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Abstract

Racemic Ac-Gly—[B,5-13C]Pro-OMe was synthesized, and the kinetics and thermodynamics of the
isomerization of its prolyl peptide bond were determined in nine solvents by using NMR and IR
spectroscopy. The free energy of activation is 1.3 kcal/mol larger in water than in aprotic solvents,
and correlates with the ability of a solvent to donate a hydrogen bond but not with solvent polarity.
These results are consistent with conventional pictures of amide resonance, which require transfer
of charge between oxygen and nitrogen during isomerization. Similar medium effects may
modulate the stability of planar peptide bonds in the active site of peptidyl-prolyl cis—trans
isomerases (PPlases) and during the folding, function, or lysis of proteins.

The interconversion of cis (E) and trans (Z) isomers of peptide bonds that include the
nitrogen of proline residues can give rise to a slow kinetic phase during protein folding.1+2
This interconversion is catalyzed by the peptidyl-prolyl cis—trans isomerases (PPlases).34
Two of these enzymes, cyclophilin and FK-506 binding protein (FKBP), have been studied
extensively: (1) isotope effects and analyses of mutant enzymes® suggest that the prolyl
peptide bond does not suffer nucleophilic attack during catalysis, (2) calorimetry shows that
binding to FKBP occurs with a large decrease in heat capacity,’ and (3) structural studies of
cyclophilin® and FKBP? reveal active sites composed of hydrophobic side chains.10
Consequently, desolvation has been proposed as a significant contributor to catalysis by the
PPlases.!! This proposal is consistent with NMR line shape analyses of simple amides,
which suggest that the rate of amide bond isomerization does indeed depend on solvent.12
To assess the contribution of desolvation to catalysis by the PPlases, we have determined the
effect of solvent on the energetics of prolyl peptide bond isomerization (eq 1).

We performed our analyses on the simplest dipeptide that contains a prolyl peptide bond.
Racemic Ac-Gly-[B,3-13C]Pro—-OMe (1) was synthesized using standard methods.2 The N-
and C-termini of 1 were protected so as to minimize intramolecular electrostatic interactions.
14 solvent effects on the rate constants for the isomerization of the prolyl peptide bond of 1
were determined using inversion transfer 13C NMR spectroscopy.1®16 These measurements
were performed at temperatures at which the rate constants were in the range detectable by
NMR spectroscopy.1’ Solvent effects on the amide | vibrational mode of Ac-Pro-OMe, a
model of 1 with only one amide bond, were determined using IR spectroscopy.18

The origin of the barrier to the isomerization of amide bonds is commonly attributed to the
double-bond character of the C—N bond, which results in net transfer of charge from
nitrogen to the carbonyl carbon® or oxygen?® (or both?l). If the amide group has greater

Correspondence to: Ronald T. Raines.

Supplementary Material Available: Figures showing 13¢c NMR spectrum of 1 (CDCI3) and IR spectrum of Ac-Pro-OMe (aqueous),
and a table listing activation parameters for isomerization of 1 in all solvents studied (4 pages). Ordering information is given on any
current masthead page.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Eberhardt et al.

Page 2

charge separation when planar than when orthogonal, then its isomerization via an
orthogonal transition state should be faster in less polar solvents.22 Further, if the partial
charge on oxygen is greater in planar than in orthogonal amides, then protic solvents should
restrict isomerization by forming a hydrogen bond to oxygen.12:23

Temperature effects on the rate constant for the isomerization of 1 in different solvents are
shown as Arrhenius plots in Figure 1. The data in Figure 1 indicate qualitatively that protic
solvents restrict isomerization of 1. The rate constants for the isomerization of 1 do not,
however, correlate with solvent dielectric constant or with other measures?? of solvent
polarity. The rate constants do correlate with the ability of a solvent to donate a hydrogen
bond. The relationship between the free energy of activation for the isomerization of 1 and
the frequency of its amide | absorption band is shown in Figure 2. The amide I vibrational
mode, which is primarily a C=0 stretch, absorbs at lower frequency with increasing strength
of a hydrogen bond to the amide oxygen.24:2> The data in Figure 2 therefore suggest that the
barrier to isomerization (AG¥) is proportional to the strength of hydrogen bonds formed to
the amide oxygen (given by ). These results are consistent with conventional pictures of
amide resonance (eq 1), which require transfer of charge between oxygen and nitrogen
during isomerization.20:21

Solvent effects on the equilibrium constant for the isomerization of 1 are small. The value of
the equilibrium constant for all solvents studied was K = kgz/kzg = 4.3 £ 0.9 at 60°C, as
calculated by interpolating the Arrhenius plots of Figure 1.28 This lack of a solvent effect on
K is also evident from the parallel lines in Figure 2. The absence of a significant solvent
effect on K is consistent with the behavior observed for other amides.3

Activation parameters indicate that the barrier to isomerization of 1 is almost entirely
enthalpic in all solvents studied, as observed with other amides.12:27 The values of AG*
(Figure 2) for the isomerization of 1 are, however, 1-2 kcal/mol smaller than the analogous
values for acyclic tertiary amides.122d The smaller barriers for prolyl peptide bond
isomerization may result from pyramidalization of the prolyl nitrogen, which decreases
amide resonance.28

The PPlases decrease the free energy of activation for prolyl peptide bond isomerization by
8 kcal/mol.3d Desolvation alone can apparently account for 1.3 kcal/mol of this decrease
(Figure 2).29 Similar medium effects may modulate the stability of planar peptide bonds
during the folding,:2 function,30 or lysis2® of proteins.
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Figure 1.

Arrhenius plots for the cis to trans (A) and trans to cis (B) isomerizations of 1 in different
solvents. Solvents (dielectric constant at 25°C) were as follows: <>, dioxane (2.21); o,
benzene (2.27); V, toluene (2.38); e, isopropyl alcohol (19.92); m, ethanol (24.55); 4,
trifluoroethanol (26.14); o, acetonitrile (35.94); A, N,N-dimethylformamide (36.71); and &,
water (78.30). Linear regression analysis is shown for each protic solvent (—) and all
aprotic solvents (---).
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Figure 2.

Plots of AG* for isomerization of 1 vs v of amide | vibrational mode of Ac-Pro-OMe in
different solvents. Symbols are as in Figure 1. Values of AG* were calculated by
interpolating the Arrhenius plots of Figure 1 at 60°C. Weighted linear regression analysis is
shown for cis to trans [—, slope = — 0.025 £ 0.003 kcal-cm/mol] and trans to cis [---, slope =
—0.029 + 0.002 keal-cm/mol]. AG*aprotic — AG¥yyater = 1.3 + 0.2 kcal/mol.
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