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Abstract 

Nurse rerostering arises when at least one nurse announces that she will be unable to 

undertake the tasks previously assigned to her. The problem amounts to building a new 

roster that satisfies the hard constraints already met by the current one and, as much as 

possible, fulfils two groups of soft constraints which define the two objectives to be 

attained. A bi-objective genetic heuristic was designed on the basis of a population of 

individuals characterised by pairs of chromosomes, whose fitness complies with the 

Pareto ranking of the respective decoded solution. It includes an elitist policy, as well as 

a new utopic strategy, introduced for purposes of diversification. The computational 

experiments produced promising results for the practical application of this approach to 

real life instances arising from a public hospital in Lisbon. 
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Introduction 

The rerostering problem is a scheduling-type problem that frequently arises in hospital 

units where no reserve pool of nurses exists. Here, the roster for the nurses of a given 

unit must often be adapted in view of the scheduled nurses’ unexpected absences. 

However, like many other rescheduling problems, this rerostering problem has received 

little attention in OR literature. 

 

As witnessed in hospital units in Portugal, the nurse rerostering problem has been 

studied by using two single-objective multi-commodity flow models and tackled by 

mixed binary linear formulations or genetic heuristics in Moz and Pato (2003, 2004, 

2005a). The abovementioned single-objective problem consists in minimising the 

violations related to a group of soft constraints – by forcing a nil dissimilarity between 

the current and the new roster – subject to the hard constraints imposed by Portuguese 

Law, working contracts and institutional requirements. This being so, the solutions to 

such optimisation problem will tend to satisfy other soft constraints whenever satisfied 

by the current roster. However, in practice, there is a trade-off between similarity of 

both rosters and compliance with other soft constraints. Hence, to handle this trade-off, 

a bi-objective problem was formulated and the respective solutions were obtained from 

a goal programming model (Moz and Pato (2005b)).  
 

In the literature, a reference was found to a nurse rerostering problem in Tien and 

Kamiyama (1982). However, it concerns a situation where a reserve pool of nurses 

exists. More recently, other rescheduling problems have been analysed by Cumming, 

Paechter and Rankin (2000) and Petrovic, Beddoe and Vanden Berghe (2002). 

Nevertheless, all of these studies have little in common with the present nurse 

rerostering issue, though all have been identified as being more difficult than the 

corresponding scheduling issues. In fact, the methodologies usually applied to the 

rostering problem cannot be adapted to rerostering that easily. For a recent survey of 

methods for rostering see Burke et al. (2004), Cheang, Lim and Rodrigues (2003) or 

Ernst et al. (2004). 

  

Due to the high complexity of this problem, whose single-objective version has been 

classified in Moz and Pato (2005a) as NP-hard (Garey and Jonhson (1979)), the authors 

 2



adopted a heuristic methodology. This strategy was also dictated by the need for a 

solving engine requiring modest human and computing resources, to be incorporated in 

a decision support system and run in each hospital unit. The choice of a genetic 

heuristic was prompted by the favourable experience obtained from genetic heuristics 

by several authors working with difficult bi-objective scheduling-type problems, such as 

Carrasco and Pato (2001) and Burke et al. (2001). In this context one should also 

consult a recent survey of Silva, Burke and Petrovic (2004) on multiobjective heuristics 

for scheduling problems, which includes nurse rostering. 

 

The Utopic Pareto Genetic heuristic described in this paper was developed by 

introducing the bi-objective criterion into the fitness function, in a Pareto fashion, and 

running it, while maintaining all the other features considered in the abovementioned 

genetic heuristic for a single-objective case (Moz and Pato (2005a)). In an attempt to 

enhance the behaviour of the heuristic, an elitist policy was adapted from the one due to 

Gandibleux (2000), as well as a new utopic strategy developed in order to induce 

diversity in the population and attain a low level of at least one of the objectives. The 

bi-objective genetic heuristic was computationally tested, using real life rerostering 

instances taken from a surgical unit of a Lisbon public hospital.   

 

Section 1 of this paper presents the nurse rerostering problem itself and the respective 

bi-objective model, whereas section 2 is devoted to the presentation of the bi-objective 

genetic heuristic and section 3 to the computational experiments. Finally, in section 4 

some comments are made. 

 

1. The Nurse Rerostering Problem    

There follows a brief description of the problem, which may be found, in a more 

detailed version, in Moz and Pato (2005b). The problem arises when, during the 

rostering period, one or more nurses announce that they will be unable to perform tasks 

assigned to them in the current roster.    

 

This scheduling-type problem is highly constrained, in view of labour contract rules in 

Portugal, as well as rules peculiar to the case under study. It should, however, be noted 

that nowadays most of the nurses employed at public or non-public Portuguese hospitals 

operate under similar conditions. Some of these rules are imperative, the so-called hard 
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constraints, whereas others, the soft constraints, should be satisfied as much as possible. 

Such regulations may be summarised by the following constraints:  

 

– (hard i) each nurse has an eight-hour working day in a single shift, referred to as a 

duty or a work task; 

– (hard ii) some nurses have an average 35 hour weekly workload, while that of others 

is 42 hours; 

– (hard iii) nurses must rest at least 16 hours between two consecutive shifts; this means 

that some shift sequences are not feasible (e.g. work on an evening shift should not be 

followed by work on a night shift or on a day shift);  

– (hard iv) nurses must enjoy a minimum number of days’ leave in every seven day 

sequence, depending on their weekly workload (two days-off for those with an average 

weekly workload of 35 hours, and at least one day-off for those with a 42-hour week); 

– (hard v) nurses who should not be working on certain shifts and/or on certain days, for 

contractual reasons or due to announced absences, may not be assigned to perform tasks 

pertaining to those shifts and/or days; 

 

– (soft i) some nurses should not work on the night shift on consecutive days; 

– (soft ii) nurses should be assigned a pre-determined number of work tasks during the 

rerostering period (from the first day of absences to the end of the rostering period), in 

keeping with the respective weekly workload; 

– (soft iii) the preferences of nurses for some sequences of tasks should be met (in the 

rerostering context, nurses prefer not to alter the previously assigned work tasks).  

 

As for (soft ii), it is worth noting that in a rostering period of four weeks, a 42-hour 

weekly workload for a nurse amounts to 168 hours’ work in 21 shifts, whereas a 35-

hour weekly workload amounts to 140 hours, that is, 17.5 shifts. This being so, the head 

nurse, who currently devises the rostering for the unit, tries to assign to that nurse 17 

shifts in one period and 18 shifts in the next period. 

 

Figure 1 displays a seven-day roster for a hypothetical small hospital unit with a fixed 

set of five nurses, where nurse 3 announces an absence on the night shift of day 5 of the 

seven-day period.  
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day 1 2 3 4 5 6 7 # duties
nurse 1 D E O N O D E 5
nurse 2 O N O D E O N 4
nurse 3 O D E O N O D 4
nurse 4 E O N O D E O 4
nurse 5 N O D E O N O 4

#N 1 1 1 1 1 1 1
#D 1 1 1 1 1 1 1
#E 1 1 1 1 1 1 1  

                                                               

     9 duties:
          1      2     3    4     5     6     7    8     9 

D

day 6

E N D

day 7

E ND

day 5

E N

  Figure 1. The rerostering problem for a hypothetical hospital unit. 
 

The current roster, requiring one nurse for each day shift, is here represented in 

precisely the same way as in the hospital unit. The symbols D, E, N and O stand for 

day, evening, night shifts and day-off, respectively. Note that the cross on the night shift 

cell (N) of day 5 is assumed to have been marked by the head nurse of the unit 

immediately after announcement of the unexpected absence by nurse 3.  

 

In this case, the rerostering problem consists of rebuilding the roster by reassigning the 

nine duties, listed at the bottom of Figure 1, on days 5, 6 and 7. The rebuilding 

procedure amounts to 15 tasks: nine duties and six days-off. Of course, these 15 tasks 

from day 5 to day 7 will have to be performed by the five nurses. 

 

For instance, one solution for the rerostering issue, shown in Figure 2, may be to assign 

nurse 1 to that night shift (N) and a day-off (O) on the next day. Nurse 3 will work on 

the day shift (D) of day 6, while all the others perform the same tasks. In fact, nurse 1 

may perform the night shift on day 5, since she was assigned to a night shift on the 

previous day and will get the day-off on day 6, accounting for the two days-off in each 

seven-day period. 

 

In the general case, the present bi-objective model deals with soft constraints referred to 

as (soft i) as if they were hard constraints. Therefore, the two objectives to attain 

concern (soft ii), and (soft iii) constraints. 
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day 1 2 3 4 5 6 7 # duties
nurse 1 D E O N N O E 5
nurse 2 O N O D E O N 4
nurse 3 O D E O O D D 4
nurse 4 E O N O D E O 4
nurse 5 N O D E O N O 4

#N 1 1 1 1 1 1 1
#D 1 1 1 1 1 1 1
#E 1 1 1 1 1 1 1  

Figure 2. A solution to the illustrative rerostering problem. 

 

In this context, for the rerostering issue addressed, one must, for all the nurses of the 

unit, determine a roster which satisfies the hard constraints plus (soft i), and is guided 

by the two scheduling objectives: 

– (objective 1) to obtain a minimum gap between the number of scheduled duties and 

the number of duties each nurse should perform during the period; 

– (objective 2) to minimise dissimilarity regarding the previously announced roster for 

the same period. 

 

2. Utopic Pareto Genetic Heuristic 

Genetic heuristics have been studied for difficult multi-objective optimisation problems 

since the pioneering work of Schaffer (1985). From the various heuristics of this type 

our option favoured a Pareto genetic approach (see, for a survey, Zitzler, Laumanns and 

Bleuler (2004)).  

 

The major difference between the basic genetic heuristic, devised for the bi-objective 

rerostering problem referred to in the Introduction, and the one developed for the single-

objective case in Moz and Pato (2005a), lies in the fitness function, which now 

considers the two objectives of the problem under study. In addition, the enhanced bi-

objective version – Utopic Pareto Genetic heuristic – includes an elitist policy and a 

utopic diversification strategy. It should be stressed that knowledge of the rerostering 

problem and of previous experiments favoured the abovementioned bi-objective genetic 

heuristic, which achieves a compromise between computing effort and effectiveness. 

 

As a matter of fact, like many others within the scheduling domain, the problem 

addressed has a combinatorial structure but possesses a highly constrained nature. 

Moreover, the solutions produced by the heuristic are assumed to be used directly in the 
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hospital unit. Consequently, all the hard constraints must be satisfied, i.e., the solution 

must be feasible. The need to produce feasible solutions, together with the difficulty in 

obtaining such solutions, due to the intricate rules of work contracts, led the authors to 

consider employing roulette wheel selection instead of the binary tournament strategy. 

In fact, under binary tournament, two solutions from the entire population are randomly 

chosen and, in the presence of many unfeasible solutions, the probability of selecting 

two solutions that are both unfeasible is high. 

 

On the other hand, the previously mentioned experiments included the merging of the 

individuals corresponding to the Pareto frontier of a generation in the population for the 

next. This led to premature convergence and poor quality results, which explains the 

need for a specially devised heuristic – one which could, throughout all generations, 

maintain several Pareto rank levels, within which the genetic operators effectively act. 

In the most common multi-objective genetic algorithms, such as SPEA2 and NSGA-II 

(Deb et al. (2002) and Zitzler, Laumanns and Thiele (2001)), the preference for the 

individuals of the first Pareto ranks to pass to the next generation excludes those of 

higher ranks, thus reducing the diversity required for rerostering application. 

 

There follows a brief description of the main components of this approach, whose 

pseudo-code is given in Table 1.  

Step 1 (initialisation) 

Generate n_pop individuals for generation 1 by running a single-objective genetic algorithm 

Generate the utopic individual and include it in the population for generation 1  

t←1 

Step 2 (evaluation)  

Assign a bi-objective fitness value to each individual of the population in generation t 

Update the two lexicographic optima 

Step 3 (iterative step) 

Perform selection to create the mating pool and crossover on randomly chosen pairs of individuals 

Submit the individuals to mutation 

t←t+1 

Include the utopic individual in the population for generation t+1 and apply elitism  

Step 4 (stopping criterion) 

       IF t > max_gen, THEN STOP; OTHERWISE, GO TO step 2 

Table 1. Utopic Pareto Genetic heuristic. 
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2.1 Encoding and Initial Population 

As mentioned in the previous section, the rerostering process involves a list of nurses 

pertaining to the unit, besides a list of work tasks to be performed during the rerostering 

period. In the real case under study, this period extends from the first day of absences to 

the end, day 28. This being so, the list of work tasks, besides the list of nurses, are 

regarded as chromosomes. Thus, each individual of the population, which corresponds 

to a unique solution of the rerostering problem (if feasible, a new roster), is 

characterised by a pair of permutation chromosomes: one is a list of work tasks and the 

other a list of nurses. Figure 3 shows this encoding scheme. 

chromosometasks

one roster

one individual decoder

chromosomenurses

 
Figure 3. Encoding scheme. 

 

As for decoding the two chromosomes, the exercise is performed in a natural way by 

considering the list of work tasks and the list of nurses, both of which are represented by 

integer vectors. Hence, in order to obtain a solution for the rerostering problem from 

one individual, which may be a new roster, one must take the respective pair of 

chromosomes and run the decoder, which amounts to a constructive heuristic acting in 

accordance with the description given in Table 2. Note that indirect encodings – albeit 

in a different way from the latter, and applied to individuals characterised by a unique 

chromosome – were also devised by Davis (1991) within a genetic heuristic for 

colouring and, more recently, by Aickelin and Dowsland (2004) for nurse rostering. 

 

In short, the constructive heuristic includes a main step in which each non-assigned task 

is given to a nurse. One such assignment is performed according to the scheduling rules, 

which are ordered hierarchically, and imposes satisfaction of the constraints.  
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Step 1 (initialisation) 

       All the work tasks are randomly ordered and considered as not assigned 

Step 2 

      Each non-assigned task of the list is assigned to a nurse according to hierarchically ordered rules 

Step 3 

       IF it is not possible to assign a task, say A, to any nurse, THEN the procedure reverts back to the last 

       task already assigned, say B, swaps the position of tasks A and B and tries to assign B  by satisfying  

       the hierarchical rules 

Step 4 (stopping criterion) 

       IF all the tasks are assigned or a task could not be assigned, THEN STOP; OTHERWISE, GO TO step 2 

Table 2. Constructive heuristic. 

 

There are n_pop=400 individuals, each assigned to a pair of chromosomes, in the 

population in all generations. To create the population for generation 1, the single- 

objective version of the genetic heuristic (minimising dissimilarity, i.e., objective 2 in 

the bi-objective model) runs during a pre-defined number of iterations. Its output is the 

initial population for the bi-objective heuristic, including with high probability some 

solutions which comply with the hard constraints.  

 

2.2 Bi-objective Fitness 

The fitness of each individual must reflect the bi-objective nature of the problem. 

Hence, the option favoured that of calculating the fitness according to the position of the 

individual in relation to the Pareto frontier of the current population, as in Goldberg 

(1989) and NSGA-based algorithms (Deb et al. (2002)).   

 

As mentioned above, in a specific iteration of the genetic algorithm, the decoder – 

constructive heuristic – acts on each pair of chromosomes of an individual, thus 

producing a solution for the rerostering problem. For each solution, the values of both 

objective functions (the deviation from the required number of duties and the number of 

shift swaps in the nurses’ schedules) are calculated, and a point in the objective space is 

defined.  

 

After representing the points corresponding to all the individuals obtained from the 

decoder in the objective space, those corresponding to the Pareto frontier are assigned to 
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Pareto rank 1 and are given a fitness value equal to 1. The next step consists in 

eliminating those points and, where the remaining points of the objective space are 

concerned, determining the next Pareto frontier, thus defining the rank 2 frontier. The 

respective individuals receive the value 1/2 for fitness. And the process continues, 

always giving fitness values to the individuals that are equal to the inverse of the 

respective frontier rank.  

 

Figure 4 presents a small example for a population of 10 points in the objective space, 

plus the point associated with the utopic individual, in a particular generation t. The 

utopic individual, with a fitness value equal to 1, is represented by a different ‘crowned’ 

symbol. Its origin and motivation will be explained in the next subsection. In this 

example, the frontiers were built up to rank 3, whose individuals have a fitness value 

equal to 1/3. 

obj1

obj 2

rank 3

rank 2
rank 1

 
Figure 4. Illustration of the Pareto ranks. 

 

It is important to stress that the decoder heuristic may lead to an unfeasible solution, in 

other words, a roster that does not satisfy all the hard constraints it should satisfy. This 

being so, then the respective objective function values will be penalised. 

 

2.3 Operators, Elitism and Utopia  

As for the operators, let us begin with the selection operator, which is based on the 

roulette wheel procedure, in other words, the probability of an individual entering the 

mating pool being directly proportional to its fitness. From the population of each 

generation, the selection operator selects n_pop individuals for the mating pool.  
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The Utopic Pareto Genetic heuristic embeds both elitism and a utopic strategy. Elitism 

consists in forcing two individuals into the population of every generation. These 

correspond to the two lexicographic optima of the current generation.  

 

In addition to these individuals, a third one is always introduced in the population – the 

utopic individual – corresponding to a false solution. It is generated in the initial phase 

of the heuristic by running the single-objective genetic heuristic, referred to at the 

beginning of section 2, for a relaxation of the problem. The single-objective is, 

precisely, objective 2 and the relaxed constraints are hard (ii) to hard (v). At the end, the 

utopic individual is the best fitted one of the last generation, provided it is unique. 

Should it not be the case, the one with the lowest value for objective 1 is chosen among 

the best fitted ones. As a result, it is usually an unfeasible solution and attains a low 

dissimilarity. However, as a rule, this is not so for objective 1, as the two objectives are 

potentially conflicting.  

 

In every generation of the Utopic Pareto Genetic heuristic, the utopic individual 

corresponds to a point in the objective space that is below the rank 1 frontier, but its 

fitness value is always set at equal to 1. Thus this individual will have a high probability 

of being selected by the roulette wheel for the mating pool. Solutions created from the 

utopic individual by crossover and mutation are therefore expected to have a low value 

for at least objective 2 and to present a small number of hard constraints violated, as 

objective 2 enforces a roster similar to the current one that already satisfies all the hard 

constraints. 

 

The genetic operators of crossover and mutation act in the mating pool, thus creating the 

population for the next generation. Individuals in the mating pool are matched at 

random, and the crossover probability is equal to 60%. The PMX type crossover 

operates independently over the pair of chromosomes for tasks and over the pair of 

chromosomes for nurses, from a pair of matched individuals. This is followed by 

substitution of the parents by the offspring in the mating pool. Figure 5 illustrates the 

recombination of two individuals through PMX adapted to this double chromosome 

encoding. 
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                            parent 1                            parent 2            
 chromosometasks
 chromosomenurses

                            offspring 1                       offspring 2            
 chromosometasks 
 chromosomenurses

 
Figure 5. Illustration of the crossover operator. 

 

As for mutation, one opted in favour of simply swapping the position of two randomly 

chosen genes of the chromosomes of each individual that has just been selected for 

mutation from the mating pool. The mutation probability is equal to 0.1%.  

 

3. Computational results 

The computational experiments were based on real data taken from a unit of a Lisbon 

public hospital. In this unit the number of nurses is 19, which is a standard dimension 

for this kind of service. As the planning period duration is 28 days, the rerostering 

period may range from one to 28 days, depending on the day on which the 

announcement of an absence occurs. 

 

Four main groups of instances were tested, according to the week of the first day of 

absences, thus resulting in different lengths for the rerostering period. In the first group, 

comprising 8 instances, the first day of absences lies in the last week of the rostering 

period, so the rerostering period covers at the most one week. However, in the second 

group of 7 instances, the duration of the rerostering period is, at the most, two weeks, 

yielding problems of a higher dimension. The third and fourth groups, both with 8 

instances each, correspond to absences in the second and in the first week, respectively.  

Details regarding these and other similar real instances are given in Moz (2003). 

 

Two heuristics were implemented: the Utopic Pareto Genetic heuristic and a basic bi-

objective version without elitism and utopic strategy, the latter having been tested to 

assess the effect of these features. The algorithms were coded in Pascal (Borland Delphi 
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5.0) and ran on a 2.6 Ghz and 256 Mb RAM INTEL Pentium IV processor. The two 

algorithms were applied five times to each one of the abovementioned 31 instances. 

 

Previous experiments with these bi-objective genetic heuristics suggested that the 

stopping criterion should be at max_gen=2000 generations, since running the algorithm 

for more iterations would not lead to further improvement in solutions. As for the 

auxiliary single-objective genetic heuristic used to create the initial population, it was 

run for 400 generations. 

  

Results from the basic bi-objective heuristic are displayed in Table 3 and those from the 

version with utopia and elitism in Table 4, whereas Table 5 presents results for both. 

Note that columns 4 to 10 in Tables 3 and 4 and columns 4 and 5 in Table 5 refer to 

average values obtained from, at the most, five runs of the algorithms for each instance. 

The average values do not always take into account five runs as the basic bi-objective 

genetic heuristic (Table 3) was unable to find a feasible solution in a number of runs, 

and never found a feasible solution for the instance III.3_19. The last two columns of 

Table 5 present the average computing times in seconds.  

 

In Tables 3 and 4, the second and third columns present the optimum values of the 

single-objective models. The next four columns (4, 5, 6 and 7) of these two tables 

display the average minimum and maximum values taken from the Pareto frontier of the 

last generation obtained from the genetic heuristics. Column 8, in the same tables, refers 

to the average number of different ranks in the population of the last generation, the so-

called wave metric, whereas columns 9 and 10 show the average spread metric, once 

more for the Pareto frontier of the last generation – Euclidean distance between the two 

lexicographic points – and the average Pareto ratio metric (e.g. Collete and Siarry 

(2005)). 

 

It is worth noting that several metrics have been proposed in the literature to assess the 

behaviour of multiobjective heuristics (see, Deb (2001) and Fonseca et al. (2005)).  

However, no more than simple metrics were implemented, i.e., absolute metrics to 

evaluate each one of the heuristics and a relative metric to compare the behaviour of the 

two. This decision was motivated by one specific feature of the rerostering problem and 

its practical instances under study: in most of the cases the bi-objective genetic 
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heuristics produced only a small number of non-dominated points in the last generation. 

One suspects that this effect is due to the existence of only a few points in the exact 

Pareto frontier. 

 
1 2 3 4 5 6 7 8 9 10

single-objective optimum                 basic bi-objective genetic heuristic  - absolute metrics (average)
instances obj1 obj2 obj1 min obj1 max obj2 min obj2 max wave Pareto ratio spread
I.1_19 2 3 2,00 2,00 3,00 3,00 2,00 0,50 0,00
I.2_19 1 2 2,00 2,00 2,00 2,00 1,00 1,00 0,00
I.3_19 3 9 3,60 5,00 9,00 11,00 3,80 0,42 2,40
I.4_19 0 2 0,40 1,00 2,00 3,00 4,00 0,42 0,77
I.5_19 5 20 5,67 5,67 21,33 21,33 1,67 0,78 0,00
I.6_19 2 8 2,40 3,00 9,00 10,00 3,60 0,30 1,45
I.7_19 7 20 7,00 7,00 22,00 22,00 1,67 0,67 0,00
I.8_19 0 2 0,00 1,00 2,00 3,00 3,40 0,32 1,41
II.1_19 0 1 0,00 0,00 1,00 1,00 3,40 0,33 0,00
II.2_19 0 0 0,00 0,00 0,00 0,00 1,00 1,00 0,00
II.3_19 0 5 0,80 1,00 5,00 5,80 3,80 0,36 0,82
II.4_19 1 12 3,00 3,00 13,00 13,00 4,20 0,15 0,00
II.5_19 0 6 1,00 1,00 6,00 6,00 4,00 0,18 0,00
II.6_19 1 17 2,00 3,00 19,00 20,25 4,50 0,41 1,50
II.8_19 0 5 0,00 1,00 5,00 6,00 3,80 0,35 1,41
III.1_19 1 7 2,00 2,00 7,00 7,00 4,60 0,16 0,00
III.2_19 0 12 2,00 2,00 14,00 14,00 3,00 0,33 0,00
III.3_19 1 13 - - - - - - -
III.4_19 0 7 1,00 3,00 7,00 9,60 3,80 0,35 3,31
III.5_19 5 27 5,00 5,50 28,25 29,25 4,00 0,23 0,35
III.6_19 4 27 5,00 5,00 30,50 30,50 2,50 0,41 0,00
III.7_19 3 19 3,40 3,40 19,80 19,80 2,60 0,46 0,00
III.8_19 2 11 3,60 5,60 11,40 13,60 3,40 0,51 2,83
IV.1_19 0 9 1,60 3,00 9,00 10,40 3,80 0,31 1,98
IV.2_19 0 12 1,40 3,00 12,00 13,60 3,40 0,35 2,26
IV.3_19 0 10 0,20 1,80 11,80 14,00 4,60 0,31 2,40
IV.4_19 3 34 5,50 5,50 38,50 38,50 4,50 0,17 0,00
IV.5_19 4 18 5,40 6,60 20,20 23,40 3,00 0,60 1,59
IV.6_19 3 23 5,50 5,50 27,00 27,00 3,50 0,25 0,00
IV.7_19 0 9 2,20 5,20 9,00 10,80 5,00 0,26 2,55
IV.8_19 1 10 2,80 4,80 10,60 13,20 5,00 0,29 3,22
average 1,58 11,61 2,55 3,25 12,51 13,40 3,42 0,41 1,01  

Table 3. Computational results – basic bi-objective genetic heuristic. 

 

As for the average extreme values, one finds that the heuristic with utopia and elitism is 

better in terms of achievement of the minimum values for the two objectives (columns 4 

to 7 of Tables 3 and 4). In fact, in the case of the Utopic Pareto Genetic heuristic, the 

gap between the average minima for objective 1 (last line of column 4 in Table 4) and 

the corresponding single-objective average optimum value (column 2) is 0.18. An 

identical comparison for objective 2 and the same heuristic shows a gap of 0.53. 

Moreover, it is interesting to observe that, for each objective, the difference between the 

maximum value and the single-objective optimum is significant. It thus reveals a greater 

diversity attained with this elitist and utopic enhanced heuristic. 
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The wave metric for both heuristics, on average equal to 3.42 and 3.46, respectively, 

indicates equivalent heuristic behaviour. 

 
1 2 3 4 5 6 7 8 9 10

 single-objective optimum  Utopic Pareto Genetic heuristic  - absolute metrics (average)
instances obj1 obj2 obj1 min obj1 max obj2 min obj2 max wave Pareto ratio spread

I.1_19 2 3 2,00 2,00 3,00 3,00 2,40 0,43 0,00
I.2_19 1 2 1,00 2,00 2,00 3,00 3,00 0,48 1,41
I.3_19 3 9 3,00 4,80 9,00 11,40 4,40 0,32 3,07
I.4_19 0 2 0,00 1,00 2,00 3,00 4,20 0,30 1,41
I.5_19 5 20 5,20 6,00 20,60 23,60 1,20 0,90 3,11
I.6_19 2 8 2,00 3,80 9,00 11,20 4,80 0,27 2,54
I.7_19 7 20 7,00 7,00 22,60 22,60 1,80 0,67 0,00
I.8_19 0 2 0,00 1,00 2,00 3,00 4,40 0,28 1,41
II.1_19 0 1 0,00 0,00 1,00 1,00 3,80 0,17 0,00
II.2_19 0 0 0,00 0,00 0,00 0,00 1,00 1,00 0,00
II.3_19 0 5 0,00 1,00 5,00 10,20 3,60 0,38 5,30
II.4_19 1 12 1,60 4,80 12,00 19,20 6,60 0,31 6,64
II.5_19 0 6 0,00 1,20 6,00 7,00 6,00 0,22 1,58
II.6_19 1 17 1,00 3,40 17,00 22,60 3,80 0,49 5,87
II.8_19 0 5 0,00 1,00 5,00 6,40 6,40 0,21 1,76
III.1_19 1 7 2,00 2,00 7,00 7,00 4,20 0,16 0,00
III.2_19 0 12 1,20 3,00 12,00 17,40 2,20 0,74 1,70
III.3_19 1 13 1,20 3,00 13,20 20,00 1,80 0,85 7,05
III.4_19 0 7 0,00 3,00 7,00 10,00 4,80 0,29 4,24
III.5_19 5 27 4,20 6,00 28,20 33,00 1,00 1,00 5,16
III.6_19 4 27 4,40 6,80 30,20 35,40 1,20 0,93 7,07
III.7_19 3 19 3,00 4,00 19,00 20,80 1,20 0,93 2,09
III.8_19 2 11 2,00 6,00 11,00 13,80 5,20 0,39 7,92
IV.1_19 0 9 0,00 3,00 9,00 16,80 5,40 0,40 8,30
IV.2_19 0 12 0,20 3,00 12,40 18,00 2,40 0,70 7,00
IV.3_19 0 10 0,00 2,00 10,00 15,20 5,40 0,30 5,70
IV.4_19 3 34 4,00 6,20 37,60 43,20 1,40 0,90 6,00
IV.5_19 4 18 4,00 6,40 18,00 24,40 1,80 0,70 6,80
IV.6_19 3 23 4,00 6,20 26,40 33,20 1,20 0,90 7,20
IV.7_19 0 9 0,60 4,00 9,00 16,00 5,00 0,50 7,80
IV.8_19 1 10 1,00 4,80 10,00 17,60 5,80 0,40 8,50
average 1,58 11,61 1,76 3,50 12,14 15,77 3,46 0,53 4,08  

Table 4. Computational results – Utopic Pareto Genetic heuristic. 

 

The low values of the spread corresponding to the basic bi-objective heuristic are due to 

the low cardinality Pareto frontiers, often with a unique solution. The higher values for 

the Utopic Pareto Genetic heuristic prove that the utopic and the “lexicographic” 

individuals attract more solutions to the frontier. 

 

Finally, columns 2 and 3 of Table 5 give, for each instance, the relative metrics which 

have been computed to enable one to compare both versions on the strength of the 

proportion of points of the candidate Pareto frontier of one heuristic that are dominated 

by the corresponding points of the other. Here, the candidate Pareto frontier of a genetic 

heuristic denotes the set of non-dominated points obtained from the five runs, for that 
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specific instance. On the basis of the results obtained one can conclude that the Utopic 

Pareto Genetic heuristic is more successful in producing non-dominated solutions. 

 
1 2 3 4 5

relative metrics time (seconds)
dominated dominated aver age

instances basic utopic basic utopic
I.1_19 1,00 1,00 53,00 61,51
I.2_19 1,00 0,50 54,50 67,32
I.3_19 1,00 0,67 88,60 106,05
I.4_19 1,00 1,00 110,10 121,87
I.5_19 1,00 1,00 112,33 224,68
I.6_19 1,00 1,00 114,71 151,28
I.7_19 1,00 1,00 128,61 215,32
I.8_19 1,00 1,00 110,38 119,91
II.1_19 1,00 1,00 129,13 131,24
II.2_19 1,00 1,00 117,47 116,31
II.3_19 1,00 1,00 148,14 151,32
II.4_19 1,00 0,25 195,69 263,48
II.5_19 1,00 0,50 132,20 135,43
II.6_19 0,67 1,00 232,58 267,14
II.8_19 1,00 1,00 185,86 204,98
III.1_19 1,00 1,00 222,34 225,60
III.2_19 1,00 0,33 254,85 324,04
III.3_19 - - 266,71 353,28
III.4_19 1,00 0,75 276,39 279,53
III.5_19 0,00 0,67 348,01 502,87
III.6_19 0,00 0,50 307,68 449,20
III.7_19 0,00 1,00 249,53 389,88
III.8_19 1,00 0,80 265,48 356,19
IV.1_19 1,00 0,75 308,80 311,40
IV.2_19 1,00 0,75 326,30 393,70
IV.3_19 1,00 0,33 394,82 441,00
IV.4_19 1,00 0,00 476,54 585,60
IV.5_19 0,67 0,00 425,55 526,90
IV.6_19 0,00 0,25 380,59 491,10
IV.7_19 0,50 0,80 406,01 379,50
IV.8_19 1,00 0,00 395,25 386,50
average 0,83 0,70 232,84 281,75  

Table 5. Computational results – comparison of the two genetic heuristics. 

 

One should add that both the Utopic Pareto Genetic heuristic and the basic version are 

time-consuming. The computational experiment showed that the time spent at the 

initialisation step, i.e. at the generation of the initial population was, on average, within 

11% and 17% of the total computing time for each heuristic, the last-mentioned figures 

referred to in columns 4 and 5 of Table 5. However, running a bi-objective genetic 
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heuristic without this initialisation would achieve poorer results, as indicated by 

preliminary experiments. 

 

Although it did take more computational time, the Utopic Pareto Genetic heuristic 

always generated several feasible solutions for the Pareto frontier of the last generation. 

Most of them proved to be of good quality for both objectives, and correspond to rosters 

that will be welcomed by the nurses and hospital directors alike.  

 

In short, the utopic plus the elitist strategies, induced by the individuals continuously 

imposed on the population, produced a fairly positive effect on the bi-objective genetic 

heuristic behaviour. 
 

 
4. Final Comments 

A Utopic Pareto Genetic heuristic was tuned to handle the bi-objective nurse rerostering 

problem. The main differences, when compared with previous approaches, lie in the 

building of the initial population, by using a single-objective genetic heuristic, the 

inclusion of a utopic individual into the population to improve quality and 

diversification and, last but not least, recourse to elitism based on the approximate 

lexicographic optima.  

 

A computational experiment on a set of real life instances, taken from a specialised 

central hospital, produced a significant advantage over the previous single-objective 

approach. In short, the results of this experiment suggest that the bi-objective genetic 

heuristic is competitive. The software required is easy to develop and dispenses with 

expensive computing resources. In fact, this heuristic is now being embedded in an 

interactive module generating different rosters provided by the individuals from the 

frontier of the last generation of the genetic algorithm. From these rosters, characterised 

by low global violations for the soft constraints, one will be chosen by the unit’s head 

nurse and subsequently published for the rerostering period. 
 

This method revealed another important advantage: it can, as it stands, be used for the 

rerostering problem that may be defined with other functions expressing the amount of 

violations of the soft constraints. It is common knowledge, for instance, that quadratic 
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functions more heavily penalise higher violations than do linear functions. It should be 

noted that linear, quadratic and other functions have already been devised for the single-

objective rerostering problem in Moz (2003), whereas, to our knowledge, the nonlinear 

functions have not, as yet, been tested.  

 

Another interesting point to explore in the sequence is the study of a model that 

considers the disaggregation of both objective functions per type of nurse. In fact, the 

current results do not appear to be balanced, insofar as they register violations of the 

soft constraints for some nurses and low ones for others. One such study would include 

an analysis of the relative incompatibility of the several objectives to be proposed.  

 

Finally, one can infer from this study that the Utopic Pareto Genetic heuristic can easily 

be explored for other rescheduling problems, besides the nurse rostering problem itself. 
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