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Abstract

This paper introduces a bi-objective winner determination problem which arises in the procurement of

transportation contracts via combinatorial auctions. The problem is modelled as an extension to the set

covering problem and considers the minimisation of the total procurement costs and the maximisation of

the service-quality level of the execution of all transportation contracts tendered. To solve the problem,

an exact branch–and–bound algorithm and eight variants of a multiobjective genetic algorithm are pro-

posed. The algorithms are tested using a set of new benchmark instances which comply with important

economic features of the transportation domain. For some smaller instances, the branch–and–bound

algorithm finds all optimal solutions. Large instances are used to compare the relative performance of

the eight genetic algorithms. The results indicate that the quality of a solution depends largely on the

initialisation heuristic and suggest also that a well-balanced combination of different operators is cru-

cial to obtain good solutions. The best of all eight genetic algorithms is also evaluated using the small

instances with the results being compared to those of the exact branch–and–bound algorithm.

keywords: bi-objective winner determination problem; multiobjective genetic algorithm; combinatorial

auction

University of Hagen, Faculity of Business Administration and Economics

Department of Information Systems, Prof. Dr. H. Gehring

Profilstr. 8, 58084 Hagen, Germany

E-Mail tobias.buer@fernuni-hagen.de

giselher.pankratz@fernuni-hagen.de

Tel. +49 2331 987 4399

Fax +49 2331 987 4447

Please cite as: Buer, T. and Pankratz, G.: Solving a Bi-Objective Winner Determination Problem in a Transportation

Procurement Auction, Working Paper No. 448, Faculty of Business Administration and Economics, University of

Hagen (Germany), 2010.



Solving a Bi-Objective Winner Determination Problem in a

Transportation Procurement Auction

Tobias Buer and Giselher Pankratz

1 Procurement of Transportation Contracts

Shippers, like retailers as well as industrial enterprises often procure the transportation services they require

via reverse auctions, where the objects under auction are transportation contracts. Usually, such contracts

are designed as framework agreements lasting for a period of one to three years, and defining a pick-up

location, a delivery location, and the type and volume of goods that are to be transported between both

locations. Additionally, further details such as a contract-execution frequency, e.g. delivery twice a week,

and the required quality of service, e.g. an on-time delivery quota, are specified in a transportation contract.

A carrier can bid for one or more contracts. In each bid, the carrier states how much he wants to be paid for

accepting the specified contracts.

Transportation procurement auctions are of high economic relevance. Caplice and Sheffi [4] report

on the size of real world transportation auctions in which they were involved over a period of five years.

According to their report, in a single transportation auction up to 470 (median 100) carriers participated, up

to 5,000 (median 800) lanes were tendered, and the annual cost of transportation amounted up to US-$ 700

million (median US-$ 75 million). Elmaghraby and Keskinocak [9] present a case study of a procurement

auction event in which a do-it-yourself chain operating mainly in North America procured transportation

services for about a quarter of the in-bound moves to their chain stores, which corresponds to a number of

over 600 lanes. In the study at hand, the terms lane and transportation contract are used interchangeably.

In the scenario presented here there are a number of interesting problems on the carrier’s as well as on

the shipper’s side. This paper focuses on the allocation problem that has to be solved by the shipper after

all bids are submitted. In particular, two characteristics of the given scenario are of interest.

First, from a carrier’s point of view, there are complementarities between some of the contracts. That is,

the costs for executing some contracts simultaneously are lower than the sum of the costs of executing each

of these contracts in isolation. The cost effect of such complementarities is also referred to as economies of

scope.

Second, allocation of contracts to carriers has to be done taking into account multiple, often conflicting
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decision criteria. While some of the criteria (e.g. limiting the total number of carriers employed) may

be naturally expressed as side constraints, other criteria should be considered explicitly as objectives. In

particular, there is usually a trade-off between the classical cost-minimisation goal on the one hand and

the desire for high service-quality on the other. Both objectives are of almost equal importance to most

shippers, cf. Caplice and Sheffi [3] and Sheffi [19].

In their recent review of the carrier selection literature, Meixell and Norbis [16] identified that the issue

of economies of scope is dealt with in only a few papers and should be emphasised in future research. In

order to exploit economies of scope (i.e., complementarities) between contracts in the bidding process, the

use of so-called combinatorial auctions is increasingly recommended [1], [2], [19]. Combinatorial auctions

allow carriers to submit bids on any subset of all tendered contracts (”bundle bids”). Through this, carriers

can express their preferences more extensively than in classical auction formats. However, bundle bidding

complicates the selection of winning bids. This problem is known as the winner determination problem

(WDP) of combinatorial auctions. In the procurement context, the WDP is usually modeled as a variant of

a set partitioning or set covering problem, both of which are NP-hard combinatorial optimisation problems.

For a survey on winner determination problems see e.g. [1].

As to the multiple-criteria property of the allocation problem, there are two ways by which most shippers

solve the conflict between cost and quality goals:

One way is to restrict participation in the auction to those carriers that comply with the minimum quality

standard required to meet the quality demands of any of the contracts. Thus, the service-quality performance

of all remaining carriers is considered equal, and the only objective is to minimise total procurement costs.

Unfortunately, unless the contract requirements are fairly homogenous, this approach leads to the quality

requirements of many contracts being exceeded. The second way is to take into account service-quality per-

formance differences between carriers by applying penalties or bonuses to the bundle bid prices, depending

e.g. on a carrier’s service-quality in previous periods.

This paper focuses on a third alternative, which integrates quality and cost criteria by explicitly modeling

the WDP as a bi-objective optimisation problem. This model extends a previous model presented in [2],

which can be seen as a special case of the model presented in this paper.

Previous work does not generally focus on modeling and solving winner determination problems under

explicit consideration of multiple objectives. Different kinds of winner determination problems in com-

binatorial auctions for transportation contracts are treated in [4], [9], [14], [19], [20]. All these studies
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focus on bundle bidding to exploit complementarities between contracts and consider minimisation of total

procurement costs to be the only objective.

The structure of the remaining paper is as follows: section two defines the bi-objective winner determi-

nation problem that is being studied. To solve this problem, an exact bi-objective branch–and–bound and

a bi-objective genetic algorithm are introduced in chapter three. The algorithms are evaluated on newly

generated benchmark instances in chapter four. Finally, section five gives an outlook on planned future

work.

2 A Bi-Objective Winner Determination Problem (2WDP-SC)

The winner determination problem (WDP) of a combinatorial procurement auction with two objectives is

a generalisation of the well-known set covering problem (SC). Hence the problem at hand is called 2WDP-

SC. It is formulated as follows:

Given are a set of transport contracts T . Let t denote a transport contract with t ∈ T ; a set of bundle bids

B where a bundle bid b∈ B is defined as triple b := (c,τ, p). This means a carrier c∈C is willing to execute

the subset of transport contracts τ at a price of p. Given is furthermore a set Q := {qct |∀c ∈ C∧∀t ∈ T}

where qct ≥ 0 indicates the quality level by which carrier c fulfils the transport contract t.

The task is to find a set of winning bids W ⊆ B, such that every transport contract t is covered by at least

one bid b. Furthermore the total procurement costs, expressed in objective function f1, are to be minimised

and the total service quality, expressed in objective function f2, is to be maximised. The 2WDP-SC is

modelled as follows:

min f1(W ) = ∑
b∈W

p(b) (1)

max f2(W ) = ∑
t∈T

max{qct |c ∈ {c(b)|b ∈W ∧ t ∈ τ(b)}} (2)

s.t.
⋃

b∈W

τ(b) = T (3)

Each transport contract t has to be chosen at least once (3). Accordingly, some contracts may be covered

by two or more winning bids and therefore ”paid more than once” by the shipper. Hence, preferring a set

covering to a set partitioning formulation might seem at first counterintuitive. However, given the same
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set of bundle bids, the total cost of an optimal solution to the set covering problem never exceeds the

total cost of an optimal set partitioning solution and might be even lower. Of course, a set partitioning

formulation is appropriate if each carrier could be forced to submit a bundle bid on each of the 2|T |− 1

contract combinations. However, this seems unrealistic in practical scenarios due to the high number of

possible combinations. For this reason, from the shipper’s point of view, the set covering formulation

appears more suitable. Nevertheless, if a contract is covered by more than one winning bid, there is at

least one carrier who must not carry out this contract, although that carrier’s bid won the auction. In the

scenario at hand this is possible, as it appears reasonable to assume free disposal [18]. In the transportation-

procurement context, free disposal means that a carrier has no disadvantage if he is asked by the shipper to

carry out fewer contracts than he was paid for.

The first objective function (1) minimises the total cost of the winning bids. The second objective

function (2) maximises the total service-quality level of all transport contracts. Note that {c(b)|b ∈W ∧ t ∈

τ(b)} is the set of carriers who have won a bid on transport contract t. Since contracts need to be executed

only once, but may be part of more than one winning bid, it is not appropriate to simply add up the respective

qualification values of all b ∈W . Instead, it appears reasonable to assume that the shipper will break ties in

favor of the bidder who offers the highest service level for a given contract. Hence, by assumption, for each

transport contract t only the maximum qualification values qct with c ∈ {c(b)|b ∈W ∧ t ∈ τ(b)} are added

up. Note that this rule might introduce an incentive for the carriers towards undesired strategic-bidding

behavior. As this paper does not focus on auction-mechanism design, we leave this issue to forthcoming

research.

3 Solution Approaches for the Bi-Objective Winner Determination

Problem

To solve the 2WDP-SC, this section presents two algorithms. The first is an exact algorithm based on the

idea of branch–and–bound. Taking into account the NP-hardness of the bi-objective set covering prob-

lem, the non-linear objective function f2, and the large size of real world problems, the branch–and–bound

approach will probably solve only some of the relevant problems in reasonable time. Therefore, a sec-

ond solution approach is presented which is an extension to a successfully applied multiobjective genetic

algorithm.

4



Both algorithms aim to find all trade-off solutions without weighting the two objective functions. Thus

the shipper does not have to quantify his preferences, which can be challenging [19]. Both algorithms find a

set of non-dominated solutions (the true Pareto set or a good approximation set, respectively). The shipper

finally has to choose a solution from this set according to his subjective preferences. The latter is outside

the scope of this study. For notational convenience, the 2WDP-SC is treated in the following as a pure

minimisation problem, i.e. the objective function f2 is redefined as f2 := (−1) · f2 and is to be minimised.

At first, the underlying terminology is defined (cf. e.g. [24]): The set of all feasible solutions of an

optimisation problem is denoted by X . A solution x ∈ X is evaluated by a vector-valued objective function

f(x) = ( f1(x), . . . , fm(x)) with f(x) ∈ R
m. A solution x1 ∈ X dominates another solution x2 ∈ X (written

x1 ≺ x2 ), if and only if no component of the vector-valued objective function f(x1) is larger and at least one

component of f(x1) is smaller than the corresponding component of f(x2). A solution x∗ is called Pareto

optimal if there is no x ∈ X that dominates x∗. The set of all Pareto optimal solutions is called Pareto

(solution) set Ω∗. A set of solutions Ω is called an approximation of Ω∗ or (Pareto) approximation set, if

every solution in Ω is not dominated by any other solution in Ω.

3.1 A Branch–and–Bound Algorithm Based on the Epsilon-constraint Method

In order to solve the 2WDP-SC exactly, the Epsilon-constraint method ([12], [5]) is used. The idea of the

Epsilon-Constraint method is to optimise a single objective function, treating the other objective functions

as additional side constraints whose values each are bounded by a particular ε . To obtain the Pareto set a

proper sequence of the resulting single objective optimisation problem has to be solved for different values

of ε . Here, the 2WDP-SC is scalarised by treating f2 as side constraint. The derived single objective

minimisation problem is denoted as εWDP-SC and consists of the objective function (1) with the covering

constraint (3) and the epsilon-constraint f2(W ) < ε .

Using a general branch–and–bound approach based on linear relaxation and independent of the prob-

lem, though seeming natural, proved unsuitable for solving the εWDP-SC. This is due to the non-linearity

of the second objective function f2, in which for each transport contract, a max{.} term is calculated and

the results are summed up over all contracts. To obtain a linear model, all max{.} terms have to be replaced

by additional side constraints and additional decision variables (e.g. [21]). Compared to the |B| decision

variables of the non-linear εWDP-SC, the linearised variant of the model contains |B|+ |T |+ |T | · |B| deci-

sion variables. For example, even for a small problem instance with 40 bundle bids and 20 contracts there
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are already 860 decision variables.

Therefore, a problem-specific branch–and–bound procedure is introduced to solve the εWDP-SC. This

algorithm, referred to as εLookahead–Branch–and–Bound (εLBB), consists of two main components. The

first component (repeatLBBForDifferentEpsilons, Alg. 1) iteratively selects a feasible value for ε and hands

it over to the second component, the actual branch–and–bound procedure LookaheadBB (Alg. 2). This

procedure solves the εWDP-SC to find the cost minimal solution for the given quality level ε .

Alg. 1 initially determines the worst and the best possible values of f2, which relate to the maximum

and minimum ε-values, respectively (keep in mind that f2 was redefined to a minimisation objective).

On the one hand, the maximum (worst) feasible value for ε is calculated by solving the εWDP-SC using

LookaheadBB with ε = 0. The obtained solution coincides with the minimal cost solution of the set covering

problem and is moreover the first Pareto optimal solution. On the other hand, the minimum (best) possible

value for ε , denoted as ε∗, is simply given by f2(B) (generally, B is not in the Pareto set).

After the minimum and maximum bounds for ε are known, repeatLBBForDifferentEpsilons triggers

LookaheadBB to consecutively calculate the solutions in the Pareto set. Alg. 1 computes in each iteration

of the while-loop one solution. The loop starts with the highest (worst) ε , calls LookaheadBB and then

decreases ε to the f2 value of the current Pareto solution until ε = ε∗. By this approach, the number of

required while-iterations to find the Pareto set is minimal, i.e. the number of costly LookaheadBB calls is

as low as possible.

Algorithm 1 repeatLBBForDifferentEpsilons

1: input: set of bundle bids B

2: W ← LookaheadBB(B,0)
3: initialise approximation set Ω←{W}
4: ε ← f2(W ) // worst (highest) ε

5: ε∗← f2(B) // best (lowest) ε

6: while ε > ε∗ do

7: W ← LookaheadBB(B,ε)
8: Ω←Ω∪{W}
9: ε ← f2(W )

10: end while

11: output: Ω which is the Pareto set

The branch–and–bound procedure LookaheadBB (Alg. 2) solves the εWDP-SC for a given ε and the

set of bundle bids B, represented as sequence (bi)b∈B with 1 ≤ i ≤ max and max = |B|, by implicitly enu-

merating the solution space. The solution space is divided into subspaces which are represented in the
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branch–and–bound tree as problem nodes. Here, a problem node is a triple PN := (W, i, lb) in which PN.W

represents the current (probably incomplete) solution, i.e. the set of winning bids, PN.i represents the index

of the bundle bid investigated in the node, and PN.lb is the lower bound of the current solution PN.W for

f1. All active problem nodes are saved in a priority queue according to ascending values of PN.lb.

Algorithm 2 LookaheadBB

1: input: (b1, . . . ,bmax), ε

2: bestCost← ∞

3: bestSolution←{}
4: initial problem node PN←{{},1,∞}
5: initialise queue and add PN to queue

6: while queue not empty do

7: PN← problem node with minimum lower bound from queue

8: remove PN from queue

9:

10: contribute← false

11: if f1(PN.W ∪{bPN.i}) < bestCost then

12: if τ(bPN.i)\
⋃

b∈PN.W τ(b) 6= /0 then

13: contribute← true

14: else if f2(PN.W )≥ ε and f2(PN.W ∪bPN.i) < f2(PN.W ) then

15: contribute← true

16: end if

17: end if

18:

19: if contribute = true then

20: PN1←{PN.W ∪{bPN.i},PN.i+1,PN.lb}
21: processNode(PN1)
22: end if

23:

24: f reeBids←{bi ∈ (b1, . . . ,bmax)|i > PN.i}
25: if PN.W ∪ f reeBids is feasible then

26: PN2←{PN.W,PN.i+1,PN.lb}
27: processNode(PN2)
28: end if

29: end while

30: output: bestSolution

The algorithm was developed according to the following main ideas:

Branching on bundle bids. Each node PN has two potential descendants PN1 and PN2. PN1 contains

the current bundle bid bPN.i as winning bid (bPN.i ∈ PN1.W ), whereas PN2 does not (bPN.i /∈ PN2.W ). Two

additional rules are used to decide whether a descendant node should be generated at all:

7



• PN1 is only generated if bPN.i contributes to reach a feasible solution. This means that the current

bundle bid bPN.i has to cover at least one transport contract uncovered so far, or, if the epsilon con-

straint is not yet met, adding bPN.i must reduce f2.

• On the other hand, PN2 is only generated if the current winning bids PN.W and the remaining free

bids jointly lead to a feasible solution with respect to both the covering and the epsilon constraints.

In checking this property, the algorithm has to lookahead on future bundle bids, which led to the

labelling Lookahead in εLBB.

Solving a relaxed problem to obtain a lower bound. For each problem node, a lower bound is calculated

by solving a residual set covering problem which is defined through the remaining free bids, the transport

contracts still uncovered, and by dropping the integrality constraints.

LookaheadBB uses the procedure processNode (Alg. 3) to control how to continue processing a given

PN. Provided that PN.W is feasible and a new lowest cost solution is found, the current best solution and

the current best cost value are updated. Additionally, all problem nodes from the queue whose lower bound

is less than the current best-known cost value are removed. Provided that PN.W is infeasible, a new lower

bound PN.lb is computed. The lower bound equals f1(PN.W ) plus the cost value of the optimal solution

to the residual linear relaxed set covering problem. This set covering problem is defined by those contracts

not covered by PN.W which have to be covered by a subset of the bundle bids given by f reeBids.

Algorithm 3 processNode

1: input: problem node PN

2: if PN.W is feasible then

3: if f1(PN.W ) < bestCost then

4: bestCost← f1(PN.W );
5: bestSolution← PN.W
6: delete all problem nodes in queue with lower bound ≥ bestCost

7: end if

8: else

9: if PN.i ≤ |B| then

10: PN.lb← f1(PN.W )+ cost of linear relaxed solution to the residual set covering problem.

11: add PN to queue

12: end if

13: end if
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3.2 A Genetic Algorithm Based on SPEA2

To heuristically solve the 2WDP-SC a multiobjective genetic algorithm (MOGA) is applied. This approach

has been proven suitable for solving hard multiobjective combinatorial optimisation problems, e.g. [7]. The

proposed MOGA follows the Pareto approach and searches for a set of non-dominated solutions.

To find a Pareto approximation set, a MOGA controls a set of core heuristics. The core heuristics of

a MOGA can be divided into problem-specific and problem-independent operators. For those problem-

independent operators which care for the specialties of population management in the multiobjective case

(fitness-assignment strategy, selection of parents and insertion of children in the population), the methods

proposed by Zitzler et al. in their Strength Pareto Evolutionary Algorithm 2 (SPEA2) are applied [22],

[23]. The decision to use SPEA2 relies on its competitive performance particularly for solving bi-objective

combinatorial optimisation problems [23]. In addition, standard bitflip mutation and standard uniform

crossover [8] have been chosen as problem-independent mutation and crossover operators, respectively.

As problem-specific operators, three core heuristics are introduced: Simple Insert, Greedy Randomised

Construction and Remove If Feasible. Remove If Feasible is applied as a problem-specific mutation opera-

tor, whereas Simple Insert and Greedy Randomised Construction are both used to initialise a population as

well as to repair an infeasible solution. The latter is necessary because both the uniform crossover operator

and the bitflip mutation operator may end up with infeasible solutions.

Since all three problem-specific core heuristics operate on encoded individuals, the chosen encoding is

presented first. A binary encoding of a solution seems suitable for set covering-based problems like the

2WDP-SC. Every gene represents a bundle bid b. If b ∈W the gene value is 1, and if b /∈W the gene value

is 0.

Simple Insert (SI) in each iteration randomly chooses a bundle bid b which contains at least one still

uncovered transportation contract as a winning bid. The transport contracts τb in bid b are marked as

covered. These steps are repeated until all contracts T are covered and SI terminates.

Greedy Randomised Construction (GRC) is inspired by the construction phase of the metaheuristic

GRASP [11] and is slightly adapted for the bi-objective case (see Alg. 4). During each iteration, a winning

bid is selected randomly from the restricted candidate list (RCL).

Note that the RCL is an approximation set of best bundles, which holds only non-dominated bundles
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Algorithm 4 GreedyRandomisedConstruction (GRC)

1: input: infeasible solution W

2: while W infeasible do

3: best bundle approximation set RCL←{}
4: for all b ∈ B\W do

5: if b not dominated by any b′ ∈ RCL then

6: RCL← RCL∪{b}
7: end if

8: end for

9: randomly chose a b from RCL

10: W ←W ∪{b}
11: end while

12: output: feasible solution W

with respect to the rating function g := (gp,gq) with

gp(b,W ) =











p(b)/|τ(b)\ τ(W )| for |τ(b)\ τ(W )|> 0

∞ for |τ(b)\ τ(W )|= 0

gq(b,W ) = ( f2(W )− f2(W ∪b))/ ∑
b′∈W∪b

|τ(b′)|.

Both functions assign smaller values to better bundles. While gp rates a bundle according to the average

additional costs attributed to each new (i.e. still uncovered) contract in b, gq weights the reduction of f2

caused by adding b to the solution by the reciprocal total number of procured contracts (in the current

solution).

Remove If Feasible (RIF) randomly chooses a winning bid b′ ∈W , labels b′ as visited, and removes b′

from W . If after this the solution W is still feasible, then another randomly chosen winning bid (which is

also labelled as visited) is removed etc. If W becomes infeasible by removing b′, then b′ is reinserted in W .

RIF terminates if all winning bids are labelled as visited.

Via combination of the core heuristics a set of different algorithms A is obtained (see Fig. 1). Each

algorithm Ai ∈ A , i = 1...8 is denoted as a triple, e.g. A2 is represented by (SI/BF/GRC) which reads as

follows: A2 uses SI to construct solutions, bitflip mutation (BF) as mutation operator and GRC as repair

operator. Since uniform crossover is the only crossover operator, this operator is not considered as a dis-

tinctive feature in the taxonomy of Fig. 1. In order to refer to a set of algorithms, the wildcard ∗ is used at

one or more positions, e.g. (*/BF/GRC) identifies A2 and A6.
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Figure 1: Eight possible combinations of core heuristics to form an algorithm Ai

4 Evaluation

The εLBB and the eight MOGA variants are tested on a set of newly generated benchmark instances which

reflect some important economic features of the transportation domain. First, the generation of these in-

stances is described. After that, the results of the εLBB and the eight MOGA variants are presented.

4.1 Generating Test Instances

To the best of our knowledge, no benchmark instances exist for a multiobjective WDP like the proposed

2WDP-SC. However, there are several approaches for generating problem instances for single-objective

winner determination problems with various economical backgrounds, e.g. the combinatorial auction test

suite ”CATS” of Leyton-Brown and Shoham [15] or the bidgraph algorithm introduced by Hudson and

Sandholm [13]. To generate test instances for the 2WDP-SC, some ideas of the literature are extended to

incorporate features specific to the procurement of transportation contracts.

As this investigation does not address any game theoretical issues like strategic bidding and incentive

compatibility, it is assumed that carriers reveal their true preferences. Thus, the terms ”price” and ”cost

valuation” of a contract combination can be used synonymously. General requirements of artificial instances

for combinatorial auctions are stated by Leyton-Brown and Shoham. Both postulations seem self-evident,

but have not always be accounted for in the past [15]:

• Some combinations of contracts are more frequently bid on than other combinations. This is due to

usually different synergies between contracts.

• The charged price of a bundle bid depends on the contracts in this bundle bid. Simple random prices,
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e.g. drawn from [0,1], are unrealistic and can lead to computationally easy instances.

Furthermore, it seems reasonable to demand that the following additional requirements specific to trans-

portation procurement auctions are met:

• All submitted bids are binding and exhibit additive valuations (OR-bids, cf. [17]). Hence, a carrier

is supposed to be able to execute any combination of his submitted bids at expenses which do not

exceed the sum of the corresponding bid prices. Extra costs do not arise. Due to the medium-term

contract period of one to three years in the scenario at hand, capacity adjustments are possible in order

to avoid capacity bottlenecks. Furthermore, the carrier has the opportunity to resell some contracts to

other carriers who guarantee the same quality of service.

• From the previous assumption it follows that a rational carrier c does only bid on combinations of

contracts which exhibit strictly subadditive cost valuations. The cost valuation of a set of contracts τ

is called strictly subadditive, if for each partition T of the set τ , the cost valuation of τ is strictly lower

than the sum of the cost valuations of all parts of the respective set partition. Formally, the carrier-

specific set Πc of all strict subadditive bids can be defined as expressed in the following formula, in

which P(τ) denotes all set partitions of τ and P(τ) denotes the powerset of τ:

Πc =

{

τ ⊆ T c|∀T ∈ P(τ) : pc(τ) < ∑
τ ′∈T

pc(τ ′)

}

,

with P(τ) =

{

T ⊂ P(τ)|
⋃

τ ′∈T

τ ′ = τ ∧
⋂

τ ′∈T

τ ′ = /0

}

Strict subadditivity in terms of cost is due to synergies between contracts. Bids composed of contracts

which exhibit strict subadditive cost valuations are referred to as essential bids. Since all submitted

bids are supposed to be OR-bids, any non-essential bid could always be replaced by an equivalent

combination of two or more essential bids. Therefore, bidding on non-essential bids is redundant.

• The 2WDP-SC was modelled as a set covering problem, as it appeared reasonable to assume free

disposal. Free disposal means, that the price charged by carrier c for any subset of a set of contracts τ

is not greater than the price carrier c would charge for τ . Formally this is expressed in the following
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formula, in which Bc denotes the set of bundle bids submitted by carrier c:

p(b′)≤ p(b) | ∀τ(b′)⊆ τ(b)∧b,b′ ∈ Bc.

To be an instance suited to the 2WDP-SC, the bundle bids of each carrier should also feature the free

disposal property.

• Finally, it is assumed that the carrier-specific costs of a transport contract depend on both the con-

tract’s resource requirements and the service-quality level at which the carrier is able to perform the

contract.

The bids are generated using Algorithm 5, which takes four values as input: the number nBids of bids

to be generated, the sets C and T which represent carriers and transport contracts, respectively, and the

density ρ of the synergy matrix. The synergy matrix consists of binary values which indicate the pairwise

synergies between contracts. Synergies between contracts imply that the respective contract combination is

cost subadditive. A higher density tends to result in more and larger contract combinations a carrier has to

consider.

Algorithm 5 BidGeneration

1: input: nBids, density of synergy matrix ρ , T , C

2: ∀c ∈C: randomly select relevant contracts T c ⊂ T , such that
⋃

c∈C T c = T

3: for all carriers c ∈C do

4: ∀i, j ∈ T c: set sc
i j← 1 with probability ρ , indicating that between contracts i and j exist synergies

5: ∀t ∈ T c: randomly set contract quality qct ∈ {1,2,3,4,5}
6: ∀t ∈ T c: randomly set resource demand rct ∈ [0.1,0.5]
7: determine essential contract combinations Πc

8: subadditiveBidGraphAlgorithm(Πc) to calculate prices p(τ) for each τ ∈Πc.

9: end for

10: ∀c ∈C: Bc← select(Πc)
11: output: all carrier bids B =

⋃

c∈C Bc

First of all, BidGeneration (Alg. 5) initialises some variables. For each carrier a subset of contracts

T c is determined as the set of contracts which the carrier is supposed to be willing to bid for. While it is

not necessary that all T c are disjoint, they must jointly cover all contracts in T . After that, the following

steps are performed for each carrier. First, the carrier-specific synergy matrix is randomly filled according

to density ρ . The service-quality qct at which carrier c is able to execute contract t is chosen randomly
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from the integer values one to five, with higher values indicating a higher service level. Furthermore, to

each contract a resource demand rct is assigned. This is an abstract indicator for the resources required

by a carrier c to carry out contract t. The resource demand of a given contract may vary from carrier to

carrier, as carriers might have, e.g. different locations of their depots, different types of vehicles or existing

transportation commitments which influence the required resources. The values rct are chosen randomly

between 0.1 and 0.5.

To obtain the set of essential contract combinations in line 7, assume for each carrier c a synergy graph

SGc = (T c,Ec). Let the vertices be the contracts T c carrier c is interested in. If two contracts i, j ∈ T c

feature synergies, that is sc
i j = 1, then both contracts are connected via an edge, that is Ec = {(i, j)|sc

i j =

1∧ i, j ∈ T c}. It is assumed that any number of contracts can be combined in a single bid, as long as the

sum of the corresponding resource demands does not exceed a maximum total resource demand of 1. This

capacity limit is motivated by the fact that unfolding of complementarities generally is subject to resource

limitations. For example, contracts often feature synergies if they are carried out conjointly in the same tour,

which, however, is subject to vehicle capacity restrictions. The resource demand of each contract t ∈ T c

is given by rct . Then the set of feasible essential combinations of contracts equals the set of all possible

induced subgraphs of SGc with ∑t rct ≤ 1.

In the next step, a price for each combination of contracts is determined using the SubadditiveBidGraph

algorithm, which is explained below. After that, the select operator choses among all feasible contract

combinations those combinations on which each carrier is supposed to place his bids. Therefore, all contract

combinations in Π are rated according to two criteria: average cost per contract p(b)/|τ(b)| and average

quality per contract ∑t∈τ(b) qc(b)t/|τ(b)|. Then, the best contract combinations with respect to these criteria

are selected according to the dominance concept. In doing so, select makes sure that on the one hand, the

total number of bids submitted by all bidders is nBids, and on the other hand, each t ∈ T is covered by at

least one bundle bid to obtain a solvable instance.

The SubadditiveBidGraph algorithm (cf. Alg. 6) is applied to determine prices for the essential contract

combinations which comply with the assumptions of free disposal and strict subadditivity. The algorithm

is based on the approach of Hudson and Sandholm [13] which generates bids with free disposal. This

approach is extended, such that all generated bids also show strictly subadditive cost valuations.

The idea of the original bidgraph algorithm as proposed by Hudson and Sandholm is to define lower

bounds LB(τ) and upper bounds UB(τ) for each considered contract combination τ such that free disposal
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Algorithm 6 SubadditiveBidGraph

1: input: set of essential contract combinations Πc, carrier c

2: Asup←{(i, j)|i, j ∈Πc and i⊂ j}
3: Asub←{(i, j)|i, j ∈Πc and i⊃ j}
4: initialise bidgraph BG← (Πc,Asup,Asub)
5: ∀τ ∈Πc with |τ|= 1:

UB(τ)← LB(τ)← p(τ)← RandomBasePrice(τ,c)
6: initialise lower bounds

∀τ ∈Πc with |τ|= 1: U pdateLowerBounds(BG,τ)
7: initialise upper bounds

∀τ ∈Πc with |τ|> 1: UB(τ) = ∑t∈τ p(t)
8: k← 2

9: while k ≤ |Π| do

10: for all τ ∈ {τ ∈Π||τ|= k∧LB(τ) 6= UB(τ)} do

11: set price randomly LB(τ)←UB(τ)← p(τ) ∈ ]LB(τ), UB(τ)[

12: U pdateLowerBounds(BG,τ)
13: U pdateU pperBounds(BG,τ)
14: end for

15: k← k +1

16: end while

17: output: prices p(τ) for each τ ∈Π consistent to the free disposal and the subadditivity assumption

holds. Then the procedure successively draws a price for each contract combination between its lower and

upper bounds; this price is propagated through the bidgraph to sharpen the lower and upper bounds of the

remaining contract combinations.

In order to extend this approach to support contract combinations which exhibit both free disposal and

strictly subadditive cost valuations, the bidgraph is initialised as follows: The vertices of the bidgraph BG

represent all essential contract combinations Π. There are two sets of arcs, Asup and Asub. The arcs in Asup

indicate a superset relation, i.e., an arc (i, j) from vertex i to j means that the contracts in j are a superset

of the contracts in i. Similarly, the arcs in Asub represent all subset relationships.

In line 5 through 8 of Alg. 6, the lower and upper bounds of all k-combinations of contracts are ini-

tialised. For a given k ∈ N, let the set of all k-combinations of contracts be defined as {τ ∈ Π : |τ| = k}.

The lower bounds LB for all single contracts (k = 1) are initialised by Algorithm 7. The price p({t}) of a

single contract t is a random variable which is normal distributed with mean µ and variance σ2. The values

of p({t}) are forced into the interval [minPrice, maxPrice] with minPrice = 0.5 and maxPrice = 1.5. As

stated above, higher resource requirements and a higher service level should tend to result in a higher price.

Thus, µ depends on the resource demand rct and the service quality qct of contract t. The variance σ2 is set
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to 1.0.

Algorithm 7 RandomBasePrice

1: input: single-contract set {t}, carrier c

2: minPrice← 0.5
3: maxPrice← 1.5
4: resources multiplier← rct/0.3 //expected mean of rct (Alg. 5)

5: qualification multiplier← qct/3 //expected mean of qct (Alg. 5)

6: µ ← 1.0+resources multiplier · qualification multiplier

7: σ2← 1.0

8: p({t})← normal distributed random variable with mean µ and variance σ2

9: if p({t}) > maxPrice OR p({t}) < minPrice then

10: RandomBasePrice({t},c)
11: end if

12: output: p({t})

After RandomBasePrice (Alg. 7) has initialised the LB of all 1-combinations, Alg. 8 recursively propa-

gates these prices through the bidgraph and updates the lower bounds of all superset contract combinations

if necessary. By now, the upper bounds for the k-combinations, k > 1, can be calculated as the sum of the

prices of all respective 1-combination contracts.

To ensure strictly subadditive valuations, the while-loop of Alg. 6 sets the bid prices for all k-combinations

in the order of non-decreasing k, starting with k = 2. For all k-combinations with LB(τ) 6= UB(τ) a price

is drawn randomly between LB(τ) and UB(τ) and propagated through the bidgraph to adjust the lower and

upper bounds of the other contract combinations.

In doing so, it must be assured that the upper bound never exceeds the costs of any partition of τ since

this may lead to inconsistencies with respect to the subadditivity requirement. Therefore, Alg. 9 solves

a set partitioning problem to optimality. The instance of the set partitioning problem is given by the sets

{ j|(τ, j) ∈ Asub} and the associated costs UB( j).

Algorithm 8 UpdateLowerBounds

1: input: BG, τ

2: for all τ ′ ∈ BG.Π|(τ,τ ′) ∈ BG.Asup do

3: if LB(τ ′) < p(τ) then

4: LB(τ ′)← p(τ)
5: U pdateLowerBounds(BG,τ ′)
6: end if

7: end for
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Algorithm 9 UpdateUpperBounds

1: input: BG, τ

2: for all τ ′ ∈ BG.Π|(τ,τ ′) ∈ BG.Asup do

3: p∗← price of optimal set partitioning solution to {τ ′|(τ,τ ′) ∈ BG.Asub} and associated UB(τ ′)
4: if p∗ < UB(τ ′) then

5: UB(τ ′)← p∗

6: U pdateU pperBounds(BG,τ ′)
7: end if

8: end for

The BidGraphAlgorithm continues until the prices of all essential bids are set. After that, the select-

Operator of Alg. 5 is applied as described above. The procedure keeps generating bids for all carriers, until

the test instance is complete.

4.2 Measuring the Quality of an Approximation Set

To compare the performance of single objective heuristics in terms of achieved solution quality, a major step

is to compare the objective function values of the best found solutions, respectively. The matter is more

complicated in the bi-objective case, as approximation sets have to be compared. Often there are no clear

dominance relations between the solutions of different approximation sets, see e.g. Fig. 4.2. Therefore

various indicators to measure the quality of approximation sets are discussed in the literature, cf. [24] for

a detailed discussion of the state of the art. To evaluate the solution quality of an approximation set, the

popular hypervolume indicator IHV is used [22]. IHV measures the dominated subspace of an approximation

set, bounded by a reference point RP. RP must be chosen such that it is dominated by all solutions of the

approximation set. Furthermore, the reference point has to be identical for all compared heuristics on the

same problem instance. Here, for each instance RP is defined as ( f max
1 ; f max

2 ) = ( f1(B);0), respectively.

Furthermore, the objective values of all solutions are normalised according to fi = ( f i− f min
i )/( f max

i −

f min
i ) with i = 1,2, f max

1 = f1(B), f min
2 = f2(B)− 1, f max

2 = 0. Thus values of IHV range from zero to one,

and larger values indicate better approximation sets. However, as RP can be chosen freely to a large degree,

IHV is an interval-based measure. Therefore the quality gap between algorithms can only be expressed via

absolute differences of IHV , but not via percentage ratios of IHV .
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Figure 2: Illustration of hypervolume indicator IHV

4.3 Evaluation of the εLookahead–Branch–and–Bound

The εLBB was implemented in Java 6. A floating point precision of ten digits is used. The lower bounds are

calculated by Dantzig’s Simplex Algorithm in the implementation of the Apache Commons Math Library

(version 2.1). The algorithm was tested on an Intel Pentium 4 (2.0 GHz) with 500MB RAM available to the

Java Virtual Machine.

Preliminary testing gave evidence that computation times of εLBB rapidly increase with the number

of bundle bids. Even moderate problem sizes caused the εLBB to run several hours before terminating.

Therefore, a set of eight rather small test instances was generated according to Section 4.1 in order to

evaluate εLBB. The instances vary only in the number of bundle bids (up to 80) and in the number of

transport contracts (up to 40). The number of participating carriers and the density of the synergy matrix

are held constant with values of 10 and 50%, respectively.

The results of these instances are reported in Tab. 4 in Section 4.4.2. The table shows the number of

solutions in the Pareto set and the required runtime in seconds. In addition, the table contains results from

the MOGA which will be discussed in more detail in Section 4.4.2.

The findings demonstrate that εLBB is suited to solve small instances with up to 60 bundle bids in less

than an hour. For solving problem instances with 80 bundle bids, εLBB consumes several hours of runtime.

The test of the instance with 80 bundle bids and 40 contracts was aborted after a runtime of 24 hours.

These results strongly suggest that exact approaches like the εLBB are inappropriate as a solution approach

for practical procurement scenarios which easily reach problem sizes of several hundreds of bundle bids.
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Nevertheless, for small instances, the optimal solutions obtained by the εLBB provide a valuable benchmark

for evaluating the quality of heuristic approaches like the MOGA (cf. Section 4.4.2).

4.4 Evaluation of the Genetic Algorithm

The eight genetic algorithms A1 to A8, (cf. 3.2) were tested on the same hardware platform as the εLBB

(Pentium 4, 2.0 GHz, 500 MB Ram available to the Java Virtual Machine). The problem-specific heuristics

were coded in Java 6; for the problem-independent parts the SPEA2 distribution coded in C was used [10].

For the evaluation of the genetic algorithms, two data sets were considered.

On the one hand, problem instances of practical size as reported in Section 1 were generated. These

instances are referred to as large instances. The instances vary in the number of bids (500 to 2000), the

number of contracts (125 to 500) and the number of carriers (25 to 100). In addition, the density ρ of

the synergy matrix was varied (25% to 75%). With respect to the observation that auctions with fewer

transport contracts usually tend to attract fewer bidders, it appeared reasonable to restrict the combinations

of instance parameter values to those shown in Tab. 2. Since for the large instances absolute benchmarks

in the form of optimal solutions are not available, the relative performance of the eight MOGA variants on

these instances is compared instead. The results of these tests are discussed in section 4.4.1.

On the other hand, the small instances described in Section 4.3 were also used to evaluate the eight

genetic algorithms. The results for these instances are compared to those of the exact εLBB algorithm in

Section 4.4.2.

4.4.1 Results and Discussion for Large Instances

In this section, the relative performance of the eight MOGA variants is evaluated using the large problem

instances. The parameter values of the genetic algorithms were derived from some preliminary testing. Two

to five alternative values for each parameter were tested on three randomly selected instances. The values

that gave the best results in manageable time are those presented in Tab. 1. The same values were applied

to all MOGA variants, and were kept constant through all experiments.

The results for the hypervolume indicator are presented in Tab. 2. The last column indicates the IHV

value of the reference approximation set Ω =
⋃

A∈A ΩA.

The results in Tab. 2 and Tab. 3 were statistically evaluated with the Kruskal-Wallis and the Mann-

Whitney rank sum test. All statistical conclusions are stated at a significance level of 5%. With respect to
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Table 1: Chosen parameter values for the test.

Parameter Value

size of population 50 individuals

uniform crossover-probability 15%

bit-exchange-probability in uniform-crossover 50%

mutation-probability 100%

bitflip-probability 10%

runtime 300 seconds

no. of parents µ for creating λ offsprings 4

no. of offspring λ generated by µ parents 4

the given test instances, the compared heuristics and the applied quality indicator, the following conclusions

may be drawn.

– The probability distributions of the IHV values of the eight algorithms differ significantly. The ranks

given in Tab. 2 are derived by a systematic pairwise comparison of the hypervolume values using the

Kruskal-Wallis rank test.

– A8 performs very well, as could be expected, since it incorporates three problem-specific heuristics.

According to the Kruskal-Wallis rank test, taking into account all 240 outcomes, A8 dominates all

other algorithms but A7. A8 computes the best results for 25 out of 30 test instances, followed by A7

which achieves the highest value 5 times, and A5 which scores 4 times the best value.

– The variants A1, A2, A3, A4 which belong to the class (SI/*/*), never achieve a best value in any one

of the instances (cf. Tab. 2).

– The impression that a weak initial population significantly compromises final solution quality even if

more elaborate mutation and repair operators are used intensifies by considering test no. 1 in Tab. 3.

The approximation sets derived by the class of algorithms which use GRC as initialisation heuristic

clearly outperform the class of algorithms which use SI as initialisation heuristic. This is true even

on a significance level of 0.0001.

– From the fact that the overall performance strongly depends on the initialisation heuristic, one can

assume that any effort invested here will be rewarded.

– Tests 2 and 3 give no hints that the more intelligent operators RIF and GRC (applied in the repair
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Table 2: Comparison of IHV for eight MOGA variants applied to the set of 30 large test instances (specified

by columns 1 to 4). All IHV values were obtained in a single run for each of the eight MOGA variants A1 to

A8. All runs were terminated after 5 minutes (300 seconds).

|B| |T | |C| ρ A1 A2 A3 A4 A5 A6 A7 A8 Ω

500 125 25 25 .8473 .8476 .8482 .8252 .8663 .8663 .8878 .8914 .8914

50 .8623 .8627 .8624 .8605 .8827 .8827 .9028 .9038 .9038

75 .8614 .8612 .8693 .8667 .8759 .8759 .8937 .8983 .8983

1000 125 25 25 .9167 .9170 .8943 .8509 .9371 .9371 .9466 .9479 .9480

50 .9223 .9220 .8754 .8652 .9499 .9499 .9523 .9508 .9523

75 .9341 .9340 .9233 .9117 .9490 .9490 .9533 .9535 .9536

250 25 25 .8623 .8623 .8725 .8725 .8818 .8818 .8961 .9021 .9021

50 .8627 .8625 .8647 .8579 .8720 .8720 .8948 .9001 .9001

75 .8555 .8553 .8573 .8648 .8736 .8736 .8953 .8961 .8967

50 25 .8482 .8488 .8235 .8199 .8864 .8865 .8924 .8927 .8974

50 .8498 .8482 .8417 .8357 .8811 .8811 .8935 .8943 .8943

75 .8500 .8497 .8431 .8407 .8800 .8800 .8937 .8937 .8937

2000 125 25 25 .9553 .9547 .8843 .8812 .9748 .9748 .9720 .9720 .9772

50 .9586 .9584 .8944 .8751 .9778 .9778 .9785 .9786 .9786

75 .9615 .9614 .9277 .9213 .9757 .9757 .9745 .9746 .9764

250 25 25 .9268 .9267 .9150 .9052 .9516 .9516 .9531 .9531 .9531

50 .9282 .9277 .9148 .9130 .9471 .9471 .9522 .9532 .9532

75 .9261 .9262 .9317 .9315 .9440 .9440 .9486 .9510 .9510

50 25 .9150 .9148 .8387 .8229 .9472 .9469 .9331 .9337 .9498

50 .9228 .9223 .8775 .8780 .9494 .9494 .9530 .9530 .9546

75 .9221 .9222 .8993 .8983 .9471 .9471 .9505 .9508 .9516

500 25 25 .8700 .8700 .8880 .8972 .8911 .8911 .8988 .9022 .9022

50 .8601 .8601 .8785 .8863 .8837 .8837 .8933 .8942 .8942

75 .8579 .8579 .8807 .8848 .8777 .8777 .8885 .8944 .8944

50 25 .8503 .8499 .8490 .8510 .8810 .8810 .8901 .8902 .8907

50 .8605 .8600 .8587 .8667 .8826 .8826 .8938 .8947 .8947

75 .8532 .8529 .8694 .8666 .8776 .8776 .8886 .8887 .8894

100 25 .8367 .8347 .8263 .8165 .8726 .8715 .8708 .8708 .8809

50 .8433 .8416 .8254 .8305 .8798 .8770 .8825 .8827 .8900

75 .8468 .8448 .8465 .8370 .8803 .8803 .8939 .8939 .8939

rank 5.5 5.5 7.5 7.5 3.5 3.5 1.5 1.5

mean .8848 .8848 .8699 .8676 .9081 .9079 .9160 .9166

standard dev. .0405 .0405 .0308 .0310 .0378 .0378 .0311 .0311
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Table 3: Statistical comparison of selected sets of algorithms. The null hypothesis H0 says that the hypervol-

ume indicators of the approximation sets obtained by Ai and A j have the same distribution. The significance

level α of all rejections is 5%. Based on the given results, α̂ is the minimum level of significance level at

which H0 would be rejected.

No. Ai vs.A j H0 α̂ (%)

1 (GRC/∗/∗) vs. (SI/∗/∗) reject 0.01

2 (∗/RIF/∗) vs. (∗/BF/∗) - 73.85

3 (∗/∗/GRC) vs. (∗/∗/SI) - 91.41

4 (SI/BF/∗) vs. (SI/RIF/∗) - 16.03

5 (GRC/RIF/∗) vs. (GRC/BF/∗) reject 0.01

6 (∗/RIF/SI) vs. (∗/BF/SI) - 75.48

7 (∗/RIF/GRC) vs. (∗/BF/GRC) - 67.65

8 (SI/∗/GRC) vs. (SI/∗/SI)) - 88.52

9 (GRC/∗/GRC) vs. (GRC/∗/SI) - 80.11

10 (∗/BF/GRC) vs. (∗/BF/SI) - 93.10

11 (∗/RIF/SI) vs. (∗/RIF/GRC) - 99.58

phase) promise better results than BF and SI in the general case. However, the performance of RIF

significantly improves if it is applied to an intelligently initialised population (test 5, test 4).

– Tests 6 and 7 give evidence that the mutation operators BF and RIF do not show different behavior,

even if the repair operator is changed. However, if RIF is applied successfully to an individual,

then there is no need to apply any repair operator, as the operator leaves the individual feasible by

definition.

– Interestingly, an influence of the repair heuristic on the performance of all algorithms is not observable

(test 8-11). This result gets emphasised as we could not prove a significant performance advantage of

A8 over A7 (both differ only in the applied repair operator). This followed from the Kruskal-Wallis-

Test, which takes into account all 240 observations (30 instances, 8 algorithms). However, statistics

paint a different picture if only the 60 observations resulting from A7 and A8 are compared with a

signed rank test. Then, A8 clearly outperforms A7. Hence, in well-balanced algorithms the repair

operator may be of importance.
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Table 4: Comparison of heuristic approach A8 with exact approach εLBB on eight small instances. All runs

of A8 were terminated after five minutes (300 seconds). The runs of εLBB were terminated after 24 hours

(86,400s), if the computation of the Pareto set has not been finished by then.

IHV IHV Found by time (s)

|B| |T | εLBB A8 ∆IHV |Ω∗| A8 εLBB

20 5 .8576 .8576 .0000 7 7 1

20 .6095 .6029 .0066 11 6 2

40 20 .8169 .8126 .0043 13 6 44

40 .5677 .5639 .0038 12 3 112

60 20 .8652 .8537 .0115 17 5 2,975

40 .6988 .6913 .0075 10 0 362

80 20 .8915 .8870 .0045 17 2 19,461

40 - - - - - > 86,400

4.4.2 Results and Discussion for Small Instances

For the set of small instances, the solutions found heuristically by the GA are now compared to the Pareto

optimal solutions found by εLBB. This is done to gain more insights into the performance of the MOGA,

especially whether the MOGA is capable of finding optimal solutions and how close the approximate solu-

tions are to the Pareto front.

The seven small instances which could be solved by εLBB (cf. Section 4.3) were computed by all

eight variants of the GA. As before, the computing time was fixed to five minutes. In accordance with the

results for the large instances, the variant A8 performed best, i.e. in all seven instances it reached the best

hypervolume value. For this reason, Tab. 4 compares only the results of A8 to the Pareto optimal solutions.

In Tab. 4, column ∆IHV shows the difference of the hypervolume attained IHV (εLBB)− IHV (A8) by the

two algorithms. The third column to the right states for each instance the number of solutions in the Pareto

set. In addition, the second column to the right specifies the number of solutions found by A8 which are

Pareto optimal, i.e. which are members of the Pareto solution set derived by εLBB.

The GA variant A8 is able to find optimal solutions for six out of seven instances. No optimal solution

was found for the 60 bundle-bids/40 contracts instance. For the smallest instance (for which it is trivial to

generate all possible solutions), all solutions of the Pareto set are found and ∆IHV equals zero.

Note that in general, a higher number optimal solutions found by the GA does not necessarily imply

that the corresponding approximation set is closer to the true Pareto set. In particular, an approximation set

which does not contain any optimal solution still may be quite close to the Pareto frontier. For example,
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consider the 60 bundle-bids/40 contracts instance for which A8 does not find any optimal solution. Never-

theless, ∆IHV indicates that A8 obtains a good approximation of the true Pareto frontier. The Pareto frontier

and the approximation frontier attained by A8 for this instance are simultaneously visualised in Fig. 3.

Though being close to the optimal points, the solutions of A8 appear slightly shifted to the right. Obviously,

A8 is indeed able to find solutions at the same level of f2 like εLBB, but at the cost of higher values of f1.

This effect seems to intensify for decreasing values of f2. This provides an indication that developing the

cost-reducing abilities of the problem-specific core heuristics could further improve the GA’s performance.

Figure 3: Comparison of solutions found by A8 and εLBB for the instance with 60 bundle-bids and 40

contracts.

5 Conclusions and Outlook

In this study, a model for a bi-objective winner determination problem in combinatorial transportation pro-

curement auctions was presented. The model, which is based on a set covering formulation, simultaneously

minimises total procurement costs and maximises the service-quality level of the execution of all trans-

portation contracts.

To solve this model, two algorithms were introduced. On the one hand, an exact bi-objective branch–

and–bound algorithm was proposed following the epsilon constraint approach. On the other hand, the

well-known multiobjective evolutionary algorithm SPEA2 was extended by a set of problem-specific evo-

lutionary operators to solve the 2WDP-SC. By differently combining these operators, eight variants of this

genetic algorithm were constructed.
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The performance of the algorithms was evaluated on a set of newly generated test instances. The test

instances were designed to reflect important economic properties of the transportation domain, e.g. free

disposal and strict subadditivity of the submitted bids.

The exact branch–and–bound algorithm finds optimal solutions only for small instances in reasonable

time and therefore proved unsuitable for transportation procurement auctions of practical dimensions. The

relative performance of the eight MOGA variants was evaluated on the large problem instances. The results

show a strong dependence of the MOGA performance on the quality of the initial population. Unless the

population is initialised using the more elaborated heuristics, even the intelligent operators do not compen-

sate for the losses in solution quality. The best genetic algorithm was also compared to the results of the

exact algorithm for the small instances. For these instances, the genetic algorithm was able to generate

solutions in or close to the true Pareto solution set.

Our ongoing and future work on this topic takes the following directions. In order to improve the

performance of the exact approach, calculation of lower bounds is being enhanced using heuristics. In

addition, another exact approach instead of the sequential epsilon-constraint approach is being developed

which simultaneously optimises both objectives. As to the heuristic approach, the generic crossover and

mutation operators of the GA still leave room for improvement by integrating problem-specific knowledge.

This also could mitigate the sensitivity of the GA to the quality of the initial population. Furthermore,

an alternative heuristic approach is being developed based on advanced neighbourhood search techniques.

Finally, several ways to integrate both exact and heuristic approaches are being intensively explored. For

example, overall performance effects caused by seeding the exact approach with bounds derived from the

solutions found by different construction heuristics are being studied. On the other hand, using an exact

approach to repair infeasible offspring of a GA appears promising.
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