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Summary. Many interesting and important constrained optimization problems in
mathematical programming can be translated into an equivalent linear projection equa-
tion

u = PΩ[u− (Mu + q)].

Here, PΩ(·) is the orthogonal projection on some convex set Ω (e.g. Ω = �n
+ ) and M

is a positive semidefinite matrix. This paper presents some new methods for solving
a class of linear projection equations. The search directions of these methods are
straighforward extensions of the directions in traditional methods for unconstrained
optimization. Based on the idea of a projection and contraction method [7] we get a
simple step length rule and are able to obtain global linear convergence.
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1. Introduction

We consider a class of linear projection equations (abbreviated to LPE)

(1) (LPE) u = PΩ[u− (Mu + q)],

where M ∈ �n×n is a positive semidefinite matrix (i.e. uTMu ≥ 0 ∀u, but M not
necessarily symmetric), q ∈ �n, Ω ⊂ �

n is a closed convex set and PΩ(·) denotes
the projection on the set Ω. It is well known [2], that the linear projection equation
(1) is equivalent to the following linear variational inequality

(2) (LVI) u ∈ Ω, (v − u)T(Mu + q) ≥ 0 for all v ∈ Ω.
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Linear projection equations arise in numerous fields and play a significant role in
mathematical programming. The linear complementarity problem

(3) (LCP) u ≥ 0, (Mu + q) ≥ 0, uT(Mu + q) = 0

is equivalent to a special (LPE) with Ω = {u ∈ �n | u ≥ 0} [15]. Various constrained
least squares problems [19] and convex quadratic programming problems can be
tranlated into a linear projection equation (1) in which Ω is a general orthant [7].

The complementarity problem has been studied starting with the works of Cottle,
Dantzig [3], and Lemke [12,13] and has been developed by many others. There is
already a substantial number of algorithms for solving linear projection equations [1,
4-11, 15-19], especially for linear complementarity problems and linear constrained
least squares problems. Let

Ω∗ = {u∗ |u∗ is a solution of (LPE)}
be the solution set of (1) and

(4) e(u) := u− PΩ[u− (Mu + q)].

be the “error” by which a given point u fails to satisfy (1). In the projection and
contraction method of [7, 8], the vector

(5) g(u) = MTe(u) + (Mu + q)

is used as the search direction. The recursion

(6) uk+1 = PΩ[uk − ρ(uk)g(uk)]

with

(7) ρ(u) =
‖e(u)‖2

‖(MT + I)e(u)‖2

produces a sequence {uk} ⊂ Ω, which satisfies

(8) ‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − ρ(uk)‖e(uk)‖2.

The main advantages of this method are its simplicity and ability to handle the linear
projection equation (1) while some other algorithms (e.g. [14]) can only solve special
cases of (1). Each iteration of this method consists essentially of only two matrix
vector products and two projections of a vector onto Ω. Therefore the method allows
the optimal exploitation of the sparsity of the matrix M and may thus be efficient for
large sparse problems [10]. Since the method is easy to parallelise, it may be even
more favorable for parallel computation. However, for ill-conditioned problems, the
search direction (5) may lead to a very slow convergence.

Our objective in this paper is to find better search directions and thereby to
construct more efficient methods for solving problem (1). Throughout this paper we
assume that Ω∗ /= ∅ and that the projection onto Ω is simple to carry out (e.g. when
Ω is a general orthant, a box, a sphere, a cylinder or a subspace).

The paper is organized as follows. In Sect. 2 we illustrate our motivation. The
main theorem is proved in Sect. 3. In Sect. 4 some new methods are presented and



their contractive properties are shown. In Sect. 5 we prove convergence. Finally, in
Sect. 6, we give some extensions and conclusions.

We use the following notation. For u ∈ �
n, the component i is denoted by ui.

A superscript such as in uk refers to a specific vector and usually denotes iteration
index. The Eucliden norm and the max-norm will be denoted by ‖ · ‖ and ‖ · ‖∞,
respectively. Throughout this paper, G denotes a positive definite matrix and ‖u‖G
denotes (uTGu)

1
2 .

2. Motivation

In order to illustrate our motiviation, we let

f (u) =
1
2
uTMu + qTu

and M be symmetric positive definite, and consider the following unconstrained op-
timization problem

(9) min
u∈�n

f (u).

Solving problem (9) is equivalent to finding a zero point of ∇f (u). The search direc-
tion in classical methods for unconstrained optimization is

(10) d(u) = Q∇f (u)

with different matrices Q. If Q = I , we obtain the direction of the steepest descent
method. Setting Q = [∇2f (u)]−1 yields the direction of Newton’s method. When
Q = σI + (∇2f (u))−1 or Q = [σI + ∇2f (u)]−1 for some nonegative value of σ > 0,
the search direction can be regarded as some combination of steepest descent (σ very
large) and Newton’s method (σ = 0).

For the convex constrained optimization problem

(11) min{f (u) | u ∈ Ω},
the Kuhn-Tucker theorem tells us that u∗ is a minimum if u∗ ∈ Ω and it satisfies

(u− u∗)T∇f (u∗) ≥ 0 for all u ∈ Ω.

This means that u∗ is a zero point of the function e(u). Note that in the case of
Ω = �n, e(u) = ∇f (u). Since most search directions in unconstrained optimization
are constructed from ∇f (u), a natural question is whether we can build useful search
directions for the constrained optimization problem (11) based on e(u). Further, for
problem (1), if we take

(12) d(u) = Qe(u)

as the search direction, which step length should be taken?



3. The main theorem

The following theorem plays an important role in our new methods.

Theorem 1. Let u∗ ∈ Ω∗. Then

(13) (u− u∗)T(I + MT)e(u) ≥ ‖e(u)‖2 + (u− u∗)TM (u− u∗) ∀u ∈ �n.

Proof. Since Ω ⊂ �
n is a closed convex set and u∗ ∈ Ω, we know by the properties

of a projection on a closed convex set [14, Appendix B] that

{v − PΩ(v)}T{PΩ(v) − u∗} ≥ 0 ∀v ∈ �n.

By setting v := u− (Mu + q) we obtain

(14) {e(u) − (Mu + q)}T{PΩ[u− (Mu + q)] − u∗} ≥ 0.

Since PΩ(·) ∈ Ω, it follows from (2) that

(15) (Mu∗ + q)T{PΩ[u− (Mu + q)] − u∗} ≥ 0.

Adding (14) and (15) we get

(16) {e(u) −M (u− u∗)}T{u− u∗ − e(u)} ≥ 0

and it follows that

(u−u∗)T(I + MT)e(u)
≥ ‖e(u)‖2 + (u− u∗)TM (u− u∗).

A similar but weaker result of Theorem 1 was given in [9]. The above proof is an
improved version of the one in [9]. We point out that inequality (16) is sharp. This can
easily be seen by setting M = I . We then obtain {e(u)−(u−u∗)}T{u−u∗−e(u)} = 0.
This implies that also the result of Theorem 1 is tight.

Remark. The methods in [7] and [8] take g(u) as the search direction. It was shown
that

(u− u∗)Tg(u) ≥ e(u)T(Mu + q).
But only under the assumption that u ∈ Ω can we prove

e(u)T(Mu + q) ≥ ‖e(u)‖2.

Therefore, −g(u) is a descent direction of F (u) = 1
2‖u − u∗‖2 at u ∈ Ω. However,

here the assertion (13) in Theorem 1 is true for all u ∈ �
n. Although, as in [9],

−(I + MT)e(u) can be taken as a descent direction of F (u) for all u ∈ �n, Theorem
1 offers us the possibility to construct better search directions.

4. The methods and their contractive properties

In this section, based on Theorem 1, we give some new methods for solving linear
projection equations and show their contractive properties. The iterative scheme of
these methods is



(17) uk+1 = uk − ρ(uk)Qe(uk)

with different matrices Q and steplengths ρ(u).

Method 1. (for symmetric M ≥ 0)

Q = I, ρ(u) =
‖e(u)‖2

e(u)T(I + M )e(u)
.

Method 2. (for symmetric M > 0)

Q = M−1 , ρ(u) =
‖e(u)‖2

e(u)T(I + M−1)e(u)
.

Method 3. (for symmetric M > 0)

Q = I + M−1 , ρ(uk) =
‖e(u)‖2

‖(I + M−1)e(u)‖2
M

.

Method 4. (for M ≥ 0 but not necessarily symmetric)

Q = (I + M )−1 , ρ(u) = 1.

The first method can be viewed as an extention of the steepest descent method
for unconstrained optimization, because we take e(u) as the search direction and e(u)
is the residue of the projection equation. Obviously, each iteration of this method
consists essentially of only a projection to Ω and the computation of Mu and Me(u).

The second method can be viewed as an extention of Newton’s method for un-
constrained optimization. As in Method 1, each iteration of this method consists
essentially of only a projection to Ω and the computation of Mu and M−1e(u).

Method 3 can be regarded as a combination of steepest descent and Newton’s
method for unconstrained optimization. Method 4 can be viewed as an extention of
the Levenberg-Marquardt method for unconstrained optimization.

Theorem 2. The sequence {uk} generated by each method of methods 1–4 for (LPE)
satisfies

(18)
‖uk+1 − u∗‖2

G ≤ ‖uk − u∗‖2
G − ρ(uk)‖e(uk)‖2

− 2ρ(uk) · (uk − u∗)M (uk − u∗) ∀u∗ ∈ Ω∗

where

G =

⎧⎪⎨
⎪⎩

I + M in Method 1
(I + M )M in Method 2
M in Method 3
(I + MT)(I + M ) in Method 4

Proof. First,

‖uk+1 − u∗‖2
G = ‖(uk − u∗) − ρ(uk)Qe(uk)‖2

G

= ‖uk − u∗‖2
G − 2ρ(uk)(uk − u∗)GQe(uk)

+ ρ2(uk)e(uk)TQTGQe(uk).



Note that in all cases

GQ = I + MT

and

ρ(u) · e(u)TQTGQe(u) = ‖e(u)‖2.

Using (13) the theorem is proved.

The sequence {uk} generated by these methods does not necessarily lie in Ω. In
general, (because G /= I and the projection is an orthogonal projection with respect
to the Euclidean norm), we can not prove that {uk} satisfies ‖PΩ[uk+1] − u∗‖G ≤
‖uk − u∗‖G even if uk ∈ Ω. Note that in all of these methods, the steplength ρ is
bounded below. Therefore, there is a c > 0, so that the sequence {uk} generated by
each of these methods satisfies

(19) ‖uk+1 − u∗‖2
G ≤ ‖uk − u∗‖2

G − c‖e(uk)‖2 ∀u∗ ∈ Ω∗.

Due to (19) and the fact that each iteration performs a projection onto Ω (in the
computation of e(u)), we call these methods the projection and contraction methods
(PC methods).

5. Convergence

The PC methods in this paper generate an infinite sequence {uk}, which is not neces-
sarily contained in the feasible set Ω, but, will be asymptotically feasible as e(uk) → 0,
and, in fact converges to a solution of (LPE).

Theorem 3. If the sequence {uk} satisfies (19), then it converges to a solution point
u∗.

Proof. See [9], Theorem 3.

In [9] we have also proved that an inequality of the form (19) implies the global
linear convergence in the case that Ω is an orthant.

Theorem 4. If the sequence {uk} satisfies (19) and Ω = {u |u ≥ 0}, then {uk}
converges to a solution point u∗ ∈ Ω∗ globally linearly.

Proof. See [9], Theorem 4.

The iterative scheme of the fundamental projection method (see [2])

(20) uk+1 = PΩ[uk − (Muk + q)],

belongs to the class of steepest descent methods. In the case that M is positive
semidefinite, we denote the largest and the smallest eigenvalue of the matrix M by
λmax(M ) and λmin(M ), respectively. If 0 < δ ≤ λmin(M ) ≤ λmax(M ) ≤ 2 − δ, then
the sequence {uk} generated by the fundemental projection method (20) satisfies



(21)

‖e(uk+1)‖ = ‖uk+1 − PΩ[uk+1 − (Muk+1 + q)]‖
= ‖PΩ[uk − (Muk + q)] − PΩ[uk+1 − (Muk+1 + q)]‖
≤ ‖(I −M )(uk − uk+1)‖
= ‖(I −M )e(uk)‖
≤ (1 − δ)‖e(uk)‖

and

(22)

‖uk+1 − u∗‖ = ‖PΩ[uk − (Muk + q)] − u∗‖
= ‖PΩ[uk − (Muk + q)] − PΩ[u∗ − (Mu∗ + q)]‖
≤ ‖(I −M )(uk − u∗)‖
≤ (1 − δ)‖uk − u∗‖.

In the following we prove that the PC methods in this paper have similar proper-
ties. Under the assumptions that M is positive definite and ‖M‖ ≤ 2, the seqeunce
{‖e(uk)‖} generated by Method 1 or Method 4 is monotonically decreasing. More
precisely, we have the following theorem:

Theorem 5. Let M be positive semidefinite and symmetric. If λmax(M ) ≤ 2, then the
sequence {e(uk)} generated by Method 1 or Method 4 for (LPE) satisfies

(23) ‖e(uk+1)‖ ≤ ‖e(uk)‖.
Moreover, if δ ≤ λmin(M ) ≤ λmax(M ) ≤ 2 − δ for some δ > 0, then the sequence
{e(uk)} satisfies

(24) ‖e(uk+1)‖ ≤ (1 − δ

3
)‖e(uk)‖.

Proof. First, in Method 1, under the assumptions we have 1
3 ≤ ρ(uk) ≤ 1. By using

uk+1 = uk − ρ(uk)e(uk),

we get

‖e(uk+1)‖ = ‖uk − ρ(uk)e(uk) − PΩ[uk+1 − (Muk+1 + q)]‖
= ‖(1 − ρ(uk))e(uk) + uk − e(uk) − PΩ[uk+1 − (Muk+1 + q)]‖
≤ ‖(1 − ρ(uk))e(uk)‖ + ‖PΩ[uk − (Muk + q)] − PΩ[uk+1 − (Muk+1 + q)]‖
≤ (1 − ρ(uk))‖e(uk)‖ + ‖(I −M )(uk − uk+1)‖
≤ (1 − ρ(uk))‖e(uk)‖ + ρ(uk)‖(I −M )‖ · ‖e(uk)‖.

Since 0 ≤ λmin(M ) ≤ λmax(M ) ≤ 2, it follows that ‖I −M‖ ≤ 1 and ‖e(uk+1)‖ ≤
‖e(uk)‖. Moreover, if δ ≤ λmin(M ) ≤ λmax(M ) ≤ 2− δ, then ‖I −M‖ ≤ 1− δ, and
it follows that

‖e(uk+1)‖ ≤ (1 − ρ(uk))‖e(uk)‖ + (1 − δ)ρ(uk)‖e(uk)‖ ≤ (1 − δ

3
)‖e(uk)‖.

In Method 4, using uk+1 = uk − (I + M )−1e(uk) we get



‖e(uk+1)‖ = ‖uk − (I + M )−1e(uk) − PΩ[uk+1 − (Muk+1 + q)]‖
= ‖e(uk) − (I + M )−1e(uk) + uk − e(uk) − PΩ[uk+1 − (Muk+1 + q)]‖
≤ ‖(I + M )−1Me(uk)‖ + ‖PΩ[uk − (Muk + q)] − PΩ[uk+1 − (Muk+1 + q)]‖
≤ ‖(I + M )−1Me(uk)‖ + ‖(I −M )(uk − uk+1)‖
= ‖(I + M )−1Me(uk)‖ + ‖(I −M )(I + M )−1e(uk)‖.

Let M = UTΣU be the Schur normal form of M with Σ = diag(σ1, . . . , σn). Then

‖e(uk+1)‖ ≤ ‖(I + M )−1Me(uk)‖ + ‖(I −M )(I + M )−1e(uk)‖
= ‖(I + Σ)−1ΣUe(uk)‖ + ‖(I −Σ)(I + Σ)−1Ue(uk)‖.

Since 0 ≤ σi ≤ 2, it follows that

σi

1 + σi
+
|1 − σi|
1 + σi

≤ 1

and
‖e(uk+1)‖ ≤ ‖(I + Σ)−1ΣUe(uk)‖ + ‖(I −Σ)(I + Σ)−1Ue(uk)‖

≤ ‖Ue(uk)‖ = ‖e(uk)‖.
Moreover, if δ ≤ σi ≤ 2 − δ, it is straightforward to prove that

σi

1 + σi
+
|1 − σi|
1 + σi

≤ 1 − δ

3
and it follows that

‖e(uk+1)‖ ≤ (1 − δ

3
)‖e(uk)‖.

The following theorem contrasts the convergence proofs for the fundamental pro-
jection methods, in that no advance knowledge of the largest and smallest eigenvalue
of M is required.

Theorem 6. Let M be positive definite, then all four PC methods are globally linearly
convergent.

Proof. From (18) (Theorem 2) we have

‖uk+1 − u∗‖2
G ≤ ‖uk − u∗‖2

G − 2c(uk − u∗)TM (uk − u∗).

Since M is positive definite, there exists a τ > 0, such that

(u− u∗)TM (u− u∗) ≥ τ‖u− u∗‖2
G.

It follows that
‖uk+1 − u∗‖2

G ≤ (1 − 2cτ )‖uk − u∗‖2
G,

which implies that {uk} converges to u∗ globally and linearly.

6. Extensions and conclusions

Let α > 0 be a constant. It is easy to see that problem (1) is equivalent to the
following problem



(25) (LPEα) u = PΩ[u− α(Mu + q)].

Therefore, instead of taking M and q, we can use αM and αq in our PC methods.
In addition, for some parameter γ, 0 < γ < 2, with the same direction d(u) and

its relevant steplength ρ(u), the iterative scheme

(26) uk+1 = uk − γρ(uk)d(uk)

produces a sequence {uk}, which satisfies

(27) ‖uk+1 − u∗‖2
G ≤ ‖uk − u∗‖2

G − γ(2 − γ)ρ(uk)‖e(uk)‖2

and thus also converges to a solution point u∗. A close look at the inequalities used
in the proof of Theorem 1 shows that the best choice of γ should be ≥ 1.

The search directions of the presented methods are the extensions of those in
unconstrained optimization. If Ω = �n, then the search direction in [7] is

g(u) = (MT + I)(Mu + q).

In this special case, the search directions in our new methods are

d1(u) = (Mu + q), (in Method 1)
d2(u) = M−1(Mu + q), (in Method 2)
d3(u) = (I + M−1)(Mu + q), (in Method 3)
d4(u) = (I + M )−1(Mu + q), (in Method 4)

respectively. Although we have only proved linear convergence, by comparing anal-
ogous direction for unconstrained optimization we are convinced that the directions
d(u) developed in this paper are better than the direction g(u) in the original PC meth-
ods [7,8]. We believe that the use of Newton-like directions will lead to a substantial
improvement in computational efficiency.

Developing these methods for nonlinear problems is a topic of further research .
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