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Abstract This paper introduces a three-phase hybrid
heuristic for a large-scale energy management and main-
tenance scheduling problem. The problem is to schedule
maintenance periods and refueling amounts for nuclear
power plants with a time horizon of up to five years, and han-
dling a number of scenarios for future demand and prices.
The goal is to minimize the expected total production cost.
The first phase of the heuristic solves a constraint program-
ming model of a simplified version of the problem, the sec-
ond performs a local search, and the third handles overpro-
duction in a greedy fashion.

This work was initiated in the context of the ROADEF/-
EURO Challenge 2010. In the concluding phase of the com-
petition, our team ranked second in the junior category and
sixth overall.

After correcting a small implementation bug in the pro-
gram that was submitted for final evaluation, our solver
ranks first in the overall results from the competition.

Keywords maintenance scheduling · constraint program-
ming · ROADEF/EURO Challenge 2010 · production
planning · hybrid heuristics

1 Introduction

In France, the majority of the electricity is produced by ther-
mal — and in particular nuclear — power plants, and the
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main supplier is Électricité de France. There are two types
of thermal power plants in the portfolio: type 1 plants which
can be supplied with fuel continuously and without inter-
rupting the production, and type 2 plants (nuclear power
plants) which must be taken offline for refueling at regu-
lar intervals. The process of taking a power plant offline
for maintenance is called an outage and the period between
two outages a production campaign. While type 1 plants
are more flexible than type 2 plants, the production cost in-
curred per unit of electricity is larger than for type 2 plants.
Outages for type 2 plants should be scheduled such that
the demand for electricity is satisfied at the lowest possible
cost. A schedule for outages must satisfy a large number of
constraints due to for example limited resources and safety
considerations. Some of the constraints are due to limits on
fuel levels in connection with each outage: There is a max-
imal fuel level for a power plant, a maximal allowed fuel
level when a plant is taken offline, and a minimum refueling
amount at each outage. An outage lasts a couple of weeks
and is always scheduled to begin at the start of a week.

When planning future production, one must decide i) the
timing of each outage, ii) refuel amounts, and iii) electricity
production levels. The total production of electricity is not
allowed to exceed the demand, and therefore type 2 plants
can sometimes produce at less than their maximum produc-
tion level. This situation is called modulation, and due to
technical reasons there is a limit on the allowed modulation
for each plant for each production campaign. By modulating
nuclear power plants can adjust to small variations in elec-
tricity demand. Time is discretised into time steps spanning
a couple of hours to model the variations in demand.

When a type 2 plant is taken offline for refueling and
maintenance, the electricity must be produced by alternative
sources. This can either be done by one of the other type 2
plants or by the more expensive type 1 power plants. The
future electricity demand and the price of fuel for produc-
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Fig. 1 A maintenance schedule for 11 type 2 plants. A light gray line
is used for time steps with production, a wide dark gray segment for
outages, and a black segment for when a plant is out of fuel.

tion on type 1 plants is uncertain. This uncertainty should
be taken into account in the planning of outages for type 2
plants. This is modeled by minimizing the expectation of fu-
ture production cost over a number of given scenarios. The
decisions on outage placement and refueling are common
across all scenarios, whereas the decisions on production
can be adjusted for individual scenarios.

1.1 The ROADEF/EURO Challenge 2010

The described problem was the subject of the ROADEF/-
EURO Challenge 2010, which ran from July 2009 through
June 2010. The competition was jointly organized by the
French Operational Research and Decision Support Society,
the European Operational Research Society, and the Euro-
pean utility company Électricité de France. In total 44 teams
from 25 countries signed up for the challenge, of these 21
qualified for the final round, and 16 submitted a program
for the final evaluation. The submitted programs were eval-
uated on ten problem instances, five known in advance and
five only used in the evaluation. For each instance the time
limit imposed on the program was one hour. In the con-
cluding phase of the competition our team ranked second
in the junior category and sixth overall. A complete descrip-
tion of the competition and evaluation rules can be found in
Porcheron et al (2010).

The problem instances from the challenge have up to 75
type 2 plants, up to 120 scenarios for future prices and de-
mand, and up to 5817 discrete time steps. Outages always
start at the beginning of a week, and since the time horizon
is about five years, there can be up to 277 possible outage
start dates. This leads to a large-scale energy management
problem.

A solution to the problem can be divided into two parts:
a maintenance schedule and a production plan. A mainte-
nance schedule specifies when outages of type 2 plants are
scheduled and the amount of fuel to reload at each outage. A
production plan specifies the production level of each plant
for every time step and every scenario. To give an example
of what a maintenance schedule might look like, see Figure
1, which shows a schedule for 11 type 2 plants.
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Fig. 2 The production level over time for plant 8 from Figure 1. The
full line is the current production level and the dashed line the maxi-
mum allowed production level.
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Fig. 3 The fuel level over time for plant 8 from Figure 1.

Figures 2 and 3 gives an example of the production level
and fuel level over time for plant number 8. Note the sud-
den decrease in production around time step 2200; this is
modulation to ensure that there is no overproduction in the
specific time step.

The following factors indicate that the problem is com-
putationally hard to solve. First of all, it is NP-complete in
the strong sense, as we prove in Section 2.5. Furthermore,
the problem instances are large: a single problem instance
takes up to 262 megabytes of hard disk space and contains
more than 50 ·106 continuous decision variables just to rep-
resent production levels for every plant, time step, and sce-
nario. Finally, there is a large number of constraints on pro-
duction levels, fuel levels, refueling amounts, and schedul-
ing of outages.

The program we submitted contained a small implemen-
tation bug which resulted in infeasible solutions for two of
the five unknown instances (feasible solutions were found
for all other instances). After correcting the program, we are
able to find feasible solutions for all instances, and the solu-
tions are actually better than those of the winning team.

1.2 Related work

A problem similar to the one studied here has been consid-
ered in Fourcade et al (1997). They consider roughly the
same scheduling problem as here and formulate a mixed in-
teger programming model. In their model, there is no deci-
sion variable concerning refueling amounts; this decision is
instead handled as a predefined fixed amount. There is also
no uncertainty of future demand and prices, and the demand
is given per week, in contrast to the competition where the
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electricity demand is given in time steps of several hours,
i.e., their discretisation is more coarse-grained.

They are able to solve small problems of up to 20 nuclear
power plants with a MIP solver. The authors also attempted
to tackle a model with 40 power plants, which yields a fea-
sible solution after more than eight hours of computational
time but with a significant gap to the LP lower bound. They
report that this model is almost the size of the complete
model of France which has 54 nuclear plants. The perfor-
mance of MIP solvers and hardware have increased signifi-
cantly since 1997, so modeling that particular problem as a
mixed integer programming problem might be feasible with
state of the art solvers.

Besides the work by Fourcade et al. very little is pub-
lished specifically on nuclear power maintenance schedul-
ing with refueling. The problem is mentioned by Dunning
et al (2001), but the objective considered is to minimize the
environmental impact and the problem only considers a sin-
gle plant.

Several other power plant maintenance scheduling prob-
lems have been studied in the literature, see for example
Satoh and Nara (1991); Yellen et al (1992); Kim et al (1997);
Marwali and Shahidehpour (1999); Burke and Smith (2000).
They all consider maintenance scheduling without refuel-
ing constraints, a time discretization of one week and fu-
ture uncertainty is handled with a deterministic value for de-
mand combined with an imposed reliability constraint. Sev-
eral methods have attempted to optimize schedules, among
these are: MIP, Benders decomposition, dynamic program-
ming, genetic algorithms, simulated annealing, tabu search
and combinations of these methods. Some of the work have
scheduling constraints very similar to ones considered here,
see Mukerji et al (1991); Silva et al (1995). The previous
work in the literature does not consider power production
and future uncertainty in the same detail as required in the
competition setting.

The problem we consider includes complicating refu-
eling constraints, many scenarios modeling future uncer-
tainty and a detailed production planning part. So the work
done in the context of the ROADEF Challenge 2010 is on a
more general problem than the previous published work on
scheduling power plant maintenance. It is possible to adapt
the work done here to the settings above.

Setting production levels for power plants is treated in
the literature under the term ‘economic dispatch’ — i.e., the
problem of dispatching units to produce power in an eco-
nomic way. While many settings have been considered, see
for example Chowdhury and Rahman (2002), there are new
features in the production planning for nuclear power plants.
These features concern special bounds on production lev-
els when the fuel level is low, which lead to nonlinear con-
straints. When the fuel level of a type 2 plant drops below a
given threshold, a predetermined decreasing production pro-

file is imposed. Without this constraint the production plan-
ning could be solved as a linear programming problem.

The scheduling part of this problem is similar to the Re-
source Constrained Project Scheduling Problem (RCPSP),
see e.g. Neumann et al (2003). In both problems, activities
(in this case outages) have to be scheduled subject to tempo-
ral constraints and limited resources. However, the problem
at hand includes several constraints not found in common
variants of RCPSP, such as disjunctive temporal constraints
that only apply if a pair of activities is scheduled in a speci-
fied interval (as described in further detail in Section 2.3).

In the AIMMS Optimization Modeling Competition
from 2009, organized in connection with the MOPTA con-
ference, a truck maintenance scheduling problem was con-
sidered with some similarities to the nuclear power mainte-
nance scheduling problem. There are to our knowledge no
published work, except for a number of reports by the par-
ticipating teams on the AIMMS website1.

1.3 Our contributions

In this paper we prove that the considered energy manage-
ment problem is NP complete in the strong sense, and pro-
pose a three phase hybrid optimization approach to obtain
high quality solutions to the problem. Hybrid methods are
popular in recent literature, see Blum et al (2008); van Hen-
tenryck and Milano (2011); Hooker (2011). The proposed
method is a three-phase heuristic approach for the manage-
ment problem introduced above. The key parts of our ap-
proach are an initial solution construction and a two-part
solution improvement phase. A similar decomposition was
also present in the best performing approach of the previous
ROADEF competition, see Bisaillon et al (2009).

The proposed hybrid approach consists of a constraint
programming (CP) model in which an initial solution to
the complex scheduling problem is found by using approxi-
mated constraints for production levels and fuel consump-
tion. From this first schedule we apply a stochastic local
search (SLS) algorithm based on a simple neighborhood
structure. Two essential components in the local search are a
very fast feasibility check and a fast but approximated eval-
uation of the change in solution cost. To guide the search,
we use a simulated annealing metaheuristic. In the third and
final phase we use a greedy algorithm to remove any over-
production.

The approach is the result of an engineering cycle in
which we recognized that the SLS had difficulties finding an
initial feasible solution, while the task turned out to be easy
when tackled by CP. On the other hand, the CP was not able

1 http://www.aimms.com/community/modeling-
competitions/mopta-2009
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to improve the solution with respect to the objective func-
tion, something the SLS turned out to be more successful in
doing.

Other elements that turned out to be important are the
aggregation and approximation of the production planning
in both the CP model and the local search.

1.4 Overview

The paper is organized as follows. Section 2 gives a for-
mal description of the optimization problem as well as a
complexity proof. In Section 3 we describe how to obtain
a feasible solution using a CP model for scheduling outages
and a heuristic for production planning. The stochastic local
search phase is described in Section 4. Section 5 describes
how overproduction is handled. Computational analysis and
results are the topic of Section 6. Finally, we conclude in
Section 7.

2 Problem description

Each type 2 plant goes through a number of cycles. A cycle
is composed of an outage followed by a production cam-
paign. During an outage the plant cannot produce electric-
ity because of maintenance and reloading of fuel. During a
production campaign the plant can produce electricity. Hav-
ing type 2 plants producing at less than maximum capacity
leads to wear of the equipment involved and should thus be
avoided if possible. Modulation is the difference between
maximum capacity and actual production.

The demand for electricity is not known with certainty
at the time of planning. This uncertainty is modeled by in-
troducing a number of scenarios, each of which represents a
realistic future demand profile for the planning horizon dis-
cretised into a number of time steps. Optimizing for several
realistic scenarios instead of just one generally leads to more
robust plans.

Decisions concerning scheduling of outages and refuel-
ing amounts must be shared by all scenarios, but production
levels can be determined for each individual scenario. This
creates a dependency between scenarios, since the outage
schedule and refueling amounts must be feasible with re-
spect to every scenario’s production plan.

The objective is to create both a maintenance plan and
production plan that satisfy the demand for electricity at
the lowest average cost over all scenarios. The cost must be
minimized while satisfying a number of constraints. These
constraints can be divided into four categories: i) bounds
on production levels, ii) bounds on fuel levels and refuel-
ing amounts, iii) different kinds of temporal constraints on
the scheduling of outages, and iv) bounds on the outages’
simultaneous use of limited resources.

2.1 Decision variables and bounds

We use s = 0, . . . ,S− 1 to index scenarios, t = 0, . . . ,T − 1
to index time steps, h = 0, . . . ,H − 1 to index weeks, j =
0, . . . ,J− 1 to index type 1 plants, i = 0, . . . , I− 1 to index
type 2 plants, and k = 0, . . . ,K− 1 to index cycles. A week
consists of a number of time steps, i.e., two different dis-
cretisations of the planning horizon are used. This is because
outages are scheduled on a weekly basis, whereas a higher
resolution is required for the productions levels. The length
of a time step in hours is denoted by D (all time steps have
the same length).

The length of outage k for type 2 plant i is denoted by
DAi,k. Let ha(i,k) ∈ Z denote the week that the k’th outage
for type 2 plant i starts, and TOi,k and TAi,k denote the ear-
liest and latest starting time for ha(i,k), formally

TOi,k ≤ ha(i,k)≤ TAi,k. (1)

The bounds TOi,k and TAi,k may be undefined, in which case
the corresponding inequality is trivially satisfied. If the up-
per bound is undefined for some outage, the outage does not
have to be scheduled. If outage k for plant i is not scheduled
then ha(i,k) = −1 and constraint (1) is not enforced. Out-
age k+ 1 for plant i cannot start before outage k for plant i
is finished, and outage k+1 cannot be scheduled unless k is
scheduled.

The amount of fuel reloaded at type 2 plant i in outage
k is denoted by r(i,k) ≥ 0 and if k is scheduled r(i,k) must
satisfy

RMINi,k ≤ r(i,k)≤ RMAXi,k, (2)

where the bounds RMINi,k and RMAXi,k are input data. If k
is not scheduled, then r(i,k) = 0.

Let p(`, t,s)≥ 0 denote the production of plant ` (which
may be of type 1 or 2) at time step t in scenario s.2

2.2 Auxiliary variables

In addition to the decision variables there is a number of
auxiliary variables which can be derived from the decision
variables and thus do not increase the size of the solution
space.

The set of time steps composing the k’th outage of type
2 plant i is denoted by ea(i,k), and the set of time steps
composing the subsequent production campaign is denoted
by ec(i,k). For any outage k, the production p(i, t,s) of plant
i must be zero for every t ∈ ea(i,k) and every scenario s.

The fuel stock of type 2 plant i at time step t in scenario
s is denoted by x(i, t,s) ≥ 0. The initial fuel level of plant i

2 As in the original problem formulation citeproadefWeb we index
decision variables using parentheses in order to distinguish them from
parameters in the model.
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(at time step 0) is denoted by XIi and specified in the input
data. During a production campaign for plant i the decrease
in fuel level from time step t to t + 1 in scenario s equals
the production multiplied by the length of a time step D, and
therefore

x(i, t +1,s) = x(i, t,s)− p(i, t,s)D. (3)

During an outage the fuel level at type 2 plant i increases
because of refueling. Due to technical reasons the new fuel
level is not simply the sum of the old fuel level and the
amount reloaded. Formally, if t is the first time step in out-
age k for plant i, then the new fuel level for i in scenario s is
computed by

x(i, t +1,s) = Qi,kx(i, t,s)+ r(i,k)+Q′i,k, (4)

where Qi,k < 1 and Q′i,k are input data3.

2.3 Constraints

The problem constraints are here divided into four groups,
namely production level constraints, fuel level constraints,
scheduling constraints, and resource constraints.

Production level constraints Let DEMt,s denote the demand
at time step t in scenario s. The total production must equal
the demand in every scenario and every time step

∀s, t :
J−1

∑
j=0

p( j, t,s)+
I−1

∑
i=0

p(i, t,s) = DEMt,s. (5)

Let PMINt,s
j and PMAX t,s

j denote the minimum and maxi-
mum, respectively, allowed production of type 1 plant j at
time step t in scenario s, then

∀s, t, j : PMINt,s
j ≤ p( j, t,s)≤ PMAX t,s

j . (6)

The bounds on production for a type 2 plant are more com-
plex, since they depend on the current fuel stock of the plant.
If the fuel level is above a specified threshold BOi,k, then the
production is bounded from above by PMAX t

i

∀s, t, i,k : t ∈ ec(i,k)∧ x(i, t,s)≥ BOi,k

⇒ 0≤ p(i, t,s)≤ PMAX t
i .

(7)

As long as the fuel level is above the threshold modulation is
undesirable and therefore there is an upper bound MMAXi,k
on the accumulated modulation of plant i in each production
campaign k

∀s, i,k : ∑
t∈ec(i,k)∧

x(i,t,s)≥BOi,k

(PMAX t
i − p(i, t,s))D≤MMAXi,k. (8)

3 Equation (4) is a simplification of Equation (CT10) in the original
model defined by ROADEF, but the two formulas are equivalent when
appropriately adjusted values for Qi,k and Q′i,k are used.

If the fuel level is below the threshold BOi,k, the upper bound
decreases and a lower bound is also enforced. This is re-
ferred to as the declining power profile. How much the upper
bound decreases for type 2 plant i in production campaign k
is specified by the function PBi,k which maps fuel levels to
real numbers between zero and one. Formally, for all s, t, i,k,
if t ∈ ec(i,k) and x(i, t,s)< BOi,k, then the production must
lie in a small interval centered around Px

Px = PBi,k(x(i, t,s)) ·PMAX t
i , (9)

(1− ε)Px ≤ p(i, t,s)≤ (1+ ε)Px. (10)

Note that if the plant produces at Px and this implies that
the plant runs out of fuel, it is not allowed to produce at all.
Thus, (10) applies only if

x(i, t,s)≥ Px ·D. (11)

If (11) does not hold, p(i, t,s) must be zero.

Fuel level constraints There are upper bounds on the fuel
level before and after a type 2 plant’s outage. Let AMAXi,k
denote the upper bound on the fuel level at the time when
outage k for plant i starts and SMAXi,k the upper bound on
the fuel level after the outage k for plant i. If the k’th outage
for plant i starts at time step t, inequality (12) and (13) must
hold for every scenario s

x(i, t,s)≤ AMAXi,k, (12)

x(i, t +1,s)≤ SMAXi,k. (13)

Scheduling constraints There are disjunctive temporal con-
straints between outages. If a specified pair of outages (i,k)
and (i′,k′) is scheduled such that both intersect a given inter-
val (this interval may be the entire planning horizon), then
the following constraint must be satisfied:

ha(i,k)−ha(i′,k′)≥ Se∨ha(i′,k′)−ha(i,k)≥ Se′, (14)

where the lower bounds Se and Se′ are input data.
Several types of temporal constraints are defined in the

original problem definition from ROADEF citeproadefWeb,
but they can all be converted to the type in (14).

Resource constraints For every week h there is a collection
of subsets of outages. For each such subset A and an asso-
ciated natural number N, at most N of the outages in A are
allowed to be on outage in week h:

∀h : ∑
(i,k)∈A

Φ(i,k,h)≤ N, (15)

where Φ(i,k,h) equals 1 if plant i is in outage k in week h
and 0 otherwise.

There are limited resources available for maintenance.
To model this, a collection of subsets of outages is given.
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Each subset B in the collection has an associated resource
availability Q. For every B, at most Q of the outages in B
can use maintenance resources in any week

∀h : ∑
(i,k)∈B

Φ
′(i,k,h)≤ Q, (16)

where Φ ′(i,k,h) equals 1 if outage (i,k) uses a maintenance
resource in week h and 0 otherwise. Note that the weeks
in which an outage uses resources are not necessarily the
same as the weeks in which it is in outage. This difference
is specified in the input data.

Finally, there is an upper bound on the capacity that is
allowed to be offline at a given time in a given region. To
model this, a collection of subsets of plants is given. Each
subset C in this collection has an associated upper bound
IMAX and a subset of weeks IT . For every C, IMAX , and
any week h in IT , the total offline capacity of plants in C is
not allowed to exceed IMAX

∀h ∈ IT : ∀t ∈ h : ∑
i∈C:∃k:

t∈ea(i,k)

PMAX t
i ≤ IMAX . (17)

Note that in (17) a week is considered as a set of time steps.
The sum is simply over all type 2 plants in C that are offline
at time step t.

2.4 Objective function

The objective function is composed of three terms: the total
cost of refueling all type 2 plants, the average cost of type 1
production over all scenarios, and the value of residual fuel
at type 2 plants at the end of the planning horizon. Let Ci,k
denote the cost of fuel for type 2 plant i in cycle k, C j,t,s
the cost of production for type 1 plant j at time step t in
scenario s, and Ci the value of fuel for type 2 plant i at the
end of the planning horizon. Then the objective function to
be minimized is

I−1

∑
i=0

K−1

∑
k=0

Ci,kr(i,k)+
1
S

S−1

∑
s=0

T−1

∑
t=0

J−1

∑
j=0

C j,t,s p( j, t,s)D−

1
S

S−1

∑
s=0

I−1

∑
i=0

Ci · x(i,T,s).
(18)

2.5 Computational complexity

To prove the NP-completeness of the problem under con-
sideration, we propose a reduction from 1-in-3-SAT, which
is proved to be NP-complete in the strong sense by Schae-
fer (1978). Reductions directly from a scheduling problem
might be possible but is complicated by the exponential (al-
beit pseudo-polynomial) number of time steps that often will
arise.

First note that a solution to the energy management
problem can be checked in polynomial time, since it has a
polynomial number of constraints and each of them can be
checked in polynomial time.

Given a boolean formula β1∧·· ·∧βc where each clause
βi, 1≤ i≤ c, is the disjunction of three boolean literals from
the set {x1, . . . ,xn}, 1-in-3-SAT asks for an assignment of
true or false to x1, . . . ,xn such that exactly one of the literals
in each clause βi evaluates to true.

To solve an instance of 1-in-3-SAT by using the problem
under consideration, we construct an instance having a sin-
gle scenario as follows. A type 2 plant i with a single outage
with a duration of one week is created for each clause βi.
Furthermore, a week is created for each variable xh and its
negation ¬xh, in such a way that the variable and its nega-
tion occupy successive weeks. Scheduling an outage in the
week that corresponds to xh (respectively ¬xh) is interpreted
as forcing xh to be true (respectively false).

All outages must be scheduled in order for the 1-in-3-
SAT instance to be satisfiable. A constraint of type (1) with
bounds set to include all 2n weeks for every outage ensures
this.

To ensure that the single outage for plant i can only be
scheduled in one of the three weeks corresponding to liter-
als in βi, a constraint of type (17) which restricts the amount
of offline capacity is added for the single outage. We set
PMAX t

i = 1 for all t and IMAX = 0. Furthermore, we let C
contain plant i’s single outage and let IT contain all weeks
except the three corresponding to literals in the βi. Con-
straint (17) is enforced on time steps rather than weeks, so
the number of time steps is set to 2n such that there is one
time step per week.

Constraints of type (14) are added to ensure that out-
ages are not scheduled in both the week corresponding to xh
and ¬xh. For each pair of clauses that contains literal xh and
¬xh respectively, a constraint of type (14) is defined on the
two weeks corresponding to xh and ¬xh (which are consec-
utive by construction). Forcing a separation of two weeks
between the corresponding plants’ outages prevents these
outages from being scheduled in the weeks corresponding
to xh and ¬xh, respectively.

See Figure 4 for an example of a simple boolean formula
encoded as a maintenance scheduling problem.

The construction described above is polynomial in the
input size, as we have c clauses, giving rise to c outages,
each with three valid weeks where it can be scheduled. For
each of these weeks, we need less than c constraints to re-
strict it from conflicting with the other outages. The conver-
sion is thus bounded from above by 3c2.

The remaining constraints are constructed such that they
do not prevent scheduling of any type 2 plant in any week.
A single type 1 plant can be used to cover any demand we
decide on. We set the demand DEMt,0 = I for each time step
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x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

Fig. 4 A representation of the formula (x1 ∨ x2 ∨¬x3)∧ (¬x1 ∨ x2 ∨
x4). There is one row per clause in the formula. Dark gray weeks are
disallowed using constraint (17). Outages can be scheduled in light
gray and white weeks, but the light gray weeks for x1 and ¬x1 cannot
both be used for outages due to a constraint of type (14).

t, and choose PMAX t
i = 1, PMINt

i = 0 for each type 2 plant
i and time step t. The initial fuel stock is set large enough
to allow every type 2 plant to produce in all 2n weeks with-
out outages. Minimum and maximum bounds on refueling
of the type 2 plants are set such that they do not constrain
the scheduling solution, i.e., RMINi,k = 0, RMAXi,k = 0. To
ensure that AMAXi,k and SMAXi,k do not become constrain-
ing, they are set to the initial fuel stock.

If and only if we can schedule all outages in the energy
management problem, the 1-in-3 SAT instance is satisfiable.
Truth values are assigned to literals in the given 1-in-3-SAT
instance as follows. A literal is set to true if some outage
is scheduled in the corresponding week and to false other-
wise. Thus, any instance of 1-in-3-SAT can be solved by
scheduling outages. As mentioned above, the size of the re-
duction’s output is polynomial in the size of the 1-in-3-SAT
instance and can obviously be constructed in polynomial
time, and therefore the optimization problem in this paper
is NP-complete in the strong sense, i.e., it is NP-complete
even if all numerical parameters are encoded in unary base.

2.6 Hybrid approach overview

Our solver constructs a solution in three phases.

1. In the first phase, solving a CP model creates an initial
maintenance schedule with decisions on starting week
and refueling amount for each of the scheduled outages.
The CP model does not include any decisions on pro-
duction levels for type 1 or type 2 plants.

2. In the SLS phase of the approach, the maintenance
schedule is improved (both the placement of outages and
the refueling amounts). The SLS uses the initial mainte-
nance schedule but recalculates the refueling amounts.
During the local search, production levels for the type
2 plants are the same for all scenarios. This is done to
speed up evaluation of the quality of the current main-
tenance schedule. The evaluation is an approximation
since calculating the true cost for all scenarios is com-
putationally too expensive to be used in the local search
procedure.

3. In the final phase, production levels for both type 1 and
2 plants for every scenario are calculated. In this phase
the production levels of type 2 plants are also adjusted
to remove overproduction if any is present.

Note that a full solution with production levels for every
scenario only is available at the very end of the solution pro-
cess.

3 Initial solution construction

We showed that the maintenance scheduling part of the
problem is NP-complete, and our experience is that finding
non-trivial feasible solutions to this problem is challenging
in practice as well. Our initial approach included different
directions: a set of construction heuristics combined with
SLS and a CP approach. Only the CP approach consistently
gave feasible maintenance schedules. Our overall setup thus
starts by creating a first feasible maintenance schedule using
CP.

3.1 Constraint programming

An exact representation of the problem would result in a
very large number of variables, since it requires modeling of
every time step. To reduce the size of the model, we aggre-
gate all data indexed by time steps into weekly equivalents.
Furthermore, concepts such as modulation, the decreasing
power profile, and the cost of type 1 production lead to an
excessively large model. Therefore, we focus primarily on
finding a feasible maintenance schedule and introduce a sur-
rogate objective function that approximates the actual objec-
tive function (18), thereby leaving the rest of the optimiza-
tion to the subsequent SLS.

The surrogate objective function guides the solver to-
wards a solution with an appropriate number of outages. Too
few outages will make the type 2 plants run out of fuel and
thus be unproductive for an extended period of time. Too
many outages take the plant offline unnecessarily and might
cause infeasibility, as the plants are unable to use enough
fuel for the next outage to take place.

A CP model is used to find a feasible maintenance
schedule.4 For every outage (i,k), the CP model has three
decision variables: A binary variable σ(i,k) deciding if out-
age k for type 2 plant i is scheduled or not, the integer
variable ha(i,k) determining the starting week for the out-
age, and the integer variable r(i,k) determining the refueling
level. Refueling amounts are continuous in the problem for-
mulation but are discretised because most CP solvers cannot
handle continuous variables. To reduce the domain of the
refuel variables in the CP model, the discretisation is into
segments of 1000 fuel units.

We model the scheduling and resource constraints (14)-
(17) exactly but approximate the fuel level constraints be-
cause an exact representation requires exact modeling of

4 For a general introduction to CP, see Apt (2003).
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fuel consumption of type 2 plants, which would lead to a
very large model, due to the many time steps.

The complete CP model is described in the subsections
below. The sections describing the constraints and the ob-
jective function contains the technical details necessary for
reimplementing the CP model, but readers not interested in
doing so can skip ahead to Section 3.1.5.

3.1.1 Scheduling constraints

The following two sets of constraints enforce the time win-
dows defined in (1) on outages. For every outage (i,k) with
lower bound TOi,k defined

σ(i,k) = 1⇒ ha(i,k)≥ TOi,k. (19)

For every outage (i,k) with upper bound TAi,k defined

σ(i,k) = 1⇒ ha(i,k)≤ TAi,k. (20)

For every outage (i,k) with upper bound TAi,k defined, we
enforce the following constraint since (i,k) must be sched-
uled

σ(i,k) = 1. (21)

To ensure that outages are scheduled in order, we enforce the
following constraint for each type 2 plant i and every outage
k = 1, . . . ,K−1

ha(i,k−1)+DAi,k−1 ≤ ha(i,k), (22)

where DAi,k is the length of outage (i,k). Since scheduling
of an outage requires scheduling of all previous outages for
the same type 2 plant, we enforce the following constraint
for each type 2 plant i and every outage k = 1, . . . ,K−1

σ(i,k)≤ σ(i,k−1). (23)

To enforce the temporal constraints in (14), we add the fol-
lowing constraint for every given pair of outages (i,k) and
(i′,k′), interval of weeks [L,U ], and lower separation bounds
Se and Se′ in weeks

σ(i,k) = 1∧σ(i′,k′) = 1∧
L < ha(i,k)+DAi,k ∧ha(i,k)≤U∧
L < ha(i′,k′)+DAi′,k′ ∧ha(i′,k′)≤U ⇒
ha(i,k)−ha(i′,k′)≥ Se∨ha(i′,k′)−ha(i,k)≥ Se′.

(24)

Fig. 5 Temporal overview of notation for approximated fuel usage
(FU) and fuel levels (XI, FI, FB, FA) for a type 2 plant.

3.1.2 Resource constraints

To ensure that at most a specified number of type 2 plants
are offline in a week h, we implement constraints as in (15)
with Φ(i,k,h) = 1 if

σ(i,k) = 1∧ha(i,k)≤ h∧h≤ ha(i,k)+DAi,k, (25)

and Φ(i,k,h) = 0 otherwise.
To ensure that enough resources are available in every

week, we implement constraints as in (16) with Φ ′(i,k,h) =
1 if

σ(i,k) = 1∧ha(i,k)+LUi,k ≤ h < ha(i,k)+LUi,k +TUi,k,

(26)

and Φ ′(i,k,h)= 0 otherwise. Here, since the weeks in which
an outage (i,k) uses resources are not necessarily identical
to the weeks in which it is offline, LUi,k and TUi,k specify
the resource usage’s offset and duration, respectively.

To ensure that there is sufficient type 2 capacity online,
we implement constraints based on (17) as follows

∀h ∈ IT : ∑
i∈C

K−1

∑
k=0

Φ(i,k,h)∑
t∈h

PMAX t
i < IMAX , (27)

where Φ(i,k,h), as above, is defined by (25) and IT , C, and
IMAX as in (17).

3.1.3 Fuel level approximation

To enforce the bounds on refuel amounts, we implement the
following constraints based on (2)

r(i,k)≥ σ(i,k)RMINi,k, (28)

r(i,k)≤ σ(i,k)RMAXi,k. (29)

To estimate the fuel level before and after each outage,
we need to introduce several variables, which are visualized
in Figure 5.

Recall that XIi is the initial fuel level at plant i. Let
β (i,h) denote the accumulated fuel usage for type 2 plant
i in weeks 0 through h− 1 of the planning horizon, assum-
ing production at maximum capacity

β (i,h) = D
h−1

∑
h′=0

∑
t∈h′

PMAX t
i . (30)
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The β (i,h) values are used to estimate the fuel usage
during the production period preceding outage k for type 2
plant i which we denote by FU(i,k). For k = 0 we have

FU(i,0) = σ(i,0)β (i,ha(i,0)), (31)

and for k > 0 we have

FU(i,k) =

σ(i,k)(β (i,ha(i,k))−β (i,ha(i,k−1)+DAi(k−1))).

(32)

The definitions of the following three variables are mu-
tually recursive, since they depend on values for the previous
outage. An initial estimate FI(i,k) of the fuel level at type
2 plant i at the time of outage k is obtained by subtracting
the estimated production from the fuel level at the previous
outage:

FI(i,k) =

{
XIi−FU(i,k), if k = 0
FA(i,k−1)−FU(i,k), if k > 0,

(33)

where FA(i,k−1) denotes the estimated fuel level after out-
age k−1 for type 2 plant i and is computed by (34) which is
derived from (4)

FA(i,k) = Qi,kFB(i,k)+ r(i,k)+Q′i,k. (34)

Finally, we adjust the initial estimate FI(i,k) for the fuel
level before an outage. The problem with FI(i,k) is that the
declining power profile in constraint (10) is ignored. This
will often underestimate the actual fuel level because the
plant usually produces at less than PMAX at the end of the
production campaign and consequently uses less fuel. Ex-
periments show that this often leads to situations where no
feasible production plan can be found for a given schedule.
Thus, in order to take the declining power profile into ac-
count, we adjust FI(i,k) if it is low enough that the power
profile is activated in the end of the production campaign.
More precisely, if FI(i,k) < BOi,k, we assume that plant
i would have run out of fuel when FI(i,k) = −BOi,k and
make a linear interpolation. Note that the decision to choose
−BOi,k as the cut-off point is heuristic. The adjusted fuel
level estimate FB(i,k) is computed by

FB(i,k) =


0, if FI(i,k)≤−BOi,k

FI(i,k), if FI(i,k)≥ BOi,k

FI(i,k)+
1
2 (BOi,k−FI(i,k)), otherwise.

(35)

This relationship between FB(i,k) and FI(i,k) is shown in
Figure 6. This approximation implies that a feasible solution
might be infeasible in the CP model and vice versa, but in
practice the approximated constraints leads to maintenance

−BO BO

BO

Initial fuel level estimate

Adjusted fuel level estimate

Fig. 6 The piecewise linear function mapping an initial fuel level es-
timate FI(i,k) to an adjusted estimate FB(i,k) that takes the power
profile into account. The adjusted estimate is never negative, and for
any FI(i,k)≥ BO, the function works like the identity function.

schedules that are feasible in the sense that there exists a
feasible production plan for all scenarios.

All the described constraints are implemented as stan-
dard relational constraints.

3.1.4 Surrogate objective function

The scheduling problem is primarily concerned with mini-
mizing the use of type 1 plants, which is equivalent to max-
imizing the amount of online type 2 capacity. Therefore, the
surrogate objective function measures average offline type 2
capacity over time. Minimization of this objective function
ensures good decisions on the number of outages scheduled.
Note that if too few outages are scheduled the plants run
out of fuel, hence we also include this effect in the objective
function.

Let αi denote the average maximal fuel usage per week
for type 2 plant i

αi =
∑

T−1
t=0 PMAX t

i

H
D. (36)

Furthermore, let the auxiliary decision variable k′i denote the
index of the last scheduled outage for type 2 plant i, i.e.

k′i =
K−1

∑
k=0

σ(i,k)−1. (37)

Then, the surrogate objective function to be minimized
is

I−1

∑
i=0

αi

([
ha(i,0)− XIi

αi

]+
+

K−1

∑
k=1

[
σ(i,k)

(
ha(i,k)−ha(i,k−1)−DAi(k−1)−

FA(i,k−1)
αi

)+]
+
[
H−ha(i,k′i)−DAik′i

− FA(i,k′i)
αi

]+)
.

(38)

The first term is the estimated offline capacity before each
plant’s first outage, the second term is estimated offline ca-
pacity before each of the plants’ subsequent outages, and the
third term is the estimated offline capacity after each plant’s
last scheduled outage.
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3.1.5 Search strategy

A CP solver finds a solution to an optimization problem
by searching a tree which is pruned by applying constraint
propagation and branch and bound strategies. Two deci-
sions are crucial for making this pruning effective, namely
variable selection (choosing the next variable to branch on)
and value selection (choosing a value for the chosen vari-
able). Variable and value selection strategies are generally
chosen according to the fail-fast principle, which says that
if no feasible solution exists in the current sub tree, then the
search should determine this as early as possible. Further-
more, finding a good solution early in the search is desir-
able because it improves the efficiency of branch and bound
pruning.

Our variable selection strategy attempts to make consec-
utive decisions in the search tree that affect outages which
are likely to be related by constraints; this often corresponds
to outages that are scheduled close to each other. This is
achieved by branching on variables grouped by outage num-
ber in the following way. A random permutation π of type
2 plants is constructed. Let π(`) denote the `th plant in this
permutation. We examine all cycles k ∈ {0, . . . ,K−1}, and
for each k examine all type 2 plants π(`) ∈ {0, . . . , I− 1}.
For each outage (π(`),k) the variables are fixed in the fol-
lowing order and with the specified value selection strategy:

1. Determine whether outage (π(`),k) is scheduled or not,
i.e., whether σ(π(`),k) = 1 or σ(π(`),k) = 0. The
σ(π(`),k) = 1 branch is considered first, since this leads
to more scheduled outages.

2. In the σ(π(`),k) = 1 branch, determine the outage start-
ing week ha(π(`),k). The earliest possible week is con-
sidered first, since this leaves more room for subsequent
outages for plant π(`).

3. Determine the refuel amount r(π(`),k). The maximal
amount is considered first, since this leads to more type
2 capacity.

Preliminary experiments showed that this branching strategy
works well. The CP solver is given at least 10 minutes to find
a solution, if a solution is found the search is stopped, and if
not it is continued until a feasible solution is found. Details
about the CP solver software are given in Section 6.2, and
details about the time allocation between CP and SLS are
given in Section 6.3.

3.2 Greedy production level planning

We set the production levels p(i, t,s) and refueling amounts
r(i,k) of a feasible maintenance schedule returned by the
CP solver by means of a greedy algorithm which we call
production planner. Note that the refueling amounts from

the CP maintenance schedule are not used in the phases after
CP.

Only constraint (5) concerning demand binds produc-
tion across different type 2 plants. The production planner
ignores the demand and therefore all computations can be
done for each type 2 plant independently. Ignoring the de-
mand may lead to overproduction which is fixed by modu-
lation in a final phase, described in Section 5.

The algorithm starts with the first time step and goes
through all time steps in the planning horizon. It uses the
initial fuel level to produce at maximum capacity until no
more fuel remains or the next outage is encountered. If a
plant runs out of fuel in some production campaign, it can-
not produce in the rest of the production campaign.

We use the production planner in two settings:

1. It is used on an initial maintenance schedule from the CP
solver, and in this case the production planner initially
sets refuel amounts to the minimum allowed amount
RMINi,k for every outage.

2. It is used repeatedly in the SLS, where the current re-
fuel amounts are updated. The production planner first
tries to achieve feasibility by reducing refuel amounts,
as described in Section 3.2.1, and then to increase the
refueling amounts, as described in Section 3.2.2.

3.2.1 Reducing refuel amounts

Infeasibility with respect to fuel levels can occur if con-
straint (12) is violated because of a too high fuel level before
an outage, or constraint (13) is violated because of a too high
fuel level after an outage. If one of these situations is en-
countered, the production planner backtracks to the previous
outage and reduces the amount of refueling done there —
this change is subject to constraint (2) on refueling amounts.
This is done recursively, and if the backtracking reaches the
start of the planning horizon without resolving the problem,
the planner declares the maintenance schedule infeasible. If
this happens and the production planner is called from the
local search, the infeasible neighbor is simply skipped. It
has never happened to the initial solution from the CP solver,
but in such a case the problem could be returned to the CP
to attempt to create a new solution.

3.2.2 Increasing refuel amounts

After having decreased refueling amounts wherever neces-
sary to the point where constraints (12) and (13) on fuel lev-
els are satisfied, the production planner tries to increase the
refuel amounts as much as possible in order to maximize
type 2 production. This is done for each production cam-
paign k in turn, starting with the campaign after the last
scheduled outage and proceeding backwards. If plant i is
able to produce at PMAX t

i for all t ∈ ec(i,k′) where k′ ≥ k,
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then there is no need to increase refuel amounts (unless the
value of type 2 fuel at the end of the planning horizon ex-
ceeds its cost at the time of outage k; we ignore this pos-
sibility). Otherwise, the production planner repeatedly tries
to increase the refueling amount by 0.02(RMAXi,k− r(i,k))
until either production is maximized or the maximal allowed
refuel amount is reached.

4 Improvement by stochastic local search

When evaluating the quality of the initial maintenance
schedule from the CP we see that it is of relatively low qual-
ity. This is the case since the strategy used in the CP model
is to place outages mainly to ensure a feasible solution and
to a lesser extent to minimize production costs. This leaves
room for improving the temporal placement of outages.

Moving outages can reduce the total cost of production
in two ways. First, it can increase the amount of electricity
produced by type 2 plants and thereby decrease the produc-
tion of the more expensive type 1 plants. Second, it can move
outages to a time period where the type 1 production costs
are lower.

The SLS is done in a typical simulated annealing set-
ting, see Kirkpatrick et al (1983). The basic move in the lo-
cal search is to choose a random outage and shift it a few
weeks forward or backward. After each move the schedul-
ing and resource constraints (1) and (14) to (17) are checked
for feasibility. If the constraints are satisfied, the production
planner calculates updated refueling amounts and produc-
tion levels in order to check feasibility with respect to fuel
levels. If a move is feasible, it is candidate for being ac-
cepted by the simulated annealing depending on the current
temperature and the change in the objective function.

A limitation of the SLS procedure is that the number
of outages is not changed. The effect of this is that the CP
model is trusted with deciding the number of outages for
each power plant.

We have tried to let the local search add and remove out-
ages but found that this operation introduces efficiency prob-
lems. Adding or removing outages leads to changes in the
whole solution, meaning that the local search spends a lot
of time re-adjusting the placement of all the other outages.
This gives a very long evaluation time (several hundred iter-
ations) for adding or removing an outage, and thus hinders
an effective local search.

In the next sections, we describe the SLS approach in
detail.

4.1 Neighborhood

Formally, given a schedule for outages, ha(i,k), 0 ≤ i <
I,0 ≤ k < K, a neighboring scheduling solution ha′ is ob-

tained by applying the move (i′,k′,m)

ha′(i,k) =
{

m, if i = i′ and k = k′

ha(i,k), otherwise.
(39)

The value m is chosen uniformly random in the interval[
TOi′,k′ ,TAi′,k′

]
, so only neighboring schedules that satisfy

constraint (1) are considered. A move (i′,k′,m) thus corre-
sponds to selecting outage k′ of plant i′ and moving it to start
in week m.

The size of the neighborhood is bounded from above by
I ·K ·H, but the bounds in (1) reduce the number of neigh-
bors significantly. The length of the interval [TOi,k,TAi,k] is
usually between 20 and 30 weeks on average (including out-
ages where TOi,k or TAi,k are undefined, in which case the
interval consists of all weeks before TAi,k or all weeks after
TOi,k). In two instances where very few outages have con-
straints of type (1), the average interval is around 150 weeks.
The size of the neighborhood is reduced by only considering
moves (i,k,m) where the outage is moved less than n weeks
forward or backward, i.e.,∣∣hai,k−m

∣∣< n. (40)

Preliminary experiments have shown that a good value for n
is 20, this is used for all instances.

The feasibility of a neighbor can be checked effectively
because each outage is involved in a relatively low num-
ber of constraints. It is straightforward to precompute a data
structure that maps an outage to a list of the scheduling con-
straints involving the outage. With this list, feasibility of a
neighbor can be checked efficiently. If the feasibility check
detects a violated constraint, the evaluation is terminated im-
mediately and the move is discarded. This implies that the
SLS never moves to an infeasible maintenance schedule.

4.2 Delta evaluation and acceptance criteria

From the previous section we have that scheduling feasi-
bility can be checked efficiently. Calculating the change in
solution cost and checking for refueling feasibility is how-
ever more involved. For a type 2 power plant that had an
outage moved it is necessary to re-plan the production for
all time steps. Only a single artificial scenario of production
levels for each type 2 plant is maintained, meaning that we
only recalculate production levels and implied fuel levels for
one scenario. This is done both to ensure that we still have
a feasible production plan and to estimate the change in the
objective function. The new production plan is calculated by
the production planner described in Section 3.2. If the pro-
duction planner is unable to find a feasible production plan,
the move is discarded.

The change in objective consists of three parts: the
change in cost of type 2 refueling ∆re f uel , the change in cost
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of type 1 production ∆type1, and the change in value of re-
maining fuel at the end of the planning horizon ∆remainder.
The total change ∆ is then

∆ = ∆re f uel +∆type1−∆remainder. (41)

We now describe how to compute each of these three contri-
butions.

When the greedy production planner has calculated new
production levels for the single scenario and updated the re-
fueling amounts, we get

∆re f uel =
K−1

∑
k=0

Ci,k(r′(i,k)− r(i,k)), (42)

where r′(i,k) is the refuel amount in the neighboring solu-
tion and Ci,k the fuel cost in outage (i,k).

The amount of fuel remaining at the end of the planning
horizon can vary from scenario to scenario. Here we esti-
mate the remaining amount assuming that every type 2 plant
has full production in all time steps, meaning that the esti-
mate is a lower bound on the actual amount of remaining
fuel. This gives

∆remainder =Ci(x′(i,T,s∗)− x(i,T,s∗)), (43)

where x′(i,T,s) is the fuel level in the neighboring solution,
Ci the value of remaining fuel, and s∗ is the artificial full
production scenario.

Calculating ∆type1, the change in total cost of type 1 pro-
duction, is more complicated and described in Section 4.3.

When the objective function change ∆ for a feasible
move has been calculated, it is considered by the simulated
annealing. A neighbor is accepted with probability

p = min
(

1,exp
(
−∆

τ

))
, (44)

where τ is the current temperature.
The initial temperature is dynamically set such that ap-

proximately half of the considered moves are accepted at
the beginning of the search. The cooling scheme is geo-
metric with cooling ratio c and is applied every nplateau it-
erations. When midle consecutive iterations have been con-
sidered without any move being accepted, a restart is per-
formed. When the search is restarted, the current temper-
ature is set to krestart times the starting temperature of the
previous annealing run.

At the end of the time allocated to the SLS, a first-fit
descent is performed to ensure that the search reaches a local
optimum.

4.3 Estimation of type 1 production cost

First we explain how the exact change in type 1 production
cost is calculated. Then we introduce an effective way to
approximate this change, since the exact computation is too
expensive to be suited for use in local search.

To help calculating ∆type1 efficiently, we maintain a list
of the total type 2 production in every time step. We look
at the type 2 plant which had an outage moved and use the
change in production in each time step, to update the list of
total type 2 production. In scenarios where the demand is
higher than the total type 2 production, the difference must
be covered by type 1 plants, which have a fixed cost per unit
of power produced.

The type 1 plants can be preordered by increasing pro-
duction costs, and thus the exact change in total type 1 cost,
given a change in total type 2 production, can be computed
in O(ln(J)) time for a single time step and scenario, as ex-
plained below.

Assume that the previous total type 2 production in
time step t was pT 2(t) and after a move to a neighbor-
ing maintenance schedule, the total type 2 production is
adjusted to p′T 2(t). To calculate the cost of the residual
type 1 production for a scenario s we examine the ordered
list of type one power plants. While the residual demand
DEMt,s− p′T 2(t)− p′T 1(t), where p′T 1(t) is the current type
1 production, is positive we increase the production of the
type 1 plant with the lowest production cost and available
production capacity. At some point the residual demand will
be satisfied by the extra type 1 production.

The above procedure can be seen as a piecewise linear
function for the cost in each scenario, mapping type 2 pro-
duction to the cost of covering the residual demand using
type 1 plants. Finding the linear piece of this function that
corresponds to a given total type 2 production can be done
by binary search, which gives a computational complexity
of finding the total type 1 production cost for a single time
step of O(ln(J)).

The above procedure gives the type 1 production cost
for a single time step and a single scenario. Summing this
exact change over all time steps and scenarios gives a total
complexity of O(T · S · ln(J)) which is too slow for local
search.

Hence we approximate the change in cost. The approx-
imation removes the need to consider all scenarios and the
binary search through the set of type 1 plants but not the
need to consider all time steps, making the complexity of
the approximation O(T ).

To estimate the change in type 1 cost for a single
time step, we precompute a single piecewise linear function
which maps total type 2 production to the (exact) total type
1 cost for each time step. This is done by summing all S
piecewise linear functions for a single time step.
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Fig. 7 Linear approximation of the total type 1 costs for a single time
step.

The solid line in Figure 7 shows an example of such a
function. The curve seems smooth but is, since it is a sum of
piecewise linear functions, also a piecewise linear function.
As the total type 2 production increases, the need for type
1 production diminishes, and when total type 2 production
reaches the maximum demand over all scenarios, the total
type 1 cost is zero.

The many breakpoints make the evaluation of the func-
tion computationally expensive because it must go through
the breakpoints in order to find the interval containing the
current total type 2 production (a binary search can speed
up this process but is still too slow). Therefore, we approx-
imate it with another precomputed piecewise linear func-
tion, which has fewer breakpoints chosen such that they are
equidistant on the x-axis. The dashed line in Figure 7 shows
an example of this approximation. Since the actual type 1
cost is convex, the approximation is an upper bound on the
actual cost.

Experiments show that this approximation is relatively
good, even for a reasonably small number of breakpoints.
We have chosen to use 3 · I breakpoints, and the approxi-
mation error has been analyzed on all instances. If absolute
type 1 production demands under 100 units are ignored, the
worst average deviation over an instance is ≈ 3.36 · 10−4

percent per measurement. This is significantly less than the
differences in cost encountered during local search. When
evaluating the very small type 1 production demands we ig-
nored above, the relative approximation error is significant,
but this does not hinder the SLS, since these moves only give
correspondingly small changes in the objective value.

Using the precomputed approximation we can perform
a constant time evaluation of the total type 1 cost for a given
total type 2 production in a single time step. No search for
the stored breakpoint closest to the given total type 2 pro-
duction is required, because the breakpoints are equidistant.
If the total type 2 production falls between two stored break-
points, we use linear interpolation to get the total type 1 cost.

If the total type 2 production in time step t is Ptotal
2 , the inter-

polation for the type 1 production cost is done between the
indices:

ilow =

⌊
Ptotal

2
Int

⌋
, ihigh =

⌈
Ptotal

2
Int

⌉
, (45)

where Ptotal
2 is the sum of type 2 production in time step t,

and Int is the length of the interval between two breakpoints.
The approximation of the change in total type 1 cost is

very fast compared to the exact computation but slow when
compared to the scheduling constraint violation check, since
the approximation requires a computation for every time
step. Note however that since we only move to feasible solu-
tions, the approximation is only performed if all the schedul-
ing constraints are satisfied.

5 Modulation

In this last phase of the solution process we calculate pro-
duction levels for all scenarios and ensure that there is no
overproduction in any scenario. This gives the final solution
to the energy management problem. In this phase, we do not
move any outages but do adjust refueling amounts for some
of the outages.

From the SLS we have a maintenance schedule where
the cost of covering demand by type 1 power plants is min-
imized. This may lead to solutions with overproduction at
type 2 plants due to the variations in demand across scenar-
ios. Formally, we have in some time step t in some scenario
s

I−1

∑
i=0

p(i, t,s)> DEMt,s.

Such overproduction can be eliminated in two ways: modu-
lation can be used to decrease the power output of a type 2
plant in the affected time step, or refueling can be decreased
such that a type 2 plant runs out of fuel before that time
step. Making a power plant run out of fuel is not an attrac-
tive option because it eliminates the rest of its production
for the current campaign across all scenarios, since refueling
amounts are shared among all scenarios. It will also limit the
plant’s fuel level in the next production campaign. Therefore
this method is used as a last resort, i.e., modulation is used
whenever possible — and it is capable of eliminating over-
production in all the examined instances.

There are three constraints on the amount of modulation
that can be performed on a single power plant: constraint (8)
restricts the amount of modulation that can be performed in
the current campaign, and constraints (12) and (13) enforce
an upper limit on the fuel level before and after refueling.
The latter must be handled by adjusting the refueling of the
power plant, but this will affect all scenarios.
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Since refueling amounts for a plant are shared among all
scenarios, we use a two-step procedure to eliminate overpro-
duction. First, we ensure that there exists a refueling scheme
that is feasible for all scenarios using the minimum demand
scenario defined below. Second, we try to adjust modulation
for each individual scenario to reduce the need for expensive
type 1 production.

We define a minimum demand scenario to be DEMt
min =

mins(DEMt,s) for all t. By using this scenario we can en-
sure feasibility of all scenarios, since the only way the de-
mand influences feasibility is by making modulation nec-
essary to get the type 2 production low enough to match
demand in constraint (5). As type 2 power plants accord-
ing to Porcheron et al (2010) deliver 87% of the combined
power on average, such situations arise sparingly, and the
minimum demand scenario can be modulated to feasibility
in all instances used in the competition.

5.1 Modulation and refueling for the minimum demand
scenario

A modulation and refueling scheme is created for the min-
imum demand scenario, thus ensuring that the refueling is
feasible for all scenarios. This is done by examining the time
steps in increasing order. When a time step with overproduc-
tion is detected, a target plant i is selected among the type
2 plants. Plant i has its production lowered until there is no
more overproduction or as much as feasible while respect-
ing the remaining modulation capacity in that campaign, see
equation (8). This reduces the fuel consumption, meaning
that the fuel level constraints must be checked. If necessary,
we repair the refueling amounts at plant i using the greedy
production planner. If this fails, the modulation on plant i is
undone, and another plant is selected. We continue selecting
a new plant and reducing its production until we have elimi-
nated any overproduction in the current time step. Note that
since we consider the minimum demand scenario, we are
guaranteed that there is no overproduction in any scenario.

Since the cost of modulating each type 2 plant is the
same, modulation can be seen as a resource that expires
when the production campaign ends. Thus, the target plant
selection strategy iterates through plants in non-descending
order of their current production campaign’s end date.

A refuel plan may be infeasible for the minimum de-
mand scenario but still be feasible for all scenarios. Our
method is unable to cope with this situation and will there-
fore declare such a schedule infeasible, but this has never
occurred in any instance used in the competition.

5.2 Modulation per scenario

Having determined modulation for the minimum demand
scenario, we fix refuel amounts and apply the modulation
algorithm from the previous subsection on each scenario.
Modulating without consecutive adjustment of the refuel-
ing amounts can yield infeasible fuels levels, meaning that
modulation cannot always be done for a plant. In this case
the algorithm moves on to the next type 2 plant.

On some instances this step improves the objective value
by more than 1%. This improvement was done after the
competition.

6 Computational analysis and results

In this section we describe the problem instances used for
computational tests, implementation details, how much time
is spent in different components of the heuristic, tuning of
the parameters in the simulated annealing algorithm, and fi-
nally we report the numerical results.

6.1 Problem instances

We have tested our algorithm on ten real-life instances sup-
plied by Électricité de France. Table 1 shows various fig-
ures as well as the best known objective value for each of
the instances, which are taken from the ROADEF website
citeproadefWeb. Note that the B and X instances are pair-
wise very similar, e.g. B6 and X11, B7 and X12 and so on.
This similarity is due to the fact that they are based on the
same data, but have different demand profiles.

Instance File size T Weeks S J I Best solution
B6 140 5 817 277 50 25 50 83 424 716 217
B7 144 5 565 265 50 27 48 81 174 243 138
B8 262 5 817 277 121 19 56 81 926 206 073
B9 262 5 817 277 121 19 56 81 750 858 197
B10 252 5 565 265 121 19 56 77 767 024 999
X11 140 5 817 277 50 25 50 79 116 772 289
X12 143 5 523 263 50 27 48 77 589 910 940
X13 262 5 817 277 121 19 56 76 449 207 715
X14 262 5 817 277 121 19 56 76 172 998 633
X15 250 5 523 263 121 19 56 75 101 398 439

Table 1 Overview of the ten instances showing for each instance file
size in megabytes, number of time steps (T), number of weeks, number
of scenarios (S), number of type 1 plants (J), number of type 2 plants
(I), and the objective value of the best known solution.

6.2 Implementation details

The algorithms are implemented in Java, and the scheduling
problem is solved using the Gecode CP solver version 3.3.1
citepgecode. The version of our program that was submitted
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for the qualifying phase used ILOG’s CP Optimizer version
2.3 instead of Gecode, but the former model was unable to
solve the larger problem instances used in the final round.
Moreover, the Gecode solver allows the user control over
the applied branching strategy. On the basis of preliminary
observations, we decided to stop the CP solver after ten min-
utes and then return the best solution found. If no feasible
solution has been found after ten minutes, we let the solver
run until the first feasible solution is found.

The strategy described in Section 3.1 finds a feasible
schedule solution in less than two minutes for all instances,
as seen in Table 2. The table also shows the minimum time
needed to construct a solution, using the initial maintenance
schedule from the CP and applying the modulation phase
but without SLS.

B6 B7 B8 B9 B10
CP (s) 84 67 11 22 28

Mod (s) 7 7 48 43 43
Total (s) 167 153 256 237 263
% gap 12.17 6.73 16.26 19.79 9.80

X11 X12 X13 X14 X15
CP (s) 13 8 13 9 15

Mod (s) 8 10 70 71 49
Total (s) 108 94 315 366 242
% gap 9.09 5.80 14.97 15.52 7.37

Table 2 The time in seconds needed to produce the first feasible
scheduling solution (CP), modulating it (Mod) and total time including
reading from and writing to disk (Total). The last row is the percent-
wise gap from best known objective value.

In the competition a machine with a 2.50Ghz Intel Xeon
processor was used, while our corrected results were created
using a 2.13GHz Intel Xeon processor. In both cases 8GB of
main memory were available.

6.3 Time allocation

Preliminary tests indicated that ten minutes for the CP solver
and the remaining 50 minutes for local search and other
tasks is a reasonable distribution of the one hour available.
The tests showed that the CP solver finds a first solution
very fast, but by letting the solver continue the search, solu-
tions with more scheduled outages for each type 2 plant are
found. This is important since the subsequent local search
does not change the number of scheduled outages. However
almost all improvement from scheduling more outages ap-
pear within the first ten minutes the CP solver runs, and the
search is therefore stopped after ten minutes.

In cases where more than one hour of computation time
is available, it could be interesting to provide the SLS with
several solutions from the CP, each with a different num-
ber of outages. Since the convergence of the SLS takes a

CP 17%

I/O 7%Other 6%

SA Delta 53%

SA Check 12%

SA Other 6%

Fig. 8 How one hour of wall clock time is spent when solving instance
B10.

significant amount of the allocated 50 minutes this was not
possible in the context of the competition.

The pie chart in Figure 8 shows how much time is usu-
ally spent in different parts of the program. Not surprisingly,
most time is spent on the simulated annealing algorithm,
whose delta evaluation alone accounts for more than half
of the total running time. This is due to the fact that evalu-
ation of a neighbor requires replanning of production levels
which is very time consuming, even when applying the ap-
proximation described in Section 4.2. Somewhat unusual is
the 7% of the total running time spent on reading an instance
and writing a solution to the hard disk, which is caused by
the very large instance and solution files. The latter takes up
to 950 megabytes of hard disk space.

6.4 Tuning the stochastic local search

To determine a set of parameters that perform well for all
problem instances we compared a number of different pa-
rameter settings. All the following combinations of param-
eters were run for all ten instances in sets B and X and for
ten different random seeds. In order to reduce the number
of configurations, we decided after preliminary testing to fix
the number of moves at each temperature to 100 and that the
initial temperature after a restart should be twice the initial
temperature of the previous run.

Cooling ratio c = {0.95, 0.96, 0.97, 0.975, 0.98, 0.985,
0.99, 0.995}

Start acceptance ratio = {0.25, 0.5, 0.75}
Stopping criteria midle = {25, 50, 75, 100, 125, 150, 175,

200, 300, 500, 800}
Number of moves per temperature plateau nplateau = 100
Reheat constant krestart = 2

The best average solution quality is obtained by setting the
cooling ratio to 0.995, the start acceptance ratio to 0.5 and
the stopping criteria to 100. This setting also has a reason-
ably low variance of results compared to other settings.
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Team B6 B7 B8 B9 B10 X11 X12 X13 X14 X15 Score
J06 (corrected) 2.45 0.81 1.04 1.23 1.66 1.30 1.00 1.44 1.70 0.43 13.04

S21 4.14 3.09 6.30 6.29 3.70 3.13 1.58 5.41 4.29 1.28 39.21
J08 3.85 6.14 16.94 23.83 9.19 2.85 2.66 2.48 5.15 4.03 77.12
S14 11.55 9.48 13.13 25.82 12.66 10.37 11.13 12.85 18.03 14.88 139.89

S23MT 1.54 0.82 1.28 2.29 1.24 TO 0.78 INF TO 0 202.36
S17 19.44 25.17 39.71 56.68 34.47 16.82 23.14 TO 20.87 20.53 297.19
S24 0 0.14 0 1.06 0 0 0.06 0 0 INF 299.96
J06 2.50 0.96 1.94 2.12 3.11 1.46 1.11 2.91 INF INF 407.5
S04 7.68 6.41 15.64 26.80 8.58 TO 6.50 INF 14.01 TO 486.04
S22 0.59 0.06 0.18 0 0.33 INF 0.01 TO ERR ERR 494.29
S08 INF 17.13 24.90 24.68 40.22 10.20 6.50 20.18 13.85 INF 495.24
J05 3.34 3.43 339.67 162.91 22.43 3.79 1.52 3.35 14.35 19.41 574.20
S23 1.54 0.82 1.33 2.28 1.30 TO TO INF TO TO 624.03
S16 3.44 INF 87.05 47.31 7.15 INF 2.59 TO TO INF 773.51
S10 7.39 66.42 3685.91 4779.61 93.76 17.94 15.98 TO 46.34 48.21 8801.92

S10MT 7.49 66.42 3685.91 4779.61 93.76 30.69 61.82 TO 46.34 149.35 8961.75
J16 11.10 12.66 TO 1845.78 12.20 7.70 8.09 TO 12.81 8.11 9330.63
S11 9.47 6.26 1902.45 MEM INF 6.52 7.41 MEM 11.42 INF 12029.32

S22MT 0.60 0 INF INF INF INF 0 TO ERR ERR 17612.27
S25 CRA CRA CRA CRA CRA CRA CRA CRA CRA CRA 19907.04

Table 3 Percentage wise deviation from best known solution for all teams participating in the competition as well as our improved program.
Our team is J06. INF means that the found solution is infeasible. CRA means that the program crashed. MEM means that the program ran out of
memory. ERR means that the format of the solution is invalid. TO means that the program did not finish in time.

6.5 Results

Table 3 shows, for all teams participating in the competi-
tion, the percentage wise deviation from best known solution
for each instance. The last column shows the teams’ official
final score which determined the outcome of the competi-
tion5. This score is the sum of all ten percentages. If a team
was unable to find a feasible solution for an instance, their
score for this instance was set to twice the objective value of
the worst found solution.

Our team identifier is J06 which is ranked seventh in the
table. The first row in the table shows the objective values
obtained by our program after fixing the bug in the modula-
tion procedure. The bug happened when calculating the al-
lowed modulation in a production campaign, where we did
not account for the size of a time step in one special case,
this yielded infeasible solutions for X14 and X15. The re-
sults from the table show that our new corrected program
would have won competition.

The difference in solution quality between our corrected
and uncorrected version of the algorithm is due to the use of
modulation per scenario described in Section 5.2.

7 Conclusion

We have developed a solver for a large-scale real-life op-
timization problem using a combination of CP and greedy
and local search heuristics.

5 The results can been seen at http://challenge.roadef.org/
2010/en/results.php

An initial solution to the complex scheduling problem is
found by CP using approximated constraints for production
levels and fuel consumption. From this first schedule we ap-
ply a stochastic local search algorithm based on a simple
neighborhood structure with a fast, but approximative eval-
uation of the objective function. In the third and final phase
we use a greedy algorithm to remove any overproduction.

The solutions obtained are competitive when compared
to those found by other teams participating in the final eval-
uation of the ROADEF/EURO Challenge 2010. After fix-
ing an implementation bug, our approach is robust in the
sense that it is always able to find a feasible solution, and
it achieves overall the best score, ranking first in the assess-
ment procedure of the competition.
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