
energy, whose value corresponds to, and hence can be inter-
preted as, the effect of configurational entropy compensation
on binding free energy.n’14

In order to calculate the intermolecular Coulomb and van der
Waals interaction energies in the bound state, Eff,?;l and E;ﬂ?ﬁ,
we use the AMBER force field,?>*° suitable for simulation of
biomacromolecules, and its extension to small molecules,
GAFF.* Partial atomic charges for protein atoms from the
AMBER force field are calculated by the two-stage RESP fittin
method to the electrostatic potential at ab initio level,>*?
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whereas ligands are assigned AM1-BCC partial charges,®>*
which are a high-quality surrogate of RESP charges but faster
to calculate and hence practical for virtual screening applications
of SIE. The same force-field nonbonded parameters and partial
charges were also used for structural refinement by energy
minimization and MD simulations.

For electrostatic desolvation, the change in the reaction field
energy between the bound and free states, AGh. o, is calculated
with a high-quality continuum model based on a boundary
element solution to the Poisson equation using the BRI BEM
program.®>”** The molecular surface required for boundary
element electrostatic calculations is generated with a marching
tetrahedra tessellation algorithm,3 #0 and a variable-radius
solvent probe that adjusts with respect to the polarity of each
particular atom being surfaced.* Atomic Born radii for surface
generation are based on AMBER van der Waals radii and,
together with the dielectric constant, are physical parameters
used to calibrate the SIE function. The same partial charges
used for Coulombic calculations are also used for reaction field
energy calculations. The generated molecular surface is also
used to calculate the change in molecular surface area upon
binding, AMSA. This is then used to calculate the nonpolar
desolvation term, AGyb,,,, based on a linear relationship
between experimental hydration free energies of alkanes and
their MSAs.

The following physical parameter dependence of the SIE
function, at fixed molecular mechanics force-field nonbonded
parameters (van der Waals and partial charges), is used
SIE(p, Din, @, 7, C) = a+[ESY(Dy,) 4+ AGY_ (0, Di) + EW

inter desol inter
+7(0, Din) - AMSA(p)] + C (2)

Here, p is a factor applied to derive atomic Born radii by linear
scaling of AMBER van der Waals radii (R*). Dy, is the solute
interior dielectric constant. Both electrostatic terms, Ef,‘t’;l and
AG ot depend strongly on D;,, and AGh..o1v also depends on
Born radii (hence on p). y is the molecular surface tension
coefficient describing the nonpolar component of solvation free
energy, AGgb,n, upon multiplication by the change in the
molecular surface area of the solute upon binding, AMSA. The
surface tension y depends weakly on the (p,D;,) parameters, as it
is derived from the experimental hydration free energy of alkanes
after subtracting their small electrostatic solvation component
(calculated), and fitting the pseudoexperimental nonpolar resi-
dual to their MSAs that depend on atomic radii. a is a global
scaling factor of the total raw solvated interaction energy related
to the scaling of the binding free energy due to configurational
entropy effects.'>'*

In this work we used the default values of p = 1.1, D;, = 2.25, y =
12.894 cal/(mol A), ot = 0.104758, and C = —2.89 kcal/mol,
which were obtained by calibrating against the SIE pro-
tein—ligand training data set of 99 complexes refined by re-
strained energy minimization.’> This currently distributed
parameter set will be referred to as the “standard” SIE parame-
trization for the rest of the paper. We have also performed a
cross-validated calibration of SIE on the CSAR data set, retrain-
ing the parameters on each of the two predefined halves of the
data set and testing on the alternated halves. The resulting
parameters sets will be referred to as the “refitted” SIE parame-
trization in the paper.

MD Simulations. Thirteen complexes from CSAR-NRC-
HiQ having underestimated or overestimated affinities by

single-conformation based SIE calculations were selected for
MD simulations in explicit water using AMBER 10,°%*? in
order to enable sietraj, ligand strain, MM-PB(GB)/SA, and
LIE calculations. Each structure was solvated in a truncated
octahedron TIP3P water box extending 12 A around solute,*?
and electroneutrality was achieved by adding Na* or Cl~
counterions. Classical MD simulations were carried out under
the AMBER force field with the FF99SB parameters for the
proteins,44’45 and GAFF parameters and AM1-BCC partial
charges for the ligands.**>>*> Appropriate force field atom
types for the ligands were assigned with ANTECHAMBER.>*
Thus, the force field atom-typing and atomic partial charges
are identical to those used in the single-conformation based
SIE calculations for these complexes. Applying harmonic re-
straints with force constants of 20 kcal/(mol A®) to all solute
atoms, each system was energy-minimized first, followed
by heating from 100 to 300 K over 25 ps in the canonical
ensemble (constant number of particles, volume, and tem-
perature, NVT) and subsequently equilibrating to adjust
the solvent density under 1 atm pressure over 25 ps in the
isothermal—isobaric ensemble (constant number of particles,
pressure, and temperature, NPT) simulation. The harmonic
restraints were then gradually reduced to 0 with four rounds of
25-ps simulations. A 3-ns production NPT run was obtained
for each complex, with snapshots collected every 1 ps, using a
2-fs time step and 9-A nonbonded cutoff. Production runs
were extended up to 6 ns for the overestimated complexes.
Production runs of 2 ns were also obtained for the free
uncomplexed ligands from separate MD simulations. The
Particle Mesh Ewald method was used to treat long-range
electrostatic interactions,46 and bond lengths involving
bonds to hydrogen atoms were constrained by SHAKE."
Standard analyses of MD trajectories were carried out with
PTRAJ in AMBER 10, which indicated that the MD simula-
tions attained structural convergence.

Sietraj and Ligand Strain Calculations. Average SIE values
were calculated with the sietraj program, which carries out
SIE calculations for selected conformations of the complex
extracted from an MD trajectory.”'> Averages were taken
over 50 uniformly spaced snapshots from the last ns of each
simulation.

Using separate trajectories for the complex and the free ligand,
we also calculated the average solvated conformational energy
(SCE), which includes the internal strain energy of the ligand,
Eﬁgff R as well as the change in electrostatic and nonpolar
solvation of the ligand between its free-state ensemble and the
bound-state ensemble

SCEligand (p! Din; Q, V) = A<a. [Eﬁgl\fr?cfl{ (Din) + Glli{gand(pl Din)

+ V(p) Din) 'MSAligand(p)D (3)

where @, ¥, p, and Dy, physical parameters correspond to those in
eq 2 and take the values from the original SIE parametrization.
The difference A is calculated between the average SCE values
calculated on the ligand trajectory extracted from complex
trajectory, and on the free ligand trajectory. The average ligand
strain contribution, SCEjz,,4, can be optionally added to the
average SIE contribution from the MD simulation (i.e., to the
sietraj). The same snapshots as for the sietraj calculations
were used.

MM-PB(GB)/SA and Entropy Calculations. Estimates of
binding affinity using the MM-PB(GB)/SA methods,”® were
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calculated in AMBER 10 from a single trajectory, that of the
complex, which cancels all internal energy term and reduces to
the following expression

AGying ~ ((AE™Y + AEC 4+ AGH

solv

+AG™ — TAS)) (4)

solv

where the differences A are taken between the bound state and
the free state for a given snapshot in the trajectory, and then the
average is taken over a number of snaphots. The same snapshots
as for the sietraj calculations were used. In the single-trajectory
approach, the free state is obtained from rigid separation of the
complex trajectory into a protein trajectory and a ligand trajec-
tory, with the explicit solvent and counterions being replaced by a
continuum dielectric model. This mirrors directly the approach
taken for sietraj calculations. In addition to the molecular
mechanics force-field terms for van der Waals and Coulomb
electrostatic interactions, """ and E“°"), respectively, the elec-
trostatic component of solvation, Gl is obtained by solving the
GB equation*® or by calculating reaction field energies using the
finite-difference method to solve the Poisson—Boltzmann
equation.” Dielectric constants for solute and solvent are set
to 1 and 80, respectively. The nonpolar solvation contribution,
Gh,, is estimated as y -+ SASA,*° with the solvent-accessible
surface area (SASA) determined using a water probe radius of
1.4 A, and §iven a surface tension coefficient y of 0.0072
kcal/(mol A*)

In eq 4, T and S are the temperature and the total solute
entropy, which consists of translation, rotation, and vibration
entropies, which were also calculated in AMBER 10. Translation
and rotation solute entropies are calculated analytically for each
snapshot using the Sackur-Tetrode equation,” and the vibra-
tional entropy contributions are estimated by classical statistical
thermodynamics using normal-mode analysis.>’ To obtain the
normal modes, we carried out minimization of each snapshot in
gas phase using the conjugate gradient method with a distance-
dependent dielectric constant of 4r, until the rms of the elements
of the gradient vector was less than 10~ * keal/(mol A). Due to
the high computational demand in the minimization steps
required for normal-mode analysis, average vibration entropies
were based on 6 snapshots over the last ns of each simulation.

LIE Calculations. Based on the separate MD trajectories for
the complex and the free ligand, we applied the linear interaction
energy (LIE) approximation to binding free energy,""*>** which
is based on ligand interactions with its environment in the bound
and free states

AGping ~ 0 AE™™) + B-AE) + AGE Va0 (5)

where the differences A are calculated between the average
values in the solvated complex minus the average value in the
solvated free ligand. The scaling coefficients ot = 0.18 and f =
0.43 for the change in the average van der Waals and Coulomb
electrostatic interactions energies of the ligand with its environ-
ment, A(E*™) and A(ES""), respectively, are taken from the
previous calibration of the LIE method.""** Solvation effects are
described with the explicit model used in the MD simulation
(TIP3P water), hence these terms include ligand interaction
energies with explicit water molecules, which are calculated up to
12 A around the ligand. An average continuum correction to
electrostatic solvation beyond the sphere of explicit water to
infinity, (G )12 A-cor is also applied as described elsewhere.*®
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Figure 1. Scatter plot between experimental binding affinities and SIE
values calculated with the standard parametrization on the CSAR-HiQ_
preparation.

The same snapshots as for the sietraj and MM-PB(GB)-SA
calculations were used for LIE calculations.

B RESULTS

SIE Predictions on the Automatically Prepared CSAR-HiQ
Version. Predictions using the standard SIE parametrization>®"*
are plotted versus the experimental values in Figure 1, with the
statistical performance assessed in Table 1. First, it is apparent
that the SIE-predicted binding affinities span the same range as
the actual ones. However, there is significant scatter in Figure 1,
which is mirrored by MUE and RMSE values which are similar to
the null model (Table 1). In addition, we noted that the nonpolar
terms alone, the intermolecular van der Waals interaction energy,
E‘{,ive\;, or the buried molecular surface are upon complexation,
AMSA, while not being able to account quantitatively for
absolute binding affinities, do provide better correlations with
the actual binding affinities than the full SIE function. These
results obtained on the CSAR-HiQ version indicate that the
electrostatic terms, including direct interactions and desolvation,
introduce significant noise into the SIE function, being primarily
responsible for the standard SIE performance not improved from
the null.

Upon half—half cross-validated refitting of physical param-
eters of the SIE function on CSAR-HiQ, the performance
improved considerably, with MUE and RMSE values lower than
the null model (Table 1). However, in correlative terms the
performance of the whole refit SIE function was practically
identical to that of the Eﬁ\g term alone, suggesting that the refit
effectively excluded the electrostatic terms and retained only the
nonpolar signal. Examination of the new sets of optimal param-
eters derived on CSAR-HiQ (Table SS) showed that the most
significant change in optimal parameters relative to the standard
SIE parametrization was the increase in optimal D;, from 2.25 to
7, in fact the highest value scanned in this study. At this or higher
D, both electrostatic terms E<o" and AGh..;, have very small
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Table 1. Statistical Performance of the SIE Function on the CSAR Data Set

CSAR-HiQ CSAR-NRC-HiQ
statistical index null model’ AMSA model standard SIE model refit and test SIE model standard SIE model refit and test SIE model
MUE* 2423 2.408 1.894 1.985 1.835
RMSE? 3.037 3.104 2.408 2.487 2.310
RmSE* 2.027 2.004 1.612 1.767 1.590
psd 0.606 0.473 0.631 0.617 0.659
('S 0.428 0.324 0.444 0.437 0.471
RY 0.357 0.188 0.382 0.375 0.425
R0 —0.033 0380 0354 0.425
=0 0.963 1.035 0.948 1.021

“ Mean-unsigned-error, in kcal/mol. b Root-mean-square-error, in kcal/mol. “ Root-median-square-error (same as median—unsigned—error) , in kcal/mol.
4 Spearman-rho rank correlation coefficient. ¢ Kendall-tau rank correlation coefficient. / Pearson squared correlation coefficient. ¢ Pearson squared
correlation coefficient with the intercept, b, set to zero, for the correlation AG = a- SIE + b. h Slope, a, for the correlation AGey,= a-SIE + b, when b = 0.
"Mean experimental value in the CSAR data set as prediction of binding affinities.’ Similar values are obtained on the CSAR-HiQ and CSAR-NRC-HiQ_

versions.

nominal contributions to the SIE function, confirming the
exclusion of electrostatic terms in the refitted SIE on CSAR-HiQ.

These results prompted us to have a closer look at the two
types of major outliers that can be identified by standard SIE on
the CSAR-HiQ data set. For many underestimated outliers, close
visual examination of the protein—ligand interface revealed
deficiencies in the assignment of protonation and/or tautomeric
states of the ligand and/or protein. The other class represent-
ing largely overestimated outliers included negatively charged
ligands (typically with phosphate groups) in contact with metal
ions. These distinct characteristics of both underestimated and
overestimated outliers relate directly to the electrostatic compo-
nent of binding. Hence, the outlier analysis revealed deficiencies
in the CSAR-HiQ data set and provided the hypothesis that
further curation of the data set would improve the electrostatic
signal with the SIE function.

Sensitivity of SIE Predictions to Protonation. In order to
curate protonation and tautomeric states, we assessed the
protein—ligand interfaces of all 343 complexes in the CSAR-
HiQ data set, not only of the SIE outliers. As described in the
Materials and Methods section, assignment of protonation and
tautomeric states of the ligands and protein binding sites was
done mainly by assessing the feasibility for hydrogen-bonding
interactions and the ability of the ligand to exhibit alternate states,
together with consulting the relevant published literature.

Although one characteristic of the CSAR data set is the
diversity of proteins, there are several series of relatively con-
generic ligands binding to the same protein or to a group of
closely related proteins. For three such series, we could identify
“generic” protonation changes based on literature data. These
series includes 9 sulfonamide inhibitors of carbonic anhydrase
(CA) homologues, 28 inhibitors of HIV protease (HIVP) and its
aspartic protease (AP) homologues, and 9 inhibitors of protein
tyrosine phosphatase (PTP). It is well accepted that the sulfon-
amide moiety of CA inhibitors interacts with the Zn*" ion in the
CA active site in deprotonated form.***” Hence, the sulfonamide
group was deprotonated in all these ligands bound to CA
homologues. It is also known that in the HIVP dimer, one of
the two active site Asp residues is protonated, except when the
inhibitors bind to the active site directly with a positively charged
moiety.*® % Hence, in 26 of the 28 complexes of HIVP and AP,
one of the two Asp25 residues was protonated. It is known that

the active site Cys residue of a PTP possesses a nucleophilic
thiolate group stabilized by positive charges from adjacent
residues.””®> Hence, the Cys215 residue of PTP-1B was depro-
tonated in all its complexes with inhibitors. These generic
protonation changes to the CSAR-HiQ version generally im-
proved SIE predictions of absolute binding affinities, with a
typical example from each series shown in Figure 2.

Required changes in the protonation and/or tautomeric state
were identified for a large number of ligands in the CSAR-HiQ
preparation version, which are documented in Table S3, with a
sample detailed in Figures 3A and S2A. In entry 1-99 for example,
based on distance measurements in the complex, it is clear that a
positively charged amidinium-like moiety bearing protons on
both N atoms is required on the ligand molecule, which is also a
feasible protonation state at neutral pH. Using the protonated
amidinium form dramatically improved the underestimated SIE
prediction relative to the neutral form, in which two partially
negatively charged atoms, an N atom of the ligand and a carbonyl
O atom, of the protein are facing each other at an H-bonding
distance of 2.84 A (all distances are based on crystal structures).
Similarly for entry 2-222, the unsubstituted N atom of the
imidazolyl moiety of the ligand faces a carboxylate O atom of
the protein at 2.74 A. The protonated imidazolium cation,
suitable for H-bonding to the Asp side-chain and a populated
state at neutral pH, improved SIE prediction relative to the
neutral state. In entry 2-89, there are three N atoms of the
aminoquinazolinone ligand engaged in four H-bonding contacts
with two Asp residues of the protein. Protonation of the ligand to
the charged amidinium form improves the SIE prediction relative
to the neutral state with electrostatic repulsion at one of the four
N—O contacts. While some of the protonation states in the
CSAR-HiQ version are atom-typing errors (e.g, the glycine
ligand in the entry 1-173), others have deeper sources of errors,
sometimes rooted in the ligand annotation in PDB (e.g., double
bond reduction is required prior to the protonation of the
secondary amine of the propranolol ligand in entry 2-44). The
vast majority of the protonation/tautomerism changes improved
SIE prediction. We also found cases where the protonation state
required by the H-bonding network worsened SIE predictions.
For consistency, these changes were made regardless of their
outcome on SIE predictions. An example is entry 2-176, where
the citric acid ligand faces with one of its carboxylate groups the
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EXP= -9.44 kcal/mol
QIE= -4.49 - -8.66 kcal/mol
(ligand deprotonation)

EXP= -13.64 kcal/mol
QI E= -10.78 = -13.83 kcal/mol

(Asp25A protonation)

EXP= —4.97 kcal/mol
QIE= -9.96 > -7.88 kcal/mol
(Cys215 deprotonation)

Figure 2. Typical examples from generic changes in ligand or protein
protonation state. CA: carbonic anhydrase, HIVP: HIV protease, PTP,
protein-tyrosine-phosphatase 1B. The CSAR ID numbers are given. The
C atoms of ligands are shown in magenta, and C atoms of displayed
protein residues are shown in green. H-bonds are shown with yellow
dotted lines. The sites of protonation change are indicated with red
ovals. The standard SIE values before the change (CSAR-HiQ) are in
red; those after the change (CSAR-NRC-HiQ) are in blue.

carboxylic group of an Asp residue in the binding site, at a short
H-bond distance (2.48 A in the crystal structure). Our analysis
suggested protonation of that carboxylate group of the ligand,
which worsened an otherwise reasonable SIE prediction. It is

possible that the worsened prediction in this case is related to
ignoring changes in protonation state that may occur between
the free and bound states. Overall, 46 complexes (13% of the
CSAR data set) were affected by changes in protonation/
tautomeric state of their ligands. Previously underestimated
complexes were largely corrected (Figure 3C), with a mean-
signed-error (MSE) for these complexes lowered from 2.13
(indicating underestimation) to —0.09 kcal/mol. In terms of
absolute errors of standard SIE, there is a marked reduction of the
overall MUE from 3.14 to 1.79 kcal/mol after correction, most
improvements affecting the major outliers, and minor deteriora-
tion in predictions occurring for reasonably predicted complexes
(Figure 3B).

A similar analysis identified an even larger number of proton-
ation/tautomerism changes required on the protein side in the
CSAR-HiQ preparation (Table S4). A few illustrative examples
(entries 2-101, 1-168, 1-34) are given in Figures 4A and S2B.
Interactions with the phosphate group of the ligand in entry
2-101 require for a His side-chain not only a tautomeric change
for establishing an H-bond at the distance of 2.97 A but also a
charged form due to the likely increase in its pK, by the proximal
phosphate group. This change applied to entry 2-101 improved
SIE prediction of absolute binding affinity. Likewise, in entry
1-168 an Asp carboxylate group of the protein faces a phosphate
group from the ligand at an H-bonding distance of 2.80 A,
requiring a proton on one of these interacting groups. We chose
to protonate the protein carboxylate, which improved the SIE
prediction. Modification of tautomeric states of two His residues
for improved H-bonding network in entry 1-34 had no effect on
the SIE prediction, possibly due to the fact that the intramole-
cular H-bonding (His-Gln), and not the protein—ligand inter-
actions, benefited most from these changes. For the exemplified
entries 2-101, 1-34, and 1-168, there were further small improve-
ments in SIE predictions upon reorientation of a few polar H
atoms at the protein—ligand interfaces, a topic discussed in the
next paragraph. In general, improvements in SIE predictions
were larger upon changing protonation states than tautomeric
states, which relates directly to changes in the signal carried by
the electrostatic terms, as well as to the lack of an explicit H-bond
treatment in the SIE function. Overall, 68 complexes (20% of the
CSAR data set) were affected by changes in the protonation/
tautomeric state of their proteins. The mild underestimation of
some of these complexes is corrected (Figure 4C), reflected by an
overall reduction in MSE from 1.30 (indicating underestimation)
to 0.35 kcal/mol. There was a reduction of the overall MUE for
these complexes from 2.52 to 1.94 kcal/mol after correction, with
standard SIE predictions corrected partially for the major outliers
and fully for several mild outliers. A few entries were not affected
by corrections, while other suffered minor deteriorations in
standard SIE predictions (Figure 4B). The overall improvement
afforded by protonation/tautomerism changes on the protein
side was smaller than that from the ligand side, even though more
proteins than ligands were affected by changes.

We noted that after energy minimization, a few polar H atoms
did not establish optimal H-bonding interactions. Manual cor-
rection of these cases and reminimization allowed us to assess the
sensitivity of the SIE function to the position of one or a few polar
H atoms in these complexes. A few typical examples (entries
2-226, 1-208, 2-81) are given in Figures SA and S2C, with a listing
of all affected complexes given in Table S6. Overall, for 77
complexes where such changes were carried out, there was no
change in the performance in standard SIE predictions, with
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Figure 3. Sensitivity of the SIE function to ligand protonation. (A) Typical example of ligand protonation change (additional examples given in Figure
S2A). Rendering color-code is as in Figure 2. Protein—ligand donor—acceptor H-bonding distances are labeled in A units. (B) Absolute SIE errors
before (red bars, CSAR-HiQ preparation) and after (blue bars, CSAR-NRC-HiQ preparation) changes in ligand protonation for the 46 affected
complexes (also listed in Table $3). (C) Scatter plot of experimental binding affinities versus SIE values calculated before (red symbols) and after (blue

symbols) changes in ligand protonation for the 46 affected complexes.

MUE values of 2.35 and 2.32 kcal/mol for these complexes
before and after the change, respectively. This is due in part to
cancellation of SIE changes in this subset upon proton orienta-
tion changes. The SIE predictions become generally more
negative (stronger binding) upon improving the H-bond net-
work (Figure SC), due to the strengthening of the overall
electrostatic contribution in the SIE function. Noteworthy, in
some cases such small structural changes can lead to significant
effects in the order of 1-2 kcal/mol (Figure SB).

Sensitivity of SIE Predictions to Bridging Metal lons. Most
of the outliers severely overestimated by standard SIE on the
CSAR-HiQ_ preparation were negatively charged ligands in
contact with metal ions. While there were complexes with
bridging metal ions predicted well by standard SIE, we noted
that the defining characteristic of these overestimated complexes
was that their metal ion is only loosely bound to the protein,
while it interacts well with the ligand. By “loosely bound” we
mean that the metal ion is still somewhere in the vicinity of the
protein—ligand interface but no more than two chelating atoms
of the protein are within 4 A from it. In these cases, it is unlikely
that the metal ion will remain bound to the protein in the absence
of the ligand, while the free ligand may already have the metal ion
prebound. Therefore, for SIE calculations on these systems, it is
more appropriate to assign the metal ion to the ligand molecule
rather than to the protein molecule as we had automatically
assigned in the CSAR-HiQ version. Through visual analysis of all
CSAR complexes we identified 10 such cases, most of which

involve ligand phosphate groups and bivalent metal ions (Table
S7). llustrative cases (entries 1-170, 1-134, 1-225) are shown in
Figures 6A and S2D. For example, phosphate O atoms from the
GTP derivative in entry 1-170 chelate a Mn** ion at 2.1 A and
2.3 A, but the Mn*" ion, although in the vicinity of the protein, is
farther than 4 A away from any chelating group of the binding
site. Reassigning the metal ion with the ligand instead of the
protein significantly corrected a severely overestimated SIE
prediction to a value close to the actual binding affinity. A similar
metal ion bridging topology is seen for entry 1-134 involving a
Mg>" ion tightly bound to the phosphate group of the UMP
ligand but loosely bound to the protein; a significant improve-
ment is obtained in the SIE prediction by as51gn1ng the metal ion
with the ligand. In entry 1-225, although the Mg>" ion is chelated
by one protein atom at 2.1 A, this may still not be sufficient to
keep the metal ion bound to the protein in the absence of the
ligand. The large improvement in SIE prediction obtained by
assigning the metal ion to the ligand versus protein confirms this
assumption.

Out of these selected complexes, only one showed practically
no change in the prediction, being predicted well irrespective of
the ion assignment to the protein or ligand (<1 kcal/mol error).
This entry, 1-201, is the only complex in this subset that involves
a monovalent ion, K™ (Table S7) and the weaker ligand-ion
electrostatic interactions may explain why the affinity was not
overestimated as much when the ion was assigned with the
protein. Overall, for the 10 complexes (3% of the CSAR data set)
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Figure 4. Sensitivity of the SIE function to protein protonation. Rendering and labeling as in Figure 3. (A) Typical example of protein protonation
change (additional examples given in Figure S2B). (B) Absolute SIE errors before and after changes in protein protonation for the 68 affected complexes
(also listed in Table S4). (C) Scatter plot of experimental binding affinities versus SIE values calculated before and after changes in protein protonation

for the 68 affected complexes.

with reassignment of metal ions to ligands, we obtained a large
improvement of standard SIE predictions of absolute binding
affinities, including correction of previously overestimated com-
plexes (Figure 6C) from an MSE of —5.30 (indicating over-
estimation) to —0.66 kcal/mol. Absolute SIE errors for these
complexes were markedly reduced from an overall MUE of 5.30
to 1.23 kcal/mol after correction, with most improvements
occurring for the major outliers (Figure 6B). Since the metal
ion appears loosely bound to the protein in these systems, we also
calculated the SIE values after completely removing the metal
ions. This led to an MUE of 3.42 kcal/mol, hence better than the
SIE predictions with the metal ion assigned to the protein but
worse than with the metal ion assigned to the ligand, suggesting
that the metal ion may indeed be prebound to the free ligand
prior to ligand binding to the protein.

SIE Predictions on the Upgraded CSAR-NRC-HiQ Version.
A summary of the improvements afforded by changes brought to
the CSAR-HiQ version to generate the CSAR-NRC-HiQ version
of the data set are listed in Table 2. It can be seen that the largest
overall improvements in predictions with standard SIE function
were obtained after changes in the ligand protonation/tautomer-
ism and in the metal ion assignment to the ligand for complexes
with bridging metal ions loosely bound to the protein. Changes
in the protonation/tautomeric state of the protein binding site

had a more modest impact on the overall performance, while
orientation of polar H atoms beyond that provided by energy
minimization had practically no impact on the overall perfor-
mance. Most of the improvements in SIE predictions occurred
for the major outliers from the CSAR-HiQ preparation
(Figure S3).

The predictions of absolute binding affinities with the standard
SIE function on the upgraded CSAR-NRC-HiQ version of the
data set are plotted in Figure 7, with values listed in Table S8.
With the exception of three noted outliers involving two
avidin—biotin complexes (entries 1-116, 1-130) and one me-
tal-ion mediated complex (entry 2-139), the major outliers from
the standard SIE predictions on the CSAR-HiQ version
(Figure 1) are largely corrected. This underscores the require-
ment for careful preparation of the data set with respect to the
underlying chemistry in order to enable meaningful evaluation of
the SIE function. It also highlights the sensitivity of the SIE
function to these structural and chemical details. Quantitatively,
the standard SIE function achieves a performance of slightly
below 2 kcal/mol MUE (~2.5 kcal/mol RMSE) with a correla-
tion R” of 0.38 (pg of 0.62). This performance on the CSAR-
NRC-HiQ version is clearly superior to that on the CSAR-HiQ
version and also superior to the null model (Table 1). In
correlative terms, the complete SIE function performs only
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Figure 5. Sensitivity of the SIE function to orientation of a few polar H atoms. Rendering and labeling as in Figure 3. (A) Typical example of changes in
the orientation of polar H atoms at the protein—ligand interface (additional examples given in Figure S2C). (B) Absolute SIE errors before and after
changes in orientation of polar H atoms for the 77 affected complexes (also listed in Table S6). (C) Scatter plot of experimental binding affinities versus
SIE values calculated before and after changes in orientation of polar H atoms for the 77 affected complexes.

slightly better than the nonpolar terms alone but has the ad-
vantage of accounting for absolute binding affinities (Figure 7),
also highlighted by the correlation coefficient and slope when the
intercept is forced through origin (Table 1). We also note that
the correlation between these SIE values and the molecular
weight of the ligands has an R* of 0.42, while the correlation of
experlmental binding affinity values with ligand molecular weight
gives an R* of 0.25 (Figure S4). This indicates that the SIE
function has a size bias slightly larger than that of the actual
binding affinity. This size bias arises from the nonpolar terms of
SIE (eqs 1 and 2), which correlate highly with the ligand size (R* of
0.82). We stress again that these results are obtained with the
standard set of SIE physical parameters originally calibrated on a
diverse data set of 99 complexes that are different than those in the
CSAR data set,® and therefore these results represent a true test for
the performance of the standard SIE function.

We also refitted the physical parameters of the SIE function on
each of the two predefined halves of the CSAR-NRC-HiQ
version of the data set and tested the optimal parameters on
the alternate halves. As seen in Table 1, there is only a small
improvement of performance with the refitted SIE function
versus the standard function. This is encouraging in terms of
the generality of the standard SIE parameters that are publicly
available. It also indicates that the calibration of the standard SIE
function was not overfitted to the original training data set.
Therefore, the general use of the SIE physical parameters refitted
on CSAR-NRC-HiQ is not warranted. Their optimal values do
not differ much from those of the standard SIE calibration (Table
SS), although the optimal D;, around 4 obtained using the
CSAR-NRC-HiQ_ data set is noteworthy, being not only

meaningful in terms of the dielectric constant of the protein
but also in sharp contrast with a D;, of at least 7 obtained from the
SIE refit on the CSAR-HiQ_preparation. This underlines the
retention of electrostatic component in the SIE function and the
requirement for advanced structural curation for the develop-
ment and evaluation of force field—based scoring functions.

Further Analysis of a Sample of Outliers. An effort was
made to investigate the SIE outliers from the CSAR-NRC-HiQ
data set. The following were considered as possible sources of
prediction errors: (1) lack of explicit sampling in the single-
conformation SIE application mode tested, (2) lack of internal
strain energies from the SIE function, (3) the specific SIE
implementation relative to other end-point methods, (4) crude
estimation of entropic effects, and (S) continuum rather than an
explicit treatment of the solvent.

To address the first point, we selected about a dozen of SIE
outliers (both overestimated and underestimated) and run MD
simulations in explicit water using the AMBER force field and then
applied sietraj on the MD-generated conformational ensembles.®
For reasons of simulations efficiency and results interpretability, the
selected complexes do not exceed a certain size and do not include
metal ions, cofactors, and unnatural or modified residues. For these
entries, we found that the SIE predictions averaged over conforma-
tions extracted from MD trajectories did not improve relative to SIE
predictions based on single-conformation energy-minimized com-
plexes (Figure 8A, Table 3). These results were based on data
collected over the third ns of each MD production run. We also
collected data from the sixth ns of production runs for overestimated
complexes and found no improvement with increased simulation
time (data not shown).
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Figure 6. Sensitivity of the SIE function to the specific assignment of
metal ions to the protein or ligand. (A) Typical example of a case of
assignment of the metal ion to the ligand (additional examples given in
Figure $2B). The protein is rendered as a solid green molecular surface,
the ligand with sticks, and the metal ion as a magenta sphere. Metal-
chelating interactions are shown with dashed black lines and labeled in A
units. A distance of at least 4 A is also indicated to any other solute atom.
(B) Absolute SIE errors before and after assignment of metal ions from
being part of the protein (red bar, CSAR-HiQ preparation) to being part
of the ligand (blue bars, CSAR-NRC-HiQ_preparation) for the 10
affected complexes (also listed in Table S7). (C) Scatter plot of
experimental binding affinities versus SIE values calculated before and
after assignment of metal ions from being part of the protein (red
symbols) to being part of the ligand (blue symbols) for the 10 affected

complexes.

To address the second point, we additionally run MD simula-
tions for the free ligands in the same conditions. This allowed us
to calculate the solvated conformation energy of the ligand,
SCEhgmd (eq 3), consisting of the average internal strain energy
of the ligand between the ensembles adopted in the free and
bound trajectories and including the associated change in ligand
solvation. The calculated SCEjig,ng values can adopt both signs
(ie, most often costs, but also gains due to the solvation
component) and are much smaller than the corresponding SIE
values. We found that predictions did not improve by simply
adding the SCEjjg,,4 to average SIE values (Figure 8A, Table 3).
A future experiment will be to calibrate the physical parameters
(a, 7, p, Dy in egs 2 and 3) in a self-consistent manner for both of
SCEjigana and SIE functions, which was not attempted in
this study.

Table 2. Summary of Improvements in SIE Predictions by
Type of Change between CSAR Data Set Preparations

CSAR-HiQ  CSAR-NRC-HiQ

change N (%) MSE” MUE° MSE® MUE* ACUE?

ligand protonation 46 (13) 213 3.14 —0.09 1.79 62.0
protein protonation 68 (20) 130 2.52 035 1.94 392

H orientation 77 (22) 026 235 —0.32 2.32 2.5
metal ion assignment 10 (3) =530 530 —0.66 1.23 40.7
total® 182(53) 079 280 —0.12 2.01 144.4

“Number of complexes, expressed in parentheses as percentage of the
entire data set.” Mean-signed-error, in keal/mol. “ Mean-unsigned-error,
in kcal/mol. dChange in cumulative unsigned error (CUE) of predic-
tions between the CSAR-HiQ and CSAR-NRC-HiQ versions. ¢ Over-
laps removed.
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Figure 7. Scatter plot between experimental binding affinities and SIE
values calculated with the standard parametrization on the CSAR-NRC-
HiQ preparation.

For the third point, we subjected the MD-trajectories of the
complexes to single-trajectory MM-PB(GB)/SA calculations
(eq 4),”® which are similar in spirit with sietraj.*> We obtained
a further deterioration of the outliers, with predicted affinities
significantly off the range of the experimental values, and also
with weaker correlations than with the single-conformation or
sietraj implementations of the SIE method (Figure 8B, Table 3).
This was not a totally surprising result, since this has been noted
before.*"*” For these outliers, the magnitudes of predicted
affinities were improved after adding the calculated rotation,
translation, and vibration binding entropy contributions, TAS,y,,
to the MM-PB(GB)/SA energies. A few outliers improved
slightly relative to the sietraj predictions, but predictions re-
mained significantly worse for the other outliers (Figure 8C,
Table 3). In correlative terms, the implementation with the more
approximate GB method provided somewhat better results than
the more rigorous PB method.

Finally, having calculated separate MD trajectories for the
complex and the free ligand, we applied the LIE method.'">*>>?

2076 dx.doi.org/10.1021/ci2000242 |J. Chem. inf. Model. 2011, 51, 20662081



Journal of Chemical Information and Modeling

A

oo

CALC (kcal/mol)

-0 8 6 4 -2 0 2
EXP (kcal/mol)

-18 -16 -14 12

- SIE
« Sietraj
. sietraj+SCE;,

10
>
>
0
-
L]
3 10 L T e @
£ - ® @
b= o
£ 20 H
L] L]
% .
G 30 — 4
40 N
L]
L ]
-50

EXP (kcal/mol)
= Sietraj
+ MM-PB/SA-TAS:,
« MM-GB/SA-TAS,,

s
=]
[
.
°

L ]
- |

B
(=}
[ ]
as

8
.
of

CALC (kcal/mol)
5 A :

o

[ ]

&
L]

8

-70

70 80 50 40 30 20 -0 0
EXP (kcal/mol)
« sietraj
« MM-PB/SA
« MM-GB/SA

D

10

-10 a®

-20

CALC (kcal/mol)

50 .40 30 20 10 &} 10
EXP (kcal/mol)
= siefraj+SCEjg
« LIE

Figure 8. Molecular dynamics based predictions with several methods for a sample of SIE outliers. Five overestimated and 8 underestimated outliers by
energy-minimized single-conformation-based SIE calculations were analyzed (with IDs, experimental data and prediction errors listed in Table 3). (A)
Comparison of SIE predictions with those from the MD-based sietraj method without and with MD-averaged ligand strain contributions (SCEj;). (B)
Comparison of sietraj predictions with those from the MM-PB(GB)/SA methods. (B) Comparison of sietraj predictions with those from the MM-
PB(GB)/SA methods including rotation, translation, and vibration entropy changes upon binding (-TAS,,). (D) Comparison of sietraj predictions
including ligand strain contributions (SCEHg) with those from the LIE method.

This includes MD-averaged interaction energies with the explicit
solvent, using published scaling coeflicients for the van der Waals
and Coulombic terms and including a continuum correction of
long-range electrostatics (eq S). The two-trajectory LIE method
is similar in spirit with the sietraj plus the solvated ligand strain
(SCEjigana) discussed earlier. Again, while a few SIE outliers were
partially corrected, others were significantly worsened, with
overall errors and correlations below those of various implemen-
tations of the standard SIE function (Figure 8D, Table 3).

W DISCUSSION

The SIE performance on the CSAR-NRC-HiQ data set of
about 2 kcal/mol MUE in predicting absolute binding affinities is
reasonable in light of the accuracy of the underlying continuum
solvation model, which achieves MUEs between predicted and
observed hydration free energies of small molecules in the
1.5—1.8 kcal/mol range, as tested prospectively in SAMPL
experiments.*>** We cannot expect or believe that, in general,
protein—ligand absolute binding affinity calculations, which
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Table 3. Molecular Dynamics Based Analysis of a Sample of SIE Outliers

prediction errors®

ID ACig SIE sietraj sietraj +SCEj;q MM-PB/SA MM-GB/SA MM-PB/SA—TAS,, MM-GB/SA—TAS,, LIE
Overestimated Complexes
1-96 —0.07 —4.79 —4.63" —4.53 —12.88 —17.00 —1.72 —5.84 —2.28
1-104 0.21 —4.66 —4.5§ —4.52 —5.57 —10.08 8.14 3.63 —1.34
2-127 —2.48 —4.39 —4.23 —4.16 —37.58 —46.70 —11.28 —20.40 —3.48
2-74 —=7.11 —4.55 —4.74 —4.31 —55.77 —58.90 —34.99 —38.12 —38.37
2-184 —1.91 —3.92 —4.60 —4.51 —24.34 —22.49 —11.25 —9.40 —16.29
Underestimated Complexes
1-208 —11.12 3.12 4.32 4.12 —20.95 —19.12 —4.32 —2.49 —17.75
2-53 —11.87 3.25 4.09 4.13 —18.80 —20.97 —6.66 —8.83 9.02
2-269 —12.28 4.73 5.70 5.80 —9.38 —1741 3.88 —4.15 —5.81
1-161 —1442 3.58 3.28 4.12 —27.17 —50.86 —0.09 —23.78 17.33
1-173 —10.63 3.93 421 421 —29.39 —34.44 —15.53 —20.58 4.98
2-188 —16.51 5.27 5.73 5.63 —24.08 —45.70 6.18 —15.44 23.26
1-116 —16.37 7.70 8.63 8.66 —9.17 —18.32 11.34 5.19 37.30
1-168 —11.79 3.95 2.98 3.24 —11.25 —26.11 3.83 —11.03 37.20
MUE “ 4.4S 4.74 4.76 22.03 29.62 9.17 12.99 16.49
R? 0.52 0.37 0.40 0.12 0.25 0.04 0.23 0.10

“In kcal/mol. b Prediction errors in bold are smaller in absolute value than those obtained with the single-conformation SIE method.

require predictions for solute—solute interactions as well as solvation
of protein-size molecular systems, can be done with lower errors
than those for small-molecule hydration free energy predictions.

Careful curation of the CSAR data set in terms of protonation
and tautomeric states in the ligand-binding site region, resulting
in the CSAR-NRC-HiQ version, was critical for a meaningful
evaluation of the SIE performance. Relative to an earlier version
of the CSAR data set, approximately 13% of ligands and 20% of
proteins were affected by changes in protonation and tautomer-
ism. The effect on standard SIE performance was large: 144 kcal/mol
reduction of the cumulative absolute error (Table 2), 0.42 and
0.62 kcal/mol reductions in the overall MUE and RMSE,
respectively, and R* increase from 0.19 to 0.38 and pg from
0.47 to 0.62 (Table 1). Included in these improvements was the
assignment of metal ions with the ligand rather than as part of the
protein (the usual procedure) in a small fraction of complexes (3%)
with metal ions bound loosely to protein atoms but interacting
strongly with negatively charged ligands. It will be of interest to find
out whether a more advanced curation of protonation and tauto-
merism, based on separate thermodynamic calculations in the
bound state and in the free state, can further improve predictions.

The significant effects of protonation/tautomerism changes,
of different assignments of bridging metal ions to the protein or
ligand depending on topology, and even of single proton
reorientation, illustrate a general sensitivity of force field—based
scoring functions to atomic details. If the underlying structure
and chemistry are not correctly represented, then first-principle
scoring functions are bound to perform more poorly than
empirical and knowledge-based scoring functions. This will be
further accentuated on a data set like CSAR, which is highly
diverse with respect to both proteins and ligands, and includes
only a few series of congeneric ligands binding to the same
protein or protein class, so there is minimal opportunity for error
cancellation.

It has been noted that the SIE function extracts most of its
signal from the nonpolar terms. The small improvement afforded
by electrostatics to correlation with binding affinities aligns with
the growing consensus that binding affinity is driven by nonpolar
interactions, and electrostatic interactions, with a fine balance
between its competing interactions and desolvation components,
are required for introducing specificity to molecular recogni-
tion.”> However, the electrostatic signal may become more
important and even dominant if SIE is applied not only to active
ligands with known binding modes as in the CSAR data set but
also challenged with decoy poses of binders and decoy ligands.
Preliminary tests on virtual screening enrichments point in this
direction,® with more extensive VS enrichment tests needed.

An interesting idea for future development is to recalibrate the
SIE function specifically for VS application against a combined
data set including binding affinities for active ligands along with a
set of suitably docked decoys that have a high probability of being
inactive. This will retain a reasonable resolution in affinity pre-
diction ability for binders and add classification power between
binders and nonbinders. Additional energy terms can be incor-
porated, like an explicit hydrogen bonding term that may turn
out quite useful in the VS mode of SIE. Moreover, the net ad-
vantage of sietraj consisting of MD-averaged SIE values versus
single-conformation SIE predictions may become apparent for
filtering out VS false-positive hits. The strain and entropic terms
based on MD ensembles can be included but will have to be
properly calibrated in a self-consistent manner within the SIE
function and with inclusion of inactive decoys.

The current data on improving SIE outliers from the CSAR data
set did not show an advantage of sietraj, as well as inclusion of ligand
strain and explicit entropy contributions based on MD simulations.
Various tests were carried out on a sample of outliers from single
energy-minimized-conformation SIE calculations. MD-based sietraj,
ligand strain, and applications of other physics-based methods
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like MM-PB(GB)/SA without and with entropy estimates, and
LIE, were unable to correct the predictions. This indicates a need for
either incremental improvement in many areas of the molecular
mechanics formalism (e.g,, force-field, solvation model, electrostatic
model) or a need for a paradigm shift in order to make a significant
leap in prediction performance.

Bl CONCLUSIONS

The Community Structure—Activity Resource distributed a
first data set of 343 protein—ligand complexes that is diverse in
both protein and ligand space. This constituted an excellent
opportunity to benchmark the target-generic SIE function for
predicting absolute binding affinities. The focus was on testing
the single-conformation application mode of SIE, based on
restrained energy-minimized crystal structures. Preparation of
the data set in terms of protonation and tautomeric states at the
protein—ligand interface was critical in order to evaluate the SIE
performance. In curating these states, 13% of ligands and 20% of
proteins were affected relative to an earlier version based on
automatic preparation, leading to a substantial improvement in
SIE performance. Proton orientation beyond that provided by
energy minimization had a negligible overall effect, while under-
scoring the sensitivity of the SIE function to atomic details in
specific cases. Also, assignment of interface metal ions to the
ligand rather than to protein (as done usually) when the ion is
loosely bound to protein but tightly bound to ligand (3% of
complexes) was critical to accurate SIE predictions for such
complexes. We believe that the performance of the SIE function,
with a mean-unsigned-error slightly below 2 kcal/mol, lives up to
expectations in light of the accuracy of underlying solvation
models. Reparametrization on the curated CSAR-NRC-HiQ
data set led to marginal improvements in performance and
minimal changes in the optimal set of physical parameters;
therefore, it does not seem warranted at this time. We find that
the binding electrostatics contributes marginally to the perfor-
mance of SIE function, in line with the current view that binding
affinity is driven mainly by nonpolar interactions. Tests using
MD-ensemble averaging, including ligand strain, applying differ-
ent implementations of the end-point solvated interaction form-
alism, or treating the solvent explicitly did not improve further
the outliers from the single-conformation SIE predictions.

B ASSOCIATED CONTENT

© Ssupporting Information. Minimal manual curation on
the CSAR-HiQ preparation (Table S1), metal ion parameters
(Table S2), ligand protonation changes (Table S3), protein pro-
tonation changes (Table S4), SIE physical parameters refitted on
the two halves of the CSAR data set (Table SS), listing of complexes
with polar H orientation changes beyond those from energy
minimization (Table S6), complexes with metal ion assigned to
ligand (Table S7), listing of experimental binding affinities and
SIE with its component terms calculated on the CSAR-NRC-HiQ
preparation (Table S8), past performance of the standard SIE
function on various data sets (Figure S1), additional examples for
changes between the CSAR-HiQ to CSAR-NRC-HiQ preparations
(Figure S2), overall improvement of SIE predictions from the
CSAR-HiQ preparation to the CSAR-NRC-HiQ_preparation
(Figure S3), and correlations with the ligand molecular weight
for SIE and experimental values (Figure S4). This material is
available free of charge via the Internet at http://pubs.acs.org.
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