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Abstract The burial of hydrophobic amino acids in the
protein core is a driving force in protein folding. The extent
to which an amino acid interacts with the solvent and the
protein core is naturally proportional to the surface area
exposed to these environments. However, an accurate
calculation of the solvent-accessible surface area (SASA),
a geometric measure of this exposure, is numerically
demanding as it is not pair-wise decomposable. Further-
more, it depends on a full-atom representation of the
molecule. This manuscript introduces a series of four
SASA approximations of increasing computational com-
plexity and accuracy as well as knowledge-based environ-
ment free energy potentials based on these SASA
approximations. Their ability to distinguish correctly from
incorrectly folded protein models is assessed to balance
speed and accuracy for protein structure prediction. We find
the newly developed “Neighbor Vector” algorithm provides
the most optimal balance of accurate yet rapid exposure
measures.
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Abbreviations
ANN artificial neural network
AUC Area under the receiver operating characteristic

curve
CASP Critical assessment of structure prediction
KBP Knowledge-based potential
MSMS Maximal speed molecular surfaces
NC Neighbor count
NV Neighbor vector
OLS Overlapping spheres
PDB Protein data bank
ROC Receiving operating characteristic
RMSD Root mean square deviation
rSASA Per-residue solvent-accessible surface area
SASA Solvent-accessible surface area
VMD Visual molecular dynamics

Introduction

Computational protein structure prediction gains
importance in the post-genomic area

Genome sequencing has provided a wealth of information
about the amino acid sequence of proteins. While x-ray
crystallography and nuclear magnetic resonance spectros-
copy made great progress in elucidating the structure of
many of these proteins, these experimental techniques are
laborious and are not feasible for use on all proteins [1]. In
particular, membrane proteins, which comprise greater than
50% of all drug targets [2], and large protein complexes
evade experimental structure elucidation. While up to 35%
of all proteins are membrane proteins [3], less than 2% of
structures deposited in the PDB belong to this class (as of
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02/2008). Therefore, there has been an increased demand
for computational methods to predict the structure for such
proteins and to assist in structure elucidation from sparse or
low-resolution experimental data generated by complemen-
tary techniques such as electron paramagnetic resonance
spectroscopy [4], x-ray crystallography [5], and cryo-
electron microscopy [5].

Protein structure prediction techniques can be categorized
into comparative modeling techniques that build a model of
the target protein based on the known structure of a related
template protein, and de novo structure prediction techniques
that can be used in the absence of a suitable template
structure [6]. Proteins usually fold into the conformation with
the lowest free energy, so protein structure prediction is
essentially a search amongst all possible conformations of an
amino acid sequence for the conformation with the lowest
free energy. While both classes of protein structure predic-
tion techniques depend critically on energy functions to
evaluate the candidate conformations (also commonly called
models), de novo structure prediction in particular requires
very rapid yet accurate energy evaluation functions in order
to search a large conformational space in a short period of
time [6]. These energy evaluation functions approximate the
energy of a given protein model and thus provide a way to
“score” each model. Both comparative modeling and de
novo structure prediction methods have been evaluated in
recent critical assessment of structure prediction (CASP)
experiments [7] during which computational methods have
repeatedly predicted protein structures de novo to within 5 Å
C/ rmsd [8].

Knowledge-based energy functions allow accurate and
rapid calculation of classical energy terms

Energetic terms, such as hydrogen bonding, electrostatics, and
van der Waals forces contribute to the interactions of atoms
within a protein as well as between the protein and solvent [9].
While molecular mechanics force-fields seek to individually
describe each of these starting from first principles,
knowledge-based potentials (KBPs) seek to derive energy
functions that describe the net effect of all these
contributions in a specific setting, e.g., protein structures
[10]. Hence, they approximate the overall free energy
more generally, and frequently encompass multiple clas-
sical energy terms associated with a physical interaction
[11]. KBPs have been shown to be an effective alternative
to using atomic solvation parameters to more precisely
model the folding process [12].

KBPs relate the probability of a conformation to the
energy associated with that conformation using an inverse
Boltzmann relation [13]:

ΔG ¼ �RT ln P

which provides a means for the derivation of a free energy
from a propensity. Advantages of knowledge-based poten-
tials include the comprehensive and unbiased inclusion of
all experimentally elucidated protein structures. Disadvan-
tages are the requirement of a vast knowledge-base [11],
potential biases in the knowledge-base that translate into
the potentials [11], and difficulty aligning components of
the knowledge-based energy contributions with classical
energy terms [11]. Nevertheless, the widespread use of
knowledge-based free energy potentials in predicting
protein structure [14–18], protein-protein interactions [19,
20], protein-ligand interactions [21–24], and in protein
design [25, 26] underlines their success in recent years.
Knowledge-based energy terms have been derived for all
levels of protein architecture, most notably atoms [15, 27],
amino acids [18], secondary structure elements [28], and
the overall protein fold [29]. Often, several of these
knowledge-based free energy approximations are linearly
combined into a single composite energy function without
addressing the certain overlap between the individual terms
that results from the description of the same classical terms,
mostly on different levels of architecture.

Amino acid environment energy depends on an accurate yet
rapid estimation of solvent accessible surface area (SASA)

The amino acid “environment free energy” [30, 31] encom-
passes amino acid interactions with the solvent (solvation) as
well as with the protein core and integrates hydrogen
bonding, electrostatics, and van der Waals forces among
others. It is an important driving force in protein folding as it
maps to effects like surface area minimization, burial of
hydrophobic side chains, and side-chain packing density [30].

The extent to which an amino acid interacts with its
environment, the solvent and the protein core, is naturally
proportional to the degree to which it is exposed to these
environments [32]. The solvent-accessible surface area
(SASA) is a geometric measure of this exposure, and
therefore a dependency exists between SASA and environ-
ment free energy [33, 34]; some approaches even assume a
strictly linear relation between the two values [32, 35]. An
explicit calculation of the SASA is computationally intrac-
table as this value is, by nature, not pair-wise decomposable
[36]. Hence an accurate but pair-wise decomposable approx-
imation of SASA is often used in conjunction with KBPs to
describe environment free energy [18].

A precise calculation of solvent accessible surface area is
numerically demanding and not practical for computational
protein structure prediction

SASA is typically calculated by methods involving the
in-silico rolling of a spherical probe, which approximates a
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water molecule, around a full-atom protein model. Lee and
Richards presented the first algorithm for calculating the
solvent-accessible surface area (SASA) of a molecular
surface [37]. Their method involved the extension of the
van der Waals radius for each atom by 1.4 Å (the radius of
a polar solvent probe) and the calculation of the surface
area of these expanded-radius atoms. The Shrake and
Rupley algorithm [38] involves the testing of points on an
atom’s van der Waals surface for overlap with points on the
van der Waals surface of neighboring atoms. Many SASA
approximations have been developed including spline
approximations [39] and approximations that take advan-
tage of boolean logic and look-up tables [40]. Wodak and
Janin’s statistical SASA approximation algorithm is a
function of only interatomic distances that approximates
each amino acid by one sphere at the center of mass [41].
Many approaches employ a lattice surrounding the protein
to approximate its SASA [42–44].

A pairwise-decomposable method of SASA approxi-
mation is desirable as it can then be employed in
minimization approaches, such as dead end elimination.
One SASA approximation that achieves this criteria is
the method of Street and Mayo in which a scaled two-
body approximation of the buried area is subtracted
from the total surface area in order to approximate
SASA [36]. The method of Zhang et al. improved upon the
Street and Mayo method by accounting for its shortcoming,
the overlapping burial of core residues. Areas were calculated
in the presence of generic side chains rather than the backbone
alone, which reduced the error of the area calculations [45].
One of the more efficient non-pairwise-decomposable
algorithms is the maximal speed molecular surfaces (MSMS)
algorithm which fits spherical and toroidal patches onto the
surfaces of atoms based on which points on the atom are
accessible to a spherical probe that approximates a solvent
molecule [46].

Several approximations for burial are based upon
“neighborhood densities [47],” a weighted sum of neigh-
boring atoms, which take advantage of the idea that
neighborhood density is inversely related to SASA. The
method used to approximate burial in an early version of
Rosetta, a state-of-the-art protein structure prediction
algorithm, uses the number of Cb atoms within 10 Å of
the Cb of the amino acid of interest [18]. Since that time,
this has been modified slightly so that centroids, pseudo-
atoms located at the side chain’s center of mass, rather than
Cbs are used [48]. Other work has examined various burial
approximations and found that the number of Cb atoms
within 14 Å of the Cb of the amino acid of interest is most
conserved in structural alignments, most predictable from
amino acid sequence, and provides the greatest utility in
fold recognition and sequence alignment [49]. A shortcom-
ing of burial approximations is their inability to take into

account the spatial orientation of neighboring atoms
(illustrated in Fig. 3). A method that calculates burial by
examining neighborhood densities in four different tetrahe-
dral directions attempts to address this shortcoming [50].
The “neighbor vector” algorithm introduced in this manu-
script attempts to address this shortcoming as well.

As is evidenced by the wealth of related literature, this area
has been researched extensively and many SASA approx-
imations have been developed. While many of the discussed
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Fig. 1 This figure depicts ways in which a “neighboring” amino acid
can be defined. a) Previous work uses a step function with a hard
boundary to determine which amino acids are neighbors. Any amino
acids lying within that boundary are considered neighbors and any
amino acids lying outside of that boundary are not considered
neighbors. b) An expanded definition of neighbor that includes a
smooth transition function is used in the neighbor count algorithm.
Rather than a single boundary, a lower and upper boundary are
designated. Amino acids lying within the lower boundary are
considered complete neighbors and are assigned a neighbor weight
of 1.0. Amino acids lying outside of the upper boundary are not
considered neighbors at all and are assigned a neighbor weight of 0.0.
Amino acids lying between the lower and upper bounds are assigned a
weight between 0.0 and 1.0 based on their proximity to the amino acid
of interest
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methods are very accurate, they are also time-consuming and
not tractable for use in protein structure prediction, where
thousands of protein models need to be evaluated. Addition-
ally, the majority of these methods work on full-atom protein
models whereas reduced amino acid representations are
often used in early stages of protein structure prediction.
Finally, many of these methods return the SASA of the
protein model as a whole rather than the SASA of each
amino acid (known as rSASA or per-residue SASA), which
is necessary in order to take advantage of the knowledge-
based potentials.

In this manuscript, the authors seek to build upon
several of these approaches and refine them specifically
for use in protein structure prediction. While this
manuscript focuses on the benefits of a rapid SASA
approximation method for protein folding, there are
additional areas that would benefit from such a method,
such as protein binding and design. Specifically,
hydrophobic surface patches, which are important in
molecular recognition processes, constitute up to 60% of
the SASA of a protein, and methods for their rapid
identification based on SASA calculation have been
developed [51]. The rSASA calculated by the MSMS
algorithm is used as reference standard throughout the
present work.

Four SASA approximation algorithms are presented that
reflect the trade-off between accuracy and speed

This manuscript systematically introduces and compares
a series of rSASA approximations of increasing com-
plexity. KBPs describing the environment free energy of
an amino acid in dependence of these SASA approx-
imations have been derived. All approximations are
examined in terms of both runtime and the ability to
discriminate native-like from nonnative-like protein
models obtained in structure prediction applications, in
order to fine-tune the balance between algorithm speed
and accuracy.

Materials and methods

Exposure algorithms of increasing complexity

Neighbor count (NC) The central idea behind the neighbor
count algorithm is that the number of neighboring amino
acids is inversely proportional to the exposure of an amino
acid. The definition of a “neighbor” is expanded in this
work by assigning a weight between 0.0 and 1.0 to all
amino acids in the protein model based on their proximity
to the amino acid of interest. A lower boundary and an
upper boundary are chosen such that all amino acids whose

Cb lies at a distance less than or equal to the lower
boundary are assigned a neighbor weight of 1.0 (i.e., they
are counted as complete neighbors), amino acids whose Cb

lies at distance greater than the upper boundary are
assigned a neighbor weight of 0.0 (i.e. they are not
considered neighbors at all), and amino acids whose Cb

lies at a distance between the lower and upper bounds are
assigned a weight between 0.0 and 1.0 (see Fig. 1). For
glycine, a pseudo- Cb atom is introduced at the geometric
position where an actual Cb would sit. This expansion of
the definition of “neighbor” allows for amino acids that
are spatially close to the amino acid of interest to have
a greater weight in determining the neighbor count
keeping the potential continuously differentiable at the
same time, a characteristic essential for gradient-based
minimization.

NeighborWeightðdistance; lower bound; upper boundÞ

¼

1; if distance � lower bound

1

2
cos

distance� lower bound

upper bound � lower bound
� p

� �
þ 1

� �
;

if lower bound < distance < upper bound

0; if distance � upper bound:

8>>>>>>><
>>>>>>>:

a

f

b

e

d

c

Fig. 2 This figure depicts the neighbor count algorithm. The inner
and outer gray rings represent the lower and upper bounds
respectively. The small circles represent the Cb atoms of amino acids.
The black circle represents the amino acid of interest. Amino acids a
and f are assigned a neighbor weight of 0.0 because they are outside of
the upper bound. Amino acids b and e are assigned a weight between
0.0 and 1.0 because they lie between the upper and lower bounds.
Amino acids c and d are counted as one complete neighbor each
because they lie within the lower bound
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The neighbor count value for each amino acid is generated
by adding the neighbor weight values of all other amino
acids in the protein model as shown in the equation below
and Fig. 2.

NeighborCount aaið Þ
¼

X
j 6¼i

NeighborWeight dist aai; aaj
� �

; lower bound; upper bound
� �

A shortcoming of using the number of neighboring
amino acids as a measure of burial is that this approach
disregards the spatial distribution of its neighbors. Figure 3
shows two examples that represent different exposure
scenarios, yet return the same neighbor count value.

Neighbor vector (NV) The neighbor vector algorithm is an
extension of the neighbor count algorithm that takes into
account the spatial orientation of neighboring amino acids.

NeighborVector aaj
� � ¼

P
j6¼i vector1j

����!.
vector1j
����!��� ���	 


� NeighborWeight dist i; jð Þ; lower bound; upper boundð Þ
NeighborCount aaið Þ

������
������

a b

Fig. 4 This figure depicts the neighbor vector algorithm. The vectors
drawn to the Cbs of neighboring amino acids are shown in black and
the vector sum is shown in heavyweight black. a) When summed, the

vectors essentially cancel out yielding a vector of zero length which
indicates burial. b) When summed, the vectors yield a vector with a
large magnitude which indicates exposure

Fig. 3 This figure depicts a shortcoming of the neighbor count
algorithm. Lines are drawn from the amino acid of interest in this case
to all neighboring (as defined by the neighbor count algorithm) amino

acids. Two scenarios are shown for which the neighbor count
algorithm returns a value of five. However, these two scenarios depict
two very different exposure states
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The neighbor vector is a vector associated with each
amino acid whose length can range between 0.0 and 1.0. A
neighbor vector of length ≌1.0 implies high exposure
whereas a neighbor vector of length ≌0.0 implies low
exposure (i.e. burial). This is shown graphically in Fig. 4.
Note that the neighbor vector is still a pair-wise decom-
posable measure of exposure.

Artificial neural network (ANN) As input for an ANN that
approximates SASA, an additional term not used in previous
measuresisintroduced:thedotproductofthe Ca � Cb

� �
vector

with the neighbor vector (NV Ca � Cb
� �

). Recall that the
side chain atoms extend from the Cb atom. Therefore, this
dot product term provides information about the orientation
of the side chain of the amino acid of interest, with respect
to neighboring amino acids. If the Ca � Cb

� �
vector points

in the same direction as the neighbor vector, the angle
between these vectors will be small and the dot product will
be ≌+1.0. If the Ca � Cb

� �
vector points in the opposite

direction as the neighbor vector, the angle between these
vectors will be large and the dot product will be ≌−1.0 (see
Fig. 5). Therefore, this dot product provides additional
information about the position of the side chain atoms with
respect to the neighboring amino acids. The neighbor
count, neighbor vector, and NV • Ca � Cb

� �
are input to

the ANN.
The ANN contains a single hidden layer with three

neurons. The ANN was trained using a feed-forward
algorithm with back-propagation over 2670 steps (5000
steps were allowed, but the training terminated early due to
convergence). The data was split into a training set (80% of

the data), a monitor set (10% of the data), and an
independent set (10% of the data). The learning rate η
was 0.01 and the momentum α was 0.5.

Overlapping spheres (OLS) The overlapping spheres algo-
rithm is a variant of the Shrake and Rupley [38] algorithm for
calculating molecular surfaces with the exception that spheres
surround amino acids rather than atoms. In this algorithm, a
sphere is placed around each Cb and points are placed on the
surface of the sphere surrounding the amino acid of interest.
The fraction of points on an amino acid’s sphere that do not
overlap with any other sphere is used as a measure of
exposure (see Fig. 6). The spheres where chosen to have a
uniform size regardless of amino acid type. Usage of amino
acid specific radii did not lead to a significant improvement in
rSASA calculation (data not shown). While the optimal
number of points placed on the sphere has been investigated
[52], this parameter was not optimized. Points were distrib-
uted uniformly every 5° along the surface of the sphere.

Establishment of rSASA reference standard

The maximal speed molecular surfaces (MSMS) [46]
algorithm as implemented in the visual molecular dynamics
(VMD) [53] molecular visualization package serves as the
reference standard method for rSASA. Protein models with
the hydrogen atoms removed are used in order to ensure a
consistent representation. In order to convert this rSASA
measure into a relative exposure, the rSASA for each amino
acid in the protein is divided by the rSASA for that amino

Fig. 5 A β-strand is shown where the C/ atoms and Cb atoms of the
strand are represented by black and white circles respectively. The Cbs
of neighboring amino acids are represented by white circles. The
neighbor vectors are shown as dashed lines. The C/ � Cb

� �
vectors

are shown as solid lines. The dot product of the neighbor vector and
the C/ � Cb

� �
vector gives information about the angle between the

two vectors and hence the orientation of the side chain atoms with
respect to the neighboring amino acids (large open circles)
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acid alone in space (i.e., all other amino acids in the protein
were removed). This gives a relative exposure for each
amino acid in the protein with a minimum exposure of 0.0
(completely buried) and a maximum exposure of 1.0
(completely exposed).

Optimization of parameters for each approximation
algorithm

In order to determine the optimal parameters for each SASA
approximation, aMonte Carlo parameter optimizationmethod
is used. The parameter set that produces the output that
correlates most highly with the rSASA reference standard is
selected as optimal. 90% of the proteins in the representative
protein database (described below) are used in parameter
optimization while 10% was withheld. The correlations
reported in Table 1 are based only upon the withheld 10%.

The optimal parameters found for each exposure
algorithm are shown. The parameters that maximized the
correlation of exposures produced by each algorithm with
exposures produced by the rSASA reference standard are
selected as optimal.

Establishment of representative protein database
for generation of KBPs

Statistics are generated for each amino acid type and each
of the exposure algorithms by analysis of the representative
protein database described in Table 2. This database
contains high resolution (<2.5 Å) structures with <25%
homology. The complete list of proteins from the PDB was
submitted to the PISCES server [54, 55] to identify proteins
with low sequence similarity. The input parameters used for
culling are the following: sequence percentage identity
<=25%, resolution=0.0 Å–3.0 Å, R-factor=0.3, sequence
length 40–10,000 amino acids, non X-ray entries were
excluded as were C/ � only entries. The resulting database
of unique structures contained 1795 soluble proteins.
Information about the proteins used to create the KBPs is
summarized in Table 2.

Generation of knowledge-based environment potentials
using inverse Boltzmann relation

The following equation describes how histograms are
generated for each amino acid type.

propensity aa1 j½ � ¼ 1þ
P

n
i equal exposure aai;ejð Þ½ �P
m
k histogram aa1 k½ � � m

equal exposure aai; ej
� � ¼ 1; e aaið Þ ¼ ej

0; e aaið Þ 6¼ ej

�
Table 1 Optimal parameters

Algorithm Optimal parameters

Neighbor count lower boundary: 4.0 Å,
upper boundary: 11.4 Å

Neighbor vector lower boundary: 3.3 Å,
upper boundary 11.1 Å

Artificial neural network nine inputs are provided to the ANN:
- NC(2.0, 9.4), NV(1.3, 9.1),
& NV(1.3,9.1) • C/ � Cb

- NC(4.0, 11.4), NV(3.3, 11.1),
& NV(3.3, 11.1) • C/ � Cb

- NC(6.0, 13.4), NV(5.3, 13.1),
& NV(5.3, 13.1)• C/ � Cb

Overlapping spheres sphere radius: 4.75 Å

Table 2 Proteins used in KBP generation

Protein
category

# Proteins # Amino Acids # α-helices # β-strands

Soluble
proteins

1795 884,529 32,075 32,641

Fig. 6 The overlapping spheres algorithm places a sphere around
each Cb and places points on the surface of the spheres. The points
that do not overlap with the spheres of any other amino acids are used

as a measure of relative exposure. The Cb atoms are colored in black
and the points that do not overlap with any other spheres are colored
in gray. a) the exterior of the protein b) a cut away of the protein
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where aai is amino acid type i, n is the number of amino acids
of type i in the database, j is a specific exposure value, ej is
the range of exposure values j associated with that bin, and m
is the number of bins (20 bins are used for all algorithms).
Prior to multiplication by the number of exposure values, the
values in each bin are probabilities (0 ≤ probability ≤1).
Multiplying by the number of bins converts these probabil-
ities to propensities (0 ≤ propensity ≤ number of bins).
Propensities are then converted to energies according to the
inverse Boltzmann relation discussed earlier.

The relationship between probabilities, propensities, and
energies as used in creation of KBPs is shown in Table 3.
Prandom is defined as 1/# possible exposure values. States
found rarely are associated with high energy whereas states
found frequently are associated with low energy.

Essentially, exposure values that are seen rarely in native
proteins are associated with high energy values whereas
exposure values that are seen often in native proteins are
associated with low energy values. A spline is used to
smooth the bins into a differentiable potential. A pseudo-
count of 1 is added to each bin so that exposure values that
are never seen (i.e., have a count of 0) are not associated
with an infinitely large energy.

Benchmark proteins are selected such that 10%
of the protein models are “native-like”

Nineteen benchmark proteins are selected for analysis of
the exposure algorithms. The decoys were generated by the
Rosetta folding algorithm and are a subset of the Rosetta
benchmark set. For each of the benchmark proteins,
multiple protein models are included in the benchmark
(between 70 and 1030 depending on the availability of
protein models for each benchmark protein). Rmsd100, a
normalized form of rmsd [56], is used to examine the
deviation of each protein model from the native conforma-
tion. Protein models having an rmsd100 value <5 Å are
referred to as “native-like” whereas protein models that
have an rmsd100 value ≥5 Å are referred to as “nonnative-
like.” Additional values (between 4 Å and 7 Å) were also
tested as a threshold for the definition of “native-like” and
yielded similar results. Protein models are selected such
that 10% of the decoys are “native-like” and 90% of the
protein models are “nonnative-like”. This provided a “level
playing field” and basis for comparison as the maximum
enrichment for all benchmark proteins with this distribution
of protein models is 10.0.

The protein models analyzed are a subset of the protein
models available for a given benchmark protein and are
randomly selected from this larger group. This random
selection procedure is repeated ten times to provide
standard deviations of the evaluation criteria (read below).
Additionally, proteins of various sizes, secondary structure
composition, and CATH classifications are chosen to ensure
a representative benchmark set (see Table 4).

Table 4 Summary of benchmark proteins used in KBP analysis

PDB ID CATH classification # Residues # Models with rmsd100 <5 Å # Models with rmsd100 ≤5 Å # Models available

1ail mainly alpha 70 11 99 120
1e6i mainly alpha 136 7 63 120
1enh mainly alpha 54 48 432 1120
1r69 mainly alpha 69 11 99 1120
1a19 alpha beta 180 57 513 1120
1iib alpha beta 212 68 612 1120
1scj alpha beta 346 11 99 120
1acf alpha beta 125 103 927 1120
1bm8 alpha beta 99 72 648 1120
1cc8 alpha beta 73 71 639 1120
1ctf alpha beta 74 90 810 1120
1hz6 alpha beta 216 45 405 1120
1opd alpha beta 85 95 855 1120
1tig alpha beta 94 17 153 1120
1b3a mainly beta 134 64 576 1120
1bq9 mainly beta 54 12 108 120
1c9o mainly beta 132 49 441 1120
1fna mainly beta 91 67 603 1120
1shf mainly beta 118 13 117 1120

Table 3 Relationship between probabilities, propensities, and energies

Probability Propensity Energy

Probability > Prandom Propensity >1 Energy <0 (favoured)
Probability = Prandom Propensity=1 Energy=0 (neutral)
Probability <Prandom 0 < Propensity <1 Energy >0 (penalized)
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Table 4 provides information about the benchmark
proteins used for analysis of the KBPs based upon each
exposure algorithm. Proteins with multiple types of
secondary structural elements and of various sizes are
included.

Average rSASA values are used to convert the actual
rSASA into a relative exposure for benchmark proteins

In order to facilitate comparison amongst the exposure
algorithms, rSASA values computed with the VMD
implementation of the MSMS algorithm are converted from
actual areas in Å2 to relative exposures (on a scale of 0.0
(completely buried) to 1.0 (completely exposed)). To
convert areas into relative exposures, the rSASA is divided
by the average rSASA for that amino acid type alone in
space. The average values for each amino acid type alone in
space are shown in Table 5 along with the standard
deviations and the number of amino acids (n) used in
determining the average.

Evaluation metrics: enrichment, receiver operating
characteristic (ROC) curves, and Z-scores are measures
of the KBP’s discriminatory power

In order to evaluate the KBPs based upon each exposure
algorithm, the ability of each KBP to discriminate between
native-like and nonnative-like models is examined. The
KBP for each algorithm is used to evaluate the energy of all
protein models for each benchmark protein. The metric
enrichment is used to evaluate the ability of each KBP to

distinguish between native-like and nonnative-like protein
models.

enrichment ¼
# of native�like models in lowest 10% of energy scores

# of native�like models

	 

percentage of native� like models

As 10% of the protein models for each benchmark
protein are native-like, the maximum enrichment possible
for each KBP is 10.0 and a random enrichment is an
enrichment of 1.0.

ROC curves display the true positive rate versus the false
positive rate for a binary classification system. In this case, the
ability of the KBPs based on the approximation algorithms to
correctly classify native-like and nonnative-like protein
models, is examined. Additionally, the area under the ROC
curve (AUC) is determined from these ROC curves. An AUC
of 1.0 indicates perfect classification whereas an AUC of 0.5
is representative of a random measure.

Z-scores are calculated for each KBP. A random KBP is
expected to achieve a z-score of 0.0. A more negative z-
score indicates greater power of the KBP in distinguishing
between native-like and nonnative-like protein models.

z� score ¼
average score of native�like modelsð Þ� average score of all modelsð Þ

standard deviation of the scores of all models

Results

Increasing algorithm complexity corresponds to a more
accurate rSASA approximation yet slower run times

In order to determine how well each exposure algorithm
approximates rSASA, the correlation of exposure values
produced by each algorithm to the exposure values given
by the reference standard rSASA algorithm is examined.
Results displaying the correlation with the reference
standard rSASA and run times for each algorithm are

Table 5 Average SASA values for amino acids

Amino acid Average SASA (Å2) Standard deviation n

ALA 209.02 5.22 18,352
ARG 335.73 9.48 40,715
ASN 259.85 7.37 35,232
ASP 257.99 7.31 38,428
CYS 240.50 5.68 10,750
GLN 286.76 8.24 30,958
GLU 285.03 8.28 53,663
GLY 185.15 4.50 48,071
HIS 290.04 7.74 18,812
ILE 273.46 6.50 47,414
LEU 278.44 7.27 75,574
LYS 303.43 8.47 45,807
MET 291.52 8.11 11,698
PHE 311.30 8.59 34,128
PRO 235.41 6.13 38,319
SER 223.04 5.93 46,935
THR 243.55 5.97 46,626
TRP 350.68 10.27 11,853
TYR 328.82 8.94 27,671
VAL 250.09 5.83 59,959

Table 6 Exposure algorithm performance

Exposure
algorithm

Average runtime per
amino acid (seconds)

Correlation with rSASA
reference standard

rSASA 3.94e-2 1.0000
Neighbor count 1.13e-5 −0.8526
Neighbor vector 1.87e-5 0.8757
Artificial
neural network

5.78e-5 0.8906

Overlapping spheres 3.11e-3 0.8842
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shown in Table 6. The rSASA reference standard method
takes several orders of magnitude longer (0.39e-2 seconds
per amino acid for the rSASA reference standard com-
pared to <6e-5 seconds per amino acid for NC, NV, and
ANN and 3e-3 for OLS) than any of the approximation
methods indicating its infeasibility for use in rapid protein
structure prediction. As expected, as the algorithm
complexity increases, the runtime increases as well. Of

note, the OLS algorithm is two orders of magnitude
slower than the other approximation algorithms but still 12
times faster than the rSASA reference standard algorithm.
The correlation of the neighbor count algorithm is
negative due to the fact that the number of neighbors is
inversely proportional to the rSASA. As algorithm
complexity increases, the correlation with the rSASA
reference standard also increases. The ANN approxima-

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

A -2.27 -0.82 -0.54 -0.31 -0.22 -0.15 0.11 0.30 0.68 1.48 2.18 2.90 3.89 3.77 3.87 4.99 7.07 7.76 7.76 7.76 A

R -0.68 -0.59 -0.68 -0.79 -0.85 -0.83 -0.66 -0.54 -0.30 0.10 0.36 0.97 1.39 2.18 3.12 4.01 4.87 5.47 7.26 6.57 R

N -1.37 -0.71 -0.61 -0.65 -0.69 -0.64 -0.55 -0.37 -0.15 0.08 0.55 1.03 1.88 3.28 4.20 4.89 5.99 6.39 7.09 7.09 N

D -1.03 -0.62 -0.65 -0.69 -0.77 -0.81 -0.66 -0.48 -0.26 0.02 0.42 1.11 1.85 3.44 4.28 5.11 5.81 7.42 7.42 7.42 D

C -2.54 -1.13 -0.57 0.06 0.51 1.04 1.71 2.25 2.42 2.69 3.24 3.64 4.56 5.94 4.56 4.84 5.94 5.94 5.94 5.94 C

Q -1.06 -0.55 -0.57 -0.67 -0.72 -0.75 -0.74 -0.60 -0.33 0.01 0.50 1.07 2.08 2.97 3.33 4.03 5.03 5.87 6.97 6.97 Q

E -0.57 -0.30 -0.36 -0.55 -0.70 -0.79 -0.85 -0.78 -0.61 -0.30 0.10 0.71 1.35 2.40 3.67 5.16 4.72 6.17 7.56 7.56 E

G -2.04 -0.95 -0.82 -0.61 -0.42 -0.30 -0.12 0.20 0.86 1.61 2.78 3.58 3.76 3.49 4.69 6.25 6.94 7.64 7.64 7.64 G

H -1.60 -1.04 -0.81 -0.76 -0.62 -0.44 -0.25 0.01 0.32 0.62 1.04 1.28 2.15 2.88 3.52 3.90 4.67 6.46 6.46 6.46 H

I -2.49 -0.95 -0.50 -0.10 0.26 0.58 0.82 1.15 1.66 2.15 2.76 2.98 3.99 4.90 5.19 6.00 6.00 7.39 7.39 7.39 I

L -2.41 -1.00 -0.58 -0.24 0.03 0.43 0.71 1.08 1.39 1.87 2.31 2.80 3.48 4.30 5.37 5.45 6.06 6.75 7.85 7.85 L

K 0.08 0.02 -0.28 -0.57 -0.74 -0.85 -0.87 -0.83 -0.72 -0.44 -0.08 0.42 1.14 2.01 3.20 3.66 4.42 6.03 6.73 7.42 K

M -2.34 -0.90 -0.54 -0.23 0.09 0.31 0.31 0.77 0.88 1.27 1.54 1.81 2.45 2.81 2.92 3.70 3.70 5.78 6.48 5.78 M

F -2.41 -1.14 -0.64 -0.24 0.26 0.58 0.98 1.23 1.56 1.91 2.23 2.61 3.27 3.81 5.24 4.83 5.93 5.64 7.03 6.33 F

P -1.48 -0.72 -0.66 -0.68 -0.63 -0.59 -0.50 -0.38 -0.24 0.24 0.88 1.61 2.47 3.45 3.83 3.94 5.55 7.16 7.16 7.16 P

S -1.81 -0.86 -0.68 -0.69 -0.62 -0.49 -0.26 0.01 0.26 0.76 1.33 2.10 2.97 3.53 3.60 4.18 6.30 7.40 7.40 7.40 S

T -1.81 -0.89 -0.76 -0.62 -0.58 -0.56 -0.37 0.09 0.46 0.88 1.31 2.11 3.12 3.77 4.03 4.27 5.75 7.36 6.67 7.36 T

W -2.12 -1.32 -1.01 -0.57 -0.12 0.29 0.64 1.17 1.30 1.68 2.31 2.69 3.31 4.34 3.87 5.95 4.85 4.56 5.95 5.95 W

Y -2.00 -1.23 -1.01 -0.69 -0.33 0.04 0.36 0.75 0.98 1.56 1.78 2.38 2.99 3.94 4.11 5.27 5.78 5.49 6.19 6.88 Y

V -2.45 -0.92 -0.51 -0.20 0.09 0.37 0.62 0.99 1.55 1.98 2.57 3.04 4.12 5.31 5.13 5.31 5.82 7.62 7.62 7.62 V

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

a  rSASA KBP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 8.12 3.58 2.66 1.26 0.60 -0.09 -0.23 -0.33 -0.29 -0.33 -0.50 -0.68 -0.93 -0.99 -0.76 -0.05 0.90 2.02 3.38 6.04 A

R 7.61 4.00 2.79 1.36 0.53 -0.18 -0.71 -1.00 -1.07 -1.06 -0.94 -0.71 -0.41 0.28 1.13 2.22 5.04 5.66 7.61 7.61 R

N 7.43 4.60 2.49 0.47 -0.13 -0.59 -0.81 -0.87 -0.78 -0.78 -0.62 -0.51 -0.39 -0.18 0.33 1.18 2.53 3.77 6.33 6.74 N

D 7.75 4.35 2.15 0.34 -0.30 -0.76 -0.98 -1.02 -0.87 -0.74 -0.57 -0.38 -0.09 0.28 0.88 1.59 2.96 4.86 6.36 7.75 D

C 6.28 4.49 4.49 3.19 2.47 1.94 1.24 0.52 0.21 -0.33 -0.71 -1.04 -1.29 -1.30 -0.95 -0.32 1.08 2.17 4.67 6.28 C

Q 7.32 4.10 2.57 1.01 0.29 -0.50 -0.86 -1.02 -1.00 -0.88 -0.66 -0.57 -0.30 -0.03 0.69 1.47 2.86 4.75 5.37 7.32 Q

E 7.90 3.72 2.32 0.45 -0.23 -0.88 -1.07 -1.16 -0.97 -0.76 -0.48 -0.19 0.10 0.57 1.33 2.24 3.85 4.76 7.90 7.90 E

G 7.29 3.68 2.25 0.47 -0.16 -0.52 -0.61 -0.51 -0.45 -0.40 -0.48 -0.50 -0.62 -0.66 -0.38 0.19 1.06 2.21 3.71 5.21 G

H 6.81 3.05 2.24 1.03 0.56 0.05 -0.26 -0.55 -0.74 -0.90 -0.93 -1.01 -0.82 -0.41 0.11 1.17 2.35 4.41 5.71 6.81 H

I 7.72 4.89 3.36 2.73 2.15 1.55 0.67 0.26 -0.14 -0.52 -0.88 -1.11 -1.32 -1.26 -0.66 0.47 1.97 3.98 7.72 7.72 I

L 8.18 4.85 3.66 2.59 1.86 1.30 0.57 0.10 -0.35 -0.68 -0.95 -1.19 -1.30 -1.09 -0.41 0.79 2.40 4.07 6.10 6.57 L

K 7.75 3.76 2.18 0.56 -0.07 -0.72 -1.03 -1.17 -1.08 -0.95 -0.66 -0.22 0.24 0.94 1.90 2.81 4.57 5.80 7.75 7.75 K

M 6.12 3.10 2.25 1.72 1.15 0.76 0.22 -0.08 -0.34 -0.60 -0.78 -1.03 -1.17 -1.12 -0.45 0.32 1.56 3.41 4.51 6.12 M

F 7.37 4.54 3.71 2.51 1.90 1.33 0.75 0.21 -0.25 -0.72 -0.98 -1.27 -1.37 -1.06 -0.25 0.95 2.39 4.48 6.28 7.37 F

P 7.51 3.52 1.99 0.21 -0.37 -0.72 -0.79 -0.71 -0.70 -0.64 -0.58 -0.50 -0.49 -0.23 0.39 1.23 2.55 3.77 5.43 7.51 P

S 7.74 3.45 2.24 0.65 0.03 -0.50 -0.71 -0.70 -0.61 -0.60 -0.52 -0.53 -0.60 -0.54 -0.19 0.51 1.66 2.81 4.27 5.66 S

T 7.70 3.71 2.61 1.13 0.53 -0.18 -0.64 -0.72 -0.70 -0.77 -0.76 -0.70 -0.62 -0.54 -0.16 0.62 1.70 3.16 4.75 6.31 T

W 6.30 4.91 3.59 2.63 1.81 1.24 0.47 -0.05 -0.42 -0.79 -1.20 -1.30 -1.33 -0.81 0.28 1.47 3.81 5.20 5.60 6.30 W

Y 7.24 5.44 3.62 2.41 1.76 1.05 0.47 0.02 -0.39 -0.84 -1.12 -1.26 -1.29 -0.90 0.04 1.50 2.68 5.04 6.54 7.24 Y

V 7.96 4.56 3.25 2.31 1.72 1.06 0.45 0.02 -0.20 -0.47 -0.74 -0.96 -1.25 -1.24 -0.76 0.22 1.44 3.07 4.87 7.96 V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

b  NC KBP

c  NV KBP

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

A -0.42 -1.42 -1.05 -0.60 -0.38 -0.08 -0.01 0.14 0.10 -0.04 0.06 0.40 0.26 0.85 1.34 2.19 2.93 3.88 4.23 5.35 A

R 1.90 0.14 -0.44 -0.57 -0.63 -0.63 -0.72 -0.70 -0.68 -0.67 -0.38 0.05 0.33 0.86 1.73 2.34 3.26 4.39 4.31 7.61 R

N 0.77 -0.49 -0.51 -0.40 -0.33 -0.39 -0.39 -0.42 -0.45 -0.55 -0.44 -0.20 -0.12 0.20 0.60 1.41 3.11 4.49 5.64 6.04 N

D 1.56 0.05 -0.28 -0.31 -0.29 -0.28 -0.41 -0.46 -0.55 -0.71 -0.59 -0.35 -0.36 0.02 0.44 1.25 2.54 4.20 4.92 7.06 D

C -0.66 -1.66 -1.44 -0.94 -0.67 -0.16 0.11 0.43 0.74 1.12 1.37 2.22 2.43 3.10 3.45 3.88 5.59 6.28 4.49 6.28 C

Q 1.17 -0.24 -0.43 -0.41 -0.41 -0.43 -0.41 -0.53 -0.67 -0.74 -0.57 -0.13 -0.01 0.53 1.09 1.91 2.93 3.98 4.75 6.62 Q

E 1.99 0.45 0.03 -0.04 -0.12 -0.27 -0.33 -0.45 -0.66 -0.89 -0.77 -0.47 -0.52 -0.03 0.45 1.36 2.66 3.96 4.40 6.51 E

G 0.24 -1.00 -0.89 -0.54 -0.28 -0.17 -0.08 -0.09 -0.10 -0.26 -0.26 -0.25 -0.02 0.09 0.63 2.04 3.45 3.83 4.43 5.35 G

H 0.75 -0.59 -0.99 -0.90 -0.79 -0.58 -0.52 -0.38 -0.26 -0.14 0.08 0.37 0.62 1.02 1.40 2.11 3.07 3.68 4.17 5.43 H

I -0.49 -1.64 -1.43 -0.91 -0.52 -0.22 0.05 0.29 0.53 0.70 1.03 1.57 2.21 2.65 3.04 3.98 5.08 5.32 5.42 7.03 I

L -0.22 -1.50 -1.43 -0.98 -0.63 -0.35 -0.12 0.19 0.39 0.60 0.96 1.57 1.77 2.47 2.73 3.75 4.49 5.14 5.62 7.08 L

K 2.73 0.97 0.26 -0.03 -0.24 -0.46 -0.61 -0.68 -0.78 -0.84 -0.78 -0.39 -0.28 0.26 0.77 1.44 2.51 3.99 4.42 5.67 K

M -0.14 -1.47 -1.30 -0.87 -0.64 -0.26 -0.07 0.00 0.19 0.37 0.65 1.06 1.36 1.62 2.13 2.35 3.10 3.17 3.59 5.20 M

F -0.03 -1.48 -1.51 -1.09 -0.71 -0.38 -0.03 0.28 0.59 0.81 1.23 1.66 2.11 2.44 3.06 3.79 4.43 4.74 5.77 6.28 F

P 0.67 -0.55 -0.66 -0.51 -0.31 -0.26 -0.29 -0.29 -0.26 -0.36 -0.28 -0.35 -0.24 0.08 0.34 1.22 2.25 3.75 4.18 5.31 P

S 0.15 -0.90 -0.71 -0.46 -0.36 -0.32 -0.21 -0.20 -0.28 -0.38 -0.37 -0.13 0.01 0.42 0.82 1.52 2.55 3.70 4.00 5.54 S

T 0.26 -0.95 -0.78 -0.59 -0.47 -0.38 -0.34 -0.35 -0.36 -0.37 -0.31 0.03 0.33 0.93 1.36 2.29 3.23 3.96 4.33 6.31 T

W 0.42 -1.16 -1.48 -1.20 -0.87 -0.52 -0.29 0.18 0.36 0.52 1.09 1.62 1.71 2.47 3.00 3.52 4.10 4.91 6.30 5.20 W

Y 0.37 -1.17 -1.41 -1.16 -0.86 -0.61 -0.30 0.04 0.37 0.59 0.88 1.46 1.67 2.26 2.92 3.47 4.53 5.29 5.63 7.24 Y

V -0.60 -1.65 -1.29 -0.75 -0.44 -0.23 0.00 0.21 0.30 0.39 0.69 1.35 1.69 2.13 2.68 3.53 4.59 4.56 5.76 6.35 V

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

d  ANN KBP

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

A -2.22 -0.88 -0.37 -0.17 -0.14 -0.23 -0.09 -0.05 0.39 1.04 2.18 3.96 8.12 8.12 8.12 8.12 8.12 8.12 8.12 8.12 A

R -1.07 -1.01 -0.93 -0.96 -0.96 -0.92 -0.57 -0.20 0.44 1.11 2.39 4.17 7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.61 R

N -1.42 -0.76 -0.64 -0.65 -0.68 -0.77 -0.67 -0.49 -0.18 0.13 1.96 5.23 7.43 7.43 7.43 7.43 7.43 7.43 7.43 7.43 N

D -1.01 -0.72 -0.57 -0.64 -0.77 -0.93 -0.84 -0.67 -0.33 -0.01 1.70 4.92 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 D

C -2.51 -1.22 -0.47 0.00 0.39 0.82 1.28 2.09 2.47 3.06 4.08 4.67 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28 C

Q -1.25 -0.80 -0.68 -0.73 -0.89 -0.95 -0.74 -0.46 0.07 0.73 2.10 4.54 7.32 7.32 7.32 7.32 7.32 7.32 7.32 7.32 Q

E -0.69 -0.49 -0.50 -0.64 -0.86 -1.08 -0.99 -0.83 -0.40 0.16 1.74 4.09 7.90 7.90 7.90 7.90 7.90 7.90 7.90 7.90 E

G -1.92 -0.71 -0.40 -0.28 -0.31 -0.42 -0.48 -0.44 -0.27 0.26 1.76 4.25 7.99 7.99 7.99 7.99 7.99 7.99 7.99 7.99 G

H -1.72 -1.25 -0.90 -0.70 -0.57 -0.40 -0.09 0.15 0.49 0.76 2.22 3.31 6.81 6.81 6.81 6.81 6.81 6.81 6.81 6.81 H

I -2.43 -1.17 -0.58 -0.22 0.21 0.38 0.85 1.49 2.09 2.52 3.58 5.08 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 I

L -2.33 -1.23 -0.72 -0.35 -0.05 0.32 0.77 1.35 1.81 2.35 3.47 5.47 8.18 8.18 8.18 8.18 8.18 8.18 8.18 8.18 L

K -0.33 -0.57 -0.68 -0.89 -1.00 -1.08 -0.95 -0.69 -0.19 0.27 1.67 4.09 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 K

M -2.29 -1.10 -0.62 -0.34 -0.17 0.11 0.46 0.83 1.14 1.52 2.05 3.38 6.81 6.81 6.81 6.81 6.81 6.81 6.81 6.81 M

F -2.35 -1.32 -0.77 -0.25 0.13 0.51 1.01 1.40 1.84 2.44 3.40 5.43 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 F

P -1.48 -0.79 -0.57 -0.51 -0.48 -0.58 -0.62 -0.57 -0.45 -0.13 1.51 3.54 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 P

S -1.77 -0.77 -0.56 -0.43 -0.49 -0.63 -0.58 -0.43 0.01 0.40 1.82 3.55 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 S

T -1.79 -0.92 -0.68 -0.61 -0.59 -0.61 -0.55 -0.14 0.45 0.89 2.29 4.11 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 T

W -2.15 -1.51 -0.89 -0.44 0.00 0.23 0.72 1.25 1.77 2.53 3.40 5.20 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.30 W

Y -2.15 -1.46 -0.92 -0.48 -0.03 0.27 0.66 1.16 1.67 2.21 3.52 5.63 7.24 7.24 7.24 7.24 7.24 7.24 7.24 7.24 Y

V -2.41 -1.03 -0.53 -0.22 -0.01 0.14 0.58 1.13 1.57 2.18 3.15 5.07 7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96 V

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

e  OLS KBP

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

A -2.41 -0.49 -0.15 -0.05 0.07 -0.15 0.30 0.22 0.59 1.06 1.63 1.97 3.17 3.90 3.79 4.36 7.43 8.12 8.12 8.12 A

R -1.54 -0.98 -0.95 -0.84 -0.78 -0.71 -0.23 0.04 0.58 1.09 1.69 2.02 3.16 3.84 4.52 4.56 7.61 7.61 7.61 7.61 R

N -1.73 -0.74 -0.60 -0.53 -0.56 -0.60 -0.34 -0.20 0.05 0.41 0.68 1.19 2.58 4.00 5.03 5.48 7.43 7.43 7.43 7.43 N

D -1.40 -0.69 -0.59 -0.63 -0.68 -0.79 -0.46 -0.43 -0.08 0.23 0.50 1.09 2.33 3.52 4.45 5.27 7.75 7.75 7.75 7.75 D

C -2.72 -0.66 -0.04 0.44 0.88 1.10 1.80 2.20 2.62 3.23 3.79 3.71 4.89 6.28 4.49 6.28 6.28 6.28 6.28 6.28 C

Q -1.61 -0.79 -0.63 -0.71 -0.78 -0.80 -0.34 -0.21 0.21 0.81 1.21 1.76 2.92 3.40 4.32 5.12 6.62 7.32 7.32 7.32 Q

E -1.12 -0.56 -0.55 -0.65 -0.82 -0.97 -0.59 -0.64 -0.15 0.22 0.70 1.17 2.55 3.82 3.84 4.76 7.90 7.90 7.90 7.90 E

G -2.13 -0.49 -0.23 -0.17 -0.15 -0.24 -0.20 -0.19 -0.02 0.22 0.70 1.51 2.92 4.12 3.91 4.59 6.89 7.99 7.29 7.99 G

H -2.09 -1.06 -0.68 -0.56 -0.24 -0.15 0.19 0.46 0.65 1.14 1.22 1.83 3.00 3.48 3.44 4.33 6.12 6.81 6.81 6.81 H

I -2.62 -0.80 -0.24 0.15 0.48 0.67 1.23 1.71 2.23 2.66 3.13 3.49 4.78 5.08 5.42 5.52 7.72 7.72 7.72 7.72 I

L -2.56 -0.90 -0.44 0.04 0.32 0.59 1.17 1.52 2.05 2.50 2.79 3.44 4.65 5.04 5.00 6.10 8.18 8.18 8.18 8.18 L

K -0.89 -0.74 -0.82 -0.86 -0.87 -0.93 -0.58 -0.45 -0.04 0.48 0.79 1.27 2.26 3.57 3.90 4.61 7.06 7.75 7.75 7.75 K

M -2.48 -0.82 -0.34 -0.17 0.11 0.37 0.74 1.10 1.49 1.81 1.94 2.49 2.84 3.35 3.01 4.25 6.81 6.81 6.81 6.81 M

F -2.58 -0.98 -0.36 0.18 0.49 0.86 1.29 1.53 1.93 2.78 3.02 3.35 4.48 4.67 5.30 5.77 6.68 7.37 7.37 7.37 F

P -1.80 -0.63 -0.48 -0.36 -0.37 -0.34 -0.34 -0.31 -0.17 0.01 0.41 0.96 2.03 3.66 3.75 4.29 6.82 7.51 7.51 7.51 P

S -2.02 -0.64 -0.44 -0.35 -0.38 -0.50 -0.24 -0.13 0.30 0.56 0.89 1.49 2.48 3.83 3.66 4.03 7.74 7.74 7.74 7.74 S

T -2.05 -0.78 -0.60 -0.48 -0.44 -0.43 -0.21 0.11 0.63 1.06 1.37 2.05 2.92 4.03 3.96 4.75 7.00 7.70 7.70 7.70 T

W -2.48 -1.10 -0.56 -0.02 0.27 0.49 1.05 1.41 1.98 2.34 2.74 3.73 4.35 4.50 5.60 5.20 6.30 6.30 6.30 6.30 W

Y -2.47 -1.14 -0.53 -0.01 0.30 0.53 1.07 1.35 1.76 2.42 2.79 3.23 4.02 5.29 5.85 5.44 7.24 7.24 7.24 7.24 Y

V -2.58 -0.70 -0.24 0.02 0.26 0.38 0.92 1.36 1.85 2.21 2.67 3.28 4.20 4.63 4.87 5.56 7.96 7.96 7.96 7.96 V

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

Fig. 7 The knowledge-based potentials based upon each exposure
algorithm are shown and colored by value where white represents low
values and dark gray represents high values. A visual inspection of the
KBPs confirms that the energies shown in the KBPs agree with
expectations. For example, one expects a hydrophobic amino acid, for
example valine (V), to prefer a low exposure value, a large number of

neighbors, and a low neighbor vector magnitude. This is in fact what
is seen as indicated by the minima in the plots. Conversely, one
expects a hydrophilic amino acid, such as lysine (K) to prefer a high
exposure value, a small number of neighbors and a high neighbor
vector magnitude. This is also what is seen in the plots
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tion algorithm correlates most highly (r=0.89) with the
rSASA reference standard.

Visual inspection of KBPs confirm expected trends

A visual inspection of the KBPs ensures that the potentials
agree with expectations (see Fig. 7). For example, one
expects for hydrophobic amino acids in solution to prefer
burial. This is in fact what is seen. Consider the preference
of hydrophobic amino acids, such as valine (V), methionine
(M), and phenylalanine (F) for a large number of neighbors,
a small neighbor vector magnitude, and small relative
exposures. Additionally, one expects hydrophilic amino
acids to prefer exposure in solution. This is also the case.
Consider the preference of the hydrophilic amino acids
lysine (K), asparagine (N), and glutamine (Q) for low
neighbor counts, a large neighbor vector magnitude, and
large relative exposures.

Evaluation metrics indicate that the neighbor count
algorithm does not perform as well as other approximation
algorithms

As evidenced by the enrichment values in Fig. 8, the
rSASA reference standard and the neighbor vector, artificial
neural network, and overlapping spheres algorithms per-
form similarly (enrichment=∼3.0) and all outperform the
NC method (enrichment <2.5). While no single method
clearly dominates the others, some trends can be seen
(Fig. 9). In several cases (i.e., 1bq9, 1iib, 1enh), the
neighbor count algorithm does not perform as well as the
other algorithms. While the rSASA reference standard

Fig. 8 The average enrichment, z-score, and area under the ROC
curve (AUC) is shown for each exposure algorithm over all
benchmark proteins. The z-scores are in light gray, the AUC values
are in medium gray, and the enrichment values are in dark gray. The
neighbor count algorithm performs the least favorably according to all
of the evaluation measures whereas the remaining algorithms perform
approximately the same with the ANN generally performing slightly
better than the others

Fig. 9 The enrichment is shown for each algorithm over all
benchmark proteins. There are some proteins for which none of the
exposure algorithms provided an enrichment (for example 1scj) while
there are some benchmark proteins for which many of the exposure
algorithms provided good enrichments. There are also proteins for
which the enrichment produced by each algorithm increased with
algorithm complexity as expected (for example 1enh)

Fig. 10 The area under the ROC curve (AUC) is shown for each
exposure algorithm over all benchmark proteins. The AUC varies
widely over the benchmark proteins. There are some proteins for
which all algorithms perform very well (for example, 1c9o) while
there are some proteins for which none of the algorithms perform well
(for example, 1scj)
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algorithm often provides the greatest enrichment (i.e., 1bq9,
1iib, 1a19), there are several cases in which the neighbor vector
algorithm provides the better results (i.e., 1ail, 1b3a, 1e6i).

Additionally, the area under the ROC curve (AUC) is
examined for the KBPs over the benchmark proteins (see
Fig. 10). Again, the AUC values vary widely across

benchmark proteins. However, the neighbor count algo-
rithm (AUC=0.7) lags a bit behind the neighbor vector,
artificial neural network, overlapping spheres, and reference
standard rSASA algorithms (AUCs ≥0.75).

The z-scores also support the trends shown by the other
evaluation metrics. The neighbor count has the least
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negative z-score (−0.61) whereas the artificial neural
network has the most negative z-score (−0.83) with
neighbor vector coming in a close second (−0.80).

A detailed analysis of the benchmark protein 1enh

The benchmark protein 1enh is an example where the
potentials are able to distinguish between native-like and
nonnative-like models to an extent that corresponds to the
complexity of each algorithm (i.e., the NC algorithm is the
least effective and the OLS algorithm is the most effective).
This is indicated by the increasing area under the ROC
curve (see Fig. 11a) moving from NC to NV to ANN to
OLS. This can also be seen when the rmsd100 is plotted
against the energy score assigned to each protein model
(see Fig. 11b-f). As the algorithm complexity increases, the
KBP is able to more effectively identify native-like protein
models. Of note, the OLS KBP yields a higher enrichment
than the rSASA reference standard. This indicates that
environment free energy KBPs based on rSASA approxi-
mation alone may not be a complete picture of the
environment free energy and that additional factors should
be taken into account in order to more completely capture
the environment free energy. Further examination is
necessary to explore this question.

For a specific example, consider ALA5 of a 1enh protein
model (Fig. 12). The rSASA method determines that the
relative exposure of ALA5 is 0.375, ranked the 13th most
exposed amino acid of the 54 amino acids in the protein
model. The NC algorithm calculated that ALA5 has 6.495
neighbors and ranked ALA5 as the 21st most exposed
amino acid in the protein model. However, the NV
algorithm was able to discern that the majority of ALA5’s
neighbors are on one side of the amino acid leaving the

other side relatively exposed. The NV algorithm assigned
ALA5 a vector of magnitude 0.568 and ranked ALA5 as
the 19th most exposed amino acid in the model, closer to its
true rank. The ANN predicted a relative exposure of 0.348
for ALA5 and ranked it as the 18th most exposed amino
acid in the protein model, again closer to its true rank than
the ranks achieved by the NC and NV algorithms. The OLS
algorithm returned a relative exposure of 0.372 for ALA5

Fig. 11 a) The ROC curve for 1enh. As the algorithm complexity
increases, the area under the ROC curve increases. In this case, the
OLS algorithm is able to distinguish between native-like and
nonnative-like models more effectively than the reference standard
rSASA algorithm. b) rSASA, enrichment: 5. c) neighbor count, 1.46.
d) neighbor vector, 3.13. e) ann, 4.58. f) ols, 6.67. In b) – f) the energy
scores assigned to each protein model (each protein model is
represented by one point) is plotted against the rmsd100 value of that
model. Models assigned an energy score in the lowest 10% (most
energetically favorable) are shown as solid circles whereas models
assigned an energy score in the highest 90% (least energetically
favorable) are shown as open circles. If the energy potential is able to
perfectly distinguish between native-like (<5 Å rmsd100) and
nonnative-like (≥5 Å rmsd100) models, the 10% of models identified
as most energetically favorable (shown in black) would have an
rmsd100 value <5 Å. As the algorithm complexity increases, the
potential based on the algorithm is able to more effectively distinguish
between native-like and nonnative-like models as also indicated by the
increasing enrichment values. Interestingly, the OLS algorithm
achieves a higher enrichment value than the true rSASA value
indicating that additional factors must be taken into account in order
to capture all aspects of environment free energy

Fig. 12 The backbone and Cbs are shown in gray. The ALA5 Cb is
shown in black. The actual relative rSASA as determined by the
reference standard method of ALA5 is 0.375 and it is the 13th most
exposed exposed amino acid in the protein model. Lines are drawn
from the ALA5 Cb to all Cbs assigned a neighbor weight >0 as
determined by the neighbor count algorithm. Although ALA5 has
many neighbors, all of the neighbors are on one face of the amino acid
leaving the other face exposed. Therefore, the neighbor count
algorithm ranks ALA5 only as the 21st most exposed amino acid.
The neighbor vector algorithm is able to distinguish that most of the
neighboring amino acids are on one face of ALA5 and ranks ALA5 as
the 19th most exposed amino acid in the protein model. The ANN is
able to use the NC, NV, and NV• C/ � Cb

� �
information to more

accurately determine the actual exposure and rank ALA5 as the 18th
most exposed amino acid in the protein model. The OLS algorithm
ranks ALA5 as the 13th most exposed amino acid in the model, its
true rank

�
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and ranked it as the 13th most exposed amino acid in the
protein model, which is in fact its correct ranking. The
exposure value given for the ALA5 of a 1enh protein model
as well as the rank of ALA5 amongst the 54 amino acids in
the protein model is shown in Table 7.

Discussion

Four algorithms for determining the relative exposure on a
reduced protein model are presented. The complexity of
these algorithms varies and as expected, the simplest
algorithms are the most efficient in terms of runtime but
less effective in approximating the reference standard
rSASA method and distinguishing between native-like and
nonnative-like protein models. Also as expected, the more
complex algorithms, such as the artificial neural network
and overlapping spheres, achieve more accurate exposure
measures and are more effectively able to distinguish
between native-like and nonnative-like protein models.

Neighbor count is the simplest measure of exposure and
achieves the lowest average enrichment. Also as expected,
as the algorithms increase in complexity, they are able to
achieve a higher enrichment. The ANN is particularly
effective at this task and achieves enrichments on reduced
protein models that are nearly as high as the enrichments
achieved by the rSASA on full-atom protein models.

As the Rosetta models used for benchmarking were
generated using the Rosetta environment score, most of
these models bury apolar amino acids and expose polar
amino acids and fulfill overall the generally expected
environment architecture within proteins. Hence the enrich-
ment test performed in this work is a stringent test that
measures improvement over the Rosetta energy function
which explains the rather moderate enrichment values.

Substantially higher enrichments can be obtained if models
are created without the use of the environment score.

As is seen in Fig. 9 and indicated by the large standard
deviations shown in Fig. 8, the degree to which the
algorithms are able to recognize native-like protein varies
widely. Consider the high enrichments produced for the
protein 1e6i. In this case, the algorithms are fairly effective
in distinguishing between native-like and nonnative-like
protein models. However, there are proteins that are “hard,”
for example 1scj. All algorithms produce an enrichment of
0.0 (worse than random).

In all cases, the maximum possible enrichment of 10.0 is
not achieved by any algorithm, including the rSASA reference
standard. This indicates that the environment free energy
approximations based on SASA contain a limited amount of
information and additional energy terms should be considered
in order to achieve additional discriminatory power.

The large standard deviations of the enrichment values
(shown in Fig. 8) indicate that further improvements to
these algorithms are possible. The fact that the reference
standard rSASA method does not always perform best in
terms of ability to distinguish between native-like and
nonnative-like protein models is unexpected (for example,
consider the benchmark protein 1tig). The assumption that
environment free energy is directly proportional to SASA
should be investigated further to determine if this is strictly
the case or if there may be other crucial contributions to
environment free energy as well.

Future work includes an in depth analysis of various
histogram sizes used in creation of the KBPs and
optimizing parameters with the standard for optimality
being the parameters that yield the greatest enrichment for
protein structure prediction rather than correlation with the
reference standard rSASA.

Conclusions

Four exposure algorithms of varying complexities are
presented that efficiently produce exposures on reduced
protein models that closely correlate with the exposure
measures given by the rSASA reference standard on a full-
atom model. These exposure measures can be used to
derive KBPs that provide discriminatory power in distin-
guishing between native-like and nonnative-like models.
This measure of environment free energy is an important
energy term but is best utilized as part of a more
comprehensive energy evaluation function. For use in
computational protein structure prediction, the neighbor
vector algorithm provides the most optimal balance of
accurate yet very rapid exposure measures. The assumption
that environment free energy is directly proportional to
SASA will be investigated further.

Table 7 Exposure algorithm performance for ALA5

Exposure algorithm Exposure value given
for ALA5 by each
exposure algorithm

Rank of ALA5 amongst
54 all amino acids in
the protein model given
by each exposure
algorithm

rSASA reference
Standard

0.375 relative
exposure

13th most exposed
amino acid

Neighbor count 6.495 neighbors 21st most exposed
amino acid

Neighbor vector 0.568 NV
magnitude

19th most exposed
amino acid

Artificial neural
network

0.348 relative
exposure

18th most exposed
amino acid

Overlapping spheres 0.372 relative
exposure

13th most exposed
amino acid
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