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 Infectious waste disposal remains one of the most serious problems in the medical, social and 

environmental domains of almost every country. Selection of new suitable locations and finding 

the optimal set of transport routes for a fleet of vehicles to transport infectious waste material, 

location routing problem for infectious waste disposal, is one of the major problems in hazardous 

waste management. Determining locations for infectious waste disposal is a difficult and 

complex process, because it requires combining both intangible and tangible factors. 

Additionally, it depends on several criteria and various regulations. This facility location 

problem for infectious waste disposal is complicated, and it cannot be addressed using any stand-

alone technique. Based on a case study, 107 hospitals and 6 candidate municipalities in Upper-

Northeastern Thailand, we considered criteria such as infrastructure, geology and social & 

environmental criteria, evaluating global priority weights using the fuzzy analytical hierarchy 

process (Fuzzy AHP). After that, a new multi-objective facility location problem model which 

hybridizes fuzzy AHP and goal programming (GP), namely the HGP model, was tested. Finally, 

the vehicle routing problem (VRP) for a case study was formulated, and it was tested using a 

hybrid genetic algorithm (HGA) which hybridizes the push forward insertion heuristic (PFIH), 

genetic algorithm (GA) and three local searches including 2-opt, insertion-move and 

interexchange-move. The results show that both the HGP and HGA can lead to select new 

suitable locations and to find the optimal set of transport routes for vehicles delivering infectious 

waste material. The novelty of the proposed methodologies, HGP, is the simultaneous 

combination of relevant factors that are difficult to interpret and cost factors in order to determine 

new suitable locations, and HGA can be applied to determine the transport routes which provide 

a minimum number of vehicles and minimum transportation cost under the actual situation 

efficiently in this case. 

© 2018 Growing Science Ltd.  All rights reserved
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1. Introduction 

The infectious waste disposal remains a serious problem in healthcare waste management of almost every 

country. During the past few years, there has been an increase in the level of public concern about the 

healthcare waste management on a worldwide basis (Hansakul et al., 2010). The collection, 

transportation and disposal of infectious waste, when improperly handled, may cause substantial harm to 
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adverse health and environmental effects (Hansakul et al., 2010; Miyazaki & Une, 2005). Selecting 

suitable locations for the construction of facilities for infectious waste disposal is the first and the most 

important step for environmental pollution control. Location selection for infectious waste disposal is a 

difficult and complicated process because it must comply with the requirements of regulations of each 

country and concurrently must minimize social, environmental and economic impacts (Nazari et al., 

2012). In Thailand, the system of infectious waste disposal has been problematic since healthcare was 

reformed in 1977 (Hansakul et al., 2010). Governmental and public concern has afterward risen over 

insufficient collection of infectious waste for disposal, even though public hospitals have then own 

incinerators to dispose of their infectious waste material, because of social and environmental concern, 

many incinerators inside public hospitals have been shutdown lately. These public hospitals eventually 

need to use services from outside waste disposal agencies. However, the outside waste disposal agencies 

are not able to dispose of existing infectious waste material effectively. For example, they have no 

standard guidelines for work and transport. Transporting infectious waste from hospitals run by the 

private transport sector did not meet the regulatory requirements for safety, including illegal dumping 

and illegal disposal in inappropriate places. In addition, infectious waste collection by the private sector 

was slow and did not meet the requirements of each hospital. As a result, the government of Thailand set 

up a policy to encourage the establishment of new disposal centers at potential municipalities, in order 

to address the above problems and to increase the efficiency of infectious waste disposal. These new 

disposal centers must be able to serve nearby hospitals, and concurrently must reduce environmental, 

social, and economic factors and achieve maximum benefit. New disposal centers need to have planned 

transport routes in order to provide the lowest transportation costs and to serve those community hospitals 

in accordance with their routine. Therefore, building new disposal centers and finding the transport routes 

for infectious waste more effectively is becoming an issue that is particularly important.  

 

Community hospitals, with 107 in the Upper Northeast of Thailand under the Ministry of Public Health, 

are one of the medical institutions that have often found common problems because they are far from the 

existing sites of outside waste disposal agencies. As a result, this can cause the above mentioned 

problems. To address such problems, the government of Thailand has designated local governments 

(Municipalities) directly responsible for new building of infectious waste disposal sites. The new disposal 

centers for this case pose complex problems, because there are many relevant factors which need to be 

considered, such as environmental, social and geological factors. In this problem, maximization of 

satisfaction level of relevant factors is as important as minimization of costs. The higher the satisfaction 

level, the lower the probability for disposal centers to cause damage to the biophysical environment and 

the ecology of the neighboring area. Certainly, both perspectives of relevant factors and costs must be 

considered in finding an optimal transportation network, and to achieve maximum benefit we need to 

assign the appropriate transport routes for each new disposal center in order to provide minimum 

transportation cost.  

 

From the literature reviewed and due to the complexity of this issue, the study process for this case is 

divided into two phases. The first phase is to select suitable locations for infectious waste disposal 

centers. This is a multi-criteria decision making (MCDM) problem. There are many relevant factors 

involved, both quantitative and qualitative factors, including the need to allocate resources 

simultaneously. For this reason, it is necessary to choose appropriate tools for solving this problem. Since 

the fuzzy analytic hierarchy process (fuzzy AHP) is a contemporary tool, it is suitable to address the 

MCDM problems which are difficult to interpret and the goal programming model (GP model) is a 

popular tool to solve multi-objective problems that need to allocate resources. Hence, this phase needs 

to use integrating fuzzy AHP technique with the GP model, namely the HGP model, in order to solve 

this complex problem to minimize the total cost and to maximize the total location weight under the 

existing constraints. The second phase is to assign the appropriate transporting routes for each selected 

disposal center in order to provide minimum transportation cost/minimum total distance. The Vehicle 

Routing Problem (VRP) belongs to the class of NP-hard problems which are difficult to solve by exact 

solution techniques because the exact solution techniques become highly time-consuming as the problem 
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instances increase in size. Therefore, heuristic techniques will be applied to solve VRP in this case. Due 

to the combinatorial nature of the VRP and the Genetic Algorithm’s efficiency in solving combinatorial 

problems, the Genetic Algorithm (GA), the most famous meta-heuristic algorithm in the world 

(Golmohammadi et al., 2016), is one of the meta-heuristics which is often used to solve the VRPs in the 

literature (Ahmadizar et al., 2015; Karakatič & Podgorelec, 2015; Razali, 2015), and the success of this 

is mainly due to its simplicity, easy operation, and great flexibility (Ho et al., 2008). However, this 

traditional algorithm has been developed in many ways by integrating the GA with other tools to handle 

the various problems efficiently. Hence, a new hybrid genetic algorithm (HGA) is developed to deal with 

the VRP in this paper. The major difference between the traditional GA and HGA in this case is that the 

initial solutions of traditional GA are generated randomly, but the initial solutions of HGA are generated 

using the Push Forward Insertion Heuristic (PFIH), and three local searches, 2-Opt-move, Insertion-move 

and λ-interchange-move, are added to increase the efficiency of the algorithm. These are the major 

reasons why HGA is selected as a suitable tool in this paper. The two proposed methodologies, HGP and 

HGA, try to minimize the total cost of the transportation network and maximize the satisfaction level of 

its stake holders, under relevant constraints that exist in the decision environment. 

 

The rest of the paper is organized as follows. Section 2, section 3 and section 4 are Related Literature, 

Methodology and Application respectively, and finally, section 5 is the Conclusion. 

    

2. Related Literature 

 

The location routing problem (LRP) is clearly related to both the facility location problem (FLP) and the 

vehicle routing problem (VRP). LRP is an NP-hard problem, as it encompasses two NP-hard problems 

(Nagy & Salhi, 2007). LRP for the infectious waste management problem in this case is complicated, 

and it is a large and complex problem which cannot be solved using existing optimization techniques 

only. Hence, based on a paper of  Alumur and Kara (2007), solving the LRP for the hazardous waste 

management problem could have two phases. The first phase would choose the suitable locations for the 

facilities, and the second phase would decide the optimal transport routes. 

 

The theory of FLP has been studied for many decades, but it is accepted by all researchers that Weber's 

book of 1909 is the essential origin of this theory (Farahani et al., 2010). Traditional FLP is a single 

objective problem. The location network (depots, customers and arcs) that incurs the minimum total 

distance/lowest total cost is regarded as an optimal solution. Many researchers (Dantrakul et al., 2014; 

Etemadnia et al., 2015; Guastaroba & Speranza, 2014; Rahmani & MirHassani, 2014) have proposed 

solving techniques such as mathematical techniques (heuristic and optimization techniques) only. 

However, with some complex problems such as selecting sites for hazardous material waste disposal, 

choosing sites for nuclear power plants, location selection for infectious waste disposal, these problems 

are very important decisions because they are costly and hard to reverse. These are multi-criteria decision 

making (MCDM) problems, for which there are many relevant factors such as costs, social responsibility 

and environmental awareness. Therefore, one of the most essential difficulties to solving these problems 

is to choose the suitable techniques for evaluating these complicated criteria. The multi-criteria/objective 

facility location problem (MCFLP/MOFLP) for infectious waste disposal in this case is one the MCDM 

problem. A group of researchers (Dantrakul et al., 2014; Guo, Cheng, & Wang, 2017; Kalcsics, Nickel, 

Pozo, Puerto, & Rodríguez-Chía, 2014; Steiner, Datta, Steiner Neto, Scarpin, & Rui Figueira, 2015) 

proposed mathematical techniques to solve MCDM problems which need to deal with environmental 

restrictions, whereas another group (Choudhary & Shankar, 2012; Hanine et al., 2016; Kahraman et al., 

2003) often proposed MCDM tools to solve complex problems which are difficult to interpret. The 

disadvantages of MCDM tools alone cause them to be unable to handle existing environmental 

restrictions in some special problems, and the disadvantages of mathematical techniques make them 

unable to address complex problems which are difficult to interpret. Hence, some researchers (Badri, 

1999; Ho et al., 2008; Ho, 2007)  have taken traditional MCDM tools combined with mathematical 

techniques in order to deal with environmental restrictions simultaneously. One traditional MCDM tool 
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often suggested for solving complex problems is the analytic hierarchy process (AHP), because it is a 

simple and powerful approach (Russo & Camanho, 2015; Singh & Nachtnebel, 2016). However, AHP 

has the weakness that it cannot reflect the human thinking style. Later, the fuzzy analytic hierarchy 

process (Fuzzy AHP) based on the fuzzy set theory of Zadeh (1965) was developed in order to overcome 

this weak point, and this contemporary tool is used to solve MCDM problems which are difficult to 

interpret instead of the traditional AHP. Mathematical models, linear programming model (LP model) 

and goal programming model (GP model), are often combined with the MCDM tools in order to address 

some special problems or complex problems in the literature. The LP model is formulated to solve single 

objective problems, whereas the GP model is formulated to solve multi-objective problems. The GP 

model has been studied by Charnes et al. (1955) for solving the unsolvable LP model. Hence, recently, 

some researchers have taken Fuzzy AHP with mathematical models to solve MCDM problems instead 

of traditional combined models. Although fuzzy AHP only is widely used to solve MCDM problems in 

many fields, there are few papers that report the combined fuzzy AHP with mathematical techniques to 

solve MCDM under existing environmental restrictions. For example, He et al. (2012) proposed an 

integrated fuzzy AHP-Linear Programming model for solving the multi-criteria transshipment problem 

to maximize service level and minimize logistics costs simultaneously. Kannan et al. (2013) presented a 

combined fuzzy MCDM method and GP model for supplier selection in a green supply chain. Also, 

recently, Ozgen and Gulsun (Ozgen & Gulsun, 2014) proposed a combined LP model and fuzzy AHP 

for solving the capacitated MOFLP. Although the fuzzy AHP is widely used in many fields at present, 

the application of this technique to solve the MCFLP problems is complex, depending on the nature of 

each problem. For this reason, choosing the appropriate combined model will enhance the confidence of 

decision makers for selecting the suitable locations for infectious waste disposal by considering both 

relevant costs and environmental impacts under available resources limitations. 

 

The basic VRP consists of a set of customers, each customer with known demands, which must be 

serviced from a single depot. Transport routes for each vehicle are required, starting and finishing at same 

depot, so that each demand will be satisfied and each customer is assigned to exactly one vehicle. Each 

vehicle can carry a limited weight and may also be limited in the total distance it can travel (Baker & 

Ayechew, 2003). The objective of the VRP is to minimize the total distance/transportation cost. The first 

VRP model was proposed by Dantzig and Ramser (1959) and Clarke and Wright (1964) first incorporated 

more than one vehicle in the problem formulation. Consequently, these two studies may be considered 

as being first in the VRP literature as we know it. Many real life VRPs are usually large, so that 

optimization techniques cannot be used to solve them. As the VRPs are an NP-hard problem (Lenstra & 

Kan, 1981), the size of problems that can be solved optimally is limited. Due to the size of problems and 

frequency of real world problems, the commercial solvers tend to apply various heuristic techniques. 

Given the difficulty of VRPs, many heuristic algorithms do not seek global optimal solutions, but rather 

seek to provide fast near-optimal solutions. For the past two decades, meta-heuristics have been 

developed to solve VRPs instead of traditional heuristics in order to find good solutions quickly. Later, 

many researchers have frequently used meta-heuristics (Birim, 2016; Brandão, 2009, 2011; Kalayci & 

Kaya, 2016; Lai et al., 2016; Tang et al., 2013; Tavakkoli-Moghaddam et al., 2007) such as Tabu search 

(TS), Ant colony optimization (ACO), Simulated annealing (SA) and Genetic algorithm (GA) to solve 

various VRPs in some real world problems. Nowadays there are many new meta-heuristics that occur in 

the literature such as differential evolution (DE) and Bee colony (BC). However, there are no tools to 

confirm which is best, depending on each situation and individual preference. GA is one of the traditional 

meta-heuristics which is often used to solve VRPs, but nowadays this tool is often used to deal with 

various VRPs by integrating with other tools in order to improve the solution efficiency. The new various 

algorithms of this tool have been continuously developed depending on the preferences and expertise of 

each researcher. Since its accomplishment is mainly due to its simplicity, easy operation, and great 

flexibility, integrating traditional GA with other tools is suitable and sufficient for solving the VRP in 

this case study. These are the major reasons why HGA was selected as a suitable tool in this paper.  
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According to the above literature review, the MOFLP model in this case is needed to formulate to address 

the location selection problem for infectious waste disposal. The GP model is suitable to solve multi-

objective problems in the literature, and fuzzy AHP has often been applied to solve MCDM problems 

which are difficult to interpret. Since stand-alone fuzzy AHP cannot deal with the environmental 

restrictions of this problem, choosing hybridized fuzzy AHP and GP techniques are reasonable to solve 

MOFLP in this case. Consequently, the first phase presents a new MOFLP model for selecting infectious 

waste disposal centers, namely the HGP model, which differs from the literature by taking advantage of 

the strong points of each method, while overcoming their weak points. After that, in the second phase, 

HGA is used to solve the VRP in this case because GA is one of various algorithms which are suitable 

for solving VRPs. The new HGA algorithm is developed to solve VRP in a case study, in order to find 

the minimum number of vehicles and minimum total distance. 

 

3. Methodology 

 

This paper offers two methodologies for the location routing problem for infectious waste disposal. The 

first methodology, the HGP model, is used to select the suitable disposal centers in order to achieve the 

lowest total cost and maximum total location weight. The second methodology, HGA, is used to solve 

VRP for selecting suitable routes which provide minimum total distance. Details of the conceptual 

framework are shown in Fig. 1.  

 

The first step of the study process is to define relevant factors for selecting the candidate 

locations/candidate municipalities. The selection of candidate municipalities is found from legislation 

and expertise, similarly to every nation. For example, in Thailand, all locations of municipalities will be 

first considered based on the Thai legislation and the encouragement of government policy. Next, these 

municipalities that comply with Thai legislation and government policy will also be considered based on 

the regulations of each local government. Finally, experts define relevant criteria that impact location 

selection for infectious waste disposal, and then they decide to choose these locations as candidate 

municipalities. The second step is to compute the location weights for all candidate municipalities using 

fuzzy AHP. A high location weight means that it is better than a low location weight. The third step is to 

build and compute a HGP model to select the new suitable locations for infectious waste disposal. The 

final step is to build and compute HGA for VRP to select the optimal routes for each new suitable 

location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

Fig. 1. The main steps of the study process 

 

 

Define most important factors for location selection for infectious waste disposal 

Compute the location weights for each municipality using Fuzzy AHP  

Build and compute a HGP model  

Select the new suitable locations for infectious waste disposal 

Build and compute hybrid GA for VRP for the new suitable locations 

Select the optimal routes for each new suitable location 
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3.1 Fuzzy AHP 

 

Since the traditional AHP is insufficient for dealing with the imprecise or vague nature of linguistic 

assessment, contemporary AHP, namely fuzzy AHP, is used to evaluate the priority weights instead of 

the traditional AHP. In this paper, triangular fuzzy numbers are employed in the pair-wise comparison 

as shown in Table 1.  

 

Table 1  
The nine scale of fuzzy AHP 

             TFN                                                          Definition                         

            (1,1,1)                                                    Equal  

            (2,3,4)                                                  Moderate  

            (4,5,6)                                                   Strong  

            (6,7,8)                                               Very strong  

            (8,9,9)                                                  Extreme  

           8
~

,6
~

,4
~

,2
~

             Intermediate values between the two adjacent judgments           

 

The step of evaluation for priority weights of each candidate location is calculated by fuzzy arithmetic 

operations, which can be shown by equations (1-5). Let   
ijkk aA ~~

  be the fuzzy pair-wise comparison 

matrices for each decision maker k, and K is the number of decision makers. kA
~

 can be shown in Eq. (1). 
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where ),,(~
ijkijkijkijk umla  is the triangular fuzzy numbers of the kth decision maker, ijkl , ijkm and ijku  are 

least possible value, mode value and highest possible value respectively. The fuzzy arithmetic operations 

on the triangular fuzzy numbers can be expressed as follows: 

  

Addition: ),,( 21212121 uummllMM   (2)

Multiplication: ),,( 212212121 uummmllMM   (3)

Division: )/,/,/(/ 21212121 lummulMM   (4)

Reciprocal: )/1,/1,/1( 111

1

1 lmuM 
 (5)

 

where M1 and M2 are two triangular fuzzy numbers, M1=(l1, m1, u1) and M2=(l2, m2, u2).  Afterwards, the 

steps of the fuzzy AHP include the following steps: 

 

  � Build the hierarchical structure  

 

The relevant decision factors can be defined by asking questions to experts questions about which 

criterion is more important with regard to the goal. After that, these relevant decision factors are 

decomposed into a multi-level hierarchical structure, as shown in Figure 2. At level “0”, the goal is to 

choose new suitable locations. At level “1”, the criteria are C1, C2,...,Cn, and at level “2”, the alternatives 

are location 1 (L1), location 2 (L2) and location n (Ln). 
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Fig. 2. A multi-level hierarchical structure for location selection 

 

� Construct the comparison matrices  

 

The comparison matrices of each decision maker k can be constructed using Eq. (1). After that, 

integrating the comparison matrices from all experts using the fuzzy geometric mean method (Dong & 

Cooper, 2016) is as shown in Eq. (6) 

 

K
K

i

ijkaG /1

1

)~(
~ 



  (6)

  

where G
~

 is the aggregated pair-wise comparison matrix. 

 

� Estimate priority weights of each level 

 

After aggregation of comparison matrices from all experts, the three steps provide a good approximation 

of the priority weights as follows. 

 

     Step 1: Sum the values in each column of the matrix by using Eq. (2). 

     Step 2: Divide all elements of the matrix with the sum of its column to generate the normalized matrix 

by using Eq. (4). 

    Step 3: Divide the sum of the normalized column of matrix by the number of criteria used (n) to 

generate fuzzy priority weight vector.  

    Step 4: Convert the fuzzy priority weight vector to crisp priority weight vector by Eq. (7) 

 

  jillmluadf ijijijijijij  ,3/)()(~  (7)

 

� Compute the consistency ratio (CR) 
      

Step 1: Multiply the aggregated pair-wise comparison matrix by the crisp priority weight vector.  

Step 2: Divide the weighted sum vector with criterion weight in step 1; average weighted sums ( iw ) will 

be obtained for each row i for the calculation in this step.  

Step 3: Compute λmax by Eq. (8). 

nw
n

i

i /
1

max 


  (8) 

Step 4: Compute the consistency index (CI) by Eq. (9). 
 

)1/()( max  nnCI   (9)

 

Step 5: Compute the consistency ratio (CR).  

 

RICICR /  (10)
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… nC1C 
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Level 1 

Level 2 
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RI is defined using Table 2. 

 

Table 2  
List of random index values  

 

A CR value of 0.10 or less is accepted as a good consistency measure. If the value exceeds 0.10, it is 

indicative of inconsistent judgment, and it should be revised.  

 

� Compute the final priority weights for each alternative 
 

The priority weight of each alternative is multiplied by the sub-criteria weights and aggregated to get 

local priority weights with respect to each criterion. The local priority weights are then multiplied by the 

criteria weights and aggregated to get global priority weights/location weights. The best 

alternative/location is the maximum value of the global priority weights, and the value of a high location 

weight means that it is better than a low location weight.  

 

3.2 HGP model  
  

The multi-objective facility location problem model (MOFLP model) is formulated to determine the 

problem statement. The candidate municipalities are assumed to have enough space, budget and staffing, 

and the locations of the incinerators can be made anywhere within the candidate municipalities. Details 

of the mathematical model of this problem are shown below.  
 

Indices 
 

 i is the index of each municipality, i= 1,2,..,m, (m=6). 

 j is the index of each hospital, j=1,2,..,n,  (n=107). 

 k is the size of each incinerator, k=1, 2,..,K , (K=3). 
 

Parameters 
 

 fk is facility cost (baht/day). 

 ok is operating cost (baht/day). 

 cij is transportation cost between municipality i and hospital j (baht/day) 

 dtij is actual distance between municipality i and hospital j (km). 

 u is unit transportation cost (baht/km).  

 sk is the size of each incinerator i. 

 dj is the demand of hospital j (kg/day). 

 

Decision variables 

 

 Xij is a binary decision variable; Xij =1 if the hospital j is served by municipality i, Xij = 0 otherwise. 

 Yi is a non-negative integer decision variable; Yi =1 if municipality i is opened, Yi = 0 otherwise. 

 Zik is a binary decision variable; Zik =1 if the municipality i is opened by selecting incinerator k , 

Zik = 0 otherwise. 

 

Objective functions 

 

1 , ,1 1 1 1 1 1
min

m K m K m n

k i k k i k ij iji k i k i j
Z f Z o Z u dt X

     
           (11)

   n 1 2   3   4   5   6   7   8   9                                     

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 
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2

1

max
m

i i

i

Z w Y


   (12)

                   
Constraints 

 

1
1

m

iji
X


                  ( 1, 2,.., )j j n   (13)

ik

K

k
kij

n

j
j ZsXd 

 11

    )....1( mii   (14)

,

1 1 1

m K n

k i k j

i k j

s Z d
  

                      (15)

i

K

k
ik YZ 

1

           )....1( mii   (16)

 1,0ijX                  (17)

 1,0iY      (18)

 1,0, kiZ                   (19)

 
The objective function given by Eq. (11) will attempt to minimize the total cost (facility costs, operating 

costs and transportation cost). Eq. (12) will attempt to maximize total priority weight of candidate 

municipalities. Eq. (13) ensures that the demand of each hospital j is fulfilled. Eq. (14) ensures that the 

service prepared by a site cannot exceed its capacity. Eq. (15) ensures that the sum of the services 

provided by a site cannot exceed the sum of its capacities and Equation (16) that the selected 

municipalities must use only k-size incinerators. Eqs. (17-19) are binary.  

 

The two main objectives are shown in Eqs. (11-12), which can be converted to be hybrid goal 

programming (HGP) as follow: The objective can be written as Eq. (20), and the constraints of HGP 

model are shown in Eqs. (13-19) and Eq. (21) and Equation (22). 

 

Deviation variables 

 

di
-, di

+ are vectors of under achievement and overachievement of targeted value for each objective. 

 

Additional parameters 

 

 wi is final priority weights/location weights of municipality i. 

 TC is target for total cost (defined by total cost of MSLP model). 

 Wo1 is objective’s weight of total cost according to experts' opinions.   

 Wo2 is objective’s weight of fuzzy AHP according to experts' opinions.  

 

Objective functions of the HGP model 

 
  2211min dwdwz oo  (20)

 
Constraints 
 


        111 11 1 ,1 1 , /// ddTCXcTCZoTCZf m

i
K
j ijij

m
i

K
k kik

m
i

K
k kik =1 (21) 

1221  
 ddYw i

m
i i  (22)
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The objective is to minimize the unwanted deviations, di
-, di

+; these deviations are deviation variables of 

under achievement and over achievement of targets for each objective. Since each objective target has 

different units, this has to normalize all units to 1.The optimal solution of the HGP model can be solved 

by LINGO 13. 
 

3.3 VRP model   
 

After obtaining the optimal solution from the fuzzy AHP model, these new locations are used to design 

the transport routes to achieve the lowest transportation cost. This section describes the notation and 

features that are common throughout the paper. Our formulation is based on the VRP model as shown in 

Fig. 3. Details of the transportation vehicle routing model are as follows: 
 

 

 

 

 

 

 

 

 

 

Fig. 3. Model of VRP 

Assumptions  
 

(1) The selected locations are known, and the hospital points are also known. 

(2) The sum of infectious waste material should not be higher than the maximum load of transport 

vehicles.  

(3) Each transport vehicle takes the selected location as the starting point, and then returns back to the 

selected location.  

(4) The amount of infectious waste is determinate.  

(5) One vehicle can serve multiple hospitals.  

(6) Each vehicle travels from node i to j at a speed of 60 kilometers per hour. 
 

Indices 
 

The VRP model may be defined as the following graph theoretic problem. Let G = (N,A) be a complete 

graph where N is the node set and A is the arc set. Nodes j=2, 3,4,…, n correspond to the hospitals or 

customers, whereas node 1 corresponds to the selected municipality or depot and (i, j) A .  K is a set of 

identical vehicles, which is available at the municipality. 
 

Parameters 
 

 dtij is actual distance between node i and node j (km) 

 K is a set of identical vehicles.  K=1, 2, 3,...,k.   

 N is vertex set.  N= 1, 2, 3, …,n.   

 qk is capacity of  kthvehicle. (kg) 

 fk is available vehicle cost (baht). 

 dj is the demand of hospital j (kg/day). 

 tij is traveling time between node i and node j (min.). 

 TT is the maximum allowable time (min.). 
 

Decision variables 
 

Xijk is a binary decision variable; Xijk =1 if vehicle k moves from hospital i to j; Xijk = 0 otherwise. 
 

Zk =1 if vehicle k is used to service hospitals, Zk = 0 otherwise. 

 

Depot 

Customers 
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Objective function 

 

1

min
K

ij ijk

i N j N k

z dt X
  

  
(23)

 
Constraints 
 

k

Ni jiNj

ijk NZX  
  ,

       Kk  (24) 

1
,

1 
 jiNj

jkX                 Kk  (25) 

1
,

1 
 jiNi

kiX                     Kk  (26) 

0
,

 
 Ni jiNj

ipkipk XX    KkNpp  ,,  (27) 

1
,

 
 Kk jiNi

ijkX                  Nj  (28) 

1
,

 
 Kk jiNj

ijkX                 Ni  (29) 

k

Ni jiNj

ijkj qXd  
  ,

          Kk  (30) 

TTXt
Ni jiNj

ijkij  
  ,

          Kk  (31) 

 1,0ijkX                         KkNjNi  ,,  (32) 

 1,0kZ  (33) 

 

Eq. (23) is to minimize the total distance. Eq. (24) is the number of arcs between node i and node j, which 

is not more than the  number of points, N. Eq. (25)  and Eq. (26)  ensure that the vehicle must go from 

the depot to the hospital only once. Equation (27) indicates the vehicle arrives at hospital point j and also 

leaves from j. Eq. (28) and Eq. (29) indicate that all hospitals are visited only once. Equation (30) ensures 

that the total infectious waste collection transportation by vehicle K does not exceed the capacity of the 

vehicle itself. Eqs. (31) ensure that each vehicle k does not travel more than the maximum allowable 

time/maximum distance. Eq. (32)  and Eq. (33)  are binary decision variables. In this case study, since 

LINGO13 used a very long computational time to solve this problem, heuristic techniques are suitable 

for solving the VRP for the disposal centers. Details of this technique are shown in the next section. 
 

3.4 HGA  
 

The Genetic Algorithm (GA), proposed by Holland (Holland, 1992), is a meta-heuristic, similar to other 

meta-heuristics like simulated annealing (SA) and tabu search (TS). Traditional GA starts with an initial 

population of n random chromosomes (random solutions), and the GA maintains each random 

chromosome with associated fitness values. Parents are chosen to mate, on the basis of a value of 

probability distribution, producing offspring. For example, any chromosomes with higher fitness values 

are given more opportunities to reproduce, crossover and mutation. In the crossover phase, the GA 

attempts to swap a subsequence of two of the chosen chromosomes to create two offspring.  
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Fig. 4. Flow Chart of solution of VRP using HGA 
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A new generation of chromosomes is formed by choosing some parents and some offspring in accordance 

with their fitness values, and by rejecting others to maintain the size constant of population. After the 

predetermined number of generations is created, the algorithm converges to the best chromosome, which 

hopefully represents the optimal solution of the problem. The performance of GA depends on important 

parameters such as the value of probability distribution of crossover, the value of probability distribution 

of mutation, the size of the population, the number of iterations, and this algorithm also depends on the 

fitness function. A hybrid genetic algorithm (HGA), which integrates Push-Forward Insertion Heuristic 

(PFIH) from Solomon's paper (Solomon, 1987), genetic algorithm (GA) and three local searches 

(Insertion-move, 2-Opt-move by Potvin and Rousseau (Potvin & Rousseau, 1995) and λ-interchange-

move by Osman and Christofides (Osman & Christofides, 1994)), is proposed to deal with the VRP in 

this case. The main objectives of the HGA are to minimize number of vehicles (NV) and minimize the 

total distance (TD), under the limits of existing resources. Since traditional GA cannot find the good 

solutions adequately, the HGA will be formulated to solve this problem. The algorithm is demonstrated 

in Fig. 4. A flow chart of solution of VRP using HGA can be described as follows. Let P be the constant 

size of the population at each generation. An initial population will be generated using PFIH until the 

size of the population is equal to P. The cost function for choosing the first customer/hospital (Ci) is 

calculated using the following Eq. (34). 
 

Ci = -α d0i + β li +  ((pi/360)d0i)             (34)

 

 α is the weight factor for the total distance travelled by a vehicle. 

 β is the weight factor for the urgency of a customer. 

  is the weight factor for the polar coordinate angle of a customer. 

 d0i is the distance from depot  to hospital i. 

 li is the latest arrival time at hospital i. 

 pi is the polar coordinate angle of hospital i. 
 

The unrouted customer/hospital with the lowest cost is selected as the first customer/hospital to be visited. 

The priority rule in Equation (34) for the selection of the hospital depends on the distance, latest time 

and polar coordinate angle. For details of PFIH see Solomon (Solomon, 1987), Brandão and Vasconcelos 

(Brandão de Oliveira & Vasconcelos, 2010) and Thangiah, Osman and  Sun (Thangiah, Osman, & Sun, 

1994).  After the initial population is built up, these chromosomes are sorted by fitness, and then a pair 

of chromosomes is randomly chosen for mating using the ranking-based selection of Correa et al. (Correa 

et al., 2001), as shown in Eq. (35). 
 























 


2

)(411
,)(

2 PPrnd
PpOSSOSSelect p

 (35)

 
 

OS is an ordered list of solutions sorted by fitness. 

p is the position in the OS to be selected as the chromosome Sp . This formula is biased to favor the 

selection of chromosomes in early positions of the ordered list, like the best (smallest fitness)  

rnd (M) is a random distribution in the range 0 to M-1 

Next, with the crossover probability pc, exchange parts of two selected chromosomes (Parents) and create 

two offspring (Child) as shown in Fig. 5 

 

            

 

 

 

 
 

Fig. 5. Crossover procedure 

2P 4 3 6 2 5 8 7 1 9 

2C 3 1 6 2 9 * * * * 

5 8 3 1 6 2 9 4 7
Step 1  

1P 

6 2 5 8 7 * * * *1C 

5 8 4 7Step 2  1P 

6 2 5 8 7 3 1 9 4Step 3  1C 

3 1 6 2 9 2P 4 3 6 2 1 9 5 8 7 

2C 3 1 6 2 9 4 5 8 7 



  

 

88 

 

 Randomize indices  cut1 and cut2 , whereas cut1 < cut2  

 Step 1: Copy customers/hospitals in parent-1 (P1) from indices cut1 to cut2 to child-2 

(C2) starting at index 0. Also customers/hospitals in parent-2 (P2) from indices cut1 to 

cut2 to child-1 (C1) starting at index 0. 

 Step 2: mask customers/hospitals in P1 that already are contained in C1 and also mask 

customers in P2 that already are contained in C2. 

 Step 3: fill customers that unmask in C1 to P1 and C2 to P2. 

 

Like the crossover phase, with the mutation probability pm, customers/hospitals in the two offspring 

chromosomes will be randomly swapped as shown in Fig. 6. This mutation procedure is repeated until 

the size of the new population is equal to P. After that, offspring and the old population (current 

population) will be combined and P chromosomes picked to be the new population using fitness. If a new 

chromosome is better than any chromosome in the current population, the new chromosome will be 

included and the worst one in the current population will be removed. Finally, the new chromosomes in 

the new population will be improved by three local searches, insertion-move, 2-opt and N-interexchange, 

as shown in Fig. 7, Fig. 8 and Fig. 9, respectively.  
 

 

  

 

 

Fig. 6. Mutation procedure 

 

 

 

 

Fig. 7. Insertion-move 

 

 

 

 

 

 

Fig. 8. 2-opt-move 

 

 

 

 

 

 

 

Fig. 9. N-interchange-move   

 

The selection is still a ranking-based selection and chromosomes P times for each local search. This 

procedure is repeated until the stopping criteria are satisfied. Implementation and computational results 

of the HGA will be reported in next section. 
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4. Application  

 

In section 3, the HGP model was used to identify new suitable locations for infectious waste disposal in 

Upper-Northeastern Thailand. Six candidate municipalities, namely Maha Sarakham Town Municipality 

(MSTM), Nongbua Lamphu Town Municipality (NLTM), Kalasin Town Municipality (KTM), Sakon 

Nakhon City Municipality (SNCM), Nong Khai Town Municipality (NKTM) and Loei Town 

Municipality (LTM), were created from legislation, regulations and expertise by experts. New, suitable 

locations were selected from six candidate municipalities to serve the one hundred and seven community 

hospitals, namely H1, H2, ..., H107 (see details in Fig. 10), given the resource restrictions and 

preferences. The steps of the calculation are shown in sections 4.1and 4.2. 

 

 
Fig. 10. The transportation network of candidate municipalities and community hospitals 

 

4.1 Evaluate the location weights of each candidate municipality using fuzzy AHP 

 

In this section, fuzzy AHP was used to determine location weights of each candidate municipality. Firstly, 

a three-level hierarchical structure for selecting infectious waste disposal centers was constructed by 

asking six experts and stakeholders (see Fig. 11). In the hierarchy, level 0 was the goal, the new suitable 

municipalities for infectious waste disposal, and level 1 was three main criteria, infrastructure (C1), 

geological (C2) and environmental & social (C3). Level 2 was ten sub-criteria, public utilities (C11), traffic 

(C12), area size (C21), features of area (C22), flooding in the past (C23), density of population (C24), 

municipal administrators (C31), ability of municipalities (C32), distance from communities (C33) and 

distance from public water resources (C34). Level 3 had six candidate municipalities, MSTM, NLTM, 

KTM, SNCM, NKTM and LTM. After obtaining a hierarchy for selecting a location for infectious waste 

disposal, fuzzy pair-wise comparison matrices were constructed for all levels (level 1 to level 3) from six 

decision makers who have worked in the field for more than fifteen years using the nine scale of fuzzy 

AHP (Table1). For example, in level 1, fuzzy pair-wise comparison matrices of three main criteria were 
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constructed as shown in Table 3, and then the these matrices were aggregated into a fuzzy AHP combined 

matrix ( G
~

) by Eq. (6) as shown in Table 4. The priority weights of level 1 were evaluated by three steps 

of estimating priority weights of each level and Eqs. (7-10), shown in Table 4 and Table 5. Finally, the 

global priority weights/location weights are shown in Table 6,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. A hierarchy for selecting location for infectious waste disposal 

 

Table 3  

The pair-wise comparison matrix of criteria with respect to goal by the six experts 
Goal C1 C2 C3 

C1 (1.00, 1.00, 1.00), (1.00, 1.00, 

1.00), (1.00, 1.00, 1.00),  (1.00, 

1.00, 1.00) (1.00, 1.00, 1.00),  

(1.00, 1.00, 1.00) 

(0.25, 0.33, 0.50),  (0.17, 0.20, 

0.25), (1.00, 1.00, 1.00),  (2.00, 

3.00, 4.00), (0.25, 0.33, 0.50),  

(1.00, 1.00, 1.00) 

(0.11, 0.11, 0.13),  (0.11, 0.11, 

0.13), (0.13, 0.14, 0.17),  (0.13, 

0.14, 0.17), (0.11, 0.11, 0.13),  

(0.17, 0.20, 0.25) 

C2 (2.00, 3.00, 4.00),  (4.00, 5.00, 

6.00), (1.00, 1.00, 1.00), (0.25, 

0.33, 0.50), (2.00, 3.00, 4.00),  

(1.00, 1.00, 1.00) 

(1.00, 1.00, 1.00),  (1.00, 1.00, 

1.00), (1.00, 1.00, 1.00), (1.00, 

1.00, 1.00),  (1.00, 1.00, 1.00),  

(1.00, 1.00, 1.00) 

(0.13, 0.14, 0.17),  (0.13, 0.14, 

0.17), (0.13, 0.14, 0.17), (0.13, 

0.14, 0.17), (0.13, 0.14, 0.17),  

(0.17, 0.20, 0.25) 

C3 (8.00, 9.00, 9.00),  (8.00, 9.00, 

9.00), (6.00, 7.00, 8.00), (6.00, 

7.00, 8.00), (8.00, 9.00, 9.00),  

(4.00, 5.00, 6.00) 

(6.00, 7.00, 8.00), (6.00, 7.00, 

8.00), (6.00, 7.00, 8.00), (6.00, 

7.00, 8.00), (6.00, 7.00, 8.00),  

(4.00, 5.00, 6.00) 

(1.00, 1.00, 1.00), (1.00, 1.00, 

1.00), (1.00, 1.00, 1.00),  (1.00, 

1.00, 1.00) , (1.00, 1.00, 1.00),  

(1.00, 1.00, 1.00) 

 

Table 4  
The integrated pair-wise comparison matrix of six experts. 

fuzzy AHP combined (goal) C1 C2 C3 

C1 (1, 1, 1) (0.52, 0.64, 0.79) (0.12, 0.13, 0.15) 

C2 (1.26, 1.57, 1.91) (1, 1, 1) (0.13, 0.15, 0.18) 

C3 (6.48, 7.50, 8.09) (5.61, 6.62, 7.63) (1, 1, 1) 

 

Table 5 The normalization of integrated pair-wise comparison matrix  
Goal C1 C2 C3 wci CR 

C1 (0.09, 0.10, 0.11) (0.06, 0.08, 0.11) (0.09, 0.10, 0.12) 0.10 

0.029 C2 (0.11, 0.16, 0.22) (0.11, 0.12, 0.14) (0.10, 0.12, 0.14) 0.13 

C3 (0.59, 0.74, 0.93) (0.60, 0.80, 1.07) (0.75, 0.78, 0.80) 0.77 

MSTM KTM 

...level 0 

...level 1 

...level 2 

The new suitable municipalities for infectious waste disposal 

1C 2C       3C 

12C 11C 22C 21C 24C 23C 32C 31C 34C 33C 

...level 3 SNCM NKTM LTMNLTM 
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Table 6  

Location weights/global priority weights of candidate municipalities 
Candidate municipalities Location weights (wi) 

Maha Sarakham Town Municipality (MSTM) 0.179  

Nongbua Lamphu Town Municipality (NLTM) 0.249 

Kalasin Town Municipality (KTM)  0.110 

Sakon Nakhon City Municipality (SNCM) 0.253 

Nong Khai Town Municipality (NKTM) 0.094 

Loei Town Municipality (LTM) 0.115 

 

4.2 Compute the suitable locations for infectious waste disposal using the HGP model  

 

After obtaining the location weights of each candidate municipality, in order to solve the multi-objective 

facility location problem for infectious waste disposal, set wo1 = 0.6, wo2 = 0.4 according to experts' 

opinions. The demand and actual distance matrix of six candidate municipalities and one hundred and 

seven hospitals are shown in “the resource data for the HGP model”1 as dj, dtij.  The value of u is 4.3 

baht/km. In Table 7, fk (k=1, 2, 3) are 9,244, 13,866  and 27,732 baht per day, and ok are 23,785, 31,074 

and 51,497 baht per day respectively.  

 

Table 7  

Details of the cost 

Details of the cost (baht/day) 

 

 Size of incinerator  

( kg/day) 

1,000 1,500 3,000

1. Facility cost 

1.1 Incinerator and building facilities 

1.2 Landfill 

1.3 Storage 

1.4 Infectious waste tank 

1.5 Cleaning system 

1.6 Emergency generator 

 

8,265 

46 

658 

164 

11 

101 

 

12,397 

68 

986 

247 

16 

151 

 

24,795 

137 

1,973 

493 

33 

301 

Total  facility cost (baht/day) 9,244 13,866 27,732 

2. Operating cost  

2.1 Labor cost 

2.2 Maintenance costs (6% of  incinerator) 

2.3 Cost of measuring air pollution 

2.4 Cost of  IWD (3.3 Baht/kg ) 

 

 

9,929 

9,460 

1,096 

3,300 

 

10,849 

14,179 

1,096 

4,950 

 

12,296 

28,205 

1,096 

9,900 

Total  operating cost (baht/day) 23,785 31,074 51,497 

 

Table 8  

Optimal solution of HGP model 
Opened locations Size of locations 

 (kg/day) 

Hospitals 

MSTM 1,000 H1, H2, H3, H4, H5, H7, H8, H10, H13, H14, H15, H16, H18, H20, 

H21, H22, H23, H27, H28, H29, H31, H33, H98, H99, H100, H101, 

H102, H103, H104, H105, H106, H107 

NLTM  1,000 H6, H9, H11, H12, H17, H19, H51, H52, H53, H54, H55, H56, H57, 

H58, H59, H60, H61, H62, H63, H64, H65, H67, H69, H70, H72, H73, 

H74, H75, H76, H77, H78, H79, H80, H81, H82, H83, H84, H85, H91, 

H93, H94, H95, H96, H97 

SNCM  1,000 H24, H25, H26, H30, H32, H34, H35, H36, H37, H38, H39, H40, 

H41, H42, H43, H44, H45, H46, H47, H48, H49, H50, H66, H68, H71, 

H86, H87, H88, H89, H90, H92 

Total cost 37913.37 baht/day  

 

                                                            
1 see details on https://sites.google.com/site/dataforijiec/ 
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The values of sk are 1,000 1,500 and 3,000 kg per day. The minimum total cost using Eqs.n (11, 13-19) 

was taken into Eq. (21) as the target of total cost (TC) in the HGP model, TC= 142,133 baht/day. 

Similarly, the location weights (wi) from Table 6 in section 4.1 were taken into Eq. (22), and the target 

of fuzzy AHP was equal to 1. After that, LINGO13 was applied using Eqs. (20-22) and Eqs. (13-19), and 

the optimal solution is shown in Table 8. Finally, the optimal solution was compared with the cost based 

model which used Eqs. (11, 13-19), as shown in Table 9. 

 

Table 9  
Comparison of Cost based model and HGP model 

Location Location weights (Wi) Cost based model  HGP model 

MSTM 0.179 Not selected Selected (incinerator size =1,000) 

NLTM 0.249 Selected (incinerator size =1,500) Selected (incinerator size =1,000) 

KTM 0.110 Selected (incinerator size =1,500)  Not selected 

SNCM 0.253 Not selected Selected (incinerator size =1,000)
NKTM 0.094 Not selected Not selected 

LTM 0.115 Not selected Not selected 

 Total cost (Baht/day) 142,133 142,627 

  

As seen in Table 9, based on the cost based model, the results show that NLTM and KTM were the 

selected municipalities. The global priority weights/location weights of NLTM and KTM are 0.249 and 

0.11, respectively, and the total cost is 142,133 baht/day. After that, the HGP model was used to solve a 

multi-objective facility location problem in this case; the results show that the suitable candidate 

municipalities were MSTM, NLTM and SNCM. The location weights of these selected municipalities 

are 0.179, 0.249 and 0.253, respectively, and the total cost is 142,627 baht/day. Although the total cost 

of the HGP model was slightly higher than the selection of the cost based model, by about 494 baht, it 

can increase the satisfaction level (global priority weights) for new selected municipalities. Therefore, 

the proposed model can lead to choosing new suitable municipalities for infectious waste disposal by 

considering both tangible factors and intangible factors simultaneously.  

 

Table 10  

Sensitivity analysis for different levels of objective weights. 

 Wo1=1.0,  

Wo2=0.0 

Wo1=0.60, 

Wo2=0.40 

Wo1=0.50, 

Wo2=0.50 

Wo1=0.40, 

Wo2=0.60 

Wo1=0.35, 

Wo2=0.65 

Wo1=0.33, 

Wo2=0.67 

Wo1=0.30, 

Wo2=0.70 

MSTM Not selected  Selected  Selected  Selected  Selected  Selected  Selected  

NLTM Selected  Selected  Selected  Selected  Selected  Selected  Selected  

KTM Selected  Not selected Not selected Not selected Not selected Selected  Selected  

SNCM Not selected  Selected  Selected  Selected  Selected  Selected  Selected  

NKTM Not selected  Not selected  Not selected  Not selected  Not selected  Not selected  Selected  

LTM Not selected Not selected Not selected Not selected Selected  Selected Selected  

Total cost 

(Baht/day) 
142,133          142,627 142,627 142,627 172,547          203,721 233,136          

Total location 

weights 
0.359 0.681 0.681 0.681 0.796 0.906 1.00  

 

The sensitivity analysis of the HGP model was also performed for different levels of objective weights 

in order to evaluate the influence of objective weights on the multi-objective facility location problem in 

this case. The results are summarized in Table 10, and Fig. 12 and Fig. 13. It is seen that by increasing 

wo1 and decreasing wo2 at the same time, the total cost goal has a decreasing trend (lowest total cost). On 

the other hand, it is seen that by decreasing wo1 and increasing wo2 at the same time, the number of 

locations and total cost have an increasing trend. Finally, these solutions from sensitivity analysis in 

Table 10 were offered to the six decision makers. As a result, the decision makers confirm that these 

municipalities (MSTM, NLTM and SNCM) are suitable as new infectious waste disposal centers, and 
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they believe that our proposed work can provide essential support for decision makers in the assessment 

of infectious waste disposal management problems in this case study and other areas of Thailand.  

 

 
Fig. 12. Sensitivity analysis of total cost for different levels of wo1, wo2  

 

  
Fig. 13. Sensitivity analysis of total location weight for different levels of wo1, wo2 

 

4.3 Compute the transport routes for infectious waste disposal centers using HGP model  

 

Based on the actual situation of this case, each hospital was determined to be served by each disposal 

center once a week, and in fact, the size of the vehicles was determined after creating the best transport 

routes/minimum total distance of the artificial vehicles in order to minimize transportation cost. 

Therefore, the size of artificial vehicles in this problem was not capacitated. Demand of each hospital 

(dj) was changed as the demand for seven days. Actual distance matrices (dtij) and dj of each cluster are 

shown in “distance matrix of each cluster”2 respectively.  

 

The experiment was performed on a computer with the following characteristics: an Intel® Core™ i5-

4210U processor Dual-core with 1.70 GHz with 8 GB of RAM, and Windows 8.1 operating system. The 

capacity of all vehicles (qk) is not capacitated, equal to 300,000 kg. Each vehicle travels from node i to j 

at a constant speed of 60 kilometers per hour so the maximum allowable time (TT) is equal to 480 minutes 

according to the experts' opinions. The input parameters for the experimentation in HGA were made with 

                                                            
2 see details on https://sites.google.com/site/dataforijiec/ 
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an initial population of 100 individuals and 10 generations, and HGA was tested to solve the actual 

problems using visual studio 2015 (C++). The weights for the three criteria of PFIH were set to α = 0.7, 

β = 0.1 and = 0.2, and the probability for genetic operator in HGA were set to crossover probability (pc) 

=0.8 and the mutation probability (pm) = 0.3. The obtained results are compared with computational 

results using LINGO13 based on the VRP model in section 4.3, as shown in Table 11.  

 

From Problem 1.1 (N=5), Problem 1.2 (N=10), Problem 1.3 (N=15) and Problem 1.4 (N=33), MSTM 

has been selected as a disposal center which needs to service 4 hospitals (H1, H2, H3, H4), 9 hospitals 

(H1, H2, H3, H4, H5, H7, H8, H10, H13), 14 hospitals (H1, H2, H3, H4, H5, H7, H8, H10, H13, H14, 

H15, H16, H18, H20) and 32 hospitals respectively.  

 

From Problem 2.1 (N=5), Problem 2.2 (N=10), Problem 2.3 (N=15) and Problem 2.4 (N=45), NLTM 

has been selected as a disposal center which needs to service 4 hospitals (H6, H9, H11, H12), 9 hospitals 

(H6, H9, H11, H12, H17, H19, H51, H52, H53), 14 hospitals (H6, H9, H11, H12, H17, H19, H51, H52, 

H53, H54, H55, H56, H57, H58) and 44 hospitals respectively.  

 

From Problem 3.1 (N=5), Problem 3.2 (N=10), Problem 3.3 (N=15) and Problem 3.4  (N=32), SNCM 

has been selected as a disposal center which needs to service 4 hospitals (H24, H25, H26, H30), 9 

hospitals (H24, H25, H26, H30, H32, H34, H35, H36, H37), 14 hospitals (H24, H25, H26, H30, H32, 

H34, H35, H36, H37, H38, H39, H40, H41, H42) and 31 hospitals respectively. 

 

Table 11 

Comparison of solutions using LINGO13 and HGA 

Data set 

Municipality’s 

name/Number of 

hospitals 

LINGO13 HGA 

Number of  

artificial 

vehicles 

      (NV) 

Total distance 

      (TD) 
Computational 

times 

  (hh, mm, ss) 

Number of  

artificial 

vehicles 

      (NV) 

Total distance 

      (TD) 
Deviation 

Problem 

1.1  

MSTM/4 hos. 
1 423.0 

00:00:00 
1 423.0 

0% 

Problem 

1.2  

MSTM/9 hos. 
2 703.9 

00:00:58 
2 703.9 

0% 

Problem 

1.3 

MSTM/14 hos. 
2 764.7 

39:05:00 
2 764.7 

0%  

Problem 

1.4 

MSTM/32 hos. 

(Actual  problem) 
3 1,245* 

48:00:00 
3 1,245 

0% 

Problem 

2.1  

NLTM/4 hos. 
1 338.7 

00:00:00 
1 338.7 

0% 

Problem 

2.2  

NLTM/9 hos. 
3 1181.5 

00:00:26 
3 1,181.5 

0% 

Problem 

2.3 

NLTM/14 hos. 
3 1168.1 05:08:37 3 1,168.1 

0% 

Problem 

2.4 

NLTM/44 hos. 

(Actual  problem) 
5 2,159.5* 

48:00:00 
5 2,159.5 

0%   

Problem 

3.1  

SNCM/4 hos. 
1 204.0 

00:00:00 
1 204.0 

0% 

Problem 

3.2 

SNCM /9 hos. 
1 471.1 

00:00:00 
1 471.1 

0% 

Problem 

3.3 

SNCM /14 hos. 
2 693.7 

07:59:42 
2 693.7 

0% 

Problem 

3.4 

SNCM /31 hos. 

(Actual  problem ) 
3 1,322.1* 

48:00:00 
3 1322.1 

0%  

*Computational results (feasible solutions) of actual problems at computational time of 48 hrs. 

 

As seen in Table 11, the computational results show that the optimal solutions for small size problem 

(N=5, N=10 and N=15) were achieved using LINGO13 and HGA. In addition, the computational results 

using HGA for all actual cases achieved best known solutions at computational times of 48 hrs using 

LINGO13. Details of computational results for the actual problems are shown in Table 12, and then the 

actual costs of a case study are shown in Table 13.   
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Table 12  

Details of computational results for the actual problems using HGA  

Disposal centers 

Transport routes  

Distance 

(km) 

Amount  

of infectious waste  
(kg) 

MSTM 

Route 1: MSTM, H99, H106, H107, H102, 

H100, H105, H8, H16, H4, H15, H14, H18, H3, 

H5, H98, MSTM 

401.0 2,941.54 

Route 2: MSTM, H23, H29, H28, H22, H27, 

H33, H21, H31, H104, MSTM 

408.9 1,258.60 

Route 3: MSTM, H10, H2, H1, H13, H7, H20, 

H101, H103, MSTM 

436.7 2,758.07 

 Total 1,246.6 6,958.21 

NLTM 

Route 1: NLTM, H96, H57, H55, H51, H53, 

H56, H61, H59, H54, NLTM 

451.0 1,264.13 

Route 2: NLTM, H78, H83, H85, H82, H91, 

H72, H75, H84, NLTM 

448.9 1,064.56 

Route 3: NLTM, H95, H58, H52, H81, H79, 

H74, H93, H69, H70, NLTM

434.6 1,452.99 

Route 4: NLTM, H67, H77, H65, H64, H63, 

H80, H76, H73, H6, H9, H97, NLTM

438.7 1,869.07 

Route 5: NLTM, H12, H17, H11, H19, H60, 

H62, H94, NLTM 

370.6 1,296.05 

 Total 2,143.8 6,946.8 

SNCM 

Route 1: SNCM, H41, H92, H86, H88, H44, 

H49, H42, SNCM 

413 1,427.37 

Route 2: SNCM, H30, H26, H25, H24, H32, 

H66, H68, H34, H36, H38, H45, H46, H43, 

SNCM 

433.5 2,716.4 

Route 3: SNCM, H47, H37, H40, H50, H71, 

H35, H90, H87, H89, H39, H48, SNCM 

462.0 2,837.8 

 Total 1,308.5 6,981.57 

 

Table 13 

The actual costs of a case study 
Details of the cost 

(baht/day) 

 

Selected municipality/incinerator size 

MSTM/1,000 NLTM/1,000 SNCM/1,000

Facility cost  9,244 9,244 9,244 

Operating cost  23,785+ 2,195.89=25,980.89 23,785+ 1,921.91 = 25,706.92 23,785+ 2,195.89 = 25,980.89 

Transportation cost 1,246.6 km ×4.3 baht/km = 

5,360.38 baht/week= 765.77   

2,143.8 km ×4.3 baht/km = 

9,218.34 baht/week= 1,316.91   

1,308.5 km ×4.3 baht/km = 

5,626.55 baht/week= 803.79   

Total  35,990.66 36,267.83 36,028.68 

Actual total cost 35,990.66+36,267.83+36,028.68 =108,287.17 

 

As seen in Table 12, in practice based on actual situation and according to decision makers' opinions, 

infectious waste which is generated at hospitals should be serviced from any selected municipality once 

a week using a minimum number of vehicles. Any vehicle used to transport infectious waste should be 

of a suitable size, commensurate with the design of the routes and mobility of the service. Hence, there 

are three sizes of special vehicles, capacity of 1,000 kg, capacity of 2,000 kg and capacity of 3,000 kg, 

which are often used and recommended for infectious waste collection in Thailand. The prices of these 

special vehicles for waste collection are about 2 million baht, 3 million baht and 4 million baht 

respectively. Therefore, in order to minimize transportation costs and number of vehicles according to 

decision makers' opinions, a capacity of 3,000 was selected as a suitable size for MSTM, and it has been 

planned to pick up the infectious waste on Monday (Route 1), Tuesday (Route 2) and Wednesday (Route 

3). A capacity of 2,000 was selected as a suitable size for NLTM, and it has been planned to pick up the 

infectious waste on Monday (Route 1), Tuesday (Route 2) and Wednesday (Route 3). Finally, a capacity 

of 3,000 was selected as a suitable size for SNCM, and it has been planned to pick up the infectious waste 
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on Monday (Route 1), Tuesday (Route 2) and Wednesday (Route 3). The actual total cost in the case 

study is equal to 108,287.17 baht/day, 35990.66+36,267.83+36,028.68=108,287.17 baht/day, as shown 

in Table 13. 

 

As seen in Table 12 and Table 13, the proposed HGA can lead to choosing transport routes which provide 

minimum transportation costs effectively, and it also provides the minimum number of vehicles under 

this actual case study, according to decision makers' opinions.  

  

5. Conclusion 

 

As presented in this paper, the location routing problem for infectious waste disposal is a complex, multi-

stage process. As indicated by the authors it can be split into two phases, including: 1) the multi-objective 

facility location problem, the analysis of the regions being the potential locations for infectious waste 

disposal; 2) the vehicle routing problem, the analysis of transport routes in the selected location, which 

is to minimize transportation cost/total distance. In the first stage of this paper, the authors have presented 

a model in order to solve multi-objective facility location problems with both quantitative and qualitative 

objectives. This model was tested with a case study, for 107 hospitals and 6 candidate municipalities, in 

Upper-Northeastern Thailand. Firstly, the fuzzy AHP was applied to determine the global priority 

weights of each location/ location weights. Secondly, the HGP model (multi-objective facility location 

problem model) was formulated to solve this complex problem in a case study, the global priority weights 

of fuzzy AHP were taken into the proposed model. Finally, the optimal solution was computed by 

LINGO13 to select the new suitable locations for infectious waste disposal. The results show that MSTM, 

NLTM and SNCM were the suitable locations. Even though for these selected locations, the total cost is 

slightly higher than the selection by the cost based model, by about 494 baht/day, the suitable global 

priority weight was achieved using the HGP model. In the second stage of this paper, the authors have 

presented an HGA model in order to solve VRP under the actual situation. Firstly, LINGO13 was applied 

to solve the VRP model in order to compare with HGA which was formulated to solve large size problems 

in a case study. Finally, the solutions were planned for infectious waste pickup by decision makers. The 

results show that selected municipalities were assigned for infectious waste pickup efficiently, using the 

minimum number of vehicles and minimum transportation cost in the decision makers' opinions. 

 

The major advantages of the proposed methodologies are that the hybrid goal programming model (HGP) 

can guide selection of new suitable locations by considering quantitative and qualitative factors 

simultaneously, and the hybrid genetic algorithm can determine the transport routes which require the 

minimum number of vehicles and minimum transportation cost under the actual situation in this case 

efficiently. Therefore, it is believed that these approaches should be more valuable and applicable than 

stand-alone optimization techniques. 
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