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ABSTRACT: Superhydrophobic surfaces hold tremendous potential in a wide range of 

applications owing to their multifaced functionalities. However, the mechanochemical 

susceptibility of such materials hinders their widespread usage in practical applications. Here, we 

present a simple, solvent-free and environmentally friendly approach to fabricate flexible and 

robust superhydrophobic composite films with durable self-cleaning functionality. The obtained 

composite film features unexpected but surprising hierarchical micro/nanoscopic structures as well 

as robust superhydrophobicity with water contact angle around 170° and sliding angle below 4°. 

Notably, the composite film exhibits mechanical robustness under cyclic abrasion, tape-peeling, 
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flexing as well as intensive finger wiping and knife-cutting, maintains excellent 

superhydrophobicity after long time exposure to high humidity environment, as well as sustains 

exposure to highly corrosive species, such as strong acid/base solutions and organic solvents. The 

robust superhydrophobicity is ascribed to the induced micro/nano hierarchical surface structures, 

resulting in the trapped dual-scale air pockets which could largely reduce the solid/liquid interface. 

In addition, even after oil contamination, the composite film maintains its water repellency and 

self-cleaning functionality. The robust superhydrophobic composite film developed here is 

expected to extend the application scope of superhydrophobic materials and should find potential 

usage in various industries and daily life. 

 

INTRODUCTION 

Superhydrophobic surfaces have drawn great interest in both academia and industry due to their 

great potential in numerous applications, such as self-cleaning,1-5 water proofing,6 anti-icing7, -

corrosion8, and -bacterial9, 10, drug release and delivery11, 12, water-oil separation,13-21 low-friction 

transport of fluids22 as well as droplet manipulation23-26. Provoked by these attractive multifaceted 

functionalities, various techniques have been developed to fabricate surfaces with non-wetting 

properties including spray coating27, vapor deposition28-31, lithography32, chemical etching,33, 34 

electro-spinning, self-assembly, etc.35, 36 The general synthesis strategy of water repellent surfaces 

is to introduce the micro/nanostructured roughness followed by chemical modification to generate 

a low-energy surface.37 Although the successful fabrication of superhydrophobic surfaces have 

been widely reported, the mechanical susceptibility severely limits their widespread usage in 

practical applications.38 Mechanical treatment, such as abrasion or scratching applied on the 

substrate surface can easily render the loss of superhydrophobicity, because mechanical contacts 
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lead to the destructions of the micro/nanoscale surface structures which is essential to sustain the 

non-wetting property. 

To overcome this issue, fabrication of mechanically durable surfaces featuring non-wetting 

property has recently been explored extensively. A commonly adapted strategy is to create 

superhydrophobic surfaces based on substrates that are inherently mechanical robust, such as 

elastomers and metals. For instance, Zhong and co-workers39 reported the fabrication of 

superhydrophobic polydimethylsiloxane films by a duplication process based on a Femtosecond 

Laser Ablated Template. Tan and co-workers40 constructed micro–nanostructure on the brass 

surface via micro-etching technique, followed by surface modification with stearic acid to render 

the surface superhydrophobic. Wang and co-workers41 prepared a superhydrophobic steel surface 

using hydrogen peroxide and acid for etching to obtain hierarchical structured surface on the steel, 

followed by a surface modification treatment. Although the superhydrophobic surfaces 

demonstrated in these works exhibited good mechanical durability, these strategies suffer from 

costly and complicated production which limits their applicability. As an alternative solution, 

spray coating of hydrophobized particles (e.g., fluorinated nanoparticles) along with adhesives has 

been widely used to prepare mechanical durable superhydrophobic surfaces due to its relatively 

uncomplicated implantation. For instance, Tiwari and co-workers42 presented a multi-fluorination 

strategy to prepare robust superhydrophobic surfaces by spray coating the mixture of fluorinated 

epoxy resin and polytetrafluoroethylene nanoparticles dispersed in acetone. The authors 

demonstrated that the obtained superhydrophobic coating exhibited good mechanical durability 

and water impalement resistance. Parkin and co-workers reported that spray coating of perfluoro 

silane modified titanium dioxide nanoparticles on adhesive tapes resulted in a superhydrophobic 

surface that shows good mechanical stability.43 However, the fluorinated substances and organic 
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solvents that involved in these spraying methods are not environmental friendly and involve safety 

concerns. In addition, the superhydrophobic surfaces generated by these spraying methods 

normally feature chemical instability when exposed to organic solvents. As such, fabrication of 

mechanochemically robust superhydrophobic surface via a simple eco-friendly way is very 

appealing but remains challenge. 

Here, we report a facile solvent-free method to fabricate flexible superhydrophobic composite 

films that feature novel hierarchical micro/nanoscale surface structures and mechanochemically 

robust superhydrophobicity. Unlike most spraying techniques, this strategy avoids the usage of 

solvents, especially organic solvents, which reduces the cost as well as environmental and safety 

concerns. The robust superhydrophobic composite film was generated by coating silicone 

nanofilaments (SNF) on a plasma activated polyethylene (PE) film through the droplet-assisted 

growth and shaping (DAGS) method44, followed by thermal annealing of the composite film at 

180 °C for 10 min. Strikingly, after thermal treatment the as-prepared film exhibited hierarchical 

micro/nanoscale surface structures, leading to the excellent water repellency due to the trapped 

dual-scale air pockets within the induced hierarchical structures. Moreover, the obtained composite 

film possessed mechanically robust superhydrophobicity under cyclic abrasion, tape-peeling, 

flexing, as well as intensive finger wiping and knife-cutting, and maintained its excellent water 

repellency even after exposure to highly corrosive liquids, such as strong acid/base solutions and 

organic solvents. Notably, even after oil contamination the composite film can retain its water 

repellency and self-cleaning functionality. The superhydrophobic composite film developed here 

shows great potential and advantageous for various applications that require a stable and robust 

superhydrophobicity. 
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RESULTS AND DISCUSSION 

Figure 1a schematically shows the preparation of the superhydrophobic composite film with 

hierarchical micro/nanoscale surface structures. The dense and homogeneous growth of silicon 

nanofilaments (SNF) on both side of a plasma activated polyethylene (PE) film was achieved at 

room temperature (RT) by the DAGS method44 with trichloroethylsilane as precursor. The 

formation of silicone nanofilaments can be explained as following:44 In a humid environment, 

nano- and microsized water droplets are formed on the activated PE film surface instead of forming 

a thin homogenous water layer, due to the topographic or chemical inhomogeneity of the substrate 

surface.45, 46 After injection of the volatile trichloroethylsilane, the reaction is initiated and these 

small water droplets act as the “reaction vessels” throughout the reaction. The gaseous 

trichlorosilane reacts with water droplets to produce soluble mono and poly-silanols as well as 

hydrochloric acid as a by-product. The silanol and siloxanol species are produced by the hydrolysis 

and condensation reaction. Subsequently, polysiloxanes are formed as a result of condensation, 

followed by deposition as solid at the liquid-solid interface due to its insolubility in the “reaction 

vessel”. This leads to the solid bulk grow in a 1D structure supporting the water “reaction vessel” 

at its tip.44 As the activity of water droplets decreases, more gaseous water molecules are 

transported from the humid environment to sustain the hydrolysis and condensation reaction. 

Under certain circumstances, a thin silicone layer might also be formed around the water droplets 

due to the separation of polysiloxanes. The obtained composite film was then annealed at 180 °C 

for 10 min.  



 6 

 

Figure 1. (a) Schematic of the strategy for sample preparation. Scanning electron microscopy 

(SEM) images showing the micro/nanostructure of the sample (b-d) before annealing and (e-g) 

after annealing at different magnifications. The annealing temperature and time were 180 °C and 

10 min, respectively. 

Figure 1b-d shows the scanning electron microscopy (SEM) images of the PE film after 

growing with SNF (PE-SNF), and a dense layer of SNF can be clearly observed on the film surface. 

Notably, after thermal treatment the annealed composite film (PE-SNF-A) features hierarchical 

micro/nanoscale surface structures, as shown in Figure 1e-g. The appeared micro-wrinkles after 
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annealing are ascribed to the different modulus between the thermoplastic PE film and the rigid 

silicon layer presented on the PE surface after growing with SNF (see Figure 1a).47, 48  

The presence of the silicon layer on PE film surface was confirmed by the Scanning electron 

microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) images of cross-sectioned 

PE-SNF films, as shown in Figure 2. A thin silicon layer between PE film and the SNF can be 

clearly observed (Figure 2c, f, i and l). To evaluate surface roughness of the PE-SNF-A film, the 

height of the micro-wrinkles and the thickness of the SNF layer were determined with SEM and 

estimated to be ~ 19 μm and ~ 1.5 μm, respectively (Figure 2a and Figure S1). For comparison, 

the same thermal annealing procedure was performed for PE films without growing of SNF, 

whereas no micro-wrinkled structure was observed for these annealed PE films (see Figure S1). 

The obtained PE-SNF-A films exhibited excellent water repellency and simultaneously good 

flexibility. As shown in Figure 3a, The PE-SNF-A films exhibited a mirror-like reflective behavior 

when submerged in water and it maintained non-wetting after being taken out, indicating the 

trapped air cushion between the water and solid surface.28 A water jet can easily bounce off the 

highly bended PE-SNF-A composite film surface without leaving any trace (Figure 3a), which 

suggests the ultra-low adhesion between the film surface and water. This is also evident from the 

complete bouncing of a water droplet on the solid surface (case 1, Figure 3h). Additionally, the 

bending properties of the obtained PE-SNF films were also determined via a three-point bending 

measurement. The obtained flexural stress–strain curve is shown in Figure 3b. The average flexural 

strength and strain at maximum force of PE-SNF-A films were determined to be around 8.1 MPa 

and 6.7%, respectively, which is relatively higher compared to that of the unannealed PE-SNF 

films (5.1 MPa and 2.1%, respectively, see Figure S2). We attribute this enhancement to the 

induced micro-wrinkled surface structures of the annealed film. 
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Figure 2. (a to c) SEM images of cross-sectioned PE-SNF-A film at different magnifications, and 

(d-f) the corresponding EDX mapping. (g to i) SEM images of cross sectioned PE-SNF film at 

different magnifications and (j-l) their corresponding EDX mapping. 
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Figure 3. (a) Photos presenting the PE-SNF-A film with a mirror-like phenomenon in water and 

a jet bounce off the highly bended film, as well as the scheme of a water droplet on the PE-SNF-

A film. (b) Flexural measurement result of the PE-SNF-A film. (c) Schematics of abrasion and 

tape-peeling tests. The effect of tape-peeling cycles on (d) ƟCA and (e) ƟSA of the composite PE-

SNF films. The influence of abrasion cycles on (f) ƟCA and (g) ƟSA of the PE-SNF films. (h) Time 

resolved pictures showing the complete bounce of a 10 μL water droplet on the PE-SNF-A film 

(1) fresh, (2) after 30 cycles tape-peeling and (3) 20 cycles abrasion at 200 g load. 

Mechanical durability is of particular importance for the practical applications of 

superhydrophobic materials. In this work, different types of mechanical robustness tests, e.g., 
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abrasion and tape-peeling, were performed for the as-prepared PE-SNF composite films (see 

Figure 3c). For good comparison, Water contact angle (ƟCA) and sliding angle (ƟSA) as function 

of abrasion and tape-peeling cycles for both annealed and unannealed PE-SNF films were 

investigated. The obtained results are shown in Figure 3d-g. Both the annealed and unannealed 

PE-SNF films featured ƟCA of around 171°, whereas the PE-SNF-A film exhibited a lower ƟSA of 

around 3° compared to that of the PE-SNF film without annealing (ƟSA of 5°). This is ascribed to 

the trapped dual-scale air pockets within the induced micro/nanoscale hierarchical surface 

structures, which can largely reduce the liquid/solid interface (see Figure 3a). Notably, the PE-

SNF-A film shows a significant improvement of resistance towards tape-peeling compared to the 

unannealed PE-SNF film (see Figure 3d and e). Even after 30 cycles of tape-peeling, the PE-SNF-

A maintained excellent superhydrophobicity featuring ƟCA of above 165° and ƟSA of around 10°. 

However, the unannealed PE-SNF film lost its superhydrophobicity quickly after only 1 round 

tape-peeling, and its ƟCA dropped below 140° while the ƟSA increased from ~ 5° to above 90°. 

After 30 cycles tape-peeling, the ƟCA reduced to be ~ 116° for PE-SNF film without annealing 

(see Figure 3d).  

As another mechanical durability test, the abrasion resistance of the PE-SNF films was 

measured. The unannealed PE-SNF film exhibited abrasion susceptibility and lost its 

superhydrophobicity instantly after abrasion, which is similar to the other superhydrophobic SNF 

coated surfaces reported previously.38, 49 For instance, after only 2 cycles abrasion, the ƟCA was 

reduced to be 145° and ƟSA was increased to be above 90° for PE-SNF without annealing. The 

mechanical susceptibility of the unannealed PE-SNF film is ascribed to the inherent fragility of 

SNF. However, the PE-SNF-A film retained its superhydrophobicity even after 20 cycles abrasion, 

and its ƟCA and ƟSA remained around 162° and 16°, respectively, as shown in Figure 3f and g. The 
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mechanical robustness of PE-SNF-A film was also evidently proved by the rebounding of a water 

droplet on the tape-peeled (case 2, Figure 3h) and abraded (case 3, Figure 3h) surfaces. In addition, 

the PE-SNF-A film maintained its superhydrophobicity even after intensive finger-wiping, knife-

cutting and cyclic flexing/bending (Movie S1). For instance, after 50 cycles flexing/bending the 

ƟCA and ƟSA of the PE-SNF-A film remained around 170° and 3°, respectively. However, the PE-

SNF film without annealing negated its water repellency after only a few round of finger-wiping 

(Movie S2).  

 

Figure 4. SEM images of the (a-b) unannealed PE-SNF and (c-d) PE-SNF-A film surfaces after 

30 cycles tape-peeling at different magnifications. The (e-f) unannealed PE-SNF and (g-h) PE-

SNF-A film surfaces after 20 cycles abrasion. 

The above enhancement in superhydrophobicity and mechanical robustness for the PE-SNF 

film after annealing is ascribed to the induced hierarchical micro/nanoscale surface structures as 

well as the enhanced adhesion between silicon layer and the base layer of PE film. This is evidently 

revealed by the SEM results, as shown in Figure 4. After 30 cycles tape-peeling, the SNF layer 
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was totally removed and the silicon layer was partially peeled off from the unannealed PE-SNF 

film surface (see Figure 4a-b). A similar situation was observed for the PE-SNF film surface after 

20 cycles abrasion (Figure 4e-f). This well explains the mechanical susceptibility of the 

superhydrophobicity for the PE-SNF without annealing. In contrast to the unannealed PE-SNF, 

the SNF was mostly retained on the PE-SNF-A after either 30 cycles tape-peeing (Figure 4 c-d) or 

20 cycles of abrasion (Figure 4g-h). Only those areas exposed to the tape-peeling or abrasive forces 

(Figure 4c-d, g-h and Figure 3c) showed signs of the damaged SNF texture, while the majority of 

the SNF were protected by the micro-wrinkled structures. Strikingly, despite of the damaged SNF, 

the hydrophobic silicone layer remained adhering to the PE micro-wrinkles even after exposed to 

tape-peeling or adhesion (see Figure 4c-d and 4g-h). The retained hydrophobic silicone layer along 

with the micro-wrinkled roughness as well as the residual SNF maintained the 

superhydrophobicity of the PE-SNF-A film. This well explains the mechanically robust 

superhydrophobicity of the PE-SNF film after thermal annealing. The robust superhydrophobicity 

also indicates a durable self-cleaning functionality of the as-prepared PE-SNF-A film. 

To further explore the stability of the superhydrophobicity for the obtained PE-SNF-A film, a 

water droplet (10 μL) was placed on the film surface, as shown in Figure 5a. When the droplet 

gradually shrank due to the evaporation, it kept nearly spherical shape and the ƟCA was maintained 

higher than 150° during the whole 84 min evaporation process (Figure 5a). This reveals that the 

as-prepared PE-SNF-A film can prevent even a very tiny sized water droplet from permeating into 

it, indicating a very stable superhydrophobicity. Moreover, when exposed to a ∼90% humidity 

condition, the as-prepared PE-SNF-A film maintained ƟCA and ƟSA of ~ 170° and ~ 3°, 

respectively, during the whole process (Figure 5b). After 16 days exposure, no observable decrease 

in ƟCA or increase in ƟSA, suggesting a rather durable resistance of the superhydrophobicity to the 
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high humidity environment. In addition, the obtained PE-SNF-A film exhibited excellent 

repellency to highly corrosive liquids. As shown in Figure 5c, all the corrosive liquid droplets 

varied from strong acid (pH 1) to strong base (pH 14) featured ƟCA above 165° and ƟSA below 5° 

on the PE-SNF-A film surface. 

To further assess the resistance of the superhydrophobicity to harsh chemical corrosions, the 

as-prepared PE-SNF-A films were immersed in 0.1 M hydrochloric acid (HCl) and 0.1 M sodium 

hydroxide (NaOH) solutions, and the ƟCA and ƟSA of the film as a function of corrosion time were 

measured. Figure 5d and e show the influence of corrosion time on ƟCA and ƟSA of the PE-SNF-

A film in HCl and NaOH solutions, respectively.  

Strikingly, even after 2 hours HCl corrosion, the as-prepared film showed excellent 

superhydrophobicity featuring ƟCA and ƟSA of ~ 169° and 9°, respectively (see Figure 5d). The 

PE-SNF-A film also maintained the ƟCA of ~ 163° and ƟSA of ~ 15° after 30 min corrosion in 

NaOH (see Figure 5e). The increase in ƟSA of the as-prepared film after NaOH/HCl corrosion is 

ascribed to the hydrolysis of the surface area that contacted with the corrosive liquids. SEM images 

of the PE-SNF-A surface show no observable damage after HCl and NaOH corrosion, as shown 

in Figure 5g and h, respectively. Furthermore, in contrast to the widely reported superhydrophobic 

surfaces prepared by spray coatings,42, 50 the as-prepared PE-SNF-A film even exhibited rather 

stable superhydrophobicity to organic solvents, e.g., dimethylformamide (DMF), tetrahydrofuran 

(THF), toluene, etc. As shown in Figure 5f, the PE-SNF-A film maintained its excellent water 

repellency with a ƟCA of ~ 170° and ƟSA of ~ 3° after 4 days immersion in these aggressive organic 

solvents, and no observable damage from the film surface was found (see Figure 5i and Figure S3). 

In addition, the as-prepared superhydrophobic film also shows excellent resistance towards UV 
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irradiation, for instance, after 24 h UV light illumination no obvious change was found for the ƟCA 

and ƟSA of the PE-SNF-A film (see Figure S4). 

 

Figure 5. (a) A 10 μL water droplet placed on the PE-SNF-A film gradually shrank with time due 

to the evaporation. The droplet maintained its perfect spherical shape with ƟCA greater than 150° 

in the whole process. (b) ƟCA and ƟSA of the as-prepared PE-SNF-A film as a function of time 

after exposed to a ~ 90% humidity condition. (c) ƟCA and ƟSA of corrosive liquids with pH values 
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vary from 1 to 14. Influence of (d) HCl and (e) NaOH solution corrosion time on the water 

repellency of the PE-SNF-A film. Both the HCl and NaOH solution used feature a concentration 

of 0.1 M. (f) ƟCA and ƟSA of the PE-SNF-A film after 4 days corrosion in different organic solvents. 

SEM images of the PE-SNF-A film surface after (g) 120 min corrosion in 0.1M HCl solution and 

(h) 30 min corrosion in 0.1 M NaOH solution, as well as (i) 4 days corrosion in dimethylformamide 

(DMF).  

Such stable superhydrophobicity and excellent resistance to chemical corrosions of the as-

prepared PE-SNF-A film are ascribed to the synergistic effect of the inherent chemical stability of 

the composite film with the hierarchical micro/nanoscale surface structures. The formed dual-scale 

air pockets resulting from the trapped air within the micro/nanoscopic structure (Figure 3a), 

prevented the water droplets and corrosive liquids from seeping through the film. 

The as-prepared PE-SNF-A film not only shows excellent water repellency, but also exhibits 

non-wettability to the other aqueous solutions such as, soy sauce, coffee, wine, milk and cola (see 

Figure 6a). Due to its robust superhydrophobicity, the PE-SNF-A film features excellent self-

cleaning functionality. Figure 6b-c demonstrates the self-cleaning effect of the film using chalk 

powder as the mimic dirt. The film was quickly and completely cleaned when water droplets were 

poured onto its surface as the dirt was picked up and taken away by the rolling droplets. 

Notably, the self-cleaning property of the as-prepared film also functions after oil 

contamination when exposed to either air or oil. Figure 6d shows a water droplet forming a sphere 

and rolling off from the oil (hexadecane) immersed film surface instead of wetting or adhering on 

the surface, which suggests that the film maintained its self-cleaning functionality even when 

exposed to oil. In addition, the water droplets can easily slip off from the oil contaminated film 

surface when exposed to air (see Figure 6e-f and Movie S3). Figure 6g-i show a dirt-removal test 
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on the PE-SNF-A film surface in both oil and air. The film was fully immersed into oil (hexadecane) 

followed by partly putting into the oil. The dirt (chalk powder) was also placed partly in oil and 

air onto the film surface, which was subsequently cleared by water droplets slipped off the surface 

(Figure 6g-i and Movie S4). 

 

Figure 6. (a) Repellent behavior of PE-SNF-A film when exposed to water, wine, cola, soy sauce, 

coffee and milk. (b-c) Self-cleaning process on PE-SNF-A film surface when exposed to air. Chalk 

powder was used as the dirt to contaminate the surface. (d) Water droplet was repelled by the film 

surface immersed in oil (hexadecane). (e-f) The PE-SNF-A film surface retained its water 

repellency even after oil contamination. (g-i) Self-cleaning test at solid-oil-vapor interface. The 
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dirt was partly put in oil and air, subsequently, the dirty was removed by water drops passing over 

the oil contaminated film surface. (j) Time resolved images showing a water droplet (10 μL) 

slipping off from the oil contaminated PE-SNF-A film surface under a Weber number51 of around 

10.6. 

When the film was immersed in oil, the oil can gradually penetrate through its surface, and the 

water droplets were supported by both the micro/nanoscale surface structures and oil.43 This results 

in the similar water repellency and self-cleaning performance in oil to that in air.52 In air, after oil 

immersion, the hierarchical micro/nanoscale surface texture of the film can lock the oil 

contamination as a lubricating fluid, leading to a slippery state,53 as shown in Figure 6j. The dirt 

can be taken away from the film surface by the sliding over water drops. Hence, the oil 

contaminated film maintains its water repellency and self-cleaning functionality when exposed to 

either air or oil. 

 

CONCLUSION 

In summary, we presented a facial solvent-free technique to fabricate flexible superhydrophobic 

composite films with novel hierarchical micro/nanoscopic structures and mechanochemically 

robust superhydrophobicity. The obtained film exhibited very stable superhydrophobicity with 

water contact angle of ~ 170° and sliding angle of ~ 3°. Notably, the film can maintain its 

superhydrophobicity under a variety of harsh mechanical and chemical treatments such as, cyclic 

abrasion, tape-peeling, flexing, knife-cutting, intensive finger-wiping as well as corrosions from 

strong acid/base solutions. The robust superhydrophobicity is owing to the induced hierarchical 

micro/nanoscale surface structures, leading to the trapped dual-scale air pockets. In contrast to 

most superhydrophobic coatings, the as-prepared superhydrophobic composite film also featured 

excellent resistance towards organic solvents. In addition, even after oil contamination, the 
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composite film maintained its water repellency and self-cleaning property. The robust water-

repellent functionality of the composite film developed here potentially endows its promising and 

versatile applications in various areas. 

 

EXPERIMENTAL SECTION 

Materials. Trichloroethylsilane (TCES, 98%) was purchased from ABCR GmbH (Germany). 

Low density polyethylene film (LDPE) was purchased from Angst + Pfister (Switzerland). 

Toluene (99.8%), tetrahydrofuran (THF, ≥ 99.5%), dimethylformamide (DMF, ≥ 99.8%), 

hydrochloric acid (37%) and sodium hydroxide (≥ 97%) were purchased from Sigma-aldrich. 

Ethanol and acetone (absolute for analysis) were purchased from Merck Millipore. Milli-Q water 

was produced by a Millipore Simplicity system (Billerica, MA, USA). Unless otherwise mentioned 

all other chemicals were used as received. 

Sample Preparation. In order to prepare the superhydrophobic composite film, the 

polyethylene film was first activated by O2 plasma in a plasma chamber (Diener Electronics, 

Nagold Germany) at 100-watt power for 10 min under the O2 flow rate of 10 sccm. Subsequently, 

the activated film was placed into a custom-built glass desiccator and equilibrated for 2 h under a 

controlled humidity of 50% ± 2%. The humidity inside the desiccator was monitored by EE23 

(E+E Elektronik, Germany) hygrometer and adjusted by using the mixture of dry and humidified 

N2. To initial the coating of silicone nanofilaments (SNF) on the activated film, 800 μL TCES was 

injected into the desiccator and the reaction was conducted at room temperature (~22 °C) for 6 h. 

The obtained SNF coated film (PE-SNF) was then treated with thermal annealing. To obtain an 

adequate annealing treatment, the samples were annealed at 180 °C (above the melting point of 

the PE film) for 10 min to induce the hierarchical micro/nanoscale surface structures. We note that 
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no obvious change was observed for the surface morphology after a longer period of annealing. In 

addition, we also performed the SNF coating on PE film surface with different amount of TCES 

(i.e., 300 μl and 1200 μl). With less amount of TCES (300 μl), the coating of SNF was found to be 

not homogeneous (see Figure S5a and b), and the coated PE film is not superhydrophobic. After 

further increase the using amount of TCES to 1200 μl, a similar homogeneous dense layer of SNF 

was obtained on the PE film surface (see Figure S5c and d) and no obvious change in SNF 

morphology was found when compared to that of using 800 μl TCES. Thus, in this work we 

performed all the experiments based on the PE films coated with 800 ul TCES. 

Characterizations. A high resolution scanning electron microscope (SEM) combined with 

energy dispersive X-ray (EDX) (Zeiss Supra 50 VP, German) were used to characterize the 

composite films surface structures. The typically used electron acceleration voltage was 10 keV. 

Prior to SEM-EDX analysis the samples were coated with 5 nm layer of platinum. The contact 

angle and sliding angle measurements were performed using a Contact Angle System OCA 

(Stuttgart, Germany). An RPR-200 model reactor (SNE Ultraviolet Co., USA) equipped with eight 

UV lamps (SNE Ultraviolet Co., USA) with emission wavelength at 350 nm was used to assess 

the UV resistance of the obtained superhydrophobic films. The contact angle and sliding angle of 

the films after UV light irradiation were measured. 

Mechanical Performance Tests. The flexural measurements were performed with an Instron 

3345 universal testing device. A three-point bending setup was used. The support span was set to 

be 30 mm. The typical sample dimensions were 60 mm × 10 mm × 1.2 mm. The applied testing 

rate was 1 mm min
-1. For average values of the maximum stress and strain, at least three specimens 

were measured. 
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Tape-peeling Test. An adhesive tape (3M, Scotch® Magic™ Tape 810) with adhesion force 

of 250 N m-1 to steel (ASTM D-3330) was used for the tape-peeling test. The tape was placed and 

pressed with a load of 900 g on the prepared composite film to achieve uniform contact between 

the tape and the film, followed by slowly peeling the tape away from the film surface. The contact 

angles and sliding angles of the tape-peeled substrates were investigated as a function of tape-

peeling cycles. 

Abrasion Test. The mechanical abrasion tests were conducted using AB5000 Washability 

Tester (TQC, Germany). ASTM standard D4213 for testing abrasion or scrub resistance of 

coatings and paints was adapted to assess the abrasion resistance of the as-prepared composite film. 

The friction partner was mounted on a reciprocating sled which oscillates with a given stroke speed. 

The applied load, stroke speed and distance were 200 g, 10 cycles min-1 and 30 cm, respectively. 

The contact angles and sliding angles of the abraded films were measured as a function of abrasion 

cycles. 

 

ASSOCIATED CONTENT 

Supporting Information.  

The Supporting Information is available free of charge on ACS Publications website. 

SEM images of LDPE films before and after annealing treatment. Flexural measurement of the 

PE-SNF film without annealing. SEM images of the PE-SNF-A film surface after 4 days corrosion 

in tetrahydrofuran, acetone and toluene. Speeded up movies showing finger wiping, cyclic flexing 

and knife-cutting tests performed on PE-SNF-A film (Movie 1, mp4) and PE-SNF film without 

annealing (Movie 2, mp4). Speeded up movies showing the water repellent behavior of PE-SNF-
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A film after oil contamination (Movie 3, mp4) and the self-cleaning performance of PE-SNF-A 

film in either oil or air (Movie 4, mp4). 
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