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A microscopic theory of solvent reorganization energy in polar molecular solvents is developed. The
theory represents the solvent response as a combination of the density and polarization fluctuations
of the solvent given in terms of the density and polarization structure factors. A fully analytical
formulation of the theory is provided for a solute of arbitrary shape with an arbitrary distribution of
charge. A good agreement between the analytical procedure and the results of Monte Carlo
simulations of model systems is achieved. The reorganization energy splits into the contributions
from density fluctuations and polarization fluctuations. The polarization part is dominated by
longitudinal polarization response. The density part is inversely proportional to temperature. The
dependence of the solvent reorganization energy on the solvent dipole moment and refractive index
is discussed. ©2004 American Institute of Physics.@DOI: 10.1063/1.1676122#

I. INTRODUCTION

In the course of an electron-transfer~ET! reaction the
center of localization of the transferred electron is shifted
from the donor to the acceptor. This creates a difference elec-
tric field DE0(r ) commonly represented by the ET~non-
point! dipole formed by a positive charge on the donor and a
negative charge on the acceptor~Fig. 1!. The coupling of the
ET dipole to electronic and nuclear degrees of freedom of the
solvent is responsible for the thermodynamic and dynamic
effects of the solvent on ET activation. The first solution for
the problem of the solvent effect on ET energetics was pro-
posed by Marcus.1,2 His approach considers solvation of two
isolated, oppositely charged spherical ions with radial sym-
metry of their electric fields. A finite distance between the
positive and negative charges of the ET dipole is included
through their Coulomb attraction.

The Marcus formulation, deceptive in its simplicity, in-
cludes an important physical assumption, that electronic
transitions are activated by fluctuations of the longitudinal
nuclear solvent polarizationdPL produced by thermally re-
orienting permanent dipoles of the solvent molecules. This
notion connects the Marcus theory to the Born theory of ion
solvation3 and to earlier descriptions of large polarons andF
centers in polar lattices.4 In all these cases, the spherical
symmetry of the field of a single charge is supplemented by
equal spherical symmetry of the cavity carved in the dielec-
tric, thus leading to a radial distribution of the polarization.
Similarly, the Marcus formulation applies only to situations
when both the equilibrium and nonequilibrium~activated
state! polarizations of the solvent can be represented by sol-
vent response to an effectively spherically symmetric field of
the solute.

The longitudinal nature of the solvent response is re-
flected by the appearance of the longitudinal relaxation time

tL in ET rate constants affected by solvent dynamics.5–7

Also, time-resolved measurements of solvation dynamics in-
dicate thattL is the appropriate relaxation time for the long-
time portion of the solvation correlation functions.8–10 In the
static regime, the Pekar factorc051/e`21/es is a signature
of the longitudinal nuclear polarization, wheree` andes are
the high-frequency and static dielectric constants, respec-
tively. The Marcus equation~superscript ‘‘M’’! for the sol-
vent reorganization energy defines the characteristic energy
scale of the effect of longitudinal polarization fluctuations on
the donor–acceptor energy gap

ls
M5c0E0

L . ~1!

Here,

E0
L5~8p!21E uDẼ0

L~k!u2
dk

~2p!3
~2!

is the electrostatic energy corresponding to the inverted-
space longitudinal projection of the electric fieldDẼ0 on the
direction of the wave vectork̂5k/k: DẼ0

L(k)5( k̂•DẼ0).
The Fourier transform

DẼ0~k!5E
V

DE0~r !eik"rdr ~3!

is taken over the solvent volumeV outside the donor–
acceptor complex~DAC!. The energyE0

L is often called the
geometric factor as it is solely determined by the shape of the
DAC and the geometry of electron localization in the initial
~donor! and final~acceptor! states.

The concept of longitudinal polarization most naturally
appears in the inverted-space representation of the electro-
static fields.6,11,12 The longitudinal componentP̃L(k)
5 k̂"P̃(k) of the k-space Fourier transformP̃~k! of the di-
electric polarization is directly connected to the density of
the external charger̃0(k) by Maxwell’s equationa!Electronic mail: dmitrym@asu.edu
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P̃L~k!5S 12
1

es
D i r̃0~k!

k
. ~4!

This connection substantially simplifies all the electrostatic
calculations in cases whenP̃L5 P̃. In the direct space, this
condition implies that the polarization of the dielectric sur-
rounding a solute can be directly connected to the vacuum
source field:

P5PL5
1

4p S 12
1

es
DDE0 . ~5!

This relation also implies that Maxwell’s dielectric displace-
mentD within the dielectric is equal to the source fieldDE0 :

D5DE0 . ~6!

The free energy of solvation,Fsolv, can then be easily calcu-
lated from the vacuum external field by integration of the
electrostatic energy density over the volume occupied by the
solvent:

Fsolv52
1

2 EV
D~r !•P~r !dr

52
1

8p S 12
1

es
D E

V
DE0~r !2dr . ~7!

As was recognized by Kharkatset al.13 Eq. ~6! is satis-
fied only when the boundary of the cavity cut off by the
DAC from the solvent coincides with an equipotential sur-
face of the charge distribution within the cavity. When this is
not the case, the lines of the source field are not normal to
the cavity surface resulting inDÞDE0 ~Fig. 1!. The dielec-
tric polarization is then determined by both the source charge
and the apparent surface charge,14 and Eq.~5! does not hold
any more. In the direct-space representation, this means that
dielectric displacement should be sought by solving the Pois-
son equation with the boundary conditions set up by the
dielectric cavity. In thek-space description, this implies that
the polarization is not solely given by the source charge dis-

tribution @Eq. ~4!# and the transverse polarization component
P̃T5uP̃2 k̂( k̂"P̃)u contributes to the solvent response. It was
argued that a cavity containing an ET dipole always crosses
its equipotential surfaces~Fig. 1! and transverse polarization
cannot be neglected.13 Both the longitudinal and transverse
components of the solvent polarization then affect the energy
gap DE between the acceptor and donor electronic states.
This symmetry change broadens the spectrum of solvent col-
lective modes activating ET from purely longitudinal, as in
the case of large polarons, to longitudinal,PL, and trans-
verse,PT, polarization modes~Figs. 1 and 2!.

The importance of both the longitudinal and transverse
polarization modes is well recognized in current continuum
formulations of the ET theory which search for a solution of
the Poisson equation for the ET dipole in a cavity of arbitrary
shape.15–17 Indeed, the calculation of electrostatic energy of
the ET dipole within ellipsoidal cavities shows that the sol-
vent reorganization energyls cannot be separated into a sol-
vent ~e.g., Pekar factor! and geometric (E0

L) factors. The de-
pendence ofls on the solvent dielectric constant is entangled
with the cavity shape.18 Therefore, both longitudinal and
transverse polarizations contribute to the electric field of the
solvent interacting with solute’s charges. At this point, the
continuum electrostatic calculations come in contradiction to
the original Marcus concept and studies of ET dynamics both
pointing to the longitudinal polarization as the principal sol-
vent mode driving electronic transitions.

The recent two decades have seen an increasing interest
in the development of microscopic theories of ET
reorganization.19–29Theoretical models are usually based on
either liquid-state theories of solvation19–24,29or direct com-
puter simulations of the reorganization energy25,30 and ET
free energy surfaces.26–28,31 This development has recog-
nized the fact that the coupling of macroscopic fluctuations
of dipolar polarization to the ET dipole is not the only
mechanism of ET activation, and other interaction potentials
and molecular modes may be active as well. Two major ex-
tensions of the original Marcus concept have been suggested:
~i! a distinction between rotational and translational modes
of the solvent affecting ET activation20,32 and solvation
dynamics33,34 and ~ii ! the role of higher solvent multi-

FIG. 1. ET dipole formed by a negative charge on the acceptor~A! and a
positive charge on the donor~D!. The dashed lines show equipotential sur-
faces of the ET dipole which cross the cavity surface~solid line!. The di-
electric displacementD is then nonequal to the source fieldDE0 . For that
reason the projection of the solvent polarizationP on the direction of the
source field is not equal toPL given by Eq.~5!.

FIG. 2. Orientational and density fluctuations around a spherical ion.LL,
LT, and LD denote the longitudinal, transverse, and density correlation
lengths, respectively~see the text!.
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poles for reactions in weakly polar and nondipolar
solvents.21,22,30,35–37

On short time scales of solvation dynamics, when long-
range multipolar correlations are not yet established, both
rotations and translations participate in purely ballistic
motion.33 The dynamics of solvent response due to transla-
tions and rotations becomes, however, distinctly different on
diffusional time scales when the long-range orientational cor-
relations become active.34 Finally, in the static regime, when
the time scale of the process of interest (kET

21 for ET, where
kET is the ET rate constant! is much larger than the charac-
teristic time scales of molecular motions, the difference in
correlation lengths of the density~translations! and orienta-
tional ~rotations! collective modes is reflected in a much
stronger temperature dependence of the density component
of the solvent reorganization energy.20 The same is true not
only for charge–dipole solute–solvent coupling, but also for
other interaction potentials depending on the coordinates of
the solvent molecules~induction and dispersion forces!.38,39

Fluctuations of all these potentials, caused by density fluc-
tuations of the solvent, lead to a pronounced temperature
dependence ofls . The entropy of solvent reorganization is
thus dominated by short-range density fluctuations and not
by long-range orientational fluctuations. The total reorgani-
zation entropy is positive as confirmed by experiment,40–44

in contrast to a negative entropy predicted by dielectric cav-
ity models.

An account for higher solvent multipoles, in particular
for solvent quadrupoles coupled to the gradient of the solute
electric field, is necessary for solvents composed of mol-
ecules with small or zero dipole moment.21,22,35,36This modi-
fication of the theory goes necessarily beyond dielectric
models since the dielectric constant reflects molecular qua-
drupoles only indirectly~through the Kirkwood factor!.45,46

The charge–quadrupole interaction decays faster with the
distance than the charge–dipole interaction. The relative im-
portance of quadrupole moments in solvents with nonzero
dipoles depends therefore on the solute size. For commonly
large donor and acceptor units employed in ET studies, the
quadrupolar contribution to the solvent reorganization energy
is small in all but nondipolar solvents, and the quadrupolar
solvation energy can be safely dropped for ET in even
weakly polar solvents.30 We therefore focus in this study on
dipolar polarization fluctuations, reserving a relatively nar-
row class of nondipolar solvents to future work.

The present state of the problem of calculating the sol-
vent reorganization energy in polar solvents may be summa-
rized as follows. Dielectric continuum models offer signifi-
cant flexibility in treating molecular solutes of complex
geometries. A solution of the Poisson equation for a molecu-
lar cavity includes both the longitudinal and transverse po-
larization components. Procedures of defining cavities are,
however, ambiguous and the calculation results are very sen-
sitive to the choice of the dielectric cavity. In addition, it is
not clear whether the equal account of two types of polariza-
tion by the Poisson equation is consistent with quite different
time and length scales of these two modes on the micro-
scopic level~Fig. 2!. On the other side of the theoretical
spectrum, molecular solvation theories incorporate a more

realistic description of molecular dynamics and thermody-
namics. Existing models are, however, limited in their ability
to treat large solutes of complex molecular shape. Both the
longitudinal and transverse polarization components were in-
cluded in the solvent response for a spherical dipolar
solute.36,47 That model has been used to calculate steady-
state optical band shapes for dipolar chromophores in a
broad range of solvent polarities30 and has been applied to
calculate entropies of ET activation.37,48The effective radius
of the solute is not, however, specified in the model and
should be fitted to some experimental observable; the Stokes
shift30,42 and the equilibrium energy gap37 have been used in
recent applications. The transverse polarization is often ne-
glected in microscopic models of the energetics20–22 and
dynamics6 of ET. It is not included in the RISM
calculations21,22 due to the way the RISM approximation is
formulated.49 The combination of limitations in treating sol-
ute molecular geometry with neglect of some important col-
lective polarization modes present in molecular solvents ob-
viously narrows the range of applications of molecular
solvation models. The development of an effective algorithm
applicable to an arbitrary geometry of the DAC with full
account of solvent polarization modes is a pressing need for
applications, especially in the realm of redox chemistry of
biopolymers. This paper presents the first step in this direc-
tion.

Various levels of complexity may be chosen for molecu-
lar modeling of the solvent effect. Realistic intermolecular
potentials with partial molecular and atomic charges are of-
ten used in computer simulations. These approaches provide
a very detailed picture of the local solute–solvent structure.
These models are, however, hard to employ in formal theo-
ries. Furthermore, a still existing ambiguity of treating long-
range Coulomb forces in computer simulations, especially at
infinite dilution of large solutes common for biological ap-
plications, leaves open the question of the ability of finite-
size simulations to grasp the long-range polarization struc-
ture of the solvent around a molecular solute. On the other
hand, a tremendous success of continuum models in treating
the Gibbs energy of solvation50 suggests that a substantial
portion of significant physics is accounted for even on the
continuum level of the theory. The dielectric continuum ap-
proach fails to describe short-range solvation effects re-
flected by such properties as the entropy of solvation,20,51

quadrupolar solvation,21,22,30,35–37,46 and specific
interactions.52 However, the formalism of response
functions,53–56 providing a reduced description of the com-
plex molecular problem, is a valuable component of the con-
tinuum approach which can be extended to include various
molecular modes and molecular dimensions. This is the basic
approach adopted in this paper. The formalism for the calcu-
lation of the reorganization energy is given in terms of
k-dependent density57 and polarization58,59 structure factors
of the solvent which are incorporated into the theory to form
the nonlocal polarity response functions depending on both
the solvent and solute geometry. For convenience, we will
refer to the present formulation as to the nonlocal response
function theory ~NRFT!. The analytical calculations for
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model solute geometries and computer simulations are per-
formed for the model solvent of multipolar hard spheres.

The model of polarizable hard spheres with centered mo-
lecular multipoles has the desired universality in a sense that
it may be parametrized to describe a broad list of molecular
solvents60–63on the one hand and incorporates the main ther-
mal molecular motions of real solvents—rotations and
translations—on the other. An additional advantage is that
the solvent molecular polarizability, which is often very ex-
pensive for computer simulations,64,65 is incorporated
through a renormalized solvent dipole.45,66–68The spherical
approximation for molecular cores of the solvent molecules
may seem to be an oversimplification, but there are strong
arguments for its ability to account for nonspecific solvent
effects on chemical thermodynamics and solvation.69 Recent
applications of the model have demonstrated its ability to
accurately describe activation37,48,70 and spectroscopy30 of
charge-transfer transitions. Although the calculations and
simulations are done here for the model of dipolar solvent
molecules, the formalism is not limited by this assumption.
The theory is formulated in terms of density and polarization
structure factors of the pure solvent and those for an arbitrary
molecular solvent can be used in the calculations.

The results of microscopic calculations are compared
throughout the paper to the continuum limit which follows
from the NRFT whenk dependence is neglected in the sol-
vent response functions. The notion of continuum solvation
applies to thedielectric continuumdescription as first formu-
lated by Born,3 Onsager,71 and Kirkwood.72 A few recent
continuumsolvation models73–75incorporate molecular prop-
erties which are not reflected by the static and high-
frequency dielectric constants of the solvent. These con-
tinuum approximations are not considered here as the NRFT
includes only dielectric continuum as its limiting case.

The rest of the paper is organized as follows: The next
section provides a compilation of critical properties of the
solvent reorganization energy illustrated by the results from
Monte Carlo~MC! simulations. This compilation sets up a
list of requirements which an accurate analytical model of
solvent reorganization should meet. The theory development
starts with the instantaneous free energies depending on the
nuclear configuration of the system as given in Sec. III. The
formulation of the theory of solvent reorganization is pre-
sented in Sec. IV. This is followed by the development of an
analytical approximation to calculate the polarization struc-
ture factors of a pure polar solvent in Sec. V. A description of
the numerical algorithm and a comparison between the ana-
lytical theory and simulations are presented in Sec. VI. The
paper concludes with a short summary in Sec. VII.

II. CONCEPTUAL FORMULATION

A. Solvent reorganization energy
in the linear response approximation

Radiationless transitions are activated by thermal nuclear
fluctuations creating the resonance of the donor and acceptor
electronic levels. The rate constant of ET,kET , is propor-
tional to the probability of a nuclear configuration leading to

zero energy gapDE50 between the donor and acceptor
electronic states,

kET}Pi~0!. ~8!

The probability distributionPi(DE) for the initial (i 51)
and final (i 52) states of the transferred electron is fully
characterized by its infinite cumulant series. Only two first
cumulants—the average vertical gap^DE& i and the variance
s i

2(DE)—are nonzero whenPi(DE) is a Gaussian distribu-
tion ~Fig. 3!. For classical nuclear modes of the solvent, the
variance is commonly factored into the temperature and clas-
sical solvent reorganization energy,l i , terms:76

s i~DE!252kBTl i , l i5~b/2!^~dDE!2& i . ~9!

Here b51/kBT, kB is Boltzmann’s constant, andT is tem-
perature;̂ ¯& i denotes an equilibrium ensemble average in
the ith state. The factorization of Eq.~9!, characteristic of the
classical limit of the fluctuation–dissipation theorem,77 con-
veniently separates the temperature factor from the reorgani-
zation energy. The latter is assumed to depend weakly on
temperature.

The molecular origin of a nonzero variances i
2(DE) is in

thermal fluctuations of the solute–solvent interaction poten-
tial which is often given by a sum of pairwise interactions,

Vi5(
j

v i~ j !. ~10!

Here j 5$r j ,v j% stands for the coordinates and Euler angles
of the jth solvent molecule and the sum runs over theN
solvent molecules. Thermal fluctuations ofDV5V22V1 in
DE5E22E1 are responsible for a nonzero value of the vari-
ances i(DE). The corresponding reorganization energy can
be split into a sum of a single-molecule~one probe solvent
molecule! and two-molecule~two probe solvent molecules!
contributions,

l i5l i
I1l i

II . ~11!

Here,

l i
I5~b/2!(

j
^~dDv~ j !!2& i , ~12!

l i
II5~b/2!(

j Þk
^dDv~ j !dDv~k!& i , ~13!

andDv( j )5v2( j )2v1( j ).

FIG. 3. Distribution function of energy gaps between the donor and acceptor
electronic energy levels.̂DE& i and s i

2 denote, respectively, the first and
second cumulants of the distribution function.
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In polar molecular liquids, the one-particle and two-
particle terms in l i are essentially compensating each
other.78 The resultant reorganization energyl i usually con-
stitutes about 10% ofl i

I or l i
II as is illustrated in Fig. 4~a!.

Figure 4 shows the results of MC simulations for a model ET
reaction between two spherical reactants at a distance equal
to the sum of their radii~contact configuration!. The donor
and acceptor are immersed in a liquid of hard-sphere~HS!
molecules with point dipoles~diamonds and spheres in Fig.
4! and with point dipoles and axial quadrupoles~squares in
Fig. 4!. The details of simulations and the actual simulation
results are given in Appendix A. For the calculations pre-
sented in Fig. 4 the pairwise solute–solvent interaction po-
tential is the interaction of the electric field of the soluteE0i

with the solvent point dipole,

v i~ j !52mj "E0i~r j !. ~14!

The interaction of the solute with the solvent quadrupole
moment is not explicitly considered. Solvent quadrupoles are
introduced here for a more realistic modeling of dipolar cor-
relations in polar solvents~see below!.46 All results in this
paper refer to the interaction of the solute charges with dipo-
lar polarization only.

Diamonds in Fig. 4 represent simulations in equilibrium
with the charged state of the solute, D1 – A2; the circles and
squares correspond to a neutral diatomic, D–A. In both
cases, the reorganization energies are obtained as the vari-
ance of the difference potentialDV according to Eq.~9!.
Since the initial state is a nonpolar diatomic,DV
5( jv2( j ), wherev2( j ) is given by Eq.~A1!. The reorgani-

zation energy componentsl i
I,II @Fig. 4~a!# and the total reor-

ganization energiesl i @Fig. 4~b!# are plotted in Fig. 4 against
the dipolar strength,

y5~4p/9!brm2, ~15!

wherer is the solvent number density andm is the solvent
permanent dipole. Below we also use the reduced dipole mo-
ment (m* )25bm2/s3 independent of the bulk density,
wheres is the diameter of the solvent molecules. The results
of computer simulations are presented in this section to illus-
trate the main qualitative features of ET reorganization
in polar solvents. A quantitative analysis is postponed to
Sec. IV.

Figure 4 shows that, within simulation uncertainties, the
reorganization energies for D–A and D1 – A2 solutes are
equal. This means that the linear response approximation
~LRA! is valid for solvation of charges in multipolar solvents
within the range of studied polarities. The LRA assumes that
the electric field of the solvent polarization is linear in sol-
ute’s charges leading to the reorganization energy indepen-
dent of the electronic state,

l15l25ls . ~16!

This is the Marcus picture of ET activation in terms of two
intersecting parabolas with equal curvatures.79 Two param-
eters are then necessary for defining the activation barriers
for the forward and backward reactions: the solvent reorga-
nization energy

ls5l I1l II ~17!

and the equilibrium free energy gapDF05(^DE&1

1^DE&2)/2. The present formulation is limited to the Mar-
cus LRA scheme. Nonlinear effects, necessitating more than
two parameters for defining the ET free energy surfaces,80,81

are not considered here.
The LRA is commonly verified by checking the qua-

dratic dependence of the solvation chemical potential on the
solute charge for ionic solutes or on the solute dipole for
dipolar solutes. In the latter case, the LRA implies that the
ratio

mp~m0!

m0
5

1

m0
E

0

m0 up~x!

x
dx ~18!

is a linear function ofm0 . Here mp(m0) is the solvation
chemical potential andup(m0i)5^Vi& is the average solute–
solvent interaction energy;m0i is the solute dipole in theith
electronic state andm0 is used for changing solute dipole.
Figure 5 showsmp(m0)/m0 versusm0* 5(bm0

2/s3)1/2 for a
dipolar solvent withm* 51.0 ~squares! and a quadrupolar
solvent with m50 and the reduced quadrupolar moment
(Q* )25bQ2/s550.5 ~circles!. The simulations were per-
formed at different magnitudes of the solute dipolem0 ; the
average energiesup(m0) were fitted to a polynomial in
(m0* )2 and then used for integration over the solute dipole in
Eq. ~18! ~solid lines in Fig. 5!.

The range ofm0* values for which the LRA should be
tested is dictated by the problem under consideration. The
reaction fieldRp of the nuclear solvent polarization, acting
on a dipolar DAC in the ET activated state, is defined by the

FIG. 4. ~a! One-molecule~upper set of points! and two-molecule~lower set
of points! contributions to the solvent reorganization energy.~b! Solvent
reorganization energy vs the dipolar density@Eq. ~15!#. Points refer to simu-
lations in dipolar~circles and diamonds,Q* 50) and dipolar–quadrupolar
@squares, (Q* )250.5] solvents of varying dipolar strength. Reorganization
energiesl i are obtained from the variance of the solute–solvent difference
potential measured on solvent configurations in equilibrium with a neutral
diatomic D–A (i 51, circles and squares! and in equilibrium with a charged
diatomic D1 – A2 ( i 52, diamonds!; r*50.8, RD5RA50.9s, and R
52RD . The dashed lines are regressions drawn through the diamond points.
The reduced chargeq* 511.87 is defined by Eq.~A2!.
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average vertical free energy gap^DE& ~energy of the charge-
transfer optical transition! and the difference dipole in the
final and initial statesDm0 ,

Rp
‡5

^DE&
Dm0

. ~19!

Here we omit the subscripti to indicate that Eq.~19! can be
applied to either the direct,i 51, or backward,i 52, transi-
tions. The nonequilibrium reaction field of the activated ET
state corresponds to equilibrium solvation of a fictitious di-
pole with magnitude

m05
Rp

‡

2ap
5

b^DE&
2bapDm0

, ~20!

whereap is a response function of the nuclear solvent polar-
ization such that the LRA chemical solvation potential of a
dipole is mp52apm0

2. With the slope ofbmp /m0* versus
m0* in Fig. 5 equal toaps350.58, m0* is equal to 10 in
Eq. ~20! whenb^DE&520. Testing the LRA for higher ver-
tical energy gaps of the order ofb^DE&.80 often encoun-
tered in spectroscopic applications requires simulations with
higherm0* . We will assume that the LRA holds in all calcu-
lations below in the range of solvent polarities (m* )2<6 for
which the simulations of charged and neutral diatomics show
l1.l2 ~Fig. 4!.

The validity of the LRA opens an important route to the
formulation of analytical theories of ET reorganization.
Treatment of orientationally dependent, long-range multipo-
lar interactions between the solute and solvent is a complex
task for both analytical modeling and computer simulations.
The fact that the reorganization energy is state independent
allows us to calculatels as the variance of the solute–
solvent interaction potential taken on the solvent configura-
tions in equilibrium with a nonpolar DAC~D–A diatomic in
MC simulations! without charges on the donor and acceptor
defining the ET dipole.82 This approach will be utilized in
Sec. IV below.

B. Orientational and density fluctuations

The solvent reorganization energy reflects the energetic
intensity of nuclear fluctuations created by thermal excita-

tions of collective modes of the solvent. Each such collective
mode is characterized by its symmetry and the length of the
correlation decay~correlation lengthL!. Anisotropic fluctua-
tions of dipolar polarization and isotropic fluctuations of
density are two major collective modes in polar molecular
liquids.6,45 The wave vectork of the inverted space creates
axial symmetry in the otherwise isotropic polar liquid. Ac-
cordingly, two projections are sufficient to define the nuclear
polarization filed P̃n8(k): the longitudinal polarization
P̃L(k)5 k̂"P̃n8(k) and the transverse polarizationP̃T(k)
5uP̃n8(k)2 k̂( k̂"P̃n8(k))u ~the nuclear fieldPn8 is defined in
Sec. III!. The properties of thermal fluctuations of these two
projections are substantially different because of the aniso-
tropic nature of dipolar interactions.11

Fluctuations of the longitudinal polarization are short
ranged~Fig. 2!. The corresponding longitudinal correlation
length LL can be found from Wertheim’s solution of the
mean-spherical approximation~MSA! for dipolar HS mol-
ecules as83

LL53sj/~114j!, ~21!

wherej is the MSA polarity parameter:j→0 whenes→0
and j→0.5 whenes→`. Correspondingly,LL→s/2 at es

→`. Correlation lengthLL enters the effective solute radius
of an ion in the MSA derivation of the Born equation for
ion–dipolar mixtures,84 r eff5R01s/22LL, whereR0 is the
radius of a spherical ion.

In contrast to longitudinal polarization fluctuations with
correlation length approaching its maximum value ofs/2
when es→`, the transverse polarization fluctuations are
macroscopic with the correlation length diverging whenes

→` ~Fig. 2!. In the MSA,83

LT53js/2~122j!, ~22!

and one getsLT→` at j→0.5. HereLL andLT define the
asymptotic distance decay of the correlation function,

^dPL,T~r !dPL,T~0!&}r 21e2r /LL,T
. ~23!

The longitudinal and transverse fluctuations of the dipo-
lar polarization in a polar solvent are described by the lon-
gitudinal,SL(k), and transverse,ST(k), structure factors:

SL~k!5
3

N (
i , j

^~ êi "k̂!~ k̂"êj !e
ik"r i j &, ~24!

ST~k!5
3

2N (
i , j

^@~ êi "êj !2~ êi "k̂!~ k̂"êj !#e
ik"r i j &, ~25!

where r i j 5r i2r j . Here, and throughout below, carets are
used for unit vectors; e.g.,êj is a unit vector in the direction
of the solvent dipole. The structure factors can be connected
to the correlators ofd P̃L(k) andd P̃T(k),

SL~k!5
3

N~m8!2
^ud P̃L~k!u2& ~26!

and

ST~k!5
3

2N~m8!2
^ud P̃T~k!u2&. ~27!

FIG. 5. 2bmp /m0* vs m0* for solvation of a HS solute with the radius
R0 /s50.9 in a dipolar solvent (m* 51.0, squares! and in a quadrupolar
solvent@(Q* )250.5, circles#. The dots are2bup/2m0* and the solid lines
are obtained by integration of a polynomial fit ofup(m0* ) according to
Eq. ~18!; r*50.8.
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In Eqs.~24!–~27!, the average~¯! is taken over the equilib-
rium configurations of the pure solvent ofN molecules and
m8 is the liquid-state dipole moment of the solvent mol-
ecules~see Sec. III below!.

The connection between the microscopically defined
structure factors and macroscopic dielectric functions of a
polarizable solvent involves some mean-field arguments.11

The longitudinal and transverse macroscopic response func-
tions can be defined in terms of correlators of the total po-
larization of the solvent:

Pt5Pn1Pe , ~28!

wherePn andPe are the nuclear and electronic polarization,
respectively. The longitudinal and transverse correlators are
then given by the relations

x t
L5

1

4p
~12es

21!5
b

V
lim
k→0

^ud P̃t
L~k!u2&,

~29!

x t
T5

1

2p
~es21!5

b

V
lim
k→0

^ud P̃t
T~k!u2&,

whereV is the solvent volume. The above average can be
taken in the mean-field approximation for the solvent-
induced dipoles:

b

V
lim
k→0

^ud P̃t
L~k!u2&53rsLa1@brm2~sL!2/3#SL~0!,

~30!
b

V
lim
k→0

^ud P̃t
T~k!u2&56rsTa1@2brm2~sT!2/3#ST~0!,

where the factorssL andsT account for the renormalization
of the vacuum solvent polarizabilitya and dipole momentm
by the self-consistent field of the induced dipoles.85 From the
condition thates5e` at m50 one getssL5(e`12)/3e`

and sT5(e`12)/3, which leads to the following relation
between thek50 values of two structure factors:

SL~0!

ST~0!
5

e`

es
. ~31!

Equation ~31! was obtained previously by Madden and
Kivelson from somewhat different arguments.11 If one de-
fines yp5(4p/9)br(msL)2 ~Ref. 20!, the equations for the
structure factors atk50 become

SL~0!5c0/3yp ,
~32!

ST~0!5~e2e`!/3e`
2 yp .

Note that Eq. ~32! leads to the Fro¨hlich–Kirkwood
expression14 for the Kirkwood factor:

gK5
1

3
@SL~0!12ST~0!#

5
~es2e`!~2es1e`!

9ypese`
2

5
~es2e`!~2es1e`!

yes~e`12!2
. ~33!

The different nature of the longitudinal~short-range! and
transverse~long-range! polarization fluctuations is reflected
in the behavior ofSL(k) and ST(k) at small wave vectors

k,2p/s. Dipoles collinear to an external electric field~lon-
gitudinal polarization! tend to be antiparallel@Fig. 6~a!#. If
one assumes a hexagonal alignment of dipoles in the first
coordination sphere of a given dipole, then two tail-to-head
dipoles are preferentially parallel to the central dipole
whereas four side-to-side dipoles are antiparallel. This cre-
ates effectively two antiparallel dipoles in the first coordina-
tion sphere of each dipole in the solvent. Their correlation
brings a negative sign toiÞ j term in Eq. ~24!, leading to
SL(0),1. This behavior is similar to that of another type of
short-range correlations in dense liquids: the density fluctua-
tions. In the latter case, thek50 value of the density struc-
ture factorS(0) is also less than 1~Fig. 7!, becoming greater
than 1 close to the critical point when density fluctuations
become long ranged.86 Rotations of dipoles out from parallel
alignment with an external field tend to add up in the trans-
verse polarization due to Coulomb attraction of opposite
charges87 @Fig. 6~b!#, resulting inST(0).1 ~Fig. 7! charac-
teristic of long-range correlations.

Density fluctuations occur on the molecular scale of the
order of the molecular diameter with the correlation length
from the Percus–Yevick~PY! solution for a HS fluid as88

LD53sh/2~112h!. ~34!

Hereh is the solvent packing density defined as fraction of
the volume of the solvent moleculesVs in the total volume
V occupied by the solvent,h5Vs /V ~h>0.4–0.55 for mo-
lecular liquids at normal conditions!. The correlation length
LD defines the long-distance decay of the density correlation
function,

FIG. 6. Preferential antiparallel orientation of dipolesi andk collinear with
the external fieldE0 ~a!. Transverse polarization created by librational fluc-
tuations of orientations of dipolesi andk adds up because of the Coulomb
attraction between negative and positive ends of the polar molecules~b!.

FIG. 7. Density@S(k)#, longitudinal@SL(k)#, and transverse@ST(k)# struc-
ture factors for a liquid with (m* )253.0 and (Q* )250.5. The solid lines
are the results of MC simulations and the dashed lines show the calculations
with the PPSF;r*50.8.
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^dr~r !dr~0!&}r 21e2r /LD
. ~35!

Both the long-distance and short-distance behavior of the
density correlations are described by the density structure
factor

S~k!511rh̃ss
000~k! ~36!

in which h̃ss
000(k) stands for the spherically symmetric com-

ponent of the solvent–solvent~subscript ‘‘ss’’ ! pair correla-
tion function.45

C. Polarity dependence

The Marcus approximate relation forls employs the
longitudinal field of the ET dipole~transverse component is
neglected! in the form

DẼ0
L~k!5

4p ie

k
@ j 0~kRD!2 j 0~kRA!eik"R#, ~37!

whereRD and RA are the radii of the spherical donor and
acceptor units, respectively,R is the D–A distance, ande is
the elementary charge;j n(x) is the spherical Bessel function
of ordern. The substitution of Eq.~37! into Eqs.~1! and~2!
leads to the relation

ls
M5

e2c0

2 S 1

RD
1

1

RA
2

2

RD , ~38!

with ls
M proportional to the Pekar factorc0 @Eq. ~1!#. Al-

thoughls}c0 is strictly valid only for spherically symmetric
cavities, it holds surprisingly well.89 This is illustrated in Fig.
8 wherels obtained from simulations of the D–A diatomic
is plotted against 121/es (e`51) with es obtained from
simulations of pure dipolar and dipolar–quadrupolar sol-
vents. There is a noticeable curvature ofls versus 121/es in
purely dipolar solvents, which almost disappears when an
axial solvent quadrupole is added. The addition of the quad-
rupole moment weakens the dependence ofes on (m* )2

~Table I!, resulting in a nearly linear trend ofls versus
121/es .

The existence of a linear trend ofls with the Pekar
factor does not, however, mean that the Marcus formula~1!
and/or ~38! provide accurate values forls . Dielectric con-
tinuum calculations are strongly affected by the definition
used to specify the dielectric cavity. Various approaches en-

countered in the literature can generally be referred to the
van der Waals~vdW! cavity and the solvent-accessible~SA!
cavity. In the former definition, the dielectric cavity is the
space excluded from the solvent by the vdW repulsive core
of the solute. For the SA cavity, the discrete size of the sol-
vent molecules is taken into account by adding the solvent
radius to the vdW radii of atoms or molecular groups ex-
posed to the solvent. Notice that the SA cavity is more con-
sistent with microscopic solvation theories as they convert to
dielectric models with the SA cavity in thek→0 limit for the
microscopic response functions.

When only longitudinal polarization is taken into ac-
count in the calculation ofls with the SA cavity, the result is
too small. Longitudinalls @Eq. ~1!# with the vdW cavity
turns out to be reasonably close to simulations~marked
vdW/L in Fig. 9!. The calculations according to Eq.~1! were
done by taking the numerical Fourier transform ofDE0 for
the diatomic with radiiRD5RA and R5RD1RA . The lon-
gitudinal projection ofDẼ0 was then used in Eq.~2! to cal-
culate the longitudinal electrostatic energy. The Marcus
equation for the diatomic with vdW cavity@Eq. ~38!, upper
dashed line in Fig. 9# overestimatedls by about 60% in the
medium polarity range. This equation is not strictly appli-
cable to the contact donor–acceptor configuration, but it does
not provide an acceptable accuracy also when the donor–
acceptor distance is significantly increased as is seen from
the following section.

A full solution of the Poisson equation for the D1 – A2

diatomic was obtained by employing the finite-difference
DELPHI solver.90 This package uses the vdW cavity with
slight modifications incorporated in the definition of the
‘‘molecular surface.’’91 With the dielectric cavity defined by
two spheres of the donor and acceptor, the reduced reorgani-
zation energybls /(q* )2 obtained fromDELPHI ~labeled
vdW in Fig. 9! is very close to the Marcus equation~dashed
line in Fig. 9!. The use of the SA cavity in the full Poisson
solution~labeled SA in Fig. 9! leads to too lowls compared
to simulations. The Marcus equation reproduces well the full
solution of the Poisson equation for DA diatomics withR
.RD1RA , but deviates, as expected, from the Poisson

FIG. 8. ls from MC simulations of a neutral diatomic D–A vs 121/es

obtained from separate simulations of corresponding pure solvents. Circles
correspond to dipolar solvents~m is varied! and squares are for dipolar–
quadrupolar solvents@(Q* )250.5 andm is varied#.

FIG. 9. ls from MC simulations of a charged diatomic~circles! and from
continuum longitudinal response with the van der Waals cavity@Eq. ~1!,
vdW/L#. The dashed line refers to the Marcus formula@Eq. ~38!#; RA /s
5RD /s50.9 andR/s51.8. DELPHI calculations are shown for the solvent-
accessible~SA! van der Waals~vdW! cavities. The vertical arrow connect-
ing vdW/L and vdW solutions indicates the contribution of transverse po-
larization to continuum calculations. The reduced chargeq* is defined by
Eq. ~A2!.
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equation solution forR,RD1RA ~lower curves labeled SA
in Fig. 9!. The vertical arrow in Fig. 9 indicates the gap
between the full solution of the Poisson equation and the
longitudinal reorganization energy. This gap, amounting
about 25% for this donor–acceptor configuration, is the con-
tribution of the transverse polarization to the continuumls .

Similarly to the diatomic solute, the simulated reorgani-
zation energies81 for a dipolar spherical solute~circles in Fig.
10! fall in between of two continuum results for the vdW and
SA cavities ~dashed lines in Fig. 10!. The solution of the
Poisson equation is known analytically in this case and is
given by the Onsager reaction-field expression.71 For the SA
cavity it becomes

ls5
m0

2

R1
3

es21

2es11
, ~39!

where R15R01s/2. Similarly to the case of the diatomic
solute, the use of combination of Eq.~1! with the vdW cavity
gives a reasonable estimate forls which becomes in this
case (e`51)

ls5
2m0

2c0

9R0
3

. ~40!

Calculations for both types of solutes considered here show a
very high sensitivity of the dielectric models to the choice of
the dielectric cavity, rendering all such calculations strongly
dependent on the assumptions made to represent a molecular
system by a continuous medium.

In addition to quantitative uncertainties with continuum
reorganization energies, there are also qualitative problems.
The initial rise ofls with increasing solvent dipole is not as
sharp as the Pekar factor would predict. More importantly,
dielectric continuum models give saturation ofls starting
from moderately polar solvents withy>2. This is not repro-
duced by simulations. Instead of reaching a saturation limit,
the reorganization energy continues to grow approximately

linearly with y. A qualitatively similar result has been previ-
ously obtained for solvation of a point dipole.81 A saturation
limit of the solute–solvent average interaction energy was
reached in those simulations only when the LRA broke down
due to nonlinear dewetting of the solute surface in highly
polar solvents.

On a more fundamental level, the clear difference be-
tween reorganization energies obtained from the longitudinal
polarization only@Eq. ~1!# and from the full Poisson equation
puts under question the Marcus concept of longitudinal po-
larization fluctuations as the main collective solvent mode
driving ET. The solution of the Poisson equation, including
both longitudinal and transverse polarization modes, sup-
ports the notion that each component of polarization partici-
pates in ET energetics. The dynamics of these two modes
are, however, distinctly different: the relaxation time of lon-
gitudinal fluctuations,tL, is considerably shorter in polar
solvents than the relaxation time of transverse fluctuationstT

~Ref. 92!. The extended hydrodynamic description of polar-
ization dynamics by Bagchi and Chandra6 leads to micro-
scopic relaxation times for longitudinal and transverse polar-
ization fluctuations which both depend onk,

tL,T~k!5D~k!21SL,T~k!, ~41!

where D(k)52DR1k2DT , and DR and DT are the rota-
tional and translational diffusion coefficients, respectively. In
the long-wavelength limitk→0, one obtains, from Eqs.~31!
and ~41!, tL(0)/tT(0)5e` /es .

If transverse and longitudinal polarization modes partici-
pate comparably in ET activation, the effect of solvent dy-
namics on ET should reveal two significantly different char-
acteristic relaxation times.93 This is not observed in
experiment which for the most part indicates thattL, or
shorter time scales,94 is the characteristic time relevant to ET
dynamics.7 Solvation dynamics10 also point totL as the char-
acteristic time responsible for the long-time portion of the
dynamic response function. Therefore, continuum electro-
statics calculations seem to come in contradiction with time-
resolved experiments. An additional support to the longitudi-
nal activation mechanism is provided by the experimentally
observed proportionality betweenls andc0 ~Ref. 89! and a
similar approximately linear trend ofls versusc0 from the
present simulations shown in Fig. 8. The analytical theory
developed in Sec. IV resolves the puzzle. It turns out that the
microscopic formulation of the theory leads to a predomi-
nantly longitudinal polarization response thus confirming the
qualitative picture of the Marcus model.

D. Distance dependence

The reorganization energyls is predicted to vary with
the donor–acceptor distance according to the Coulomb law
in Eq. ~38!. This prediction has been tested here on MC
simulations of equal-size donor and acceptor spheres at vari-
ous separations in a dipolar solvent with (m* )253.0 and the
results are shown in Fig. 11. As above, the simulations were
performed for two charge configurations of the DAC: circles
in Fig. 11 indicate uncharged spheres~D–A diatomic!
whereas diamonds refer to the DAC with two opposite
charges (D1 – A2 diatomic!. As is seen, the LRA holds ex-

FIG. 10. ls vs y obtained from MC simulations~Ref. 81! ~open circles! and
the NRFT~lines and solid points! for a spherical dipolar solute. The dashed
lines refer to the Onsager continuum solution@Eq. ~39!# with the cavity
radius equal to the solute radiusR0 ~upper line, vdW! and the cavity radius
equal toR15R01s/2 ~lower line, SA!. The middle dashed line~vdW/L!
indicates the longitudinal reorganization energy calculated with the vdW
cavity @Eq. ~40!#. The vertical arrow connecting vdW/L and vdW solutions
indicates the contribution of transverse polarization to continuum calcula-
tions. The solid lines refer tols calculated within the NRFT from Eqs.~67!
and~99! with the use of the PPST/PY for the structure factors. Solid points
refer to the same calculations with the structure factors obtained from MC
simulations.
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ceptionally well for all simulated configurations. Further,ls

changes linearly withR in the simulated range of distances
going from the contact to solvent-separated configuration of
the DAC. This dependence is slightly different from the
curved-up Coulomb law and can be explained by the effects
of changing the solvation shell of the donor and acceptor
with increasing separation. Finally, there is no discontinuity
in ls when the solvent-separated configuration is created and
a dipolar solvent molecule gets trapped between the opposite
charges on the donor and acceptor (R/s>2.8 in Fig. 11!.
This result is an indication of the many-body character of the
polarization response makingls insensitive to local struc-
tural modifications involving only one solvent molecule.

E. Range of the solvent–solvent interaction
and the continuum limit

As defined by Eq.~9!, the solvent reorganization energy
is proportional tob, ls}b. This strong dependence on tem-
perature disagrees with no explicit temperature dependence
of the reorganization energy obtained from the fluctuation–
dissipation theorem95,96 and from dielectric cavity
models.15,18 The cancellation of theb factor occurs for the
charge–dipole solute–solvent coupling because of the long-
range character of dipolar correlations in polar solvents.

In the limit of large donor and acceptor units in the
DAC, 2RD,A /s@1 (RD andRA are the effective radii of the
donor and acceptor sites, respectively! the single-molecule
and two-molecule terms in Eq.~11! can be combined to-
gether to givels in the form

ls5~b/2!D ṽ* F̃ss* D ṽ. ~42!

Here, and throughout below, we denote integration over the
coordinates common to two functions by an asterisk and use
‘‘tilde’’ for the Fourier transform of the corresponding direct-
space functions. A detailed account of the notation scheme
used here is given in Appendix B.

The pair distribution function of the solvent

F̃ss~12!5rd~12!1r2h̃ss~12! ~43!

can be expanded in a series of chain diagrams appearing in
the g expansion45 and in the optimized cluster expansion of
Andersen and Chandler:97

F̃ss~12!5(
n

C~n!~12!. ~44!

Here 1 and 2 stand for the coordinates and Euler angles of
solvent molecules 1 and 2, respectively. In the above series,
each summandC(n)(12) separates the long-range dipolar
forces, represented by singlef̃ bonds @f̃52b ṽss(k),
whereṽss(k) is the Fourier transform of the solvent–solvent
multipolar interaction potential#, from short-range correla-
tions represented by composite ‘‘self-energy’’ graphs
S(1,2)5rd(12)1W(12).98 For example, forC(3)(12), one
has

Here the solid line representsf̃, a large circle stands for the
self-energy, and angular average is performed over the black
circles each bringing in ar factor.

The long-range nature of dipole–dipole forces is re-
flected in the fact thatf̃ does not vanish in the macroscopic
limit k→0: uf̃~0!u.0.99 This implied that an infinite series of
chain diagrams as given by Eq.~44! should be included in
the calculation ofF̃ss(12) atk50.83 The k→0 limit of such
calculations leads to

ls5
3yp

8p (
p5L,T

Sp~0!DẼ0
p
* ~DẼ0

p!* , ~45!

where now theb factor is accommodated intoyp @see Eq.
~59! below for its definition# andDẼ0

L andDẼ0
T are, respec-

tively, the longitudinal and transverse projections of the Fou-
rier transformDẼ0 @Eq. ~3!#. The structure factors atk50
are proportional to 1/yp ~Ref. 98! @Eq. ~32!# and theyp factor
cancels fromls . There is therefore no explicit dependence
on T, as expected from the macroscopic fluctuation–
dissipation theorem. The disappearance of theb factor from
ls is a result of a mutual cancellation of single-molecule and
two-molecule components of the reorganization energy due
to the long-range character of dipole-dipole interactions in
the solvent.

The cancellation of theb factor does not happen for
short-range solvent–solvent potentials}1/r d with d .3. The
Fourier transformṽss(k) then vanishes atk→0 ~e.g., the
dipole–quadrupole interaction potentialṽss}k at k→0) and,
in the macroscopic limit, one has

ls5~b/2!D ṽ~1!* S~12!* D ṽ~2!. ~46!

Equation~46! can be considered as a molecular basis for the
use of the continuum approximation to describe the reorga-
nization energy arising from thermal fluctuations of short-
range interaction potentials~quadrupolar solvation is an ob-
vious target!. The short-range correlation termS~12! does
not provide cancellation of theb factor andls is propor-
tional to b. This explicit dependence on temperature is re-
sponsible for a positive contribution to the reorganization
entropy which often dominates in the total reorganization
entropy.20,38

FIG. 11. ls vs the distance between spherical donor and acceptor from MC
simulations~points! and from Eq.~38! ~solid line!. Circles correspond to
uncharged DAC, and diamonds refer to the D1 – A2 DAC; (m* )253.0,
(Q* )250, r50.8, andRD,A /s50.9. The dashed line is a regression drawn
through the circles.
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III. ELECTRONIC ENERGY LEVELS
IN POLAR-POLARIZABLE SOLVENTS

The application of the LRA to the calculation ofls in-
volves two steps:~i! the definition of the solute–solvent in-
termolecular potential and~ii ! the calculation of the relevant
solvent response functions. This section deals with the
solute–solvent potential followed by the definition of the re-
sponse function in the next section. The form of the response
function appearing in the solvent reorganization energy is
dictated by the symmetry of the solute–solvent potential and
by the molecular shape of the solute. The dipole–charge ap-
proximation for the solute–solvent interaction potential@Eq.
~14!# is based on the assumption that the distancel 0s be-
tween a solute charge and the center-of-charge distribution
on a solvent molecule

r c5S (
k

uqku D 21

(
k

uqkur k ~47!

(qk are partial charges with coordinatesr k) is considerably
larger than the distance between partial charges of the sol-
vent molecule, l ss5maxur k2r j u. The definition of the
charge–dipole potential is thus based on the first-order ex-
pansion in the smallness parameter:

z15 l ss/ l 0s!1. ~48!

This condition usually holds for molecular DACs and is a
reason why the dipolar approximation and, on a more coarse-
grained level, the continuum models have served so well in
treating the solvent effect on ET and optical spectra.100 The
symmetry of the dipole–charge solute–solvent interaction
projects out two polarization structure factorsSL(k) and
ST(k) from the manifold of symmetries characterizing ther-
mal fluctuations in a molecular solvent~see Sec. V below!.
These two structure factors enter the two-molecule compo-
nent ofls @Eq. ~13!#. The one-molecule response@Eq. ~12!#
is modulated by the local density fluctuations and hence in-
cludes the density structure factorS(k). The latter can be
taken from experiment,88 while liquid-state theories or com-
puter simulations are needed for the polarization structure
factors.59,101–105

Up to this point, we have been considering nonpolariz-
able solvents. The MC simulations used to illustrate the
qualitative properties ofls in Sec. II were also performed on
nonpolarizable solvents. In order to describels in real sol-
vents one needs to specify the solute–solvent interaction po-
tential for the case of a DAC in a polar-polarizable dipolar
solvent, each molecule of which bears an induced and a per-
manent dipole. The magnitude of the induced dipole is char-
acterized by the dipolar polarizabilitya. In the present con-
sideration, the DAC is assumed to be nonpolarizable. Solute
polarizability effects have been included for spherical dipolar
solutes.65,106A distributed polarizability density107 is neces-
sary for solutes of arbitrary geometry.

The transferred electron interacts by Coulomb forces
with both electronic and nuclear charges of the solvent mol-
ecules. The ET system is characterized by at least three prin-
cipal energy scales: the energy of electronic excitations of
the solvent molecules,\ve , the ET transition energy\v0

5DEad (DEad is the adiabatic vacuum energy gap between
the two ET states!, and the characteristic energy of nuclear
motions,\vn . When bothve andv0 are quantum (ve ,v0

@kBT) and ve , v0@vn , one can eliminate the electronic
degrees of the system by defining the instantaneous energies
Ei ~actually partial free energies! for each electronic state.108

The energiesEi are obtained as the statistical average of the
system density matrix over the electronic degrees of freedom
(Trel):

e2bEi5Trel~e2bHi !, ~49!

where Hi is the system Hamiltonian in theith state (i
51,2). The energiesEi then define the fluctuating energy
gapDE5E22E1 between the acceptor and donor electronic
states, the variance of which gives the solvent reorganization
energy@Eq. ~9!#.

The diabatic~no electronic overlap! HamiltonianHi of a
localized electronic state in a polar medium characterized by
induced and nuclear dipolar polarization can be written as

Hi5I i1U rep1H@Pe#2E0i* Pt2
1
2Pt* T* Pt . ~50!

HereI i are the eigenvalues of the gas-phase Hamiltonian for
the initial (i 51) and final (i 52) electronic states.DI 5I 2

2I 1 is the vertical energy gap implying that the crude adia-
batic approximation109 is used in respect to intramolecular
skeletal vibrations.30 In Eq. ~50!, U rep stands for repulsion
solute–solvent and solvent–solvent potentials. The total di-
polar polarization defined by Eq.~28! is a sum of the nuclear

Pn~r !5(
j

mjd~r2r j ! ~51!

and electronic

Pe~r !5(
j

pjd~r2r j ! ~52!

components. In Eqs.~51! and ~52!, the sum runs over the
solvent molecules;mj andpj denote permanent and induced
dipoles, respectively. Finally, in Eq.~50!, T(r2r 8)
5¹r¹r8ur2r 8u21 is the second-rank tensor of the dipole–
dipole interaction which is imposed to be zero inside the
molecular cores of the solvent molecules.110 When the elec-
tronic polarizationPe is a Gaussian stochastic field, the for-
mulation can be conveniently recast in the form of the Drude
model of fluctuating induced dipoles defined by the Hamil-
tonianH@Pe#.

111–113

From Eq.~50!, the energiesEi are obtained by taking the
trace overPe according to Eq.~49!. This yields108

Ei5Ei
np1Vi2

1
2Pn*T*Pn8 , ~53!

where the energy of the nonpolar subsystem isEi
np5I i

2 1
2E0i "a8"E0i and the interaction potential with the nuclear

solvent polarization reads

Vi52E0i*Pn8 , ~54!

Tracing the system density matrix over the electronic polar-
ization of the solvent creates a nonlocal solvent
polarizability45,114

a85a~12aT!21. ~55!
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In addition, the nuclear polarization is renormalized to114

Pn85~12aT!21
•Pn . ~56!

This renormalization accounts for the well-known enhance-
ment of the solvent permanent dipoles by the electric field of
the induced solvent dipoles.45 Note that neitherPn nor Pn8 is
assumed to be a continuous polarization density used in con-
tinuum dielectric models. From the definition in Eq.~51!, Ei

can be rewritten as

Ei5Ei
np1U rep2(

j
E0i "mj82 1

2 (
j Þk

mj "T jk"mk8 , ~57!

whereT jk5T(r j2r k) and

mj85(
k

~12aT! jk
21"mk ~58!

is the effective condensed-phase solvent dipole. The corre-
sponding microscopic dimensionless density of permanent
dipoles is

yp5~4p/9!br~m8!2. ~59!

Equation~55! shows that, after tracing the induced solvent
dipoles, the pure solvent is described by the Hamiltonian of a
dipolar nonpolarizable solvent with the effective permanent
dipoles (mm8)1/2. An external field, however, interacts with
m8 and this is the reason whym8 and not (mm8)1/2 appears
in the equations related to dielectric properties of the solvent
obtained as linear response to an external electric field.45

IV. SOLVENT REORGANIZATION ENERGY

The formalism of nonlocal response functions developed
here aims at expressingls in terms of the molecular shape of
the solute and parameters characteristic of the pure solvent.
The solvent thermal motions are projected onto two solvent
structure factors: the density structure factor and the dipolar
polarization structure factor. The latter is split into its longi-
tudinal and transverse components, reflecting the anisotropy
of the dipole–dipole interactions.

The free energy surfaces of ET,Fi(X), can be repre-
sented by a Fourier integral of the generating functional
Gi(z):

e2bFi ~X!5E
2`

` dz

2p
ei z~X2DEnp!Gi~z!, ~60!

where X is the energy gap reaction coordinate,DEnp5E2
np

2E1
np, and

Gi~z!5QB
21Tr@e~ i zDE01bE0i !*Pn82bUrep2bHB#. ~61!

HereQB5Tr(exp@2bHB#) andHB describes the nuclear sub-
system of the pure solvent~thermal bath!.

The generating functional can be expanded in Mayer
functions defined on the solute–solvent interaction
potential.20,32 The exact result of this expansion is

ln Gi~z!5rE f i~1,z!dG1

1~r2/2!E f i~1,z! f i~2,z!hss~12!dG1dG21~r3/6!

3E f i~1,z! f i~2,z! f i~3,z!hss~123!dG1dG2dG3

1¯, ~62!

with

f i~1,z!5em18•@ i zDE~r1!1bE0i !2bUrep~r1!21 ~63!

andhss(12) andhss(123) standing for, respectively, the pair
and three-particle correlation functions of the pure solvent.

The Gaussian~LRA! approximation follows from Eq.
~62! by expanding the Mayer functions in powers ofz and
truncating the expansion after the second order. The result of
this procedure is the solvent reorganization energy given as a
sum of two components:20,32

ls5lp1ld . ~64!

The first component reflects the energetic strength of aniso-
tropic fluctuations of the solvent polarization~orientational
reorganization energy20!:

lp5 1
2 DẼ0* x* DẼ0* , ~65!

where the asterisk inDẼ0* stands for complex conjugate. The
polarization response function is defined on the polarization
structure factors

x~k12k2!5dk1 ,k2
xs~k2!,

~66!

xs~k!5
3yp

4p
@SL~k!JL1ST~k!JT#,

where JL5 k̂k̂, JT512 k̂k̂, yp is given by Eq.~59!, and
dk1 ,k2

5(2p)3d(k12k2). The orientational reorganization
energy in Eq.~65! is given in terms of the response of the
pure solvent restricted to the volume outside the DAC.

The componentld in Eq. ~64! describes the alteration of
the solvent response by the local density profile of the sol-
vent around the solute. It is built on the density structure
factor and is called the density reorganization energy.20,32 If
three-molecule and all higher-order correlation functions are
dropped from Eq.~62!, the componentld becomes32

ld52
3yp

8p
DẼ0* ~S21!u0* DẼ0* , ~67!

where the kernelu0(k12k2) projects the response inside the
solute volumeV0 :

u0~k12k2!5E
V0

ei ~k12k2!"rdr . ~68!

Note thatV0 is the space inaccessible to the solvent—i.e., a
region surrounded by the SA surface~Sec. II C!.
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There is a mathematical and physical similarity between
the reorganization components arising from orientational and
density correlations. In order to make it clear we rewrite Eqs.
~64!–~67! as

ls53ypE01
3yp

8p (
p5L,T

DẼ0
p
* ~Sp21!* ~DẼ0

p!*

2
3yp

8p
DẼ0* ~S21!u0* DẼ0* . ~69!

The first term in Eq.~69! is the electrostatic energy of the ET
dipole in a uniform medium outside the solute characterized
by the dipolar densityyp :

E05~8p!21E
V

DE0~r !2dr

5~8p!21 (
p5L,T

DẼ0
p
* ~DẼ0

p!* . ~70!

This term arises from the one-particle responsel I represent-
ing changes in orientations and positions of a single solvent
molecule not hindered by the restoring field of its neighbors.
In a dense liquid solvent, molecular motions are affected by
the restoring electric field of the surrounding molecules and
by their repulsive cores. These two effects are represented by
the second and third summands in Eq.~69!, respectively. As
discussed in Sec. II A, strong orientational correlations
among the solvent dipoles cancel almost completely the elec-
trostatic energy term 3ypE0 . The density correlations are
more short ranged and give a smaller contribution tols .
They are, however, significant for the reorganization entropy
due to an explicit 1/T temperature dependence~Sec.
II E!.20,32 The density reorganization term disappears in the
limit of a macroscopic solute when only the orientational
component is significant,ls5lp , and the reorganization en-
ergy tends to its continuum limit given by Eq.~45! ~see Sec.
VI C for the criterion of applicability of continuum models!.

Equations~45! and ~69! highlight problems arising with
simple perturbation~and Mayer function! formulations for
lp . If the difference field has only a longitudinal component,
as in the Marcus formulation in Eqs.~1! and ~37!, Eq. ~45!
transforms into Eq.~1!. When DẼ0

T is nonzero, the con-
tinuum estimate of the transverse reorganization term@Eq.
~45!#

ls
T5~es21!E0

T ~71!

rises linearly with the solvent dielectric constant. The trans-
verse electrostatic energy

E0
T5~8p!21E dk

~2p!3
uDẼ0

Tu2 ~72!

is often small compared toE0
L for common ET systems.

However, the factor (es21) in Eq. ~71! makesls
T grow

strongly with increasing solvent polarity. This is not seen in
MC simulations. Although simulations do not show satura-
tion of ls predicted by the dielectric continuum models~Fig.
9!, the growth ofls with solvent polarity is obviously slower
than would appear fromls

T in Eq. ~71!. At largees the term

lT results in the ‘‘transverse catastrophe’’ ofls diverging
with increasinges . The flaw of Eq.~65! is that it does not
incorporate the alteration of the polarization response by the
insertion of the solute. The perturbation created by excluding
polarization from the solute’s volume propagates over a mac-
roscopic distance due to the long-range length scale of trans-
verse polarization fluctuations. This effect alters the con-
tinuum response function as is commonly accommodated
into dielectric theories through cavity boundary conditions.
Chandler’s Gaussian model was designed to include this al-
teration of the response function on the microscopic length
scale.54–56Below, we adopt this approach to reformulate the
expression forlp .

In the Gaussian model, the generating functional is ob-
tained through functional integration over the nuclear polar-
ization field:55,56

G~z!5~QB!21E ei zDE0* Pn82bHB)
V0

d@Pn8~r !#DPn8 . ~73!

Since the LRA holds for ET reorganization, it is sufficient to
calculate the response function atE0i50 and, therefore, the
interaction of the solute with the solvent is dropped from the
statistical average@cf. Eqs. ~61! and ~73!#. In Eq. ~73!, the
productPV0

is over the space points inside the solute thus
excluding the solvent polarization from the solute volume.115

The bath HamiltonianHB describes Gaussian fluctuations of
the polarization field weighted with the polarization correla-
tion function:

HB5 1
2 P̃n8* x21* ~P̃n8!* . ~74!

The functional integration in Eq.~73! leads to the orien-
tational reorganization energy still defined by Eq.~65! with
the polarization response function changed fromx to a modi-
fied response functionxm given by the equation54

xm5x2x* u0* G21* u0* x. ~75!

Here the kernelG21(k1 ,k2) is the inverse of

G~k1 ,k2!5u0~k12k8!* x~k82k9!* u0~k92k2!. ~76!

The kernelG can be rewritten in the form

G~k1 ,k2!5u0~k12k2!@xs~k2!2x8~k2!#, ~77!

where

x8~k2!5E
V8

drE ei ~k2k2!•rxs~k!
dk

~2p!3
. ~78!

Here the regionV8 is outside the regionV08 made by the
space pointsr12r2 with r1,2 belonging toV0 .

Equation~75! is changed from the original formulation
of the Gaussian model54–56 in which the functionxm acts on
the solute field not modified by the cutoff volumeV0 . In-
stead, when Eq.~75! is used in Eq.~65! the response func-
tion acts on the solute field defined outside the DAC@Eq.
~3!#. This transformation is achieved in terms of projections
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of the response ‘‘in’’ and ‘‘out’’ of the DAC. The projection
inside the DAC is defined byu0 in Eq. ~68! while the pro-
jection outside the DAC is given by

u~k12k2!5E
V

e~k12k2!"rdr . ~79!

The kernelsu0 andu satisfy the usual algebra of projection
operators:

u01u51,

u0* u50,
~80!

u0* u05u0 ,

u* u5u,

where1 in Eq. ~80! stands fordk1 ,k2
.

The substitution of Eqs.~77! and~78! into Eq.~75! leads
to the response function

xm~k1 ,k2!5xs~k1!dk1 ,k2
2x9~k1!u0~k12k2!xs~k2!,

~81!

wherex95x"@x2x8#21 can be expressed through the lon-
gitudinal and transverse components ofx8 as

x95JL
SL

SL2x8L
1JT

ST

ST2x8T
. ~82!

Equations~81! and~82! give an exact solution for the renor-
malization of orientational polarization response in the pres-
ence of a solute of arbitrary form. From Eq.~81! the reorga-
nization energylp can be rewritten as

lp5lL1lT2lcorr, ~83!

where

lL,T5
3yp

8p
uDẼ0

L,Tu2* SL,T. ~84!

The correction termlcorr accounts for the modification of the
polarization response by the presence of the solute. It can be
written in the form avoiding the convolution in the inverted
space as follows:

lcorr5
3yp

8p E
V0

DE08~r !•DE09~r !dr , ~85!

where the new effective fieldsDE08 andDE09 are the inverse
Fourier transforms of the expressions

DẼ08~k!5 k̂DẼ0
L~k!~SL~k!2ST~k!!1DẼ0~k!ST~k!

~86!

and

DẼ09~k!5 k̂DẼ0
L~k!@~x9!L~k!2~x9!T~k!#

1DẼ0~k!~x9!T~k!. ~87!

The main challenge in practical applications of the
present formalism is the calculation of the functionx8. We
provide here an approximate derivation applicable to solutes
which are large compared to the solvent molecules. The in-
tegration overk in Eq. ~78! yields

x8~k!5E
V8

dr eik"rF S d~r !1
r

3
h110~r ! D1

1
r

3
h112~r !DrG , ~88!

with Dr53r̂ r̂21. In the above integral, only the long-range
112 component survives for large solutes. The asymptotic
form of h112(r ) can be found from Eq.~32! as

rh112~r !.
c0

2es

4pyp

1

r 3
. ~89!

When Eq.~89! is used in Eq.~88!, one obtains

x8~k!5
c0

2es

12pyp
E

V8

Dr

r 3
eik"rdr . ~90!

This expression represents the Fourier transform of the
rank-2 tensor corresponding to a point dipole placed at the
center of the cavity formed by the regionV08 . When the
solute is a spherical cavity of the radiusR1 the solution is

x8~k!522A~k!JL1A~k!JT, ~91!

with

A~k!5
c0

2es

3yp

j 1~2kR1!

2kR1
. ~92!

From Eq.~91! the functionx 9 in Eq. ~82! becomes

x 95JL
SL

SL12A
1JT

ST

ST2A
. ~93!

At k50, SL(0)12A(0)5ST(0)2A(0)5gK @Eq. ~33!# and
x 9 turns intogK

21xs in the continuum limit. The functionx 9
from Eq.~93! can be used in Eq.~87! to obtain the correction
of solvent’s polarization response by solute’s repulsive core.
Before turning to a general solution, we first consider a sim-
pler case of a dipolar spherical solute for which an exact
analytical solution is possible.116

A. Dipolar solute

An exact solution forlp can be obtained for a point
dipole approximation for the field of ET dipole. When, in
addition, the solute is represented by a sphere of an effective
radiusR0 , DẼ0 is given by the relation

DẼ0~k!524pm0"Dk

j 1~kR1!

kR1
, ~94!

whereDk53k̂k̂21 andm0 is the ET dipole moment. From
Eqs.~87! and~93! the fieldDE09 is the inverse Fourier trans-
form given as

DE09~r !5E dk

~2p!3
@S1k̂DẼ0

L1S2DẼ0#e2 ik"r, ~95!

where

S15
SL

SL12A
2

ST

ST2A
, ~96!
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S25
ST

ST2A
.

Since the space integral inlcorr @Eq. ~85!# is taken over the
solute volume, one needs to calculate the above integral for
r<R1 only. The integral is calculated by complexk-plane
integration. The functionsSL/(SL12A) andST/(ST2A) do
not have singularities in the complexk plane since existing
singularities of SL,T cancel out in the nominator and
denominator.117 Therefore, only thek50 pole of DẼ0 con-
tributes to the integral. The result of integration within the
solute sphere,r ,R1 is then a constant field:116

DE095
2m0

3gKR1
3 @ST~0!2SL~0!#. ~97!

This result greatly simplifies the solution forlcorr, which
becomes

lcorr5
ST~0!2SL~0!

3gK
@2lT2lL#. ~98!

From Eqs.~83! and ~98!, the reorganization energylp is

lp5gK
21ST~0!lL1gK

21SL~0!lT. ~99!

WhenlL andlT @Eq. ~84!# are calculated in the continuum
limit by assumingSL,T(k)5SL,T(0) one arrives at the solu-
tion

lp5
m0

2

R1
3

es2e`

e`
2 ~2es1e`!

. ~100!

Equation~100! transforms into the Onsager form in Eq.~39!
whene`51.

Equation~99! presents an exact solution forlp of ET in
an arbitrary dielectric material characterized by longitudinal
and transverse structure factors whenDE0 is approximated
by the point dipole field. The convergence of Eq.~99! into
the Onsager continuum limit indicates that the NRFT does
resolve the problem of a ‘‘transverse catastrophe’’ posed by
direct perturbation expansions.116 The continuum limit of the
NRFT @Eq. ~100!# yields a significantly stronger dependence
of lp on e` than the one suggested by the Lippert–Mataga
~superscript ‘‘LM’’! equation.100 The latter predicts thatlp is
proportional to the polarity parameter

f p
LM5

es21

2es11
2

e`21

2e`11
. ~101!

Equation ~101! is based on the assumption that electronic
and nuclear solvations additively contribute to the total sol-
vation free energy. The numerical accuracy of this assump-
tion is supported by MC simulations of dipolar solvation in
polarizable solvents.65 However, compared to both liquid-
state theories and simulations, the Lippert–Mataga equation
greatly overestimates the falloff oflp with increasinge`

~Ref. 65!.
The continuum limit of the NRFT allows us to draw two

conclusions. First, the additive approximation is not exact.
Second, the continuumlp in Eq. ~100! depends more
strongly one` than the Lippert–Mataga equation suggests.

For instance, increasinge` from 1 to 2 ates@1 leads to a
decrease inlp by a factor of 1.7 according to Eq.~101! and
by a factor of 4.0 according to Eq.~100! ~cf. dashed and
dash-dotted lines in Fig. 12!. On the other hand, whene` is
varied between 1 and 2 in the microscopic formulation, the
reorganization energylp essentially does not change~solid
line in Fig. 12!. In the calculation presented in Fig. 12, the
solvent permanent dipole is held constant whilee` is varied.
The change ine` is microscopically caused by a change in
the solvent polarizabilitya connected toe` by the Clausius–
Mossotti equation. The increase in the polarizability leads to
an increase in the solvent dielectric constant due to two ef-
fects: a higher condensed-phase dipole moment~main con-
tribution! and a higher density of induced dipolesye

5(4p/3)ra. The dielectric constant is then calculated by
using the equation based on the perturbation expansion for
the Kirkwood factor:47

es~yeff!5113yeff13yeff
2 1

2

p2
@exp~3p3yeff

3 /2!21#,

~102!

where

yeff5yp1ye ~103!

is the effective, mean-field density of dipoles in a polar-
polarizable solvent45 andp59I ddD(r* )/16p221; I ddD(r* )
is the perturbation integral118 depending on the reduced sol-
vent densityr* 5rs3. The calculations in Fig. 12 are car-
ried out for a relatively weakly polar solvent withm* 51 for
which Eq. ~102! compares well to MC simulations.47 The
main result of the calculations presented in Fig. 12 can be
summarized as follows. The microscopic formulation pre-
dicts lp almost independent ofe` , in qualitative agreement
with MC simulations of solvation in dipolar-polarizable
fluids65 and earlier force-field simulations.119 A direct transi-
tion from the microscopic formulations to the continuum
limit leads to Eq.~100! in which the additive approximation
of the Lippert–Mataga equation is not present. However, this
transition results in an inadequate dependence oflp on e` .

FIG. 12. lp vs e` calculated in the NRFT@Eq. ~99!, solid line#, in its
continuum limit @Eq. ~100!, dash-dotted lines#, and from the Lippert–
Mataga equation@Eq. ~101!, dashed lines#. For the dashed-dotted and dashed
lines, the upper curves refer to the vdW radiusR0 and the lower curves refer
to the SA radiusR1 . For a givene` , the solvent polarizability is calculated
from the Clausius–Mossotti equation, the effective dipolar density is ob-
tained from the Wertheim 1-RPT theory, and the static dielectric constant is
obtained fromye1yp according to Eq.~102!; R0 /s50.9 andr50.8.
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B. Solute of arbitrary shape

Equations~83!–~87! formally solve the problem of reor-
ganization energy calculations for solutes of arbitrary shape.
The procedure is, however, unstable numerically sincelT

andlcorr are two large numbers canceling each other almost
identically in Eq.~83!. Errors in calculating each of them do
not cancel out, making the calculations impractical fory
>1.5. The problem is well illustrated by the exact solution
for dipolar solutes. The componentlT in Eq. ~83! and the
transverse component inlcorr together result ingK

21SL(0)lT

@Eq. ~99!#. The latter becomes negligible in highly polar sol-
vents. The first summand in Eq.~99! then leads to the ap-
proximate relation

lp.
3

2
lL. ~104!

We will use the solution for a dipolar solute to formulate a
consistent, numerically stable calculation scheme for a solute
of arbitrary shape.

The field DE09(r ) which enterslcorr @Eq. ~85!# can be
expanded in spherical harmonicsYnm( r̂ ) by using the Ray-
leigh expansion for the plane wave exp(2ik"r ) ~Ref. 57! in
Eq. ~95!. This yields

DE09~r !5(
n,m

Fnm~r !Ynm* ~ r̂ !, ~105!

where

Fnm~r !5
~2 i !n

p E
2`

`

dk k2 j n~kr !@S1^DẼ0
Lk̂Ynm~ k̂!&vk

1S2^DẼ0Ynm~ k̂!&vk
#. ~106!

In Eq. ~106!, ^¯&vk
stands for the angular average over the

orientations ofk̂. SinceS2(k) in Eq. ~96! does not have poles
in the complexk plane, it is easy to show that the integral of
the second summand in the brackets in Eq.~106! is identi-
cally zero. This is not the case for the first summand includ-
ing the longitudinal component ofDẼ0 .

Then50 component of the sum overn in Eq. ~106! can
be used to formulate a computationally efficient mean-field
solution avoiding the problem of mutual cancellation of large
transverse components inlT andlcorr. Similarly to the case
of a dipolar solute@Eq. ~97!#, the n50, m50 projection
F00(r )5F0 is independent ofr within the solute:

F05
ST~0!2SL~0!

4pgK
E

V
DE0"Dr

dr

r 3
. ~107!

Equation~107! bears a very clear physical meaning. Placing
a charge within a spherical dielectric cavity creates a con-
stant cavity potential, but zero cavity field. The dipole at the
center of a spherical cavity induces a solvent polarization,
which creates a constant reaction field within the cavity. The
dipolar projection of an arbitrary solute field in Eq.~107!
clearly creates a constant reaction fieldF0 . Higher-order
terms withn, m.0 are responsible for nonzero gradients of
the reaction field.

It may be reasonable to assume that gradients of the
reaction field are less important in the solvation free energy
than the average reaction field within the cavity. One can
build a mean-field solution based on this assumption. In fact,
numerical calculations of the fieldDE09 show that it is inde-
pendent ofr within the solute, but its magnitude is somewhat
shifted from the result of Eq.~107!. In order to accommodate
for this fact, we replaceDE09 with aMFF0 , where the mean-
field coefficientaMF is chosen from the requirement thatlcorr

renormalizeslT to @SL(0)/gK#lT in Eq. ~83!. This yields

aMF
3yp

8p
F0•E dk

~2p!3
u* ~k!DẼ0

T~k!5 f p lT, ~108!

whereDẼ0
T5DẼ02 k̂DẼ0

L and

f p5
2~ST~0!2SL~0!!

3gK
5

2~es2e`!

2es1e`
~109!

is the reaction-field factor for continuum nuclear solvation of
a dipole in a spherical cavity.

The mean-field~superscript ‘‘MF’’! solution for the ori-
entational reorganization energy then becomes

lp
MF5gK

21SL~0!lT1
3yp

8p E dk

~2p!3
SL~k!

3F uDẼ0
Lu22 f puDẼ0

Tu2
F0"k̂DẼ0

L

F0•DẼ0
T G . ~110!

There are several advantages to this equation: First, it re-
duces the calculation oflp to a three-dimensional~3D! inte-
gral in the inverted space. Second, the errors of approximate
calculations are not amplified in the transverse reorganiza-
tion component which becomes insignificant in highly polar
solvents@first summand in Eq.~110!#. Third, Eq.~110! trans-
forms into the exact solution of Eq.~99! for the dipolar sol-
ute and giveslp5lL for solutes with purely longitudinal
fields ~e.g., spherical ions!. Therefore, Eq.~110! correctly
reproduces the two limiting cases of longitudinal and dipolar
solute fields and provides a mean-field solution between
them. It also splitslp into its longitudinal and transverse
components, which allows us to draw qualitative conclusions
about the relative importance of these two collective modes
in activating ET.

With the account for the mean-field result, the exact so-
lution for lp is given by the relation

lp5lp
MF2dlcorr, ~111!

where the correction term accounts for of the deviation of the
total field DE09 from the mean-field resultaMFF0 @cf. to Eq.
~85!#:

dlcorr5
3yp

8p E
V0

DE08•~DE092aMFF0!dr . ~112!

Calculations according to Eqs.~110!–~112! for ET reorgani-
zation in model donor–acceptor diatomics, as well as the
comparison to computer simulations, are given in Sec. VI
below following analytical formulation of the solvent struc-
ture factors necessary for the inverted-space integration.
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V. STRUCTURE FACTORS

The use of the charge–dipole approximation for the
solute–solvent interaction potential@condition ~48!# yields
the solvation thermodynamics in terms of the longitudinal
and transverse polarization structure factors defined by Eqs.
~24! and~25!. They can be expanded in rotationally invariant
projections of the solvent–solvent pair correlation function
hss(12). Using the Rayleigh expansion57 in Eq. ~24!, one
gets forSL(k)

SL~k!51112pr(
n,m

i nYnm* ~ k̂!E ~ ê1"k̂!

3~ k̂"ê2! j n~kr12!Ynm~ r̂12!hss~r 12,v1 ,v2!dr12

3
dv1dv2

~4p!2
, ~113!

wherev1 and v2 refer to orientations of dipoles 1 and 2,
respectively. For solvent molecules with axial symmetry one
can expandhss(12) in spherical harmonics:

hss~12!5 (
l 1l 2l

hss~ l 1l 2l ;r 12! (
m1m2m

C~ l 1l 2l ;m1m2m!

3Yl 1m1
~ ê1!Yl 2m2

~ ê2!Ylm* ~ r̂12!, ~114!

where C( l 1l 2l ;m1m2m) are Clebsh–Gordon coefficients
generating a rotationally invariant linear combination of the
products of threeYlm’s. The integration in Eq.~113! then
leads to the expansion

SL~k!511
r

~4p!3/2

3 (
m50

`

A4m11C„11~2m!;000…ĥss
11~2m!~k!, ~115!

whereĥss
11(2m)(k) is the Hankel transform:

ĥss
11~2m!~k!54p~21!mE

0

`

hss„l 1l 2~2m!;r …j 2m~kr !r 2dr.

~116!

The transverse structure factor is obtained from Eqs.~115!
and ~117!:

1

3
SL~k!1

2

3
ST~k!512

r

A3~4p!3/2
ĥss

110~k!. ~117!

The Clebsh–Gordon coefficientC„11(2m),000… is non-
zero only form50 andm51, leading to the structure factors
in terms of projection ofhss(12) on rotational invariants:

SL~k!511~r/3!@ h̃ss
110~k!12h̃ss

112~k!# ~118!

and

ST~k!511~r/3!@ h̃ss
110~k!2h̃ss

112~k!#. ~119!

Hereh̃ss
110 andh̃ss

112 are the projections on rotational invariants
D(12)5(ê1"ê2), projection ~110!, and Dk(12)53(ê1"k̂)
3( k̂"ê2)2(ê1"ê2), projection ~112!, respectively. They

are related to ĥss
11n(k) by numerical coefficients:h̃ss

110

52A3(4p)23/2ĥss
110 and h̃ss

1125A15/2(4p)23/2ĥss
112.

Equations~118! and ~119! are used in the literature59 to
produce dipolar structure factors from the corresponding ra-
dial distribution functions obtained from computer simula-
tions for molecular fluids with site–site interaction poten-
tials. This approach incorporates a realistic charge
distribution within solvent molecular cores instead of relying
on the point–dipole~PD! approximation. The PD approxi-
mation is based on the assumption of smallness of the pa-
rameter

z25 l ss/s!1. ~120!

This condition is usually much less accurate than the condi-
tion for application of the charge–dipole approximation to
the solute–solvent potential@Eq. ~48!#. In fact, molecular
quadrupoles are very effective in breaking the dipole–dipole
correlations in polar liquids,45,46 resulting in dielectric con-
stants much smaller~lower Kirkwood factorgK) than for
purely dipolar solvents~Table I!. This feature is by far more
important for the calculation oflp than the breakdown of
the point–multipole model at large values ofk>2p/ l ss

~Ref. 22!.
Table I presents the results of MC simulations of pure

dipolar liquids of increasing polarity (m* ) and the same set
of data for fluids with a constant axial quadrupole momentQ
characterized by the reduced value (Q* )25bQ2/s550.5
@(Q* )250.2, 0.7, and 0.2 for acetone, dimethylsulfoxide,
and tetrahydrofurane, respectively#. The simulations were
carried out as explained in Refs. 36 and 47 and in Appendix
A. Figures 7 and 13 present the polarization longitudinal and
density structure factors calculated from simulations for di-
polar liquids. Figure 14 shows the transverse structure fac-
tors calculated for purely dipolar liquids~upper panel! and
for dipolar–quadrupolar liquids~lower panel!.

For both dipolar and dipolar–quadrupolar fluids, the
transverse structure factor atk50 increases with increasing
solvent dipolem. The inclusion of the quadrupole moment
does not change this picture, but slows down the growth of
ST(0) ~Table I and Fig. 14!. The functionST(k) becomes
thus increasingly narrow with increasing solvent polarity ap-
proaching the ferroelectric singularityST(0)→` at y→`
predicted by the MSA and mean-field theories.110 This prop-
erty of the transverse structure factor turns out to be impor-
tant for the disappearance of the microscopic transverse re-
sponse from the solvent reorganization energy~see below!.

In view of the substantial effect of higher molecular mul-
tipoles on the behavior ofSL,T(k) at k→0, the PD approxi-
mation is not applicable to the calculation of polarization
structure factors of molecular liquids. These functions are
not accessible experimentally, and computer simulations
and/or liquid-state theories should be used on multipolar or
interaction-site model potentials. Simulations of structure
factors are time consuming due to the long-range character
of polarization fluctuations and only a few systems have
been studied so far.58,59,101–104It seems, however, true that, in
the range ofk vectors affecting the value oflp , the behavior
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of the polarization structure factors is not greatly sensitive to
the details of the solvent molecular structure, showing a ge-
neric pattern characteristic of many molecular liquids. It
would therefore be desirable to parametrize an existing ana-
lytical solution for structure factors to a simple route consis-
tent with computer simulations and reproducing the long-
wavelength polarization response of real solvents significant
for reorganization energy calculations in terms of experimen-
tal input parameters.

A very attractive approach to the calculation ofSL,T(k)
is to apply the analytical MSA solution. The Wertheim’s
MSA result for the solvent of dipolar HS molecules83 sets up
SL,T(k) in terms of the Baxter factorization functionQ(ks)
~Ref. 57! as

SL,T~k!5uQL,T~ks!u22. ~121!

The function

QL,T~ks!512AL,TE
0

1

eikst@~ t221!/22LL,T~ t21!#dt

~122!

is given in terms ofSL,T(0) and the correlation lengthLL,T,
where

AL,T56
1/ASL,T~0!21

223LL,T
. ~123!

The MSA definesSL,T(k) through a single polarity pa-
rameterj that can be connected either to the dipolar density
yp ande` or to two dielectric constantses ande` by apply-
ing the MSA solution for the Kirkwood factorgK(yp). The
MSA result forgK(yp) is, however, unrealistic for molecular
liquids.47 A way around this complication is to consideryp

and two dielectric constants as independent input parameters.
This route sets up a three-parameter definition of the nuclear
polarization structure factors. Since the dipolar correlation
lengths are not available from experiment and are also very
hard to obtain from computer simulations,105 we will use the
MSA prescription to calculateLL,T. This approach is most
easily formulated by introducing two polarity parametersjL

and jT for SL(k) and ST(k) separately. Each parameter is
defined by the condition thatuQL,T(0)u22 generateSL,T(0)
given by the MSA solution83

~122jL!4

~114jL!2
5SL~0!,

~124!
~11jT!4

~122jT!2
5ST~0!.

Dielectric constants from experiment or simulations can be
used in Eqs.~32! and ~124! to calculateSL,T(0) andjL,T.
For the parameteryp , Wertheim’s 1-RPT self-consistent
scheme66 allows one to calculate solution dipole moments in
a broad range of solvent polarities.65 The parametersjL and
jT obtained from Eq.~124! are then used in Eqs.~21! and
~22!, respectively, to define the correlation lengths for longi-

FIG. 13. Density structure factor@S(k)# and the longitudinal polarization
structure factor@SL(k)# calculated from MC simulations at (m* )251.0 and
3.0 ~solid lines!. The dashed lines indicate the PY~density! and PPSF~po-
larization! calculations. The dashed lines refer to the PPSFSL(k) from Eq.
~126! with k51.0 and the dot-dashed lines refer tok50.95.

FIG. 14. ST(k) from MC simulations~solid lines! at (m* )252.0, 3.0, and
4.0 ~from the lower to the upper curve! for dipolar liquids~upper panel! and
dipolar–quadrupolar liquids with (Q* )250.5 ~lower panel!. The dashed
lines indicate calculations with the PPSF;r*50.8.
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tudinal and transverse fluctuations. We will refer toSL,T(k)
obtained from the MSA solution with a separate definition of
the polarity parameters for longitudinal and transverse struc-
ture factors throughyp , e` , andes as the parametrized po-
larization structure factors~PPSFs!. This approach is quali-
tatively analogous to the parametrization of the RISM
closure relations in terms ofes and y ~Ref. 120! by the re-
quirement of reproducing thek50 limit for the polarization
structure factors.29

An alternative approach to parametrize the polarization
structure factors is to apply the exact relations connecting
SL,T(k) to the average energyuss of dipole–dipole interac-
tions in dipolar solvents:

E~SL~k!21!
dk

~2p!3
5

buss

3yp
r,

~125!

E~ST~k!21!
dk

~2p!3
52

buss

6yp
r.

These equations can be used to define the correlation length
in Eqs.~121! and~122! provided the interaction energyuss is
known from simulations or analytical models. We found,
however, that this route does not offer any significant advan-
tages compared to the PPSFs. Equation~125! may, however,
be used as a consistency test for structure factors generated
from computer simulations.

As is seen in Fig. 13, the MSA solution gives the first
maximum ofSL(k) shifted to lower values ofk compared to
the simulation results. The position of the first maximum of
SL(k) from simulations is practically independent ofy shift-
ing only slightly to higherk with increasingy. The maxima
of the density and longitudinal polarization structure factors
essentially coincide in a broad range of solvent polarities.
Evidently, this has to be related to the fact that the centers of
charge and mass coincide for multipolar HS molecules. The
distribution of mass and charge may not coincide for asym-
metric solvent molecules, resulting in a shift between first
maxima ofSL(k) andS(k). A better agreement between the
PPSFs and simulations can be achieved by a downward res-
caling of s in the Baxter function in Eq.~122! used for
SL(k). Specifically, the use of

SL~k!5uQL~kks!u22, ~126!

with k50.95, shifts the first maximum ofSL(k) to the right
position. Still existing discrepancies betweenSL(k) from
simulations and PPSFs do not affect the value oflp ~see
below!. It also turns out that Eq.~121! for ST(k) and Eq.
~126! for SL(k) work well for dipolar–quadrupolar solvents
~Figs. 7 and 14!. Figure 13 shows that Baxter’s solution of
the PY equation for HS liquids57,121 gives S(k) in good
agreement with MC simulations of polar solvents. This form
of S(k) is used for the calculation of the density reorganiza-
tion energy below.

The PPSF may appear to be a reasonable approximation
for the dipolar-symmetry structure factors of real molecular
liquids. Figure 15 compares the longitudinal~L! and trans-
verse~T! structure factors from the PPSF and from simula-
tions of the model DMSO with an interaction-site potential

(y56.08,e`51.0,es544.4).59 Since the HS diameter is not
defined in the interaction-site model, the simulatedk vectors
were multiplied bys54.73 Å to obtain theks scale of the
PPSF model.122 The scaling was chosen to make the posi-
tions of the first maxima ofSL(k) in two calculations coin-
cide.

VI. RESULTS AND DISCUSSION

The formalism developed in Secs. IV and V is compared
here to MC simulations described in Sec. II and Appendix A.
We begin with the description of the numerical algorithm.

A. Calculation procedure

Numerical implementation of the analytical formalism
includes two components:~i! the calculation of the Fourier
transform of the electric field of the ET dipole~Fig. 1! and
~ii ! the calculation of the response function and 3D integra-
tion in the inverted space@Eqs.~99! and~110!#. The Fourier
transform of the electric field created by the ET dipole is
taken over the solvent-accessible volume@Eq. ~3!#. It can be
calculated for an arbitrary solute shape by employing fast
Fourier transform~FFT! techniques123 on a grid of direct-
space points. A direct numerical calculation is, however, not
possible because of the conditional convergence of the Fou-
rier integral of the Coulomb field. The problem is overcome
by splitting the solvent volume into two regions: the region
between the DAC and a sphere enclosing it and a region
outside the sphere. The Fourier integral inside the sphere is
taken numerically by the FFT and the Fourier integral out-
side the sphere is calculated analytically~Appendix C!.

The polarization structure factors directly from MC
simulations and the PPSF were used in Eqs.~99! and~110! to
calculatelp . The two sets of calculations give essentially
indistinguishable results, and all the calculations are carried
out with the use of the PPSF. The density reorganization
energy was calculated from Eq.~67! with the density struc-
ture factor from the PY solution for the HS fluid.121 Specifi-
cally, the convolution integral in the inverted space in Eq.
~67! has been avoided by calculatingu0(k), taking the in-
verse Fourier transform (F21) of @S(k)21#u0(k),

FIG. 15. Comparison between the longitudinal~L! and transverse~T! struc-
ture factors calculated by the PPSF~solid lines! and obtained from MD
simulations of DMSO with an interaction-site potential~Ref. 59! ~dashed
lines!. The MD structure factors as functions ofk are scaled withs54.73 Å
for comparison with the PPSF results given in theks scale. The dotted line
labeledk1/2 defines the characteristic decay length ofST(k) used to derive
the criterion of applicability of continuum models in Eq.~130!.
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F~r !5F21@~S~k!21!u0~k!#, ~127!

and calculating the direct-space integral

ld52
3yp

8p
F* DE0

2. ~128!

The calculations oflp andls were carried out at varyingy
@Eq. ~15!, nonpolarizable solvent# for two solute geometries
for which MC simulation data are available: point dipole and
diatomic.

B. Comparison of the analytical model
to MC simulations

Figure 10 compares the result of MC simulation for the
LRA ls with the results of calculation for a dipolar solute
@Eqs.~99! and~128!#. The solid points and solid lines refer to
the results of calculations using structure factors from MC
simulations and the PPSF/PY, respectively. As is seen, the
PPSF solution for the polarization structure factors and the
PY HS solution for the density structure factor provide suf-
ficient accuracy for the purpose of reorganization energy cal-
culations. At low polarities, the simulatedls ~open points!
deviates somewhat upward from analytical calculations and
the analytical results tend to be higher at large polarities. The
same qualitative picture is observed for the comparison be-
tween simulations and calculations performed for the di-
atomic DAC in the contact configuration as shown in Fig.
16. The calculation of the fulllp @Eq. ~111!# turns out to fall
within 1% of the mean-field solution. For all practical pur-
poses, the mean-field result provides sufficient accuracy for
the calculations oflp . One possible reason for the observed
deviation between the analytical calculations and MC simu-
lations is that the density reorganization energy has been
calculated here from a perturbative solution20 without at-
tempting to perform a complete renormalization similar to
that achieved for the orientational component. Further theory
development in this direction is necessary.

The Marcus equation for ET diatomic@Eq. ~38!, dashed
line in Fig. 16# is in a reasonable agreement with simulation

results at high solvent polarities,y.6. The dependence on
solvent polarity is obviously not reproduced by the Marcus
equation, and one should avoid applying it for analyzing sol-
vent polarity effects onls . In addition, Eq.~38! does not
correctly reproduce the dependence ofls on e` ~Ref. 65!
~see below!.

C. Qualitative results

On the qualitative level, a significant finding of this
study is the understanding of the role of transverse and lon-
gitudinal polarization fluctuations as collective solvent
modes driving ET. We have shown that longitudinal solvent
polarization dominates the microscopic solvent response.
The transverse response essentially disappears from solva-
tion energetics at high solvent polarities~cf. dotted and solid
lines in Fig. 16!. It is important to realize that the disappear-
ance of the transverse response is purely a microscopic effect
not present in continuum formulations of the theory. Indeed,
when the continuum approximationST(k).ST(0) is made in
the calculation oflT in Eqs. ~99! and ~110!, the transverse
contribution to the reorganization energy is quite substantial,
c0E0

T/2 at largey ~cf. continuum longitudinal, ‘‘L,’’ and trans-
verse, ‘‘T,’’ reorganization energies shown by dash-dotted
lines in Fig. 16!. The transverse component disappears in the
microscopic calculations because of the strong decay of the
transverse structure factor atks,p in highly polar solvents
~Fig. 14!. This result resolves the puzzling contradiction be-
tween electrostatic dielectric calculations and time-resolved
measurements of solvation dynamics and ET kinetics posed
in Sec. II C. The predominant contribution of thek integral
including SL(k) to ls should lead to longitudinal dynamics
whenSL(k) is replaced bySL(k,v) to extend the NRFT to
time-dependent phenomena.

It would be, however, wrong to assume that the trans-
verse response and transverse component of the field of the
ET dipole do not affectls . The role of the transverse re-
sponse is to change the weight with which the longitudinal
structure factor affects the solvation thermodynamics. In case
of a purely longitudinal electric field of the solute,lp in-
cludes only the longitudinal componentlL @Eq. ~84!#. For a
dipolar solute, the existence of a transverse component in the
solute field leads to the appearance of a factor of about 1.5 in
front of the longitudinal reorganization energy@Eq. ~104!#. In
the case of a solute of arbitrary shape, the mean-field solu-
tion produces an effective electric field, including both the
longitudinal and transverse components ofDẼ0 , which
couples to the longitudinal structure factor@Eq. ~110!#. This
alteration of the longitudinal field becomes less important
with increasing separation between the positive and negative
ends in the ET dipole. It turns out to be insignificant for the
contact DAC diatomic as is seen by comparing the line la-
beledlL with the dotted line in Fig. 16.

The longitudinal component oflp shows some interest-
ing peculiarities. The dot-dashed line labeled ‘‘L’’ in Fig. 16
indicates the continuum limit for the longitudinal component
of ls

MF @Eq. ~110!# obtained by settingSL(k)5SL(0). The
dash-dotted line labeled ‘‘T’’ shows the continuum limit for
the transverse component oflp

MF . The gap between the con-

FIG. 16. ls for a charged diatomic from the Marcus equation@Eq. ~38!,
dashed line#, MC simulations~circles!, and the NRFT~solid lines!. The
dotted line shows the longitudinal component oflp obtained by 3D integra-
tion with the longitudinal structure factor@second summand in Eq.~110!#.
lL refers to the longitudinal reorganization energy in Eq.~84!. The dot-
dashed lines refer to the continuum limits for of the longitudinal~‘‘L’’ ! and
transverse~‘‘T’’ ! components ofls

MF obtained by setting the polarization
structure factors to theirk50 values. ‘‘L1T’’ refers to the continuumls

MF .
The dashed line is the Marcus formula for a DAC diatomic@Eq. ~38!#; RA

5RD50.9s, R51.8s, r*50.8, andQ* 50.0.
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tinuum limit labeled as ‘‘L1T’’ and the full microscopic cal-
culation ~solid line labeled ‘‘lp’’ ! arises from the depen-
dence of the solvent response function on the wave vectork
neglected in the continuum limit. Note that for equal defini-
tions of the solute excluded volume~cavity! the following
inequality holds between the macroscopic and microscopic
values of the longitudinal reorganization energy:

ls
M,ls

L , ~129!

wherels
M is given by Eq.~1!. The above inequality is related

to the property of the longitudinal polarization structure fac-
tor: SL(k)>SL(0). One of theconsequences of a significant
dependence oflp on the microscopic,k-dependent part of
the response function is that it is fundamentally impossible to
define the ‘‘best’’ cavity for continuum calculations which
would not depend on the solvent identity and the ratio of
characteristic dimensions of the solute and the solvent mol-
ecules.

The length of decay ofST(k) in polar liquids should be
compared to the length of decay of the fieldsk2uDẼ0

Lu2 and
k2uDẼ0

Tu2 entering the one-dimensionalk integrals in Eqs.
~84! and~110!. Only if the decay of the field is faster than the
decay of ST(k) can one use the continuum assumption
ST(k).ST(0), resulting in the continuum formulas for the
solvation thermodynamics. The longitudinal structure factor
does not change as strongly as does the transverse structure
factor at smallk values, and the conditionST(k).ST(0)
guarantees a similar conditionSL(k).SL(0) for the longitu-
dinal structure factor. This observation allows us to formu-
late a quantitative criterion for the applicability of continuum
models. Over several decades of active application of con-
tinuum calculations,50 it has always been assumed that the
solute should be sufficiently larger than the solvent for this
approach to be applicable. Exactly how much larger has re-
mained an open question.

It is clear from the above discussion that a criterion for
continuum models applicability will depend on the multipo-
lar symmetry of the solute field~e.g., charge or dipole! as
well as on the size and polarity of the solvent molecules. One
can define the characteristic length of the field decay as the
value k0 at which k2uDẼ0

Lu2 and k2uDẼ0
Tu2 reach their first

kÞ0 zero. For a spherical ion of radiusR0 , k05p/R0 @first
zero of j 0(x)], whereas for a spherical dipole,k0.4.49/R0

@second zero ofj 1(x)]. The lengthk0 should be compared to
the length of decay ofST(k) for which we will take the
distancek1/2 such thatST(k1/2)215@ST(0)21#/2 ~see Fig.
15!. The criterion for the validity of continuum models then
becomes

R0@Rmult5
amult

k1/2
, ~130!

whereamult5p for ions andamult54.49 for dipoles. Figure
17 shows the dependence ofRmult on the solvent dielectric
constant calculated for ionic~lower curve! and dipolar~upper
curve! solutes. The calculations are performed by changing
the dipolar densityy of a nonpolarizable solvent with dielec-
tric constant calculated according to Eq.~102! and ST(k)
obtained from the PPST. As expected, the criterion of appli-
cability of continuum models is more stringent for dipolar

solutes compared to ionic solutes. The solute size required
for the continuum approximation to be applicable turns out
to be fairly large: for water withs52.87 Å andes578 one
should require the radius of ionic and dipolar solutes to be
significantly larger than 8.6 and 12.5 Å, respectively. When
criterion ~130! holds, one can apply the Poisson equation to
calculate the solvation free energy. When it does not hold,
the transverse component in the Poisson solution is irrelevant
and a useful continuum approximation is to combine longi-
tudinal solvation with the vdW cavity~labeled vdW/L in
Figs. 9 and 10!.

The NRFT provides new insights into the dependence of
the solvent reorganization energy on solvent’s high-
frequency dielectric constante` . Since no extensive simula-
tion or experimental studies of this problem have been per-
formed so far, the following discussion should be considered
as aprediction of the microscopic theory. In Sec. IV A we
have already alluded to the fact that the NRFT results in a
very weak dependence of the reorganization energylp on
e` . Figure 18 showslp from the mean-field solution@Eq.
~110!# versuse` obtained for a contact DA diatomic. As in
the case of the exact solution for a dipolar solute~Fig. 12!
the microscopic result forlp is almost insensitive toe`

~solid line in Fig. 18!. The transition to the continuum limit
in the microscopic equations by neglecting thek dependence
of the polarization structure factors leads to a very pro-

FIG. 17. Rmult from Eq. ~130! vs es calculated for a nonpolarizable dipolar
solvent using Eq.~102! and the PPST. The upper and lower curves refer to
a dipolar and ionic spherical solutes, respectively.

FIG. 18. lp vs e` for a contact diatomic calculated from the NRFT@Eq.
~110!, solid line#, its continuum limit obtained by neglecting thek depen-
dence in the polarization structure factors~dot-dashed line!, and from the
Marcus equation@Eq. ~38!, dashed line#. The molecular solvent polarizabil-
ity at each magnitude ofe` is calculated from the Clausius–Mossotti equa-
tion and the static dielectric constant from Eq.~102!; (m* )251.0, r*50.8,
R0 /s50.9, andR/s51.8.
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nounced dependence one` ~dot-dashed line in Fig. 18!
which parallels the dependence one` of the Marcus equation
@Eq. ~38!, dashed line in Fig. 18#. In fact, the falloff of the
reorganization energy by about a factor of 2 whene`

changes from 1 to 2 in polar solvents predicted by the Mar-
cus equation is almost exactly reproduced by the continuum
limit of the microscopic formulation. Therefore, if the pre-
diction of a nearly independence oflp of e` is supported by
computer simulations, it would imply that using continuum
models for solutes which do not comply with criterion~130!
results, among other problems, in a too strong dependence of
the reorganization energy one` ~Ref. 124!. This fact can also
make the longitudinal reorganization energy, which is close
to simulations in nonpolarizable solvents~Figs. 9 and 10!,
too low when the strong dependence one` is incorporated in
the continuum solution. On the other hand, the Poisson/vdW
solution, which is too high in nonpolar solvents, may fall to
a reasonable value ate`.1 as a result of cancellation of
errors.

The Gaussian analysis of the distribution of donor–
acceptor energy gaps embodied in the Marcus–Hush theory
of ET introduces two parameters to the model: the average
vertical energy gap̂DE& and the variances(DE)2 ~Fig. 3!.
The traditional formulation splitŝDE& into the driving force
DF0 and the reorganization energyls and givess(DE)2 as
a product of 2kBT and ls @Eq. ~9!#. Variances(DE)2 is
caused by thermal noise of the electrostatic potential of the
solvent at locations of solute charges. Thermal fluctuations of
the solvent can be broadly subdivided into angular-
independent and angular-dependent fluctuations. This corre-
sponds to splitting ofs(DE)2 into the spherically symmetric
componentsd(DE)252kBTld and an angular-dependent
componentsp(DE)252kBTlp . The latter splits into the
longitudinal and transverse contributions according to the
symmetry of the charge–dipole solute–solvent interaction
potential. The final result for the variance of the donor–
acceptor gap is

s~DE!25sd~DE!21sp
L~DE!21sp

T~DE!2. ~131!

The splitting of the variance is based on the symmetry and
not on actual physical modes—molecular translations and
rotations—contributing to the thermal noise. For example,
molecular translations may contribute to both the polariza-
tion structure factors and density structure factor. However,
the common physical understanding of these two types of
structure factors predominantly attributes molecular transla-
tions to the density structure factor and molecular rotations
to the polarization structure factors.125 Based on this attribu-
tion, the splitting ofs(DE)2 into ‘‘ d’’ and ‘‘ p’’ components
should approximately reflect corresponding weights of trans-
lational and rotational modes in the statistics of donor–
acceptor gap fluctuations.

As discussed above, the transverse component is insig-
nificant in Eq.~131!. The longitudinal reorganization energy
lL does not contain an explicit dependence on temperature
because of the cancellation of theyp factor by chain contri-
butions of long-range dipole–dipole forces~Sec. II E!. As a
result, the longitudinal component of the variance is propor-
tional toT, sp

L(DE)2}T. On the contrary, the cancellation of

yp does not happen forld andld}yp , resulting insd(DE)2

which does not have any explicit dependence on tempera-
ture. The overall explicit dependence ofs(DE)2 on T has
the form

s~DE!25a1bT, ~132!

wherea and b depend onT implicitly, through solvent pa-
rameters. The use of this type of variance in the Gaussian
form for the resonance probabilityPi(0) @Eq. ~8!# leads to a
non-Arrhenius form for the ET rate constant:

kET}expF2
^DE&2

2a12bTG . ~133!

This result indicates that the macroscopic fluctuation–
dissipation theorem breaks down for short-range, molecular-
scale fluctuations. The description of the entropy of activa-
tion is thus sensitive to molecular details of solute–solvent
interaction.42 The non-Arrhenius character of ET kinetics
should become more pronounced in solvents with a micro-
scopic length of fluctuations where cancellation of the
multipolar density factor @yp for dipoles and yq

5(2p/5)rbQ2/s2 for axial quadrupolesQ ~Ref. 36!# is not
as effective as for dipolar solvents; ET in quadrupolar sol-
vents is an example.126 One should note that the fluctuation–
dissipation theorem is not expected to hold for solvent den-
sity fluctuations. They modulate the linear coupling of the
solute field to the solvent polarization in a nonlinear fashion,
thus violating the assumption of linear coupling between a
weak external field and a solvent mode explicitly used in the
derivation of the theorem.96

VII. SUMMARY

This paper presents an analytical formalism for the cal-
culation of the solvent reorganization energy of ET in a sol-
ute of arbitrary shape and arbitrary charge distribution. The
formalism is realized in a computational algorithm which
allows us to study ET in large molecules of the size of
biopolymers127 with a computational cost comparable to that
of dielectric continuum calculations. The results of calcula-
tions on model ET systems agree well with MC simulations.
The theory highlights the difference in the mechanisms of ET
activation by longitudinal and transverse polarization modes
and by local density fluctuations of the solvent. From a
broader perspective, the present formulation indicates that
the concept of longitudinal polarization embodied in the
Born theory of ionic solvation3 and Marcus theory of ET
activation79 is correct for small- and medium-size solutes.
The more mathematically elaborate description due to
Onsager71 solves the Poisson equation and incorporates both
longitudinal and transverse polarization modes into the sol-
vation free energy. This solution applies to large solutes with
the effective radius greater than about four solvent diameters.
There is, however, no continuum approximation which
would incorporate both the Born and Onsager pictures in one
formalism.
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APPENDIX A: MC SIMULATIONS

MC simulations have been carried out in two basic set-
ups: simulations of the pure dipolar–quadrupolar solvents
and simulations of solvation. The goal of simulating pure
solvents was to obtain dielectric properties for the compari-
son of the analytical theory and simulations to the predic-
tions of the dielectric continuum theory and to calculate po-
larization and density structure factors used to test the PPSF.
The MC protocol employedN5500 and 864 solvent mol-
ecules in a cubic simulation box with the reaction-field cor-
rection for the cutoff of the long-ranged dipolar and quadru-
polar forces.128 For dipolar–quadrupolar liquids, axial
quadrupoles were employed. This means that the molecular
quadrupolar matrix is diagonal in coordinates with a prin-
ciple axes in the direction of the solvent dipole. The dipole
and quadrupole moment were characterized by their reduced
values: (m* )25bm2/s3 and (Q* )25bQ2/s5. The dielec-
tric properties of dipolar and dipolar–quadrupolar solvents
obtained from simulations are listed in Table I.

Solvation simulations included several configurations of
the DAC. Testing of the LRA for dipolar solvation in dipolar
and quadrupolar solvents was carried out for a spherical sol-
ute of the radiusR050.9s with varying dipole moment. The
solute–solvent potential was calculated with the reaction-
field correction for the long-distance cutoff.128 The solute
was immobilized at the center of a cubic simulation box
containing 500 solvent molecules at the reduced density
r*50.8.

Ewald-sum calculation128 of the solute-solvent potential
was used for simulations of diatomic solutes. In the neutral
state, the variance of the solute–solvent interaction potential

was taken on solvent configurations in equilibrium with a
neutral hard-core solute withRA5RD50.9s. The contact
configurationR52RD was adopted for simulation results
presented in Figs. 4, 8, and 9. For the simulations of the
distance dependence ofls the interval of distances 1.8s
<R<3s was explored. In the charged state of the donor–
acceptor diatomics, simulations were performed with the ex-
plicit account for the interaction of solvent dipoles with the
solute chargeszi :

bv2~ j !52q* m* s2 (
i 51,2

zi

m̂j "r̂ j

r j
2

, ~A1!

where the reduced charge is

~q* !25be2/s. ~A2!

Opposite charges with the magnitudeq* 511.87 were
placed on the donor and acceptor. The simulation results
for the reorganization energies and their splitting into the
one-molecule and two-molecule components are listed in
Table II.

TABLE I. Simulations of dielectric parameters for pure dipolar liquids
@(Q* )250# and dipolar liquids with axial quadrupole moments@(Q* )2

50.5# at different reduced solvent dipole moments (m* )25bm2/s3. MC
simulations were carried out for fluids ofN5500 and 864 molecules in a
cubic simulation box with the reaction-field cutoff of the multipole interac-
tions; the length of each simulation is 1.43106 cycles.

(m* )2

(Q* )250 (Q* )250.5

gK es ST(0) gK es ST(0)

0.5 1.24 3.74 1.64 0.91 2.94 1.16
1.0 1.62 8.7 2.29 0.95 5.34 1.30
1.5 2.15 16.7 3.12 1.04 8.42 1.48
2.0 2.94 30.1 4.34 1.20 12.6 1.73
2.5 4.25 54.0 6.32 1.27 16.5 1.84
3.0 5.94 90.1 8.86 1.46 22.6 2.14
3.5 10.4 184 15.6 1.61 28.8 2.37
4.0 18.4 371 27.6 1.81 36.9 2.68

TABLE II. Reorganization energybls /(q* )2 ~I! and its splitting into the one-molecule,bls
I /(q* )2 ~II !, and two-molecule,bls

II /(q* )2 ~III !, components at
changing solvent dipolar strength (m* )25bm2/s3. The simulations are carried out for a neutral solute diatomic~D–A! in dipolar and dipolar–quadrupolar
solvents and for a charged diatomic (D1 – A2) in dipolar solvents. The solute is modeled by two spheres of the radiusRA5RD50.9s at the distance
R5RD1RA ; r*50.8 andq* 511.87.

(m* )2

D–A, (Q* )250 D–A, (Q* )250.5 D1 – A2, (Q* )250

I II III I II III I II III

0.5 0.241 0.457 20.216 0.247 0.440 20.193 0.234 0.502 20.268
1.0 0.325 0.899 20.574 0.357 0.881 20.524 0.316 0.990 20.674
1.5 0.368 1.328 20.960 0.406 1.312 20.906 0.361 1.461 21.100
2.0 0.389 1.743 21.354 0.450 1.726 21.276 0.389 1.913 21.524
2.5 0.399 2.111 21.712 0.472 2.117 21.645 0.403 2.356 21.953
3.0 0.420 2.490 22.070 0.475 2.530 22.055 0.423 2.779 22.356
3.5 0.426 2.837 22.411 0.495 2.894 22.399 0.438 3.180 22.742
4.0 0.430 3.146 22.716 0.511 3.219 22.708 0.448 3.566 23.118
4.5 0.433 3.456 23.023 0.516 3.450 22.934 0.452 3.922 23.470
5.0 0.425 3.685 23.260 0.522 3.772 23.250 0.511 4.734 24.223
6.0 0.435 4.238 23.803 0.494 4.823 24.329 0.474 4.650 24.176
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APPENDIX B: NOTATION USED FOR DIRECT
AND INVERTED SPACE INTEGRATION

The following notation is accepted for direct- and
inverted-space integrals. Two functions combined with the
asterisk denote integration over the direct-space coordinates:

v* u5E v~r !u~r !dr . ~B1!

The combination of three functions separated by asterisks
denotes convolution:

v* f * u5E v~r1! f ~r12r2!u~r2!dr1dr2 . ~B2!

Fourier transforms are denoted by tildas and the correspond-
ing asterisks product is defined as

ṽ* ũ5E ṽ~k!ũ~k!@dk/~2p!3#. ~B3!

The interaction potentials and correlation functions de-
pending on the orientations of solvent dipoles are indicated
by using indexes 1, 2,... standing for orientations of the cor-
responding dipole momentsv1 , v2 ,... . Thek-space convo-
lution then becomes

ṽ* f̃ * ṽ5E ṽ~k1 ,v1! f̃ ~k12k2 ,v1 ,v2!ṽ~k2 ,v2!

3
dk1dk2

~2p!6

dv1dv2

~4p!2
. ~B4!

APPENDIX C: FOURIER TRANSFORM
OF THE FIELD OF ET DIPOLE

To avoid numerical divergence of the Fourier integral in
Eq. ~3!, the solvent is represented by a sum of Fourier trans-
forms over two volumesV1 andV2 which together make the
solvent volumeV ~Fig. 19!. The total difference field is then
a sum of Fourier transforms from each region,

DẼ05DẼ0~V1!1DẼ0~V2!. ~C1!

The first summand in Eq.~C1! is calculated numerically by
the FFT,123 and the second summand is calculated analyti-
cally for an arbitrary distribution of chargeszi with the co-
ordinatessi , si,L ~Fig. 19!:

DẼ0~V2!524pe(
i

zi (
n51

`

~2 i !nS si

L D n21

3
j n21~kL!

k
@ ŝi Pn218 ~cosu i !2 k̂Pn8~cosu i !#.

~C2!

Here cosui5ŝi "k̂ andL is the radius of the sphere enclosing
the volumeV1 ~Fig. 19!, j n(x) is the spherical Bessel func-
tion, andPn(cosui) is the Legendre polynomial.
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14C. J. F. Böttcher, Theory of Electric Polarization~Elsevier, New York,

1973!.
15E. D. German and A. M. Kuznetsov, Electrochim. Acta26, 1595~1981!.
16Y.-P. Liu and M. D. Newton, J. Phys. Chem.98, 7162~1994!.
17K. A. Sharp, Biophys. J.73, 1241~1998!.
18B. S. Brunschwig, S. Ehrenson, and N. Sutin, J. Phys. Chem.90, 3657

~1986!.
19Y. Zhou, H. L. Friedman, and G. Stell, Chem. Phys.152, 185 ~1991!.
20D. V. Matyushov, Chem. Phys.174, 199 ~1993!.
21B.-C. Perng, M. D. Newton, F. O. Raineri, and H. L. Friedman, J. Chem.

Phys.104, 7153~1996!.
22F. O. Raineri and H. L. Friedman, Adv. Chem. Phys.107, 81 ~1999!.
23T. Fonseca, B. M. Ladanyi, and J. T. Hynes, J. Phys. Chem.96, 4085

~1992!.
24S.-H. Chong, S. Miura, G. Basu, and F. Hirata, J. Phys. Chem.99, 10526

~1995!.
25E. A. Carter and J. T. Hynes, J. Chem. Phys.94, 5961~1991!.
26J.-K. Hwang and A. Warshel, J. Am. Chem. Soc.109, 715 ~1987!.
27R. A. Kuharski, J. S. Bader, D. Chandler, M. Sprik, M. L. Klein, and R.

W. Impey, J. Chem. Phys.89, 3248~1988!.
28L. W. Ungar, M. D. Newton, and G. A. Voth, J. Phys. Chem. B103, 7367

~1999!.
29B.-C. Perng, M. D. Newton, F. O. Raineri, and H. L. Friedman, J. Chem.

Phys.104, 7177~1996!.
30D. V. Matyushov and M. D. Newton, J. Phys. Chem. A105, 8516~2001!.
31T. Ichiye, J. Chem. Phys.104, 7561~1996!.
32D. V. Matyushov, Mol. Phys.79, 795 ~1993!.
33B. M. Ladanyi and R. M. Stratt, J. Phys. Chem.100, 1266~1996!.
34R. Biswas, N. Nandi, and B. Bagchi, J. Phys. Chem. B101, 2968~1997!.
35L. Reynolds, J. A. Gardecki, S. J. V. Frankland, and M. Maroncelli, J.

Phys. Chem.100, 10337~1996!.
36D. V. Matyushov and G. A. Voth, J. Chem. Phys.111, 3630~1999!.
37I. Read, A. Napper, M. B. Zimmt, and D. H. Waldeck, J. Phys. Chem. A

104, 9385~2000!.
38D. V. Matyushov and R. Schmid, Mol. Phys.84, 533 ~1995!.
39D. V. Matyushov and R. Schmid, J. Chem. Phys.103, 2034~1995!.
40D. L. Derr and C. M. Elliott, J. Phys. Chem. A103, 7888~1999!.

FIG. 19. Donor–acceptor complex occupying the region of spaceV0 with
chargeszi located atsi . The shaded area isV1 , and the area outside the
sphere encircling the DAC isV2 .

7555J. Chem. Phys., Vol. 120, No. 16, 22 April 2004 Solvent reorganization energy

Downloaded 07 Apr 2004 to 129.219.49.224. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



41S. F. Nelsen, R. F. Ismagilov, K. E. Gentile, and D. R. Powell, J. Am.
Chem. Soc.121, 7108~1999!.

42P. Vath, M. B. Zimmt, D. V. Matyushov, and G. A. Voth, J. Phys. Chem.
B 103, 9130~1999!.

43P. Vath and M. B. Zimmt, J. Phys. Chem. A104, 2626~2000!.
44X. Zhao, J. A. Burt, F. J. Knorr, and J. L. McHale, J. Phys. Chem. A105,

11110~2001!.
45G. Stell, G. N. Patey, and J. S. Høye, Adv. Chem. Phys.18, 183 ~1981!.
46A. Milischuk and D. V. Matyushov, J. Chem. Phys.118, 1859~2003!.
47D. V. Matyushov and B. M. Ladanyi, J. Chem. Phys.110, 994 ~1999!.
48A. M. Napper, I. Read, R. Kaplan, M. B. Zimmt, and D. H. Waldeck, J.

Phys. Chem. A106, 5288~2002!.
49F. Raineri and H. Friedman, J. Chem. Phys.98, 8910~1993!.
50C. J. Cramer and D. G. Truhlar, Chem. Rev.~Washington, D.C.! 99, 2161

~1999!.
51R. M. Lynden-Bell, AIP Conf. Proc.492, 3 ~1999!.
52B. M. Ladanyi and M. S. Skaf, Annu. Rev. Phys. Chem.44, 335 ~1993!.
53L. R. Pratt and D. Chandler, J. Chem. Phys.67, 3683~1977!.
54D. Chandler, Phys. Rev. E48, 2898~1993!.
55X. Song, D. Chandler, and R. A. Marcus, J. Phys. Chem.100, 11954

~1996!.
56X. Song and D. Chandler, J. Chem. Phys.108, 2594~1998!.
57C. G. Gray and K. E. Gubbins,Theory of Molecular Liquids~Clarendon,

Oxford, 1984!.
58F. O. Raineri, H. Resat, and H. L. Friedman, J. Chem. Phys.96, 3068

~1992!.
59M. S. Skaf, J. Chem. Phys.107, 7996~1997!.
60D. Ben-Amotz and D. R. Herschbach, J. Phys. Chem.90, 1038~1990!.
61D. Ben-Amotz and K. G. Willis, J. Phys. Chem.97, 7736~1993!.
62R. Schmid and D. V. Matyushov, J. Phys. Chem.99, 2393~1995!.
63D. V. Matyushov and R. Schmid, J. Chem. Phys.105, 4729~1996!.
64S. W. Rick and S. J. Stuart,Reviews in Computational Chemistry~Wiley-

VCH, New York, 2002!, Vol. 18, p. 89.
65S. Gupta and D. V. Matyushov, J. Phys. Chem. A108, ASAP ~2004!.
66M. S. Wertheim, Mol. Phys.37, 83 ~1979!.
67V. Venkatasubramanian, K. E. Gubbins, C. G. Gray, and C. C. Joslin,

Mol. Phys.52, 1411~1984!.
68C. G. Joslin, C. G. Gray, and K. E. Gubbins, Mol. Phys.54, 1117~1985!.
69D. Ben-Amotz and I. P. Omelyan, J. Chem. Phys.115, 9401~2001!.
70M. B. Zimmt and D. H. Waldeck, J. Phys. Chem. A107, 3580~2003!.
71L. Onsager, J. Am. Chem. Soc.58, 1486~1936!.
72J. G. Kirkwood, J. Chem. Phys.2, 351 ~1934!.
73R. H. Wood, J. R. Qulnt, and J.-P. E. Groller, J. Phys. Chem.85, 3944

~1981!.
74M. Berg, J. Phys. Chem. A102, 17 ~1998!.
75J. Jeon and H. J. Kim, J. Chem. Phys.119, 8606~2003!.
76R. A. Marcus, J. Phys. Chem.93, 3078~1989!.
77C. H. Wang,Spectroscopy of Condensed Media~Academic, Orlando, FL,

1985!.
78B. M. Ladanyi and M. Maroncelli, J. Chem. Phys.109, 3204~1998!.
79R. A. Marcus, Rev. Mod. Phys.65, 599 ~1993!.
80D. V. Matyushov and G. A. Voth, J. Chem. Phys.113, 5413~1999!.
81A. Milischuk and D. V. Matyushov, J. Phys. Chem. A106, 2146~2002!.
82The solvent reorganization energy is defined as the equilibrium free en-

ergy of solvation of the ET dipole. The approach used here can be applied
to a DAC with an arbitrary charge as long as the solute charge does not
change the spectrum of fluctuations of the solvent~LRA!.

83M. S. Wertheim, J. Chem. Phys.55, 4291~1971!.
84D. Y. C. Chan, D. J. Mitchell, and B. W. Ninham, J. Chem. Phys.70,

2946 ~1979!.
85J. S. Høye and G. Stell, J. Chem. Phys.73, 461 ~1980!.
86H. E. Stanley,Introduction to Phase Transitions and Critical Phenomena

~Oxford University Press, New York, 1987!.
87The charges of the solute interact only with optical phonons changing the

local charge distribution in the solvent. Therefore thermal excitations,
leading to a parallel tilt of the dipoles, can be neglected.

88J. P. Hansen and I. R. McDonald,Theory of Simple Liquids~Academic,
Orlando, FL, 1986!.

89J. T. Hupp, Y. Dong, R. L. Blackbourn, and H. Lu, J. Phys. Chem.97,
3278 ~1993!.

90W. Rocchia, E. Alexov, and B. Honig, J. Phys. Chem. B105, 6507
~2001!.

91W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera, and B.
Honig, J. Comput. Chem.23, 128 ~2002!.

92B. Berne, J. Chem. Phys.62, 1154~1975!.
93A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys.99, 4926~1993!.
94B. Bagchi and N. Gayathri, inAdvances in Chemical Physics, edited by J.

Jortner and M. Bixon~Wiley, New York, 1999!, Vol. 107, p. 1.
95A. A. Ovchinnikov and M. Y. Ovchinnikova, Sov. Phys. JETP29, 688

~1969!.
96R. Kubo,Lectures in Theoretical Physics~Interscience, New York, 1959!,

Vol. 1, p. 120.
97H. C. Andersen and D. Chandler, J. Chem. Phys.57, 1918~1972!.
98J. S. Høye and G. Stell, J. Chem. Phys.61, 562 ~1974!.
99Short-range and long-range interactions can be distinguished based on the

convergence property of the second virial coefficient. The latter diverges
for radial interaction potentials}1/r d at d<3 ~long-range potential! and
is finite atd.3 ~short-range potential!.

100N. Mataga,Molecular Interactions and Electronic Spectra~Dekker, New
York, 1970!.

101M. S. Skaf and B. M. Ladanyi, J. Chem. Phys.102, 6542~1995!.
102P. A. Bopp, A. A. Kornyshev, and G. Sutmann, Phys. Rev. Lett.76, 1280

~1996!.
103B.-C. Perng and B. M. Ladanyi, J. Chem. Phys.110, 6389~1999!.
104I. P. Omelyan, Mol. Phys.93, 123 ~1998!.
105M. Lilichenko and D. V. Matyushov, J. Chem. Phys.119, 1559~2003!.
106D. V. Matyushov and G. A. Voth, J. Phys. Chem. A103, 10981~1999!.
107J. Richardi and P. H. Fries, J. Mol. Liq.88, 209 ~2000!.
108D. V. Matyushov and B. M. Ladanyi, J. Chem. Phys.108, 6362~1998!.
109G. Fischer,Vibronic Coupling~Academic, London, 1984!.
110J. S. Høye and G. Stell, J. Chem. Phys.64, 1952~1976!.
111L. R. Pratt, Mol. Phys.40, 347 ~1980!.
112M. J. Thompson, K. S. Schweizer, and D. Chandler, J. Chem. Phys.76,

1128 ~1982!.
113J. Cao and B. J. Berne, J. Chem. Phys.99, 2902~1993!.
114E. L. Pollock, B. J. Alder, and G. N. Patey, Physica A108, 14 ~1981!.
115H. Li and M. Kardar, Phys. Rev. A46, 6490~1992!.
116D. V. Matyushov, J. Chem. Phys.120, 1375~2004!.
117A singularity of the integrand in Eq.~95! in fact appears atk* defined by

the conditionSL12A50. This pole is responsible for longitudinal polar-
ization waves generated in a polar solvent by the insertion of the solute.
However, this singularity gives a negligible contribution to the integral
and is not considered here.

118A. Tani, D. Henderson, and J. A. Barker, Mol. Phys.48, 863 ~1983!.
119J. S. Bader and B. J. Berne, J. Chem. Phys.104, 1293~1996!.
120P. J. Rossky and B. M. Pettitt, Mol. Phys.50, 1263~1983!.
121R. J. Baxter, J. Chem. Phys.52, 4559~1970!.
122The effective HS diameter of DMSO calculated by fitting the solvent

compressibility to that given by the generalized van der Waals equation is
4.95 Å. The compressibility of the ISM fluid used to represent DMSO
may be, however, different from the compressibility of the real solvent.

123W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Nu-
merical Recipes in Fortran 77: The art of scientific computing~Cam-
bridge University Press, Cambridge, England, 1996!.

124A strong dependence one` will appear in any theory of ET reorganiza-
tion that implements an additive correction for electronic polarizability
effects not entangled with the nonlocal response functions. For instance,
the RISM formulation in Ref. 29 relies on an additive correction the
dependence one` in which is as strong as in the Marcus formula.

125H. L. Friedman,A Course in Statistical Mechanics~Prentice-Hall, Engle-
wood Cliffs, NJ, 1985!.

126I. Read, R. Kaplan, M. B. Zimmt, and D. H. Waldeck, J. Am. Chem. Soc.
121, 10976~1999!.

127D. N. LeBard, M. Lilichenko, D. V. Matyushov, Y. A. Berlin, and M. A.
Ratner, J. Phys. Chem. B107, 14509~2003!.

128M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids~Claren-
don, Oxford, 1996!.

7556 J. Chem. Phys., Vol. 120, No. 16, 22 April 2004 Dmitry V. Matyushov

Downloaded 07 Apr 2004 to 129.219.49.224. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


