
Solving a Real-World Train Unit Assignment

Problem

Valentina Cacchiani, Alberto Caprara, and Paolo Toth

DEIS, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy,
valentina.cacchiani@unibo.it,acaprara@deis.unibo.it,paolo.toth@unibo.it

Abstract. We face a real-world train unit assignment problem for an
operator running trains in a regional area. Given a set of timetabled
train trips, each with a required number of passenger seats, and a set
of train units, each with a given number of available seats, the problem
calls for an assignment of the train units to trips, possibly combining
more than one train unit for a given trip, that fulfills the seat requests.
With respect to analogous case studies previously faced in the literature,
ours is characterized by the fairly large number of distinct train unit
types available (in addition to the fairly large number of trips to be
covered). As a result, although there is a wide margin of improvement
over the solution used by the practitioners (as our results show), even
only finding a solution of the same value is challenging in practice. We
present a successful approach, based on an ILP formulation in which
the seat requirement constraints are stated in a “)-1(strong” form, derived
from the description of the convex hull of the variant of the knapsack
polytope arising when the sum of the variables is restricted not to exceed
two, illustrating computational results on our case study.

1 Introduction

The assignment of locomotives and cars, generally referred to as rolling stock,
to trains with published timetables is a key problem to be faced by operators of
passenger trains, given that the acquisition of rolling stock is an expensive long-
term investment, and that fulfilling the passenger requests, namely guaranteeing
(within reasonable margins) that each passenger has a seat, is fundamental to
ensure customer satisfaction. In this paper, we illustrate how we solved a real-
world case of the problem for the trains operated by a passenger train operator
operating in a regional area. In this problem, so-called Train Units (TUs), rather
than locomotives and cars, have to be assigned to trains. A TU is a self-contained
train with an engine and passenger seats, and TUs can be combined together to
increase the number of available seats.

The large number of TU types, along with the fairly large number of train
trips to be covered, namely a few hundred, make our case study very challenging
from an optimization viewpoint. In particular, although unavoidably the math-
ematical programming models that one may consider are analogous to those

ATMOS 2007 (p.79-95)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1172

80 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

presented in the references mentioned below, the optimal solution of these mod-
els appears to be out of reach at the moment. Moreover, even only finding a
feasible solution following the classical heuristic approaches, based or not on
these models, is far from trivial. On the other hand, we eventually managed to
design an effective heuristic procedure based on an appropriate Integer Linear
Programming (ILP) formulation that allowed us to find solutions significantly
better than the “manual” solutions found by practitioners. Based on our pre-
vious experience on similar case studies, we found this very strange: there is a
wide margin of improvement over the manual solution, but even only finding a
feasible solution of the same value as the manual one (which is feasible according
to our formal definition of the problem) appears to be challenging.

1.1 Literature review

Given its importance, the problem has been widely studied in the literature on
railway optimization; for surveys on the specific problem as well as on the use
of combinatorial optimization in railway planning see, e.g., [6, 7, 10, 14, 19].

Most of the approaches in the literature consider the case in which loco-
motives and cars have to be assigned to trains [5, 11–14, 20, 24]. In particular,
Brucker et al. [5] consider the problem of routing railway cars through a railway
network, so that seat requirements are satisfied while minimizing a non-linear
cost function. The problem is solved through a simulated annealing procedure.
In [11], Cordeau et al. present a simultaneous locomotive and car assignment
problem, which is formulated as a large ILP and solved by Benders decomposi-
tion. Cordeau et al. [13] extend the model by considering real-life aspects, such
as maintenance operations, and propose a heuristic branch-and-bound approach
based on column generation. Lingaya et al. [20] present a model for operational
management of cars, where the order in which cars are combined to cover a train
is taken into account. The problem is solved using a Dantzig-Wolfe reformula-
tion.

There are a few references that consider the assignment of TUs: [1, 2, 15, 23,
25]. Most of them consider the case in which there is a very small number of
distinct TU types (two in most cases). On the other hand, in most of these cases,
the rules for composing TUs for a trip are quite difficult. In [3], Ben-Khedher
et al. consider the case in which there is a unique type of TUs. The objective is
to maximize the expected profit for the company and the problem is solved by
means of stochastic optimization, branch-and-bound and column generation. In
[1], Abbink et al. present an ILP formulation with the objective of minimizing
the seat shortages during the rush hours. Alfieri et al. [2] propose an ILP model
for the case of multiple TU types, aimed at satisfying the seat requests while
minimizing the travel distance. The problem is solved by decomposition into
subproblems. Schrijver [25] presents a problem where a single-day workload is
considered, with the objective of minimizing the number of TUs used. The prob-
lem is formulated as an ILP and solved by a general-purpose solver. Peeters and
Kroon [23] present a problem in which the train series concept is introduced:
given two endpoints between which several trains run up and down according to

Solving a Real-World Train Unit Assignment Problem 81

the timetable, for a train series the available rolling stock consists of the same
material type with different subtypes, which differ in number of cars and ca-
pacity. The order of the units in a composition is considered. They take into
account three evaluation criteria, namely the kilometer-shortages, the number
of shunting operations and the carriage-kilometers, and model the problem by
using a transition graph, which represents the set of feasible transitions between
compositions. They solve the problem by using a Dantzig-Wolfe reformulation
and applying a branch-and-price algorithm, being able to find the optimal so-
lution of real-world instances of NSR (the main Dutch Train Operator) in very
short computing times. Fioole et al. [15] present a mixed ILP model that can
be seen as an extended version of the model described by [25]. They apply sev-
eral methods to improve the continuous relaxation and manage to solve to near
optimality real-world instances by a general-purpose ILP solver.

The problem has some similarities with the multiple-depot vehicle scheduling
problem (see, e.g., [18, 8]), which however has two remarkable differences with
respect to our problem. First, each vehicle must depart from a depot and go
back to the same depot at the end of the day, which makes the problem hard,
whereas in our case each TU (or locomotive/car) goes back to its original depot
only after a certain number of days, generally not specified in advance. Second,
each trip has to be covered by one vehicle only, of any type, so the complicating
seat requirement constraint, which may lead to TU combinations to cover a trip,
is not imposed.

1.2 Outline of the paper

As will be discussed next, the key constraints of our problem concern the min-
imum number of passenger seats that have to be assigned to every trip. In ILP
models, this is naturally formulated as a “knapsack-type” constraint in “≥”
form. The numerical nature of this constraint makes it very “weak” when the
Linear Programming (LP) relaxation of the problem is considered, as already
observed in [25]. In particular, none of the approaches we tried, among those
based on ILP models and LP relaxation, managed to find a feasible solution as
long as we stuck to these constraints. On the other hand, taking into account
the fact that in our case at most two TUs can be combined to cover a trip, we
replaced the “weak” constraints above by the inequalities obtained from a com-
plete description of the knapsack polytope for the special case in which the sum
of the variables cannot exceed two. This is similar to what was done in [25], with
the difference that in that case the description was found numerically, case by
case, for polytopes with two variables, whereas in our case the upper bound of
two on the variable sum allows a formal description that is valid for any number
of variables. Our final heuristic method, based on the ILP model with these new
inequalities, yields the results mentioned above.

The paper is organized as follows. In Sect. 2 we formally define the problem
considered, whose computational complexity is analyzed in Sect. 2.1. ILP models
are illustrated in Sect. 3, strengthened as outlined above in Sect. 4, and used to
drive our heuristic method, presented in Sect. 5. In Sect. 6 we define additional

82 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

maintenance constraints for the problem and discuss how to deal with them.
Finally, Sect. 7 presents the computational results on our case study.

2 Problem Description

Given a set of timetabled trips to be performed every day, and a set of TUs of
different types, the TU Assignment Problem (TUAP) calls for the specification
of the TUs to be used, and, for each of these TUs, of the associated trips. The
sequence of trips associated with a TU corresponds to a possible daily workload
for the TU, and must satisfy a set of sequencing constraints. For instance, in our
case study, for each pair of consecutive trips in the sequence, the time elapsing
between the arrival of the first one and the departure of the second one must be
large enough to allow the TU to travel from the arrival station of the first one
to the departure station of the second one (this is a deadhead in case the two
stations do not coincide).

Given that there is an overnight break of a few hours, it is not necessarily the
case that every TU used performs the same set of trips every day. Indeed, after
having performed a sequence of trips on one day, a TU can perform on the fol-
lowing day a sequence of trips assigned to another TU of the same type (possibly
performing a deadhead transfer within the night break). In other words, the, say,
q trip sequences assigned to TUs of a given type can be numbered as 1, . . . , q in
an arbitrary way, and can be performed by q TUs of that type, all performing a
different sequence on each day, and each one performing the q sequences in the
cyclic order 1, . . . , q over a period of q days. This is important when maintenance
constraints, illustrated in Sect. 6, are introduced in the problem.

TUs can be assigned to the same trip in order to guarantee that the number
of passenger seats required by the trip is reached. As our problem concerns a
suburban area, there is no distinction between first and second class seats, as in
most references above. At the end of the trip, the TUs assigned to the trip can
be uncoupled and assigned to different trips following the rules outlined above.
In particular, the feasibility of a sequence of trips for a TU does not depend
on the other TUs assigned to the trips, which is a notable simplification with
respect to other cases of the problem addressed in the literature, see, e.g., [23].
This is related with the fact that in our case at most two TUs can be combined
assigned to a trip, in order to keep coupling and uncoupling operations simple,
so these operations take relatively short.

Although there are many factors contributing to the cost of a solution, such
as deadheading or coupling/uncoupling operations, the dominant cost in the
case we consider is related with the use of a TU, and in this paper we will
restrict ourselves to this cost. In fact, although we will formulate our model with
a generic cost associated with the use of a TU of a given type, as is the case in
[25], in our experiments our objective will be to minimize the overall number of
TUs used.

Formally, the problem input specifies a set of n train trips and a set of p TU
types. Each trip j ∈ {1, . . . , n} is defined by a required number rj of passenger

Solving a Real-World Train Unit Assignment Problem 83

seats, and a maximum number uj of TUs that can be assigned to the trip.
(Additionally, each trip is characterized by an arrival time and station and a
departure time and station, and by a subset of TU types that can perform it,
but this information is implicitly encoded in the graph illustrated below.) Each
TU type k ∈ {1, . . . , p} is defined by a number dk of available TUs, a cost ck for
each such TU used, and an associated capacity sk (number of available seats).
We say that a trip j is covered if the overall capacity of the TUs assigned to
the trip is at least rj . Finally, as is customary, the sequencing constraints are
represented by a directed multigraph G = (V, A), where each node corresponds
to a trip, and in addition there are a dummy start node 0 and a dummy end
node n + 1, i.e., V = {0, . . . , n + 1}, and arc set A is partitioned into p subsets
A1, . . . , Ap, where Ak is associated with TUs of type k for k = 1, . . . , p. Given
two distinct trips i, j ∈ V \{0, n+1}, arc (i, j)k ∈ Ak exists if and only if a TU of
type k can be assigned to i and then to j within the same day. (Specifically, arc
(i, j)k exists whenever both trips i and j can be assigned to a TU of type k, and
the time between the arrival of trip i and the departure of trip j allows a TU of
such type to travel from the arrival station of trip i to the departure station of
trip j.) Moreover, the dummy nodes are connected with all other nodes, namely
(0, i)k, (i, n+1)k ∈ Ak for i = 1, . . . , n and k = 1, . . . , p. Note that each subgraph
(V, Ak) is simple and transitive. Given a node i ∈ V , we will let δk

−(i) and δk
+(i)

denote, respectively, the set of arcs entering and leaving node i.
There is a one-to-one correspondence between trips assigned to a TU of type k

and a path in G formed by arcs in Ak. The problem calls for the determination,
for each TU type k ∈ {1, . . . , p}, of up to dk paths from 0 to n + 1 formed
by arcs in Ak, each path having cost ck and capacity sk, such that each trip
j ∈ {1, . . . , n} is visited by at most uj paths whose overall capacity is at least rj ,
with the objective of minimizing the overall cost of the paths. In the following
we will use the acronym TUAP to denote the problem just described.

In the specific application that we will consider, we have uj = 2 for j =
1, . . . , n, i.e., each trip can be assigned to at most two TUs. For this specific
case, we will discuss how to write the constraints on the required number of
seats in a way that is much stronger than the trivial one.

2.1 Complexity

In this section we discuss the complexity of TUAP, proving in particular that
the specific version considered in our case study is strongly NP-hard. The first
result shows that the real difficulty of the problem is due to the presence of
distinct TU types.

Observation 1 TUAP is solvable efficiently in case p = 1, i.e., if there is a
unique TU type.

Proof. In this case, one can replace each trip j by ⌈rj/s1⌉ trips with the same
timetable and request s1: the associated problem calls for the determination of
the minimum number of paths to cover all the vertices in a transitive directed
acyclic graph, which is polynomially solvable by flow techniques (see, e.g., [17]).

84 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

If distinct TU types are present, the problem is already difficult if each trip
must be covered by one TU only, and the minimum connection time between
two trips does not depend on the trips nor on the TU type (e.g., it is 0, as in the
statement of the proposition below). This problem has already been considered
in the literature as it arises in other applications, e.g., in the assignment of
classrooms to timetabled classes, with the constraint that each class receives a
classroom having a number of seats at least equal to the number of students
attending the class. The following proposition is due to [4].

Proposition 1. TUAP is strongly NP-hard in the special case in which uj = 1
for j = 1, . . . , n, and (i, j) ∈ Ak if and only if the departure time of trip j is not
smaller than the arrival time of trip i for i, j = 1, . . . , n and k = 1, . . . , p.

Moreover, the following simpler result shows that, when uj = 2 for j =
1, . . . , n, the problem is strongly NP-hard even if all trips are simultaneous, due
to its numerical nature. The proof is omitted for space reasons and will be given
in the full paper.

Proposition 2. TUAP is strongly NP -hard in the special case in which uj = 2
for j = 1, . . . , n and Ak = ∅ for k = 1, . . . , p.

3 ILP Formulations

The two ILP formulations that we use for our problem, one with variables asso-
ciated with arcs of G and the other with variables associated with paths in G,
are standard, being analogous to others that have been widely used both in the
context of TU assignment and for other optimization problems in transportation,
see, e.g., the survey in [14].

3.1 Arc formulation

Let us introduce an integer variable xa, for each k = 1, . . . , p and a = (i, j)k ∈
Ak, that indicates the number of arcs a ∈ Ak selected in the solution, i.e., the
number of TUs of type k that execute trip i before trip j in the associated
sequence. The ILP model is the following:

min

p
∑

k=1

∑

a∈δk
+

(0)

ckxa, (1)

∑

a∈δk
−

(j)

xa =
∑

a∈δk
+

(j)

xa, k = 1, . . . , p, j = 1, . . . , n, (2)

∑

a∈δk
+

(0)

xa ≤ dk, k = 1, . . . , p, (3)

p
∑

k=1

∑

a∈δk
−

(j)

skxa ≥ rj , j = 1, . . . , n, (4)

Solving a Real-World Train Unit Assignment Problem 85

p
∑

k=1

∑

a∈δk
−

(j)

xa ≤ uj , j = 1, . . . , n, (5)

xa ≥ 0, integer , k = 1, . . . , p, a ∈ Ak. (6)

Flow conservation constraints (2) guarantee that the solution contains a number
of paths in (V, Ak) from 0 to n + 1 equal to the number of arcs in Ak leaving
node 0. Accordingly, constraints (3) ensure that the solution contains at most dk

such paths, i.e., no more than dk TUs of type k are used. Moreover, as each of
these paths has cost ck, the objective function (1) calls for the minimization of
the total cost of the paths. Finally, constraints (4) and (5) guarantee that each
trip j is visited by at most uj paths, having overall capacity at least rj .

In the general context of multicommodity flow, it is well known that the ILP
formulation based on path variables, illustrated later, is to be preferred to the
one above when approaches based on the solution of the LP relaxation are used,
see, e.g., [9]. This will also be shown by the experiments performed for our case
study.

On the other hand, given the relatively large size of the ILP in our case study,
it is natural to consider the Lagrangian relaxation of the above formulation,
obtained by relaxing constraints (4) and (5) in a Lagrangian way. The resulting
Lagrangian relaxed problem is easy to solve, recalling also Observation 1, as it
amounts to finding optimal paths in graphs (V, Ak) for k = 1, . . . , p. However,
despite completely analogous approaches are the best ones in practice in many
similar cases, our implementation of a customary heuristic method based on
this Lagrangian relaxation performed extremely poorly in practice for our case
study, in terms of both lower bound produced and solution found (in fact, it was
never able to find a solution respecting all constraints (5), always requiring more
TUs than those available). Given that the results were so poor, we will not even
present these results in the experimental section.

3.2 Path formulation

Let Pk denote the collection of paths from 0 to n + 1 in (V, Ak), and introduce
an integer variable xP , for each k = 1, . . . , p and P ∈ Pk, that indicates the
number of times that path P is selected in the solution, i.e., the number of TUs
of type k that execute the trips sequence corresponding to P . Moreover, for each
k = 1, . . . , p and j = 1, . . . , n, let Pk

j ⊆ Pk denote the subcollection of paths in

Pk that visit trip j. The ILP model is the following:

min

p
∑

k=1

∑

P∈Pk

ckxP , (7)

∑

P∈Pk

xP ≤ dk, k = 1, . . . , p, (8)

p
∑

k=1

∑

P∈Pk
j

skxP ≥ rj , j = 1, . . . , n, (9)

86 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

p
∑

k=1

∑

P∈Pk
j

xP ≤ uj , j = 1, . . . , n, (10)

xP ≥ 0, integer , k = 1, . . . , p, P ∈ Pk. (11)

The interpretation and verification of correctness of the model is analogous (and
in fact simpler) than the one of model (1)–(6). The fact that the LP relaxations
of the two models presented are equivalent is a well known fact; see, e.g., [9].

Observation 2 To each solution of the LP relaxation of (1)–(6) there corre-
sponds a solution of the LP relaxation of (7)–(11) of the same value, and vicev-
ersa.

Although model (7)–(11) has, in general, an exponential number of variables, as
opposed to model (1)–(6), the LP relaxation of the former is faster to solve in
practice by column generation techniques. Letting JP ⊆ {1, . . . , n} be the set of
trips visited by a path P ∈ Pk, the dual of the LP relaxation of model (7)–(11)
reads:

max−

p
∑

k=1

dkαk +

n
∑

j=1

rjβj −
n

∑

j=1

ujγj ,

−αk +
∑

j∈JP

skβj −
∑

j∈JP

γj ≤ ck, k = 1, . . . , p, P ∈ Pk, (12)

αk, βj , γj ≥ 0, k = 1, . . . , p, j = 1, . . . , n,

and hence the column generation problem, which is the separation problem for
constraints (12), given a dual solution α, β, γ calls for k ∈ {1, . . . , p} and P ∈ Pk

such that
∑

j∈JP

(skβj − γj) > ck + αk,

and can be solved as a maximum-profit path from 0 to n + 1 in (V, Ak) with
node profits skβj − γj for each j ∈ V \ {0, n + 1}.

Not only the LP relaxation of (7)–(11) is much faster to solve in practice
by column generation techniques than the LP relaxation of (1)–(6), but also
heuristic methods based on this LP relaxation, that proceed by fixing variables
xP , i.e., entire sequences for TUs in the solution, tend to perform better in
practice. However, as already mentioned, in order to get useful results for our
case study we had to replace constraints (9) by stronger constraints, as illustrated
in the next section.

4 Strengthening the Capacity Constraints for the Case

Study

In all natural ILP models for the problem, including those of the previous section,
letting wk

j be an integer variable indicating the number of TUs of type k assigned

Solving a Real-World Train Unit Assignment Problem 87

to a trip j (k = 1, . . . , p, j = 1, . . . , n), the following constraints are imposed:

p
∑

k=1

skwk
j ≥ rj , j = 1, ..., n, (13)

p
∑

k=1

wk
j ≤ uj , j = 1, ..., n. (14)

(In particular, variables wk
j would be defined by equations wk

j =
∑

a∈δk
−

(j) xa in

model (1)–(6), and by equations wk
j =

∑

P∈Pk
j

xP in model (7)–(11).)

It is well known that the constraints (13) can be very weak for the LP re-
laxation. Moreover, since in our case study we have uj = 2 for j = 1, . . . , n, the
dominant of the convex hull of the nonnegative integer vectors satisfying (13)
and (14) is defined by O(p) simple constraints, that we will use to replace (13)
in our models. In order to simplify the notation, we will remove the index j and
study the following polytope:

P := conv

{

w ∈ Z
p
+ :

p
∑

k=1

skwk ≥ r,

p
∑

k=1

wk ≤ 2

}

, (15)

assuming s1 ≥ s2 ≥ . . . ≥ sp. Its dominant P is defined as follows:

P := {w ∈ Rp : there exists w ∈ P such that w ≥ w} . (16)

All the inequalities in “≥” form with nonnegative coefficients that are valid for P
are also valid for P and viceversa, so the description of P yields a set of stronger
inequalities to replace the “weak” inequality

∑p
k=1 skwk ≥ r.

The following theorem provides a simple description of P by O(p) linear
inequalities. The proof is omitted for space reasons and will be given in the full
paper.

Theorem 1. If 2s1 < r, then P = ∅. Otherwise, letting g be such that sg ≥ r
and sg+1 < r (with g := 0 if s1 < r and g := p if sp ≥ r), t be such that 2st ≥ r
and 2st+1 < r (with t := p if 2sp ≥ r), and, for each k = g + 1, . . . , t, f(k) be
such that sk + sf(k) ≥ r and sk + sf(k)+1 < r (with f(k) := p if sk + sp ≥ r and
f(t + 1) := t):

P =

w ∈ R
p
+ :

k−1
∑

ℓ=1

2wℓ +

f(k)
∑

ℓ=k

wℓ ≥ 2, k = g + 1, . . . , t + 1

. (17)

Example 1. In order to illustrate the above result, let us consider the numer-
ical example, taken from our case study, in which p = 8, r = 1302 and s =
(1150, 1044, 786, 702, 543, 516, 495, 360). In this case we have g = 0, t = 4,

88 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

f(1) = f(2) = 8, f(3) = 6, f(4) = 4, leading to the following constraints:

w1
j + w2

j + w3
j + w4

j + w5
j + w6

j + w7
j + w8

j ≥ 2

2w1
j + w2

j + w3
j + w4

j + w5
j + w6

j + w7
j + w8

j ≥ 2

2w1
j + 2w2

j + w3
j + w4

j + w5
j + w6

j ≥ 2

2w1
j + 2w2

j + 2w3
j + w4

j ≥ 2

2w1
j + 2w2

j + 2w3
j + 2w4

j ≥ 2

out of which the second is dominated by the first and the last is dominated by
the last but one.

According to the above discussion, the two ILP models of the previous section
can be strengthened by letting gj , tj , fj(·) be defined from rj as g, t, f(·) were
defined from r in the statement of Theorem 1, and replace (13) by the following
constraints:

k−1
∑

ℓ=1

2wℓ
j +

fj(k)
∑

ℓ=k

wℓ
j ≥ 2, j = 1, ..., n, k = gj + 1, . . . , tj + 1, (18)

noting that some of the constraints in the list may be dominated by others and
therefore not imposed in practice.

Without explicitly introducing the variables wk
j , in model (1)–(6) constraints

(4) can be replaced by:

k−1
∑

ℓ=1

∑

a∈δk
−

(j)

2xa +

fj(k)
∑

ℓ=k

∑

a∈δk
−

(j)

xa ≥ 2, j = 1, ..., n, k = gj + 1, . . . , tj + 1, (19)

and in model (7)–(11) constraints (9) can be replaced by:

k−1
∑

ℓ=1

∑

P∈Pℓ
j

2xP +

fj(k)
∑

ℓ=k

∑

P∈Pℓ
j

xP ≥ 2, j = 1, ..., n, k = gj + 1, . . . , tj + 1, (20)

observing that this latter replacement does not affect the structure of the column
generation problem discussed in the previous section.

5 An LP-Based Heuristic Method

We next illustrate the heuristic method, based on the LP relaxation of model (7)–
(11) with (9) replaced by (20), that eventually allowed us to improve the practi-
tioners’ solution for our case study. Besides the (customary) column-generation
based procedure to solve the LP relaxation, the heuristic method has three main
components: (1) a diving rule to fix the value of some of the variables following
the current LP optimal solution, reoptimizing the LP after the addition of these

Solving a Real-World Train Unit Assignment Problem 89

TUAP heur

begin

initialize the current LP as a reduced version of LP (7)–(11), with (9)
replaced by (20), with only a subset of the variables;
repeat

solve the current LP by a general-purpose LP solver, letting x be
the optimal primal solution, (α, β, γ) the optimal dual solution, and
z the corresponding value;
apply the constructive heuristic procedure based on (α, β, γ);
refine the solution found by the constructive heuristic procedure,
possibly updating the incumbent solution;
if there are dual constraints violated by (α, β, γ) then

add some of the corresponding primal variables to the current
LP;

else

fix the value of some of the primal variables by changing the
associated bounds;

until the current LP is infeasible or z ≥ value of the incumbent solution;

end.

Fig. 1. General structure of the LP-based heuristic method.

fixing constraints, (2) a simple constructive heuristic procedure based on the cur-
rent dual LP solution that is applied at each iteration of the column-generation
based procedure, and (3) a refinement procedure that is applied to improve each
solution produced by the constructive heuristic procedure in (2). The general
structure of the method is outlined in Fig. 1.

5.1 Fixing phase

Each time we have obtained the optimal solution x of the current LP with the
fixing constraints, i.e., there are no dual constraints violated, we change the
bounds of the variables as follows. We consider all variables xP such that xP

is integer, setting the associated lower bound to xP , i.e., imposing at least xP

paths P in the solution. Moreover, we consider the variable xP whose value xP

is the largest among the fractional ones, and set the associated lower bound to
⌈xP ⌉. Note that, in this way, we may, e.g., fix the lower bound of a variable
to 1, and then find values of these variables that are strictly larger than 1 in
subsequent LP solutions.

We observed that, after the fixing phase, it may happen that the current
LP becomes infeasible, and then become feasible again after some iterations of
the column generation procedure. In order to avoid dealing with LPs that are
infeasible due to the fact that we are only considering a subset of the variables,
we introduce explicit slack variables for constraints (20), adding them to the
objective function with a high penalty. This simplifies also the initialization of
the current LP at the beginning of the procedure. Note that the “the current

90 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

LP is infeasible” condition to be checked at the end is then equivalent to having
some of the slack variables strictly positive in the solution.

5.2 Constructive heuristic procedure

The constructive heuristic procedure that we apply at each iteration considers
the TU types one at the time, according to increasing values of ck/sk. For each
TU type k, we define up to dk paths to be added to the solution. In addition to
the paths that possibly were already fixed in the solution by the fixing phase,
the remaining paths are found by computing maximum-profit paths in (V, Ak),
analogously to the column generation procedure, with node profits defined in a
more complex way. For the trips that are not covered by the previously-defined
paths, the profit takes into account (a) the associated dual variables, and (b)
how well the capacity of the current TU type matches the residual request of the
trip, i.e., by assigning a TU of this type to the trip, will it be possible to satisfy
at equality the trip request? Moreover, we assign in any case a small positive
profit to the trips already covered.

One of the main ideas is to try to follow the dual profits for the trips that still
have to be covered, but also to try to satisfy at equality the request of these trips
and to over-cover trips that have already been covered, in the hope of being able
to achieve larger improvements with the subsequent refinement procedure. To
this aim, we do not consider explicitly constraints (10) on the maximum number
of TUs that can be assigned to a trip in the construction.

The constructive procedure terminates either when we have used all the
available TUs, or when the paths constructed so far cover all the trips. Note
that in the latter case we have saved some TUs of the last type (largest ck/sk

ratio), and, in case all of them were saved, some TUs of the last but one type,
and so on. On the other hand, in the former case, some of the trips are not
covered. Moreover, in both cases we have that constraints (10) may be violated.
The following refinement procedure tries to take care of these infeasibilities.

Concerning the fact that we are trying to satisfy at equality the trip requests,
note that the input instance can always be preprocessed so that this is possible,
by redefining the request rj of each trip j ∈ {1, . . . , n} as:

rj := min

(

p
X

k=1

s
k
w

k
j :

p
X

k=1

s
k
w

k
j ≥ rj ,

p
X

k=1

w
k
j ≤ uj , w

k
j ∈ {0, . . . , d

k}, (k = 1, . . . , p)

)

The associated optimization problem, which is a cardinality constrained bounded
subset sum problem [21], can easily be solved by enumeration given the small
values of p in practical cases.

5.3 Refinement

This is a key step in our framework. We consider the solution produced by the
constructive heuristic procedure by taking into account only the information
about the number of times wk

j that each trip j ∈ {1, . . . , n} is assigned to a

Solving a Real-World Train Unit Assignment Problem 91

TU of type k ∈ {1, . . . , p}, without considering the specific sequences (paths)
defined. In other words, we take care only of the information that would be
given by variables wk

j as defined in Sect. 4.
In order to find the “best” solution that takes into account this trip assign-

ment information, we use a variant of ILP model (1)–(6) with (4) replaced by
(19), in which, for each trip j that is (over-)covered, we impose that the number
of times that the trip is assigned to a TU of type k does not exceed wk

j . More
precisely, for all trips j that are covered but not over-covered by the solution,

i.e., for which
∑p

k=1 skwk
j ≥ rj ,

∑p

k=1 wk
j ≤ uj , and

∑p

k=1 skw
k

j < rj for each

vector (w
1
j , . . . , w

p

j) � (w1
j , . . . , w

p
j), we impose the additional constraints:

∑

a∈δk
−

(j)

xa = wk
j , k = 1, . . . , p,

removing constraints (5) and (19) associated with j. For all trips j that are
over-covered by the solution, we impose the additional constraints:

∑

a∈δk
−

(j)

xa ≤ wk
j , k = 1, . . . , p.

In this case, the constraints (19) associated with j are modified (strengthened)
taking into account that not all TU types can be used to cover the trip, changing
gj , tj , fj(·) accordingly. Finally, for all trips that are not covered by the solution,
we do not impose any additional constraint. The resulting “reduced” ILP is
solved by a general-purpose ILP solver to optimality.

6 Maintenance Constraints

A key constraint that is imposed in our case study, and that we did not discuss
in detail so far to keep the presentation simple, is the one imposing that each
TU of type k (k = 1, . . . , p) has to undergo a maintenance operation every mk

days. Generally speaking, this operation requires a transfer to a maintenance
point (by deadheading), a certain amount of time at the maintenance point, and
then a transfer from the maintenance point.

Given the very flexible representation of the sequencing constraints via graph
G, we can model the maintenance constraints by specifying, for each k ∈ {1, . . . ,
p}, a subset of arcs Mk ⊆ Ak corresponding to sequences of two trips that allow
a maintenance in between for a TU of type k. Possibly, we have that Mk contains
arcs of the form (0, j)k, (j, n + 1)k (e.g., if the maintenance can be performed
overnight). Recalling the cyclic nature of the daily assignments to TUs of type
k illustrated at the beginning of Sect. 2, letting ek ≤ dk be the number of paths
in (V, Ak) selected in the solution, the maintenance constraints impose that at
least ⌈ek/mk⌉ of these paths contain at least one arc in Mk.

Within ILP model (7)–(11), letting Qk ⊆ Pk denote the subcollection of
paths in Pk that contain at least one arc in Mk, the maintenance constraints

92 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

can be represented by adding the integer variables yk, indicating the number of
paths in Qk selected for TUs of type k, along with the constraints:

∑

P∈Qk

xP ≥ yk, k = 1, . . . , p, (21)

∑

P∈Pk

xP ≤ mkyk, k = 1, . . . , p, (22)

yk ≥ 0, integer , k = 1, . . . , p. (23)

The presence of maintenance constraints complicates slightly the column gen-
eration procedure, that now calls both for the path of maximum profit in Pk

as well as the path of maximum profit in Qk. On the other hand, given that
the paths have to be found in an acyclic directed graph, their determination
simply requires, in the canonical dynamic programming procedure, to store for
each node not only the maximum-profit path from 0 to that node, but also the
maximum-profit path from 0 to that node containing at least one arc in Mk (if
any).

The presence of maintenance constraints must also be carefully taken into
account in the heuristic method described in Sect. 5, since these constraints
are systematically violated, at least in our case study, if they are not imposed
explicitly. In particular, in the fixing phase, when searching for the fractional
variable of maximum value to fix, we exclude variables xP for which the addition
of ⌈xP ⌉ paths to the other paths in Pk already imposed by previous fixing

phases leads to a collection P
k

of paths such that |P
k
∩ Qk| < ⌈|P

k
|/mk⌉ (in

other words, these paths would violate the maintenance constraint for the TUs
of type k). The same is done in the constructive heuristic procedure: we do
not add a path to those already created for a TU of type k if this violates
the maintenance constraint – this simply means that in some cases we add
the maximum-profit path in Qk. Finally, in the refinement ILP, we impose the
counterpart of constraints (21)–(23) referred to arc variables.

7 Experimental Results

Our method was implemented in C, the computational tests were executed on a
PC Pentium 4, 3.2 GHz, 2 GB Ram, and the LP-solver used was ILOG-CPLEX
9.0. All times reported below are in CPU seconds on this PC.

We considered three different real-world instances provided by an operator
running trains in a regional area. In every instance, each trip can be assigned
to at most 2 TUs and all TUs have the same cost (normalized to ck = 1 for
k = 1, . . . , p), i.e., we wish to minimize the overall number of TUs used. The
maintenance constraints require a maintenance every at most mk = 5 days
(k = 1, . . . , p), and a maintenance requires a period of at least 6 hours between
5AM and 12AM at a specific maintenance point – the time to travel to and from
this maintenance point must be taken into account to establish if a given arc is
in Mk.

Solving a Real-World Train Unit Assignment Problem 93

Table 1. Characteristics of the instances.

inst. n rj p (sk) (dk)

A 528 ∈ [360, 1404] 8 (1150,1044,786,702,543,516,495,360) (2,4,5,18,11,5,24,3)
B 662 ∈ [588, 1534] 10 (1534,1473,1128,980,887,840,834,824,805,588) (4,3,5,1,18,3,25,5,9,3)
C 660 ∈ [588, 1610] 10 (1644,1625,1473,1128,887,840,834,824,805,588) (3,1,3,4,18,4,25,5,9,3)

In Table 1 we report the characteristics of these instances, giving their name
(inst.), the number of n of trips, the range for the trip requests rj , the number
p of TU types along with the capacity sk and availability dk for each type.

Table 2. Comparison of various LP relaxations.

inst. (1)–(6) (1)–(6) + (19) (7)–(11) (7)–(11) + (20)

value time value time value time value time

A 57 624 62 1201 57 136 62 50
B 41 47242 53 26907 41 174 53 150
C 40 23841 53 27350 40 179 53 177

In Table 2 we compare the results obtained by solving the LP relaxations
of the two ILP formulations in Sect. 3 with and without the stronger version
of the capacity constraints discussed in Sect. 4 (and without maintenance con-
straints). The table clearly shows both the bound improvements achieved with
the strengthened constraints and the much shorter time required to solve the
second LP relaxation (recall that the two LPs are equivalent in the sense of
Observation 1).

Table 3. Results for the instances in our case study.

inst. curr. sol. LP bound heur.

value value time value time

A 72 62 130 63 3544
B 76 56 196 59 5471
C 74 55 295 58 8875

Finally, in Table 3 we compare the value of the solutions obtained by the
practitioners (curr. sol.) with the lower bound found by solving the LP relaxation
of (7)–(11),(20) with the addition of the maintenance constraints (21)–(23) (LP
bound) and the value of the heuristic solution found by our method (heur.). The
table shows that we can prove that the solutions we found are almost optimal,
and that we improve on the practitioners’ solution by 10-20%. Although the

94 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

latter contains other additional constraints that we did not mention, which makes
direct comparison unfair, it seems that these additional constraints have a limited
impact on the quality of the solutions found of our method. Evaluating the actual
improvements that can be achieved by imposing all real-world constraints in our
method is the subject of current research.

We conclude by noting that a few other alternative approaches that we im-
plemented and tested (without mentioning them here) were not even able to find
a feasible solution. Moreover, none of the following variants of our method finds
a feasible solution, even if maintenance constraints are neglected:

– the one in which constraints (20) are not used;
– the one in which the fixing phase is not used, terminating the procedure

when there are no violated dual constraints;
– the one in which the refinement procedure is not used;
– the one in which the constructive heuristic procedure is not used, and re-

finement is applied only to the final solution found by the fixing phase.

As already mentioned, the fact that there is a wide margin of improvement over
the practitioners’ solution and that such an improvement is indeed achieved by
the best approach we could design is apparently in contrast with the fact that,
as soon as any of the parts of this approach are deactivated, no improvement is
obtained any more. This is certainly an intriguing aspect of our case study that
we plan to investigate further in the future.

Acknowledgments

This work was partially supported by the EU Project ARRIVAL.

References

1. Abbink E.W.J., van den Berg B.W.V., Kroon L.G., and Salomon M.: Allocation
of Railway Rolling Stock for Passenger Trains. Transportation Science 38 (2004)
33–41

2. Alfieri A., Groot R., Kroon L.G., and Schrijver A.: Efficient Circulation of Railway
Rolling Stock. ERIM Research Report, ERS-2002-110-LIS, Erasmus Universiteit
Rotterdam, The Netherlands, (2002)

3. Ben-Khedher N., Kintanar J., Queille C., and Stripling W.: Schedule Optimization
at SNCF: From Conception to Day of Departure. Interfaces 28 (1998) 6–23

4. Bonomo F., Durán G., and Marenco J.: Exploring the Complexity Boundary be-
tween Coloring and List-Coloring. Electronic Notes in Discrete Mathematics 25

(2006) 41–47
5. Brucker J., Hurink J.L., and Rolfes T.: Routing of Railway Carriages: A Case

Study. Osnabrücker Schriften zur Mathematik, Reihe P, Heft 205 (1998)
6. Bussieck M.R., Winter T., and Zimmermann U.T.: Discrete Optimization in Public

Rail Transport. Mathematical Programming 79 (1997) 415–444
7. Caprara A., Kroon L., Monaci M., Peeters M., and Toth P.: Passenger Railway

Optimization, in C. Barnhart and G. Laporte (eds.). Handbooks in OR & MS 12,
Elsevier Science, (2006)

Solving a Real-World Train Unit Assignment Problem 95

8. Carpaneto D., Dell’Amico M., Fischetti M. and Toth P.: A branch and bound
algorithm for the multiple vehicle scheduling problem. Networks 19 (1989) 531–
548

9. Cook W.J., Cunningham W.H., Pulleyblank W.R., and Schrijver A.: Combinatorial
Optimization, John Wiley and Sons, (1998)

10. Cordeau J.-F., Toth P., and Vigo D.: A Survey of Optimization Models for Train
Routing and Scheduling. Transportation Science 32 (1998) 380–404

11. Cordeau J.-F., Soumis F., and Desrosiers J.: A Benders Decomposition Approach
for the Locomotive and Car Assignment Problem. Transportation Science 34

(2000) 133–149
12. Cordeau J.-F., Soumis F., and Desrosiers J.: Simultaneous Assignment of Locomo-

tives and Cars to Passenger Trains. Operations Research 49 (2001) 531–548
13. Cordeau J.-F., Desaulniers G., Lingaya N., Soumis F., and Desrosiers J.: Simul-

taneous Locomotive and Car Assignment at VIA Rail Canada. Transportation
Research 35 (2002) 767–787

14. Desrosiers J., Dumas Y., Solomon M.M., and Soumis F.: Time Constrained Routing
and Scheduling, in M.O. Ball et al. (eds.), Handbooks in OR & MS 8, Elsevier
Science, (1995) 35–139

15. Fioole P.-J., Kroon L.G., Maróti G., and Schrijver A.: A Rolling Stock Circula-
tion Model for Combining and Splitting of Passenger Trains. European Journal of
Operational Research 174 (2006) 1281–1297

16. Garey M.R. and Johnson D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, (1979)

17. Grötschel M., Lovász L., and Schrijver A.: Geometric Algorithms and Combinato-
rial Optimization. Springer-Verlag (1988)

18. Hadjar A., Marcotte O. and Soumis F.: A Branch-and-Cut Algorithm for the Mul-
tiple Depot Vehicle Scheduling Problem. Operations Research 54 (2006) 130–149

19. Huisman D., Kroon L.G., Lentink R.M., and Vromans M.J.C.M.: Operations Re-
search in Passenger Railway Transportation. Statistica Neerlandica 59 (2005) 467–
497

20. Lingaya N., Cordeau J.-F., Desaulniers G., Desrosiers J., and Soumis F.: Opera-
tional Car Assignment at VIA Rail Canada. Transportation Research 36 (2002)
755–778

21. Martello S. and Toth P.: Knapsack Problems: Algorithms and Computer Imple-
mentations. John Wiley and Sons (1990)

22. Nemhauser G.L. and Wolsey L.A.: Integer and Combinatorial Optimization. John
Wiley and Sons (1988)

23. Peeters M. and Kroon L.G.: Circulation of Railway Rolling Stock: a Branch-and-
Price Approach. ERIM Research Report, ERS-2003-055-LIS, Erasmus Universiteit
Rotterdam, The Netherlands, (2003)

24. Rouillon S., Desaulniers G., and Soumis F.: An Extended Branch-and-Bound
Method for Locomotive Assignment. Transportation Research 40 (2006) 404-423

25. Schrijver A.: Minimum Circulation of Railway Stock. CWI Quarterly 6 (1993)
205–217

