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Abstract

For NP-hard combinatorial optimization problems, it is usually difficult to find high-quality solu-
tions in polynomial time. The design of either an exact algorithm or an approximate algorithm
for these problems often requires significantly specialized knowledge. Recently, deep learning
methods provide new directions to solve such problems. In this paper, an end-to-end deep re-
inforcement learning framework is proposed to solve this type of combinatorial optimization
problems. This framework can be applied to different problems with only slight changes of input
(for example, for a traveling salesman problem (TSP), the input is the two-dimensional coordi-
nates of nodes; while for a capacity-constrained vehicle routing problem (CVRP), the input is
simply changed to three-dimensional vectors including the two-dimensional coordinates and the
customer demands of nodes), masks and decoder context vectors. The proposed framework is
aiming to improve the models in literacy in terms of the neural network model and the training
algorithm. The solution quality of TSP and the CVRP up to 100 nodes are significantly improved
via our framework. Specifically, the average optimality gap is reduced from 4.53% (reported best
[1]) to 3.67% for TSP with 100 nodes and from 7.34% (reported best [1]) to 6.68% for CVRP
with 100 nodes when using the greedy decoding strategy. Furthermore, our framework uses
about 1/3∼3/4 training samples compared with other existing learning methods while achiev-
ing better results. The results performed on randomly generated instances and the benchmark
instances from TSPLIB and CVRPLIB confirm that our framework has a linear running time
on the problem size (number of nodes) during the testing phase, and has a good generalization
performance from random instance training to real-world instance testing.

Keywords: Combinatorial optimization, Deep reinforcement learning, Residual edge-graph
attention model, Routing problems

1. Introduction

Combinatorial optimization problems as basic problems in computer science and operations
research have received extensive attention from the theory and algorithm design communities
in the past few decades. TSP and vehicle routing problem (VRP) are two representatives of
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classic combinatorial optimization problems, and have been studied in the fields of logistics
transportation, genetics, express delivery, and dispatching [2, 3, 4, 5]. Generally, TSP is defined
on a graph with a number of nodes, and it is necessary to search among the permutation sequences
of nodes for finding an optimal one with the shortest traveling distance. CVRP is a basic variant
of VRP, which finds the route with the lowest cost while not violating vehicle capacity constraints
and meeting all customer needs [6]. Even in the case of two-dimensional Euclid, it is difficult to
find an optimal solution for a TSP or CVRP due to their intractability of NP-hardness [7]. In
general, such a NP-hard problem can be expressed as sequential decision tasks on a graph due
to its highly structured nature [8].

Traditional methods for solving graph optimization problems with NP-hardness include ex-
act algorithms, approximate algorithms, and heuristic algorithms [9]. Exact algorithms with
the branch and bound framework can obtain optimal solutions, but they are not suitable for
large-sized problems due to their NP-hardness. Polynomial-time approximation algorithms can
usually obtain quality-guaranteed solutions, but they possess weaker optimality warrants com-
pared to exact algorithms. In particular, for problems that are not amenable to a polynomial
approximation algorithm, the optimality guarantee may not exist at all. In addition, heuristic
algorithms are widely used due to their good computational performance, but usually require
customizations and domain expertise knowledge for a specific problem. Besides, heuristic algo-
rithms often lack theoretical support. All the above three groups of algorithms seldomly take
advantage of the common features among optimization problems, and thus often need to design
a new algorithm to solve a different instance of an even similar problem that is based on the same
combinatorial structure, of which the coefficient values in the objective function or constraints
may be deemed as samples from the same basic distributions [10]. The idea of using machine
learning approaches has cast a silver lining to provide a scalable method to solve combinatorial
problems with similar combinatorial structures.

Many combinatorial optimization problems, such as a TSP or a VRP, are based on a graph
structure [11], which can be easily modeled by the existing graph embedding or network embed-
ding technique. In such a technique, the graph information is embedded in a continuous node
representation. The latest development of graph neural network (GNN) can be used in modeling
a graph combinatorial problem due to its strong capabilities in information embedding and belief
propagation of graph topology [12]. This motivates us to adopt a GNN model to solve combina-
torial optimization problems, particularly TSP and CVRP. In this paper, we use the GNN model
to build an end-to-end deep reinforcement learning (DRL) framework, as schematically shown in
Figure 1.1.

Encoder

Attention

Pointer

DecoderInput 2D Graph TSP Tour

Search

Figure 1.1: An end-to-end model for solving a TSP.

In our framework, after the features (node coordinates for TSP) of a 2D graph is entered into
the model, the encoder encodes the features with GNN. The encoded features are then passed
into the decoder with an attention pointer mechanism to predict the probabilities of unselected
nodes. The next node is subsequently selected according to the probability distribution by a
search strategy, such as a greedy search or a sampling approach. Our encoder amends the Graph
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Attention Network (GAT) [13] by taking into consideration the edge information in the graph

structure and residual connections between layers. We shall call the designed network
a residual edge-graph attention network (residual E-GAT). Our decoder is designed based on a
Transformer model, which is used primarily in the field of natural language processing [14]. The
entire network is optimized using either a proximal policy optimization algorithm (PPO) or an
improved baseline REINGORCE algorithm.

For demonstrating the performance of the proposed framework, a serial of random instances
of TSP and CVRP with nodes of 20, 50, and 100 are used to train and test our algorithm.
Besides, the complexity of the model running time during the testing phase is analyzed. To
have a fair comparison to the current literature, we have tested the generalization ability of the
framework using the standard benchmark instances from TSPLIB and CVRPLIB.

The main contributions of this paper can be summarized below:

• An improved DRL framework is proposed for the routing problems. In this framework,
a residual E-GAT is introduced for the encoder in which, are taken into consideration
the edge information and residual connections between layers. The edge information and
residual connections are not considered in GAT in the literature. It is demonstrated that
the residual E-GAT is powerful to capture information of graph structures directly. In
addition, the transformer model is used to design the decoder.

• In the training phase, we adopted two actor-critic algorithms: PPO and improved baseline
REINGORCE algorithm. Some techniques of "code-level optimization" are used for further
improving the performance of the two algorithms.

• The proposed algorithm is efficient and has strong generalization power. The efficiency of
the proposed framework is evaluated on randomly generated instance datasets of TSP and
CVRP. Besides, the standard benchmark instances from TSPLIB and CVRPLIB are used
to verify the generalization capacity of our framework.

The rest of the paper is organized as follows. Section 2 summarizes the relevant literature.
Section 3 describes our encoder-decoder model in detail. Section 4 introduces two deep reinforce-
ment learning algorithms and decoding strategies. Section 5 gives the experimental results and
discussions are made. Finally, conclusions and prospects are listed in Section 6. Appendix A
analyzes the sensitivities of hyper-parameters. Appendix B shows solution examples of random
instances with 100 nodes. Appendix C demonstrates examples of standard benchmark instances.

2. Literature Review

Recently, supervised learning (SL) and reinforcement (RL) learning have been widely used
to solve combinatorial optimization problems [11, 15, 16, 17, 18], especially in routing problems.
Table 2.1 summarizes various existing methods for solving routing problems based on super-
vised learning and reinforcement learning. Reinforcement learning can be further divided into
model-based and model-free methods. Finally, model-free reinforcement learning methods can
be divided into Value-Based and Policy-Based methods or a combination of both (actor-critic).

Vinyals et al. [19] introduced a supervised learning framework with sequence-to-sequence
pointer network (PtrNet) to train and solve a Euclidean TSP and other combinatorial optimiza-
tion problems. Their model uses the softmax probability distribution as a ’pointer’ to select
a member from the input sequence as the output. Bello et al. [20] introduced an actor-critic
reinforcement learning algorithm to train PtrNet to solve the TSP in an unsupervised manner.
They considered each instance as a training sample and used the cost (tour length) of a sampled
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Table 2.1: Survey of deep/reinforcement learning methods in solving routing problems

Routing Problem Authors Network Structure Learning Type

TSP

[Vinyals et al.,2015][19] LSTM+Attention Supervised Learning, Approximation
[Bello et al.,2016][20] LSTM+Attention RL-Model Free, Actor-Critic
[Joshi et al.,2019][8] GCN Supervised Learning, Approximation
[Dai et al.,2017][10] GNN RL-Model Free, Deep Q-Learning
[Nazari et al.,2018][21] LSTM+Attention RL-Model Free, Actor-Critic
[Deudon et al.,2018][22] GRU RL-Model Free, Actor-Critic
[Emami et al.,2018][23] Transformer RL-Model Free, Actor-Critic
[Kool et al.,2019][1] Transformer RL-Model Free, Actor-Critic
[Malazgirt et al.,2019][24] NN RL-Model Free, Policy-Based
[Ma et al.,2020][25] GPN Hierarchical RL-Model Free, Policy-Based
[Cappart et al.,2020][26] GAT RL-Model Free, Actor-Critic
[P. Felix et al.,2020][27] GCN RL-Model Based, Given Model
[Drori et al.,2020][28] GAT+ Attention RL-Model Free, Actor-Critic
[Zhang et al.,2020][29] Transformer RL-Model Free, Policy-Based
[Hu et al., 2020][30] GNN RL-Model Free, Policy-Based

VRP

[Nazari et al.,2018][21] LSTM+Attention RL-Model Free, Actor-Critic
[Chen et al.,2019][31] LSTM RL-Model Free, Actor-Critic
[Kool et al.,2019][1] Transformer RL-Model Free, Actor-Critic
[Zhao et al. 2020][32] LSTM+Attention RL-Model Free, Actor-Critic
[Lu et al.,2020][33] NN RL-Model Free, Actor-Critic
[Gao et al.,2020][34] GAT+GRU RL-Model Free, Actor-Critic
[Drori et al.,2020][28] GAT+ Attention RL-Model Free, Actor-Critic
[Chen et al.,2020][12] GAT+GRU RL-Model Free, Actor-Critic
[zhang et al., 2020][35] Transformer RL-Model Free, Actor-Critic

Note: In the Network Structure column, LSTM: long short-term memory; NN: neural networks; GRU: gate recurrent
unit; GPN: graph pointer network.

solution for an unbiased Monte-Carlo estimate of the policy gradient, and showed the perfor-
mance of their algorithms on TSP with up to 100 nodes is better than most previous approximate
algorithms. Nazari et al. [21] extended the structure of PtrNet to solve more complex combina-
torial optimization problems, such as the VRP with batch delivery and random variables. Gu et
al. [36] used the PtrNet combined with supervised learning and DRL to solve an unconstrained
binary quadratic programming problem. However, the neural network structure used in the above
works does not fully consider the relationship of the edges between vertexes in a graph, which is
actually very important for many routing problems.

GNN as a powerful tool for processing non-Euclidean data and capturing graphical informa-
tion has been widely researched in recent years. Specifically, once a GNN-based approximate
solver has been trained, its time complexity to solve a problem is significantly better than that
of an OR algorithm. In this case, the trained GNN is very suitable for real-time decision-making
problems such as TSP and related vehicle routing problems. Li et al. [37] applied graph con-
volutional network (GCN) model proposed by Kipf et al. [38] and guided tree search algorithm
to solve graph-based combinatorial optimization problems, such as maximum independent set
and minimum vertex cover problems. Dai et al. [10] used GNN to encode a problem instance
and demonstrated a GNN preserves node order and performs better in reflecting the combina-
torial structure of TSP, when compared with the sequence-to-sequence model. They used deep
Q-networks (DQN) to train a structure2vec (S2V) graph embedding model [39]. Motivated by
the Transformer architecture [14], Kool et al. [1] proposed an attention model (AM) to solve a
serial of combinatorial optimization problems, and used rollout baseline in the policy gradient
algorithm to significantly improve the results of small-sized routing problems. Nowak et al. [40]
used deep GCN in a supervised learning manner to construct an effective TSP graph repre-
sentation and output itineraries through a highly parallel beam search using non-autoregressive
approaches. Ma et al. [25] proposed a Graph Pointer Network (GPN), which trains a network to
solve TSP with time window constraints (TSPTW) through hierarchical reinforcement learning.
They claimed that the model can be extended from small-sized problems to large-sized prob-
lems. Drori et al. [28] used the GAT to solve many graph combinatorial optimization problems.
Their results showed that the GAT framework has a generalization performance from training
on random graphs to testing on a real-world graph. Hu et al. [41] introduced a bidirectional
GNN trained by imitation learning to solve an arbitrary symmetric TSP.
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The previous works used GNN and reinforcement learning to solve combinatorial optimization
problems without considering the dependency between edges in a graph structure. Motivated by
the above researches, our work considers the role of edges in a graph structure and considers
connecting residuals between layers to remedy the model degradation due to vanishing gradients in
a deep model to further improve the GAT. Besides, most existing methods combine GNN, search
methods, and reinforcement learning. Our model is based on an encoder built-upon the improved
GAT and a decoder built-upon the Transformer model. The proposed framework uses two deep
reinforcement learning algorithms in training, i.e., PPO and improved baseline REINFORCE
algorithm. These differences make the proposed model different from the existing ones.

3. Graph-attention model

In this section, we will formally introduce our residual edge-graph-attention model (Residual
E-GAT). We define the model through a 2D Euclidean and symmetric TSP. The model is also
applicable to other graph-based routing problems, and only needs to change accordingly the
input, masks and decoder context vectors. TSP is defined on an undirected graph G = (V,E,W )
where node i is represented by features ni, i ∈ V = {1, · · · ,m}. Here m is the number of nodes
and ni denotes the coordinates of node i. And aij ∈ E, i, j ∈ V represents the edge from node
i to node j, further eij ∈ W is the distance information of aij . Solution π̂ = (π̂1, · · · , π̂m) is
introduced to express a permutation of all the nodes, π̂t ∈ {1, · · · ,m} and π̂t 6= π̂t′ , ∀t 6= t′. Our
goal is to find a solution π̂ given a problem instance s so that each node can be visited exactly
once and the total tour length is minimized. The length of a tour is defined for permutation π̂
as:

L(π̂|s) = ||nπ̂m
− nπ̂1 ||2 +

m−1
∑

t=1

||nπ̂t
− nπ̂t+1 ||2, (3.1)

where || · ||2 denotes the L2 norm. Our graph-attention model defines a stochastic policy p(π̂|s)
for instance s. Based on the chain rule of probability, the selection probability for sequence π̂
can be calculated based on a parameter set θ of the graph-attention model:

pθ(π̂|s) =
m
∏

t=1

pθ(π̂t|s, π̂t′ ∀t′ < t). (3.2)

The encoder makes embeddings of all input nodes. The decoder produces a permutation π̂ of
input nodes by generating a node at each time step and masks (will be introduced in Section
3.2) that node out to prevent the model from visiting the node again.

Our encoder is designed based on the GAT, which is a neural network architecture that
transmits node information through an attention mechanism and has a powerful graph topology
representation capability. For the TSP problem with an undirected graph G = (V,E,W ), GAT
[13] only updates the information of each node by assigning new weights to its neighbors. How-
ever, this update method ignores the information of the edge in the graph structure. Inspired by
the work of Gao et al. [34], the residual E-GAT proposed in this paper integrates the edge in-
formation into the node information and updates them simultaneously, instead of only updating
the node information in the original GAT. In addition, each sub-layer of E-GAT adds a residual
connection for avoiding vanishing gradient and model degradation [42]. The decoder is based on
an attention mechanism, in which the next node is selected through either sampling or a greedy
decoding. We will refine the encoder-decoder model in detail below.
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3.1. The encoder

Our encoder model takes a graph G = (V,E,W ) as input, as shown in Figure 3.2. Taking
TSP as an example, the input node features are the two-dimensional coordinates ni, and the
input edge features are the Euclidean distances eij , i, j ∈ {1, · · · ,m}.

The above two features are embedded in dx and de dimension features through a fully con-
nected layer (FC Layer in Figure 2(b)) before they are fed into the residual E-GAT. Equation
3.3 and Equation 3.4 below describe the node and edge embeddings respectively, where, the
superscript 0 indicates that the embedding is before entering the residual E-GAT.

x
(0)
i = BN(A0ni + b0), ∀i ∈ {1, · · · ,m}, (3.3)

êij = BN(A1eij + b1), ∀i, j ∈ {1, · · · ,m}, (3.4)

where A0 and A1 represent learnable weight matrixes, and BN(·) represents batch normal-

ization [43]. We next use layer index ℓ ∈ {1, · · · , L} to represent the node embeddings x
(ℓ)
i

of the ℓ-th layer obtained in the residual E-GAT. The inputs of the first layer of the resid-

ual E-GAT are the node features x(0) = {x(0)
1 ,x

(0)
2 , · · · ,x(0)

m },x(0)
i ∈ R

dx and edge features
ê = {ê11, ê12, · · · , êmm}, êij ∈ R

de . The first layer of the residual E-GAT produces a new set of

node features x(1) = {x(1)
1 ,x

(1)
2 , · · · ,x(1)

m },x(1)
i ∈ R

dx as its output, while the edge features êij
remain unchanged.

)1-(

ix ijê
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Figure 3.2: The Encoder structure with multi-layer residual E-GAT.

Figure 2(a) describes how a single-layer residual E-GAT integrates the information of nodes
and edges and updates the information of each node. The attention coefficient αℓ

ij indicates the
importance of node i and node j(i, j ∈ {1, · · · ,m}) at the ℓ-th layer:

αℓ
ij =

exp(σ(gℓT [W ℓ(x
(ℓ−1)
i ||x(ℓ−1)

j ||êij)]))
∑m

z=1 exp(σ(g
ℓT [W ℓ(x

(ℓ−1)
i ||x(ℓ−1)

z ||êiz)]))
(3.5)

where (·)T represents transposition, ·||· is the concatenation operation, gℓ and W ℓ are learnable
weight vectors and matrices respectively, and σ(·) is the LeakyReLU activation function (as
adopted in GAT [13]). Figure 2(b) shows the encoder model structure with multi-layer residual
E-GAT. Each layer of the residual E-GAT updates the feature vector of every node through
the attention mechanism described by Equation (3.5). We have employed a residual connection
between every two layers. That is, the output of layer ℓ is calculated as:

xℓ
i = x

(ℓ)
i,R + x

(ℓ−1)
i , (3.6)
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where x
(ℓ)
i,R is a function implemented by layer ℓ itself, which can be expressed as:

x
(ℓ)
i,R =

m
∑

j=1

αℓ
ijW

ℓ
1x

(ℓ−1)
j , (3.7)

here W ℓ
1 represents a learnable weight matrix. Our residual E-GAT contains L layers. The L-th

residual E-GAT outputs the node embeddings x
(L)
i . Subsequently, they are used to compute the

final graph embedding (as in [1]) x̄ = {x̄1, · · · , x̄dx
}, x̄j ∈ R, ∀j ∈ {1, 2, · · · , dx} by Equation

(3.8)

x̄j =
1

m

m
∑

i=1

(x
(L)
i )

j
, j = 1, · · · , dx (3.8)

3.2. The decoder

Our decoder uses an attention mechanism similar to Kool et al. [1], and is based on the
decoder part of a Transformer model [14]. A Transformer model uses a multi-head attention
mechanism rather than the commonly used loop layer in an encoder-decoder architecture.

However, a Transformer cannot directly be applied to solve combinatorial optimization prob-
lems, because its output dimension is fixed in advance and cannot be varied according to the
input dimension. On the other hand, the PtrNet, proposed by Vinyals et al. [19], uses an at-
tention mechanism to select a member from the input sequence as the output at each decoding
step based on a softmax probability distribution. The PtrNet enables a Transformer model to
apply to combinatorial optimization problems, where the length of an output sequence is de-
termined by the source sequence. With this idea in our mind, our decoder follows the PtrNet
way to output nodes, in which each node is related to a probability value as a "pointer" at each
decoding time step by using the softmax probability distribution. Different from a Transformer
decoder in structure though, we do not use residual connections, batch normalization, and fully
connected layers. Instead, our decoder contains two attention sub-layers. Figure 3.3 illustrates
the decoding process in our decoder.

Multi-Head

Attention

Single-Head

Attention

Context Vector }1,0{},,...,1{,)(
Nmtc

N

t
Node Embedding: },...,1{,)(

mix
L

i },...,1{ˆ,', 'ˆ '
mttx tt

Masked Node:

)1(

1c

)0(

1c

Softmax

Pointer

1p 1mp
mp

Multi-Head

Attention

Single-Head

Attention

)1(

2c

)0(

2c

Softmax

Pointer

1p 1mp mp

Decoder Step t =1 Decoder Step t =2
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Attention

Single-Head

Attention

)1(

mc

)0(
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Softmax

Pointer

1p 1mp
mp

Decoder Step t =m

Output Probability:
tp

Figure 3.3: The decoder structure for TSP.
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The first layer computes a context vector through a multi-head attention mechanism [14],
and the second layer outputs the probability distribution of the nodes to be selected. Decoding
happens sequentially, and at time step t ∈ {1, · · · ,m} the decoder outputs the node π̂t based
on the embeddings from the encoder and the previous outputs π̂t

′ generated at timestep t
′

< t.

The decoder context vector c
(0)
t at time step t is calculated using the graph embedding x̄, the

last selected node π̂t−1 and the fist selected node π̂1. For t = 1, the decoder context vector is
obtained from the graph embedding x̄ and a learnable dx-dimensional parameter vector −→v :

c
(0)
t =

{

x̄+Wx(x
(L)
π̂1

||x(L)
π̂t−1

), t > 1

x̄+−→v , t = 1
. (3.9)

where Wx is a learnable weight matrix. The input of the first layer of the decoder is the context

vector c
(0)
t , and this layer produces a new context vector c

(1)
t which is obtained through a multi-

head (with H number of heads) attention mechanism. We next describe in detail the multi-head
attention mechanism.

Generally, we define the dimension dv to compute the key vectors ki ∈ R
dv , value vectors

vi ∈ R
dv , and query vector q ∈ R

dv through the node embeddings and the context vector c
(0)
t :

q = WQc
(0)
t ,vi = W V x

(L)
i ,ki = WKx

(L)
i , i ∈ {1, 2, · · · ,m}. (3.10)

where WK ∈ R
dv×dx ,WQ ∈ R

dv×dx and W V ∈ R
dv×dx(dv = dx/H) are learnable weight

matrices.
In this paper, the context vector c

(0)
t is used to compute a single query vector q. The

key vectors k = {k1, · · · ,km} and value vectors v = {v1, · · · ,vm} are computed using the

encoder output node embeddings x
(L)
i , i ∈ {1, 2, · · · ,m}. Then query vector q and key vectors

k = {k1, · · · ,km} are used to compute the attention coefficient u
(1)
i,t ∈ R, i ∈ {1, · · · ,m} of the

first decoder layer at time step t via Equation 3.11:

u
(1)
i,t =











qTki√
dv

, if i 6= π̂t
′ ∀t′ < t,

−∞, otherwise.

(3.11)

In Equation 3.11, the nodes that have been selected before timestep t are masked out by setting

their attention coefficients to −∞. We then normalize the attention coefficient u
(1)
i,t through a

softmax activation function by using Equation 3.12:

û
(1)
i,t = softmax(u

(1)
i,t ) (3.12)

Next, H-head independent attentions are performed according to Equation 3.13, where the

h-th (h ∈ {1, · · · , H}) normalized attention coefficient is denoted by (û
(1)
i,t )

h
for 1 ≤ i ≤ m. The

vectors computed by each head are connected in series, and then the final context vector c
(1)
t is

obtained through a fully connected layer:

c
(1)
t = Wf · (||Hh=1

m
∑

i=1

(û
(1)
i,t )

h
vh
i ), (3.13)

where Wf is a learnable weight matrix. The multi-head attention mechanism lends itself to
enhance the stability of the attention learning process [13].
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The input to the second decoder layer with a single attention head is the context vector c
(1)
t .

We then compute the attention coefficient û
(2)
i,t ∈ R, i ∈ {1, · · · ,m} of the second decoder layer at

timestep t using Equation 3.14. Referring to the work proposed by Bello et al. [18], we clipped
the result within [−C,C] (we used C = 10 in this paper) using tanh. Then the probability pi,t,
for each node,i ∈ {1, · · · ,m}, is obtained through a softmax activation function using Equation
3.15:

u
(2)
i,t =











C · tanh(c
(1)
t

T
ki√

dv
), if i 6= π̂t

′ ∀t′ < t

−∞, otherwise

. (3.14)

pi,t = pθ(π̂t|s, π̂t
′ ∀t′ < t) = softmax(u

(2)
i,t ). (3.15)

Finally, according to the probability distribution pi,t, we shall use either a sampling strategy
or a greedy decoding strategy (to be introduced in Section 4.3) to predict the next node to visit.

4. DRL algorithm based on policy gradient

In this section, we present our implementation of two DRL algorithms: PPO and an Improved
baseline REINFORCE algorithm. Both algorithms will be used in the proposed model.

4.1. PPO for solving routing problems

PPO [44, 45], which is based on an actor-critic algorithm, is used to train our model. Figure
4.4 is the PPO framework for routing problems. The actor refers to the graph-attention model
mentioned in Section 3. The critic network is composed of multiple one-dimensional convolutional
layers and shares the same encoder network with the actor. The notation φ is used to represent
the parameter set of the critic network.

In the PPO, we update the network after an entire episode ends. Equation 3.1 in Section 3
defines the travel length L(π̂|s), which is used for obtaining an unbiased Monte Carlo estimation
of the policy gradient. The critic network is regarded as the baseline and output a scalar v̂φ(s)

to estimate the cumulative rewards, i.e., the travel length L(π̂|s). Advantage estimation Â is
computed by Equation 4.16. In Equation 4.17, pθ(π̂|s) is defined by Equation 3.2 in Section 3,
and r(θ) represents the probability ratio between the updated and the prior-update policy.

Â = L(π̂|s)− v̂φ(s) (4.16)

r(θ) =
pθ(π̂|s)
pθold(π̂|s)

(4.17)

The clipped surrogate objective LCLIP (θ) and the policy entropy loss function LE(θ), computed
by Equation 4.18 and Equation 4.19, respectively, are used to train the actor network. For more
detailed information about the clip and clip coefficient ǫ in Equation 4.18, please refers to the
PPO [44] (ǫ = 0.2 is chosen in [44]).

LCLIP (θ) = Ê[min{r(θ)Â, clip(r(θ), 1− ǫ, 1 + ǫ)Â}]. (4.18)

LE(θ) = Entropy(pθ(π̂|s)). (4.19)

The critic network is trained by the Mean Squared Error (MSE) loss LMSE(φ) computed by:

LMSE(φ) = MSE(L(π̂|s), v̂φ(s)). (4.20)

9



Actor Parameter

Training

Data

Behavior Actor Parameter

Muti-Layer Residual E-GAT

 Encoder

Decoder

Action

State

Probability

Rewards

Memory Buffer Muti-Layer Residual E-GAT

 Encoder

Decoder

Test

Data

Muti-Layer Residual E-GAT

 Encoder

Decoder

Trained Model

Critic Parameter

Gradient

Actor-Critic 

Update

Update

Old

Old Old

via Adam

TSP Tour

CVRP Tour

Figure 4.4: The DRL framework based on PPO.

Then the total loss function of the actor-critic model can be expressed as:

Loss(θ, φ) = cpLCLIP (θ) + cvLMSE(φ)− ceLE(θ), (4.21)

which is composed of three parts, including LCLIP (θ), LMSE(φ), and LE(θ). And their weights
are coordinated by parameters cp, cv, and ce. The objective is to reduce the LCLIP (θ) and
the LMSE(φ) and to increase the LE(θ) through gradient descent [44]. Table 4.2 shows the
instantiations of the reinforcement learning framework for the two routing problems.

Table 4.2: Definition of reinforcement learning components for routing problems.

Problem State Action Reward Termination

TSP Partial tour Grow tour by one node Change in tour cost Tour includes all nodes
CVRP Partial tour and vehicle inventory Grow tour by one node or depot Change in tour cost All needs are met

However, getting such an actor-critic algorithm to work is non-trivial. Engstrom et al. [46]
believes that the success of the PPO algorithm comes from minor modifications to the core
algorithm Trust Region Policy Optimization [47]. They called these modifications "code-level
optimization" and proved the effectiveness of these modifications. This paper adopts some parts
of "code-level optimization" when using the PPO algorithm to train our encoder-decoder model.
The following tricks sourced from the "code-level optimization" are used in our framework:

• Normalization of the reward in each mini-batch: In a standard PPO implementation,
rather than feeding the reward directly from the environment into the objective, it performs
a certain discount-based scaling scheme. We did not perform this discount-based scaling
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scheme. Instead, we normalize reward L(π̂|s) by subtracting the mean and dividing by the
standard deviation in each mini batch.

• Adam optimizer learning rate annealing: We used learning rate decay during training,
and update the learning rate at the end of each epoch:

lnew = lold · (β)epoch, (4.22)

where lnew and lold are the learning rate before and after each update, and β is a learning
rate annealing coefficient.

• Orthogonal initialization: Instead of using the default weight initialization scheme for
the actor and critic networks, we used an orthogonal initialization following Engstrom et
al. [46].

• Global Gradient Clipping: After computing the loss function gradient with respect to
the actor and the critic networks, we clip the concatenated gradient of all parameters such
that the "global L2 norm" does not exceed 2 following the recommendation in Bello et al.
[20].

The whole PPO algorithm is listed in Algorithm 1.

4.2. Improved baseline REINFORCE algorithm

In addition to the PPO algorithm described earlier, we also used an improved baseline
REINFORCE algorithm to train our model. To that end, we defined the loss function as
Loss(θ|s) = Eπ̂∼pθ(π̂|s)[L(π̂|s)]. The parameters θ is optimized by gradient descent using the
REINFORCE [48] algorithm with rollout baseline b:

∇θLoss(θ|s) = Eπ̂∼pθ(π̂|s)[(L(π̂|s)− b)∇θlogpθ(π̂|s)]. (4.23)

REINFORCE algorithm with rollout baseline was proposed by Kool et al. [1] in solving routing
problems. The critic network in the actor-critic algorithm was replaced by the so-called baseline
actor (policy) network, which can be described as a double actor structure. This replacing
strategy freezes the parameters θBL of the baseline policy network πθBL in each epoch, somewhat
similar to freezing the target Q-network in DQN [49]. At the end of each epoch, a greedy
decoding is used to compare the results of the current training policy and the baseline policy.
Then the parameters of the baseline policy network are updated only when an improvement is
significant according to a paired t-test (significance level α = 5%) on 10000 evaluation instances
as done in existing studies [8, 20, 21, 22, 1]. In the training process, "code-level optimization"
including Adam optimizer learning rate annealing and normalization of the reward function
is used to improve the performance of the baseline REINFORCE algorithm. We dubbed the
modified algorithm improved baseline REINFORCE algorithm (Rollout algorithm). The steps
are described in Algorithm 2.

4.3. Decoding strategy

Effective search algorithms for combinatorial optimization problems include beam search,
neighborhood search and tree search. Bello et al. [20] proposed search strategies such as sampling
and Active Search. We used the following two decoding strategies:
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Algorithm 1 PPO for Combinatorial Optimization

Input: number of total epochs Et, PPO epochs Ep, PPO steps Ts, steps per total epoch Pe, batch size
B; actor network πθ and behaviour actor network πθold with trainable parameters θ and θold; critic
network vφ with trainable parameters φ; policy loss coefficient cp; value function loss coefficient cv;
entropy loss coefficient ce; clipping ratio ǫ.

1: Initialization:Orthogonal initialization θ;φ, θold ← θ

2: for each total epoch = 1, · · ·, Et do

3: for each step = 1, · · · , Pe do

4: si ∼ RandomInstance() ∀i ∈ {1, · · · , B}
5: π̂i ∼ SampleSolution(pθold(π̂i|si)) ∀i ∈ {1, · · · , B}
6: Compute L(π̂i|si) via si, π̂i

7: Put si, π̂i, L(π̂i|si), pθold(π̂i|si) into Memory Buffer
8: if step%Ts == 0 then

9: for each PPO epoch = 1, · · · , Ep do

10: for each PPO step = 1, · · · , Ts do

11: v̂φ(si)← Vφ(si) ∀i ∈ {1, · · · , B}
12: L̄(π̂i|si)← Reward Normalization L(π̂i|si) ∀i ∈ {1, · · · , B}
13: Compute advantage estimates Âi = L̄(π̂i|si)− v̂φ(si)

14: ri(θ) =
pθ(π̂i|si)

pθold
(π̂i|si)

15: Li
CLIP (θ) = Ê[min{ri(θ)Âi, clip(ri(θ), 1− ǫ, 1 + ǫ)Âi}]

16: Li
MSE(φ) = MSE(L̄(π̂i|si), v̂φ(si))

17: Li
E(θ) = Entropy(pθ(π̂i|si))

18: Lossi(θ, φ) =
1
B

∑B

i=1{cpL
i
CLIP (θ) + cvL

i
MSE(φ)− ceL

i
E(θ)}

19: Update θ, φ by a gradient method w.r.t. Lossi(θ, φ)
20: end for

21: end for

22: θold ← θ

23: Clear Memory Buffer
24: end if

25: end for

26: end for

Output: Trained parameters set θ of the actor
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Algorithm 2 Improved baseline REINFORCE Algorithm

Input: number of epochs E, steps per epoch Pe, batch size B, significance level α; actor network πθ

with trainable parameters θ; Baseline policy network πθBL with trainable parameters θBL.
1: Initialization:Xavier initialization θ, θBL ← θ

2: for each epoch = 1, · · ·, Et do

3: for each step = 1, · · · , Pe do

4: si ∼ RandomInstance() ∀i ∈ {1, · · · , B}
5: π̂i ∼ SampleSolution(pθ(π̂i|si)) ∀i ∈ {1, · · · , B}
6: π̂BL

i ∼ GreedySolution(pθBL(π̂i|si)) ∀i ∈ {1, · · · , B}
7: Compute L(π̂i|si), L(π̂

BL
i |si) via si, π̂i, π̂

BL
i

8: L̄(π̂i|si)← Reward Normalization L(π̂i|si)
9: L̄(π̂BL

i |si)← Baseline Reward Normalization L(π̂BL
i |si)

10: Compute advantage estimates Âi = L̄(π̂i|si)− L̄(π̂BL
i |si))

11: ∇θLoss(θ|si) =
1
B

∑B

i=1 Eπ̂∼pθ(π̂|s)[Âi∇θlogpθ(π̂i|si)]
12: θ ← Adam(θ,∇θLoss(θ|si))
13: end for

14: if OneSidedPairedTTest(pθ, pθBL) < α then

15: θBL ← θ

16: end if

17: end for

Output: Trained parameters set θ of the actor

• Greedy Decoding: Generally, a greedy algorithm selects a local optimal solution and
provides a fast approximation of the global optimal solution. In each decoding step, the
node with the highest probability is selected greedily, and the visited nodes are masked
out. For the TSP problem, the search is terminated when all nodes have been visited.
For CVRP, the search is terminated when the requirements of all nodes are satisfied to
construct an effective solution.

• Stochastic Sampling: In each decoding timestep t ∈ {1, · · · ,m}, the random policy
pθ(π̂t|s, π̂t

′ ∀t′ < t) samples the nodes to be selected according to the probability distribu-
tion to construct an effective solution. During testing, Bello et al. [20] used temperature
hyperparameters λ ∈ R to modify Equation 3.15 to ensure the diversity of sampling. The
modified Equation is as follows:

pi,t = pθ(π̂t|s, π̂t
′ ∀t′ < t) = softmax(

u
(2)
i,t

λ
) (4.24)

Through grid search of the temperature hyperparameters, we found that the temperature
of 2, 2.5, 1.5 provide best results for TSP20, TSP50, and TSP100, respectively. In addi-
tion, the temperature of 2.5, 1.8, 1.2 supply the best results for CVRP20, CVRP50, and
CVRP100, respectively.

In the training process, stochastic sampling is usually needed to explore the environment
to obtain a better model performance. In the testing process, we used the greedy decoding.
Moreover, we sampled 1280 solutions (following the existing studies [8, 20, 21, 22, 1]) by using
stochastic sampling with a selected temperature hyperparameters λ and listed the best one in
Table 5.4 (the row indicated by "Ours (Sampling)") and Table 5.5 (the row indicated by "Ours
(Sampling)") .
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5. Computational Experiment

Our framework is suitable for many combinatorial optimization problems. For different op-
timization problems, only the input, masks and decoder context vectors need to be adjusted.
This paper mainly focuses on the routing problems TSP and CVRP. We trained the proposed
graph-attention model for both TSP and CVRP instances with the number of nodes m = 20, 50
and 100, respectively. Instances were generated with batch sizes of 512, 128, 128 (affected by
memory) for the three different numbers of nodes, respectively. Each epoch of the PPO algorithm
contains 800, 3000, and 3000 batches respectively, and for the Rollout algorithm each contains
1600, 6000, and 6000 batches correspondingly. We trained 100 epochs using instances randomly
generated from the unit square [0, 1] × [0, 1]. And 10,000 test instances following the existing
studies [8, 20, 21, 22, 1] are generated with the same data distribution. As the testing process
does not update the model parameters, a larger batch size can be used. We used a Nvidia GeForce
RTX2070 GPU to complete the training of TSP and CVRP with sizes of m = 20 and 50. Since
the memory of GPU in the personal computer is limited, the training process with instances of
m = 100 and all testing processes are performed on an Nvidia Tesla V100 GPU. The values of
other related hyper-parameters for the training process are listed in Table 5.3. Furthermore, we
analyzed the sensitivities of hyper-parameters in Appendix A. The hyper-parameter values for
TSP and CVRP of the same size are identical. The model is constructed by PyTorch [50], and
the code is implemented by using Python 3.7.

Table 5.3: The values of the hyper-parameters used in our framework.

Parameters Value Parameters Value

Number of encoder layers ℓ 4 PPO steps Ts 1

Learning rate decay β 0.96 Heads of attention H 8

PPO learning rate l 3 × 10−4(m = 20) PPO epochs Ep 3

1 × 10−4(m = 50, 100) Optimizer Adam [51]

Rollout learning rate l 1 × 10−3(m = 20) Node embedding dimension dx 128

3 × 10−4(m = 50, 100) Edge embedding dimension de 64

5.1. TSP results

The test results of TSP instances for difference sizes are reported in Table 5.4. The comparison
benchmark method is the Gurobi solver. The optimization solver Gurobi [52] can obtain an
exact solution of TSP via mixed integer programming within a reasonable running time. The
Google OR tools are developed based on local search and can be generally used to judge non-
learned algorithms, such as heuristics with greedy search strategies. The listed results cover three
groups of solution techniques, including exact solver, greedy approaches, and sampling/search
approaches. Except for Gurobi and our results (both shown in bold) in the Table 5.4, all others
are taken from Table 1 [1] and Table 1 [8]. For more detailed information about non-learned
algorithms (Nearest Insertion, Random Insertion, Farthest Insertion, Nearest Neighbor), please
refer to Appendix B of Kool et al. [1]. All the results are expressed by the average travel length
L(π̂|s) of Ntest (here Ntest = 10, 000) test instances. And Opt. Gap denotes the average optimal
gap between a result and the optimal solution L(π|s) delivered by the optimization solver Gurobi,
as shown in the following Equation:

Opt. Gap =
1

Ntest

Ntest
∑

i=1

L(π̂|s)− L(π|s)
L(π|s) (5.25)
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Table 5.4: Performance of our framework compared to non-learned algorithms and state-of-the-art methods for
TSP instances.

Method Type
TSP20 TSP50 TSP100

Length Gap Time Length Gap Time Length Gap Time

Gurobi Solver 3.829 0.00% 1m 5.698 0.00% 20m 7.763 0.00% 3h

Nearest Insertion H,G 4.33 12.91% 1s 6.78 19.03% 2s 9.46 21.82% 6s
Random Insertion H,G 4.00 4.36% 0s 6.13 7.65% 1s 8.52 9.69% 3s
Farthest Insertion H,G 3.93 2.36% 1s 6.01 5.53% 2s 8.35 7.59% 7s
Nearest Neighbor H,G 4.50 17.23% 0s 7.00 22.94% 0s 9.68 24.73% 0s
PtrNet [19] SL,G 3.88 1.15% 7.66 34.48% -
PtrNet [20] RL,G 3.89 1.42% 5.95 4.46% 8.30 6.90%
S2V [10] RL,G 3.89 1.42% 5.99 5.16% 8.31 7.03%
GAT [22] RL,G 3.86 0.66% 2m 5.92 3.98% 5m 8.42 8.41% 8m
GAT [22] RL,G,2OPT 3.85 0.42% 4m 5.85 2.77% 26m 8.17 5.21% 3h
AM [1] RL,G 3.85 0.34% 0s 5.80 1.76% 2s 8.12 4.53% 6s
GCN [8] SL,G 3.86 0.60% 6s 5.87 3.10% 55s 8.41 8.38% 6m
Ours (Greedy) RL,G 3.832 0.06% 1s 5.755 0.98% 4s 8.048 3.67% 11s

OR Tools H,S 3.85 0.37% 5.80 1.83% 7.99 2.90%
Chr.f. + 2OPT H,2OPT 3.85 0.37% 5.79 1.65% -
PtrNet [20] RL,S - 5.75 0.95% 8.00 3.03%
GNN [40] SL,BS 3.93 2.46% - -
GAT [22] RL,S 3.84 0.11% 5m 5.77 1.28% 17m 8.75 12.70% 56m
GAT [32] RL,S,2OPT 3.84 0.09% 6m 5.75 1.00% 32m 8.12 4.64% 5h
AM [1] RL,S 3.84 0.08% 5m 5.73 0.52% 24m 7.94 2.26% 1h
GCN [8] SL,BS 3.84 0.10% 20s 5.71 0.26% 2m 7.92 2.11% 10m
GCN [40] SL,BS* 3.84 0.01% 12m 5.70 0.01% 18m 7.87 1.39% 40m
Ours (Sampling) RL,S 3.830 0.01% 10m 5.738 0.70% 55m 7.896 1.71% 2h

Note: DL/DRL approaches are named according to the type of neural network used. In the Type column, H: heuristic method;
SL: supervised learning; S: sample search; G: greedy search; BS: beam search; BS*: beam search and shortest path heuristics;
2OPT: 2OPT local search.

In Table 5.4, our results are obtained by applying our trained graph attention model to the
TSP testing instances. The applied model is trained by using the Rollout algorithm introduced in
Section 4.2, as the PPO algorithm performs slightly less well. We point out that, for our trained
model, the greedy decoding strategy can obtain almost the same solution quality as that by the
sampling strategy, for example, 3.67% vs. 1.71% Opt. Gap for TSP100 instances. Furthermore,
for our model, the running time of the greedy decoding strategy is much faster compared to the
sampling strategy, for example, 11s vs. 2h for TSP100 instances.

Compared with other learning-based methods, our method has a significant improvement in
the quality of solutions when adopting the greedy decoding strategy. This is clearly shown in
the row indicated by "Ours (Greedy)" in Table 5.4. Our results using the sampling strategy
(indicated by "Ours (Sampling)" in Table 5.4 are at least compatible to other results. Table
5.4 lists also the solution time (from test instances) of some methods. Due to the difference in
implementation language and hardware, it is not meaningful for direct comparison of running
time.

Figure B.10 in Appendix B shows the visualization of the solutions to the random TSP
instances with 100 nodes through sampling and greedy decoding, respectively. Figure 5.5 shows
the convergency of the PPO and Rollout two algorithms training the graph-attention model.
Both use a validation set of size 10000 with greedy decoding. It can be seen from Figure 5.5
that the convergence trends are almost the same for the two methods. It is worth noting that
the PPO only uses half of the training data used by the Rollout, but the Rollout converges faster.
In the TSP50 and TSP100 problems, the model proposed by Kool et al. [1] needs more than one
million training samples. Our PPO and Rollout only use 384,000 and 768,000 training samples
respectively, nevertheless the performance of our trained model is better than that of Kool et al.
[1].

5.2. CVRP results

CVRP is defined through an undirected graph G = (V,E,W ) where node i = {0, 1, · · · ,m}
is represented by features ni. The index i = 0 represents the depot node, and i(i > 0) represents
the i-th customer node. The vehicle has capacity D > 0 and each customer node i = {1, · · · ,m}
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(a) TSP20 (b) TSP50 (c) TSP100

Figure 5.5: The Opt. Gap convergency curves of PPO and Rollout on the validation set.

has a demand δi, 0 < δi < D. It is assumed that the depot demand δ0 = 0. Both depot and
customer nodes are randomly generated from the unit square [0, 1] × [0, 1]. We generated 21,
51, and 101 nodes (the first node is the depot) for problems with a size of m = 20, 50, and 100,
and the corresponding vehicle capacities are 30, 40, and 50, respectively. The customer node
demands are sampled uniformly from {1, · · · , 9}. And we normalized the customer node demand
to [0, 1] through δ

′

i =
δi
10 , so the vehicle capacity D is transformed into 3, 4, and 5 accordingly.

The input, masks and decoder context vectors are adjusted for CVRP:

• Input: Switching to CVRP only needs to expand the node feature ni to a three-dimensional
input n

′

i that includes the normalized demand δ
′

i and node feature ni:

n
′

i = ni||δ
′

i (5.26)

• Vehicle remaining capacity update: We masked out the customer nodes that have been
served, so there is no need to update the needs of served customer nodes. The decoder
selects the customer node π̂t at timestep t, and the remaining capacity of the vehicle is
represented by D

′

t. It is assumed that the vehicle starts at the depot when the decoding
timestep t = 1 and the vehicle is fully loaded (with vehicle remaining capacity D

′

1 = D).
The remaining vehicle capacity is updated by using the following Equation:

D
′

t =

{

D
′

t−1 − δ
′

π̂t
, π̂t = i, i ∈ {1, · · · ,m}

D, π̂t = 0
. (5.27)

• Decoder context vector: The context vector c
(0)
t of the decoder at timestep t ∈ {1, · · · ,m}

consists of three parts: graph embedding x̄, embedding of node π̂t and vehicle remaining
capacity D

′

t−1:

c
(0)
t =







x̄+Wx(x
(L)
π̂t−1

||D′

t−1), t > 1

x̄+Wx(x
(L)
0 ||D′

t), t = 1
. (5.28)

• Mask update: For CVRP, our mask consists of two parts: the customer node mask and
the depot node mask. For the customer node mask, we mask out a customer node that has
been served or when the demand of a customer node is greater than the remaining capacity

of the vehicle. That is, customer node i’s attention coefficients u
(0)
i,t , u

(1)
i,t = −∞ (introduced

in Section 3.2) when δ
′

i > D
′

t−1 or i 6= π̂t
′ ∀t′ < t, i ∈ {1, · · · ,m}. For the depot mask, as

the depot will not be the next chosen node when the vehicle leaves the depot, the depot

node 0’s attention coefficients u
(0)
0,t , u

(1)
0,t = −∞ for t = 1 or π̂t−1 = 0, when the vehicle is at

the depot.
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The test results of CVRP instances with various sizes are listed in Table 5.5. Our results
again are obtained by applying our trained graph attention model to the CVRP testing instances
using the Rollout Algorithm due to the same reason. Except for ours, the results in this Table
are taken from Table 1 [1]. The structure and symbol description in the Table are identical to
those introduced in Table 5.4 in Section 5.1. Our solution approaches outperform other listed
learning based algorithms in terms of solution quality. Figure B.11 in Appendix B shows the
visualization of the solutions to the random CVRP instances with 100 nodes through sampling
and greedy decoding, respectively.

Table 5.5: Performance of our framework versus state-of-the-art methods for CVRP instances with various sizes.

Method Type
VRP20 VRP50 VRP100

Length Gap Time Length Gap Time Length Gap Time

Gurobi Solver 6.10 0.00% - -
LKH3 Solver 6.14 0.58% 2h 10.38 0.00% 7h 15.65 0.00% 13h

PtrNet [21] RL, G 6.59 8.03% 11.39 9.78% 17.23 10.12%
AM [1] RL, G 6.40 4.97% 1S 10.98 5.86% 3S 16.80 7.34% 8s
Ours (Greedy) RL, G 6.26 2.60% 2s 10.80 4.05% 7s 16.69 6.68% 17s

OR Tools H, S 6.43 5.41% 11.31 9.01% 17.16 9.67%
PtrNet [21] SL, BS 6.40 4.92% 11.15 7.46% 16.96 8.39%
AM [1] RL, S 6.25 2.49% 6m 10.62 2.40% 28m 16.23 3.72% 2h
Ours (Sampling) RL, S 6.19 1.47% 14m 10.54 1.54% 1h 16.16 3.25% 4h

Note: DL/DRL approaches are named according to the type of neural network used. In the Type column, H: heuristic
method; SL: supervised learning; S: sample search; G: greedy search; BS: beam search; BS*: beam search and shortest
path heuristics; 2OPT: 2OPT local search.

5.3. Testing running time complexity analysis

We next report the running times of the entire encoder-decoder model (graph-attention
model) and the decoder model only when the graph size (number of nodes) increases from 1
to 500. Each test is run with a single batch (batch size=1). Figure 5.6 shows that our framework
has linear testing time complexity on graph size (number of nodes). The running time mainly
is consumed by the decoder. The encoder generally completes the embedding of nodes quickly
(within 1ms). Table 5.6 summarizes the running time complexity, running time (average), ac-
celeration factor, and optimal gap of exact algorithms, heuristic algorithms, and learning-based
methods for TSP with 100 nodes. All those results except ours are taken from Table 1 of Drori
et al. [28]. Our results are listed in bold. The running time of exact algorithms, approximate
algorithms, and heuristic algorithms increases at least squarely in the graph size. S2V-DQN [10]
and GPN [25] are both reinforcement learning methods, and their running time complexity is
O(n2) and O(nlogn) respectively. In particular, they have a large Opt. Gap (8.4% and 8.6%
respectively). The running time complexity of our method is O(n), and both the running time
and the Opt. Gap are significantly improved. GAT [28] has the same running time complexity
as our method, but its Opt. Gap is larger.

Table 5.6: Comparison of running time for TSP.

Method Runtime Complexity Runtime (ms) Speedup Opt. Gap

Gurobi (Exact) NA 3, 220 2, 752.1 0.00%
Concorde (Exact) NA 254.1 217.2 0.00%

Christofifides O(n3) 5, 002 4, 275.2 2.90%

LKH O(n2.2) 2, 879 2460.7 0.00%

2-opt O(n2) 30.08 25.7 9.70%

Farthest O(n2) 8.35 7.1 7.50%

Nearest O(n2) 9.35 8 24.50%

S2V-DQN [Dai et al., 2017][10] O(n2) 61.72 52.8 8.40%
GPN [Ma et al., 2019][25] O(nlogn) 1.537 1.3 8.60%
GAT [Drori et al., 2020][28] O(n) 1.17 1 7.40%
Ours (Greedy) O(n) 1.06 1 3.70%
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Figure 5.6: The running time vs. TSP size (number of nodes) increased from 1 to 500.

5.4. Results comparison among our framework, Attention Model and Pointer Networks

Figure 5.7 compares the results of the TSP with 20 nodes on different models, including
PtrNet (PN), attention model (AM) and our residual E-GAT (Our) during the training process.
We used both the Rollout that employs a normalization of the reward function and its original
version (Rollout (no-norm)) which does not normalize the reward function. We ran each exper-
iment twice as did by Kool et al [1], so there are two curves for each method in Figure 5.7. We
reproduced the results of the PN and the AM with the Rollout (no-norm) reported by Kool et
al [1]. All experiments are performed on a single Nvidia GeForce RTX2070 GPU. The training
time for one epoch on a single Nvidia GeForce RTX2070 GPU are 503s for PN, 525s for AM,
and 636s for Ours, respectively (For the same model, Rollout and Rollout (no-norm) have the
same training time). For each training the annealing learning rate η = 10−3 × 0.96epoch.

We reported the Opt. Gap of each epoch for each model on a validation set of 10000 with
greedy decoding. The results show that our residual E-GAT is better than AM and PN for both
Rollout and Rollout(no-norm) algorithms, in terms of convergence speed and solution quality.
We also overserve that the Rollout with normalization of the reward function is better than
Rollout (no-norm).

5.5. Performance analysis of GAT, Residual GAT and Residual E-GAT

Table 5.7 shows the results of TSP with 20 nodes of GAT as the number of layers increases.
It can be found that the reward cannot converge when the number of GAT layers is more
than 2. To remedy this problem, we employed a residual connection (as described in Section
3.1) for each GAT sub-layers. The resulting variant of GAT is called Residual GAT. Figure
5.8 compared the performance of one-layer GAT, two-layer GAT, Residual GAT and Residual
E-GAT during training. All these models were implemented on the same machine. Residual
GAT and Residual E-GAT contain four layers, respectively. We used the annealing learning rate
η = 3 × 10−4 × 0.96epoch. This performs best for the one-layer GAT and the two-layers GAT,
while η = 10−3 × 0.96epoch are used for the Residual GAT and Residual E-GAT. There is an
obvious improvement when adding residual connection to the GAT. This improvement could
be caused by the fact that a deeper GAT is powerful to capture the information among the
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Figure 5.7: The validation Opt. Gap convergency curves of the attention model (AM), PtrNet (PN) and our
model (Our).

graphs but more difficult to train. Therefore, we introduced the residual connection to ease the
training of the deeper GAT, a different approach than those used previously [42]. Furthermore,
the Residual E-GAT has a further improvement relative to Residual GAT. Compared to the best
result of the GAT, the Residual E-GAT reduces the Opt. Gap from 0.85% to 0.06%.

Table 5.7: The results of GAT using different layers.

Number of Layers 1 2 3 5 8

Length (Opt. Gap)

3.86(0.86%) 3.87(1.09%) 10.41(171%) 10.41(171%) 10.41(171%)

3.86(0.85%) 3.88(1.31%) 10.41(171%) 10.41(171%) 10.41(171%)

5.6. The generalization performance of our framework

We used small and medium-sized instances from the public libraries TSPLIB [53] and CVR-
PLIB [54] to verify the generalization performance from random instance training to real-world
instance testing. The instance suffix for an instance in TSPLIB indicates the number of nodes.
Table 5.8 shows the results of exact algorithm, reinforcement learning methods and approximate
algorithms. Except for ours, the results in this Table are taken from Table C.2 [9]. S2V-DQN
[10] is a reinforcement learning method that uses the Active Search proposed by Bello et al.
[20] to solve the instance problems in TSPLIB. Its generalization performance does not depend
on the distribution of the training data. Different than greedy decoding with a fixed model,
Active Search can refine the parameters of the stochastic policy pθ during testing on a single test
data. Therefore, solving through Active Search consumes a lot of time. Instead of using Active
Search, we used greedy decoding in training our model with the 100-node random instances for
the purpose of testing the instances in TSPLIB. We saved the model parameters at the end of
each epoch, which constitute a set of 100 models (epoch = 100). For each instance, the tour
found by each individual model is collected and the shortest tour is chosen. We refer to this
approach as trained-greedy100.

For small sized instances (customer m < 75) and medium size instances (customer m ≥ 75)
in CVRLIB, we used the trained models by 50 and 100 nodes random instances to test them,
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Figure 5.8: The validation Opt. Gap convergency curves of one-layer GAT, two-layer GAT, Residual GAT and
Residual E-GAT during training.

Table 5.8: Comparison of different approaches to solve the instances in TSPLIB.

TSPLIB Exact RL Approx.
Instance Concord Ours S2V-DQN Farthest 2-opt Cheapest Closet Christofides Nearest MST

eil51 426 428 439 467 446 494 488 527 511 614
berlin52 7,542 7,802 7,542 8,307 7,788 9,013 9,004 8,822 8,980 10,402

st70 675 681 696 712 753 776 814 836 801 858
eil76 538 555 564 583 591 607 615 646 705 743
pr76 108,159 111,036 108,446 119,692 115,460 125,935 128,381 137,258 153,462 133,471
rat99 1,211 1,304 1,280 1,314 1,390 1,473 1,465 1,399 1,558 1,665

kroA100 21,282 22,372 21,897 23,356 22,876 24,309 25,787 26,578 26,854 30,516
kroB100 22,141 23,961 22,692 23,222 23,496 25,582 26,875 25,714 29,158 28,807
kroC100 20,749 22,002 21,074 21,699 23,445 25,264 25,640 24,582 26,327 27,636
kroD100 21,294 22,642 22,102 22,034 23,967 25,204 25,213 27,863 26,947 28,599
kroE100 22,068 23,162 22,913 23,516 22,800 25,900 27,313 27,452 27,585 30,979
rd100 7,910 7,930 8,159 8,944 8,757 8,980 9,485 10,002 9,938 10,467
eil101 629 652 659 673 702 693 720 728 817 847
lin105 14,379 14,932 15,023 15,193 15,536 16,930 18,592 16,568 20,356 21,167
pr107 44,303 46,415 45,113 45,905 47,058 52,816 52,765 49,192 48,521 55,956
pr124 59,030 60,487 61,623 65,945 64,765 65,316 68,178 64,591 69,297 82,761

bier127 118,282 124,387 121,576 129,495 128,103 141,354 145,516 135,134 129,333 153,658
ch130 6,110 6,203 6,270 6,498 6,470 7,279 7,434 7,367 7,578 8,280
pr136 96,772 98,481 99,474 105,361 110,531 109,586 105,778 116,069 120,769 142,438
pr144 58,537 60,844 59,436 61,974 60,321 73,032 73,613 74,684 61,652 77,704
ch150 6,528 6,825 6,985 7,210 7,232 7,995 7,914 7,641 8,191 9,203

kroA150 26,524 28,077 27,888 28,658 29,666 29,963 32,631 31,341 33,612 38,763
kroB150 26,130 27,431 27,209 27,404 29,517 31,589 33,260 31,616 32,825 35,289
pr152 73,682 77,125 75,283 75,396 77,206 88,531 82,118 86,915 85,699 90,292
u159 42,080 44,273 45,433 46,789 47,664 49,986 48,908 52,009 53,641 54,399

Opt. Gap 0.00% 4.10% 3.50% 7.70% 8.40% 15.50% 17.70% 17.80% 21.40% 31.40%
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respectively. Table 5.9 and Table 5.10 show the optimal solutions and our graph-attention model
results for instances in CVRPLIB. We listed the Opt. Gap for each instance and the average of
all instances.

The average Opt. Gap are 4.1%, 6.39% and 10.45% for TSP, small and medium sized CVRP
benchmark instances, respectively. The results verify that our framework has generalization
performance from random instance training to real-world instance testing. Finally, Figure C.12
and Figure C.13 in Appendix C show the visualized solutions of instances in TSPLIB and
CVRPLIB with different sizes.

Table 5.9: Trained by random instances with 50 nodes and solved the instances with different sizes in CVRPLIB
by trained-greedy100.

No. Problem Nodes Capacity Routes Optimal

Ours (Greedy)

Opt. Gap
Routes Distance

1 A-n32-k5 31 100 5 784 5 789 0.63%
2 A-n36-k5 35 100 5 799 5 839 5.00%
3 A-n37-k5 36 100 5 669 5 710 6.12%
4 A-n38-k5 37 100 5 730 5 751 2.87%
5 A-n39-k5 38 100 5 822 5 838 1.94%
6 A-n44-k6 43 100 6 937 6 984 5.01%
7 A-n45-k6 44 100 6 944 6 984 4.23%
8 A-n46-k7 45 100 7 914 7 999 9.29%
9 A-n48-k7 47 100 7 1,073 7 1,123 4.65%
10 A-n63-k10 62 100 10 1,314 12 1,519 15.60%
11 A-n64-k9 63 100 9 1,401 12 1,659 18.40%
12 A-n65-k9 64 100 9 1,174 10 1,246 6.13%
13 A-n69-k9 68 100 9 1,159 10 1,264 9.05%
14 B-n34-k5 33 100 5 788 5 812 3.04%
15 B-n35-k5 34 100 5 955 5 986 3.24%
16 B-n45-k6 44 100 6 678 7 729 7.52%
17 B-n50-k7 49 100 7 741 7 798 7.69%
18 B-n51-k7 50 100 7 1,032 8 1,045 1.25%
19 B-n52-k7 51 100 7 747 7 762 2.00%
20 B-n56-k7 55 100 7 707 7 755 6.79%
21 B-n57-k9 56 100 9 1,598 9 1,638 2.50%
22 B-n63-k10 62 100 10 1,496 12 1,667 11.43%
23 B-n64-k9 63 100 9 861 11 989 14.86%
24 B-n66-k9 65 100 9 1,316 9 1,381 4.93%
25 B-n68-k9 67 100 9 1,272 9 1,397 9.82%
26 E-n30-k3 29 4500 3 534 5 585 9.55%
27 E-n51-k5 50 160 5 521 6 553 6.14%
28 P-n50-k8 49 120 8 631 9 655 3.80%
29 P-n51-k10 50 80 10 741 10 811 9.44%
30 P-n55-k10 56 115 10 694 10 726 4.61%
31 P-n60-k10 59 120 10 744 10 776 4.30%
32 P-n65-k10 64 130 10 792 10 826 4.29%
33 P-n70-k10 69 135 10 827 11 865 4.59%

Average 6.39%

6. Conclusion

In this research, a general deep reinforcement learning framework for solving routing problems
is introduced. An encoder based on an improved GAT, which forms a graph-attention model with
the Transformer decoder, is proposed. Two deep reinforcement learning algorithms: PPO and
improved baseline REINFORCE algorithm, are used to train the model. The PPO has higher
efficiency of sample utilization compared with the improved baseline REINFORCE algorithm,
and both algorithms can achieve better performance with less than one million training data.
Our framework significantly improves the results of solving TSP and CVRP problems using fewer
training data compared with existing studies. Moreover, it can be found that our framework has
linear running time complexity during the testing process. For real-world instances of TSPLIB
and CVRPLIB, our framework exhibits similar performance as it does in random instances. This
indicates our framework has generalization performance from random instance training to actual
problem testing, even using fewer instances for training.

For the future research, PPO and improved baseline REINFORCE algorithm may be com-
bined for finding a better DRL framework. Furthermore, the proposed framework is also possible
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Table 5.10: Trained by random instances 100 nodes and solved the instances with different sizes in CVRPLIB by
trained-greedy100.

No. Problem Nodes Capacity Routes Optimal

Ours (Greedy)

Opt. GapRoutes Distance

1 A-n80-k10 79 100 10 1,763 10 1,890 7.20%
2 B-n78-k10 77 100 10 1,221 10 1,333 9.17%
3 E-n76-k10 75 140 10 830 10 870 4.81%
4 E-n101-k14 100 112 14 1,067 14 1,163 8.96%
5 M-n101-k10 100 200 10 820 10 873 6.46%
6 M-n121-k7 120 200 7 1,034 8 1,144 10.63%
7 M-n151-k12 150 200 12 1,015 12 1,106 8.96%
8 M-n200-k17 199 200 17 1,275 17 1,414 10.90%
9 P-n76-k5 75 280 5 627 5 690 10.04%
10 P-n101-k4 100 400 4 681 4 820 20.41%
11 X-n106-k14 105 600 14 26,362 14 28,085 6.53%
12 X-n125-k30 124 188 30 55,539 30 59,147 6.49%
13 X-n134-k13 133 643 13 10,916 13 12,342 13.06%
14 X-n148-k46 147 18 46 43,448 46 50,462 16.14%
15 X-n157-k13 156 12 13 16,876 13 20,273 20.12%
16 X-n181-k23 180 8 23 25,569 23 28,566 11.72%
17 X-n200-k36 199 402 36 58,578 36 63,276 8.02%
18 X-n223-k34 222 836 34 40,437 37 43,508 7.59%
19 X-n251-k28 250 69 28 38,684 28 42,965 11.06%
20 X-n266-k58 265 35 58 75,478 62 83,155 10.17%
21 X-n298-k31 297 55 31 34,231 32 38,023 11.07%

Average 10.45%

to solve more complex VRP problems with extra constraints or other complex combinatorial op-
timization problems, such as job shop scheduling problems and flexible job shop scheduling
problems.
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Appendix A. Sensitivity Analyses

(a) Dimension of initial node/edge embedding (b) Number of encoder layers

Figure A.9: Sensitivity analyses of hyperparameters in our graph-attention model.

In this section, we analyzed the sensitivities of hyper-parameters in the proposed framework,
which could greatly influence the solution quality of our graph-attention model. Studied are three
hyper-parameters including the dimension of the initial node embedding (dx), the dimension
of the initial edge embedding (de) and the number of the encoder layers (L). First, we re-
trained the network by setting the embedding dimension of the node to be 64 or 128, and the
embedding dimension of the edge as 8 or 16, respectively. Figure 9(a) shows the Opt. Gap
convergency curves for TSP with 20 nodes. It can be found that the results tend to get better
with increased embedding dimensions of the node and the edge. This finding arises because
some useful information will be neglected in lower dimensional space, which leads to deteriorated
algorithm output. Similarly, we tested the sensitivity of the encoder layers L(L = [3, 4, 5, 6]),
and the Opt. Gap convergency curves are demonstrated in Figure 9(b). The training time of an
epoch on a single Nvidia GeForce RTX2070 GPU are 536s, 632s, 712s, and 805s, respectively.
It can be seen that the model with three encoder layers achieved the worst performance. This
finding confirmed that a shallow model makes it difficult to capture the information among the
nodes and the edges in a graph structure. We found L = 4 is a good trade-off between quality
of the results and computational complexity (training time) of the model.

26



Appendix B. Solutions of random instances

Figure B.10 and B.11 show instance solutions for the TSP and the CVRP with 100 nodes
obtained by our model compared with the optimal solutions. Our solutions were obtained by
a single construction using the trained model with either greedy decoding or sampling 1280
solutions (following the existing studies [8, 20, 21, 22, 1]) with the best one reported.

Figure B.10: testing a random TSP instance problem with 100 nodes through sampling and greedy decoding.

Appendix C. Solutions of standard benchmark instances

Figure C.12 and Figure C.13 show the solution of the standard benchmark instance for
the TSP and CVRP using our method. The solutions were obtained by trained-greedy100 as
described in Section 5.6.
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Figure B.11: Solving a random CVRP instance problem with 100 nodes through sampling and greedy decoding,
where, R: Route; N: nodes included in the path; C: all demand of the path/vehicle capacity; and D: the length of
the path. Edges from and to depot omitted for clarity.

Figure C.12: Instances of TSPLIB solutions obtained by our method through trained-greedy100.
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Figure C.13: Instances of CVRPLIB solutions obtained by our method through trained-greedy100, where, R:
Route; N: nodes included in the path; C: all demand of the path/vehicle capacity; and D: the length of the path.
Edges from and to depot omitted for clarity.
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