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Abstract

We consider the compilation of different reasoning tasks
into the evaluation problem of quantified boolean formulas
(QBFs) as an approach to develop prototype reasoning sys-
tems useful for, e.g., experimental purposes. Such a method
is a natural generalization of a similar technique applied to
NP-problems and has been recently proposed by other re-
searchers. More specifically, we present translations of sev-
eral well-known reasoning tasks from the area of nonmono-
tonic reasoning into QBFs, and compare their implementa-
tion in the prototype syster@UIP with established NMR-
provers. The results show reasonable performance, and docu-
ment that the QBF approach is an attractive tool for rapid pro-
totyping of experimental knowledge-representation systems.

Introduction

,stefan]@kr.tuwien.ac.at

QBFs. To the best of our knowledge, except for an encod-
ing of conditional planning problems into QBFs (Rintanen
1999a), concrete transformations of KR tasks beyond NP
into QBFs have not been presented so far. In particular,
we provide polynomial-time translations of problems from
abduction, default logic, autoepistemic logic, and disjunc-
tive logic programming into QBFs. As well, we recall that
propositional circumscription igpso factoa QBF.

In addition, we present a prototype implementation,
QUIP, for solving KR problems using the reductions
discussed above. QUIP employs as underlying QBF-
evaluator the publicly available propositional theorem
proverboole (bddlib), which is based on binary decision
diagrams (BDDs) (Bryant 1986). Choosibgole is mo-
tivated by the fact that it can handle arbitrary QBFs, and
because it is a highly sophisticated package developed over

Several important knowledge-representationtasks (KR tasks many years.

for short) can be efficiently reduced 8aT, the satisfiabil-

ity problem of classical propositional logic. Thus, prac-
tically efficient algorithms forsat can be used to solve
such problems. Successful applications of this idea include,
e.g., reductions of constrained-based planning problems to
SAT (Kautz & Selman 1996).

The feasibility of this approach relies on the proviso that
the considered problemis in NP, i.e., that it can be solved by
a nondeterministic Turing machine working in polynomial
time, and on the fact tha&aT is the “prototypical” problem
in NP. The latter property refers to the NP-completeness of
SAT, stating that any problem in NP is expressible (in poly-
nomial time) assAT instance.

Itis natural to apply an analogous method to problems be-
yond NP—in particular, many interesting KR problems are
known to belong to PSPACE, the class of problems solvable
in polynomial space. Now, since the prototypical PSPACE-
problem is the evaluation of quantified boolean formulas
(QBFs), these KR problems can thus be solved by efficient
translations to QBFs.

In this paper, we consider an approach of this kind for
problems belonging to the second level of the polynomial
hierarchy. We present efficient (polynomial-time) trans-
lations of major reasoning problems from several propo-
sitional nonmonotonic reasoning (NMR) formalisms into
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In order to evaluate the feasibility of the method in prac-
tice, we compare the prototype systgptJIP with exist-
ing NMR theorem provers. In particular, comparisons are
performed with Theorist (Poole 1989), DeRes (Cholewin-
ski, Marek, & Truszczpski 1996)dlv (Eiteret al. 1997),
andsmodels (NiemeB & Simons 1996). As shown by
the experimental results, even with no optimization meth-
ods applied, our (ad hoc) NMR implementations via QBFs
compare reasonably well to these systems, some of which
represent the state-of-the-art.

The approach discussed in this paper has been advo-
cated in (Cadoli, Giovanardi, & Schaerf 1998; Rintanen
1999b), where algorithms for evaluating QBFs are pre-
sented. Although these Davis-Putnam style algorithms (like
the resolution-style algorithm discussed in (KleinenBig,
Karpinski, & Flogel 1995)) could equally be used as under-
lying QBF-solvers, they suffer from the disadvantage that
the input QBF is required to be iprenex clausal normal
form, i.e., all quantifiers of the given formula must be at the
front and its quantifier-free part must be in conjunctive nor-
mal form. As a consequence, since the “natural” reductions
of KR problems to QBFs (as outlined in the present paper)
do in general not yield a QBF in a particular normal form,
the adoption of these algorithms would necessitate an addi-
tional normal form translation, which may result either in
an exponential blow-up of the resultant input QBF or an in-
crease of the number of variables.



Translations into QBFs

In this section, we discuss how some well-known logical for-
malisms in Al can be mapped to QBFs in polynomial time.
We focus here on major NMR formalisms. For space rea-
sons, the exposition is necessarily succinct.

All formalisms are propositional. We assume a finite set
of propositional variabled” and constants 1, 0, denoting
truth and falsity, respectively. The sef of propositional

The relevance problenis deciding whether a given hy-
pothesish belongs to some abductive explanation. This is
expressed by the following QBE"S! (H, p, T, h):

HG[HV(TA(G < H)/\h) /\VV((T/\(G < H)Ah) — p)].

For minimal abductive explanations, the relevance problem
is expressed by a QBE7 ! (H, p, T, h) which results from
T¢4(H,p, T, h) by adding within the scope alG a con-

formulas is defined in the usual way, using the sentential jynct for the minimality check:

connectives, A, V, —, and«. Formulas will be denoted
by Greek lower-case letters. #heory T, is a finite set of
formulas. In general, a theof§ will be identified with the
formula ;. ¢

Quantified boolean formulas (QBFs) generalize ordinary
propositional formulas by the admission of quantifications
over propositional variables (QBFs are denoted by Greek
upper-case letters).

The truth value of a QB without free variables (i.e.,
where all variables i® are within the scope of a quantifier)
is recursively defined as follows:

o if ® =1, thend is true;

e if ® =0, thend is false;

o if & =T, thend is true iff ¥ is false;

o if ® = o,V &y, thend is true iff eitherd, or &, is true.
o If & =3z T, thend is true iff U[z/0] v ¥[z/1] is true.

(Here,¥[v/c] denotes the substitution offor v in ¥.) The
cases of the remaining operators follow from the given ones
in the usual way.

LetS = {¢1,...,¢0n}t andT = {41, ...,1,} be sets of
formulas. ThenS < T abbreviateg\"_,(¢; — ), and
S < T is a shorthand fo(S < T) A =(T < S). Further-
more, for a seP = {p1, ..., p,} of propositional variables
and a quantifie € {V,3}, we letQP ¢ stand for the for-
mulaQp1Qp2 - - - Qpn .

Abduction. Classical abduction from a theoff§f on V/
may be defined as follows (Selman & Levesque 1990;
Poole 1989). Letd C V be a set ohypothesesand let

p € V be a distinguished atom. A subsBt C H is an
abductive explanatiofor p from T andH, if

(i) T U E is consistent, and
(i) TUE = p,i.e., T U E logically impliesp.

An explanationF is minimal, if no proper subsek’ C E is
an abductive explanation.

Assume thatH {h1,...,hm}, and let G
{g1,-..,9m} be a set of new propositional variables. The
following QBF Z.q( H, p, T') expresses whethgrhas some
abductive explanation (by monotonicity of classical logic,
equivalently a minimal abductive explanation):

HG[HV(TA (G < H)) AW((TA (G < H)) ﬁp)}

Intuitively, G guesses an explanation (determined by those
g; Which are true), and the two conjuncts in the scopé®f
express conditions (i) and (ii), respectively.

A g = 3V (T A G\ g} < B\ {hi}) A ~hi 7).
i=1

It encodes (in terms of the auxiliary variable é8tthe well-
known property that a sgf C H is minimal iff £\ {e} is
not an explanation, forarye E,i.e., TU(E\ {e})U{-p}
is satisfiable, and whekeeis false.

Theorem 1 The QBFsT,,q(H, p,T), T;5(H, p, T, h), and
Tmrel(H,p, T, h) evaluate to true iff the answer of the cor-
responding abduction task is “yes”.

Autoepistemic logic. The language of Moore’s autoepis-
temic logic (Moore 1985) contains the modal operator
where L¢ intuitively means that is believed. ByL; we
denote the languagé extended byl. In what follows, for-
mulasL¢ are viewed as propositional variables, which are
calledmodal atoms

A stable expansioof an autoepistemic theofy C L is
a set of formulagy C L, such that

E=Cn(TU{L¢|p€ E}U{-Lo| o< L \E}),

whereCn(-) is the classical consequence operator with re-
spect to the extended languafig.

The existence of a stable expansion can be expressed as
follows (Niemeh 1992). Letl’ C £ be an autoepistemic
theory,M be the set of all modal atoms occurringfinand
V be the set of ordinarynon-moda) atoms inT. We say
thatA C M U {—¢ | ¢ € M}isT-fulliff, forall Lo € M,
itholdsthat(i) T UA = ¢ iff L¢ € A, and(ii) T U A }= ¢
iff —\L(b € A.

Proposition 1 (Niemel 1992)I" C £}, has a stable expan-
sion iff there exists &-full set.

ForT, M, andV as above, this condition is easily translated
into the following QBFZ,.;(T):

MV (T = Apgers (L6 — 9))A
Nrsem (ﬁL‘é — V(T A ﬁqb))}'

Theorem 2 A finite autoepistemic theor{y C L has a
stable expansion iff,.;(T") evaluates to true.

Default Logic. A default theoryis a pairT = (W, A),
wherel C L is a set of formulae and is a set odefaults

of the form avi.l Intuitively, the default is appliedy(is

For simplicity, we omit multiple justifications here. Our QBF
translations can be easily extended to the more general form of
defaults.



concluded) ifa is provable and thgustification 5 can be
consistently assumed: is said to bdiniteiff 17/ is finite.

The semantics o' = (W, A) is defined in terms oéx-
tensiong(Reiter 1980). Following (Marek & Truszcagki
1993), extensions can be characterised thus. FoSamny_,
let A(S) be the monotonic ruleg2 | &2 € A, =3 ¢ S}
Then,E C L is an extension of " iff E = Cn®E) (W),
whereCn”(P) (W) is the set of all formulae derivable from
W using classical logic together with the rules fraE).

Adopting this characterization, we next express the exis-
tence of an extension of a finite default thed®y, A) in
terms of a QBF.

SupposeA = {§; = 2 | 1 < i < n}. Let
D = {d,...,d,} andD’ = {d},...,d,} be sets of new
propositional variables. Intuitivelyi; is true if§; is selected
into A(E), andd; is true if 9; fires in the construction oF,
i.e., ify; € Cn®E)(T). Then, the following QBF expresses
existence of an extension:

Tu(T) = AD'AD((D' < D) Ay A Dy A D3 A By),

whereCn(W U {v; | djistrue}) is the guess for the ex-

tensionE and®., ..., &, express the following testg(de-

notes the sefy1,...,v.}):

e &, tests whether the justificatioly of each default; in
the guessed s&X(F) is consistent with the guess fér.

o=\, [di o 3V<ﬁi AW A (D' < G))]

e &, tests whether no applicable defaulA E) is missing
with respect to the guesséd; i.e., for everys; such that
d; is true butd] is false, the seEl U {—«; } is satisfiable:

By =\, [(di/\ﬂdg) N EIV(—uZ- AW A (D < G))]

e O3 tests whether for each defadjt¢ A(E), its justifica-
tion g; is inconsistent with®, i.e.,—3; is derivable:

@3 = Ny [~di =W (WA (D <) = -8,) .

e O, tests whether all defaults iA(FE) assumed to be ap-
plied (@, is true) are actually applied (i.&Zn®) (W) =
{v: | d}istrue}). This amounts to checking whether
N (d, — ) € CnAEN (W), ie., whether(D' <
G) € CnAE)(W). Applying a result shown in (Got-
tlob 1995),¢ ¢ Cn™F)(W) iff there exists a subset
CCG={mn,...,v}suchthat (WUCU{-¢} is sat-
isfiable, and (ii) for each; ¢ C, the seiV U C U {—«;}
is satisfiable. Using the sét= {cy, ..., ¢, } of new vari-
ables,®, is as follows:

ve{c<D -
[wﬁ(w A=(D' < G)A(C < G))v
V(e e V(W 1 a1 (€ < )]}

Theorem 3 A finite default theons” = (W, A) has an ex-
tension iff7y (T') evaluates to true.

An alternative (and more succinct) translation of default
logic into QBFs is possible using Nienagd characterization
of extensions in terms of full sets (Nienael995). To this
end, for a sef\ of defaults and a sef of formulas, define
JA) = {8 22 e Ay andA,(S) = {2 | 22 e
A, B e St

Rephrasing a definition in (Niermeell995), a subset C
Jj(A) is afull setfor (W, A) iff every 3 € j(A) satisfies the
following condition: 3 € A iff =3 ¢ Cn®») (W).
Proposition 2 (Niemek 1995)There is a one-to-one cor-

respondence between the extensions and the full sets of
(W,A). In addition, each extensiorE is given by

Cn?»(M) (W), whereA is the full set corresponding tB.

We now express the existence of a full set in terms of a
QBF. Considerl’ = (W,A) whereA = {2t
1,...,n}.

Let J = {j1,...,jn} be a set of new variables. Intu-
itively, j; is true if 3; can be consistently assumed, i.e., if
—3; is not provable. Consider the following QBF:

TH(T) = aJ[/\” (jiHN(VV,A"m@))}

i=1
@it Bi

where A7 = {2 | 2B € A jiistrug and
N(T,A7,-3;) expresses nonderivability of3; from W
using the rules fromA”, i.e., N(T,A”,—3;) states that

-0 ¢ CnAJ(W). Analogous to the characterization used
for the QBF®, above N (T, A, —3;) is of the following
form (C = {c1, ..., c,} is again a set of new variables):

SC{ Ay |G A ) =
3V (W A B A Ny (v e v ) ) A
HV(W A =ap ANy (R0 V e Vv ’yl))H }

Theorem 4 A finite default theoni” = (W, A) has an ex-
tension iff7J; (T) evaluates to true.

Brave inference(WW, A) =, ¢, of a formulag, i.e., mem-
bership of¢ in some extension dfit; A), can be easily ex-
pressed by adding iﬂjiff (T) the formula-N (W, A7, ¢).
Similarly, cautious inferencd,T, D) |=. ¢, i.e., member-
ship of ¢ in all extensions of W, A), can be expressed by
adding in7J;(T)) the formula\ (W, A”, ¢) and negating
the result.

It is natural to ask how the equivalent translatidig(-)
and 73;5(-) compare with respect to evaluation time. Intu-
itively, 77 (-) is less involved and should thus be evaluated
faster. However, experiments indicate tiai(-) yields in
general better performance results tl’igfﬁ(-) (cf. compar-
isons below).

’[::

Disjunctive Logic Programming. A disjunctive logic
program,P, is a finite set of clauses

r: H(r)« P(r),N(r),
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Figure 1:QUIP’s system architecture.

whereH (r) is a disjunction of variables?(r) is a conjunc-
tion of variables, andV (r) is a conjunction of negated vari-
ables. A Herbrand interpretatidiof V' is astable modebf

P (Gelfond & Lifschitz 1988; Przymusinski 1991), if it is
a minimal model (with respect to set-inclusion) of the pro-
gram P! resulting fromP as follows: remove each clause
r such thatl = a for some—a in N(r), and removeN (r)
from all remaining clauses.

We express the existence of a stable model by a QBF. Let sym of productsSOP), is interpreted bint

P be a programV = {v1,...,v,} be the atoms occurring
in P, andV’ = {v1, ..., v, } be asetof new variables. Con-
sider the QBFZ;,(P):

3V{P AV [ﬂ(V’ < V)V
Vier (N0 AB'() — H'(1) |},

where B’(r) and H'(r) result from B(r) and H(r), re-
spectively, by replacing each occurrencevpiith v} (i =
1,...,n).

Theorem 5 P has a stable model iff;,(P) evaluates to
true.

Brave inferenceP =, p, of an atomp is expressed by
addingp as a conjunct in the scope &V in 7;,(P), and
cautious inferenceP |=. p, by adding similarly—p there
and negating the resulting formula.

Circumscription.  In contrast to the formalisms described
above, propositional circumscription is already a quantified

QUIP

QUIP implements the transformations described in the pre-
vious section. The architecture QUIP is depicted in Fig-

ure 1. The problem description (e.g., a default theory, a dis-
junctive logic program, an abductive theory, etc.) is read and
translated to a QBF by théter program, which is then
sent to the QBF-evaluatdooole . The result ofboole
usually a formula in disjunctive normal form (often called

. The latter
part associates a meaningful interpretation to the formulas
occurring in SOP and provides an explanation in terms of
the underlying problem instance (e.g., an extension, a stable
model, an abductive explanation, etc.). The interpretation
relies on a mapping of internal variables of the generated
QBF into concepts of the problem description which is pro-
vided byfilter

The QBF-evaluataboole is a publicly available propo-
sitional theorem prover based on binary decision diagrams
(the program, together with its source code, can be down-
loaded from the web; see (bddlib)). One of the advantages
of boole is the fact that it enables a direct processing of
the translations discussed in the previous section, without
the need of an additional normal-form translation.

Finally, all parts ofQUIP are written in C using standard
tools like LEX and YACC which are easily portable to vari-
ous platforms.

In order to incorporate new formalisms in@UIP, one
has to extend thélter program responsible for the ap-
propriate reductions, the mapping of the variables, and the
interpreterint . The deductive engine remains unchanged

boolean formula, hence it does not require a separate reduc-in this process.

tion. We recall the basic concepts of circumscription (Mc-
Carthy 1980).

In the propositional case, the parallel circumscription of
a set of atomsP = {pi1,...,pn} in a theoryT, where
the atoms(@ are fixed and the remaining aton#s =
{z1,...,2m} = V \ (P U Q) may vary, is given by the
following QBF CIRC(T'; P, Z), cf. (Lifschitz 1985):

T AVP VZ’((T[P/P’, Z/Z'|A(P' < P)) — (P < P')).

Here, P’ = {p},...,p,,}andZ’ = {z{,... 2] } are sets
of new propositional variables correspondingRoand Z,
respectively, an@’[P/P’, Z/Z'] results froml" by substitu-
tion of the variables ir?’ U Z’ for those inP U Z. Circum-
scriptive inference of a formula from a theoryT is then
expressed by the following QBF:

YV (CIRC(T; P, Z) — ¢).

Experimental Results

We compareQUIP with several established tools from the
literature on the basis of five benchmark problems. The tools
are DeReS (Cholewinski, Marek, & TruszemsKi 1996),

dlv (Eiter et al. 1997),smodels (Niemekl & Simons
1996), and Theorist (Poole 1989). Four of the five test
sets are taken from TheoryBase (Cholewiretkal. 1995),

a well-known test-bed for nonmonotonic formalisms; the
other test set consists of abductive diagnosis problems for
n-bit full adders. The latter problem is used to compare the
abduction part ofQUIP with both Theorist and the diag-
nosis front-end ofllv , whilst the problems from Theory-
Base are used to compare the two default-logic encodings
and the logic-programming encoding@tJIP with DeReS,

dlv , andsmodels . More precisely, both encodings of the
default-logic part ofQUIP are compared with DeRes, and
the logic-programming encoding is compared with and



smodels . Alltests have been performed ona SUN ULTRA
60 with 256 MB RAM; the running time is measured in sec-
onds (with an upper time limit set to ten minutes) and com-
prises the sum of both user time and system time. The fol-
lowing program releases have been us#id: release from
November 24, 199%models 2.24, andderes 1.1.0.

The results for the abduction problems are shown in Ta-
ble 1. The full adder is considered as a black box. The
observations consists of output values (including carry bits),
the input values are given by the theory. Entries with “min”
give the running time for the computation of all minimal ex-
planations; the remaining entries reflect the corresponding
results for the computation of all non-minimal explanations.
Furthermore, the values in the row “Theorist (1)” are deter-
mined by using our formalization of the n-bit adder, whereas
the row “Theorist (2)” contains the results employing the
formalization given in the User’s Guide of Theorist. Due to
space limitations, the details of the problem descriptions are
omitted here. Note, however, that in order to perform ab-
ductive diagnosis, it is necessary that the respective problem
descriptions contain both a model of the correct behaviour
of the given components, as well as the specification of pos-
sible malfunctions (the so-calldédult mode). Furthermore,
albeit the diagnosis front-end dfv is based on a different
semantics than botQUIP and Theorist, the considered for-
malizations are chosen in such a way that equivalent results
are obtained.

Tables 2-5 contain the results for the problems from The-
oryBase. This test-bed encodes different graph problems ei-
ther as a default theory or as an equivalent logic program.
The measurements represent the running time for the com-
putation of all extensions of the given default theory, or of all
stable models of the corresponding logic program (labeled
with “LP”). The results for the two default logic reductions

of QUIP are indicated by 7" and “Tdfls ", respectively.

The following problems from TheoryBase have been cho-
sen:A;,q is an encoding for maximal independent sets in a
given graphA,,qtcn 1S @an encoding for maximal matching,
Agol is an encoding for graph coloring, add, .., is an en-
coding for Hamiltonian cycles. Moreover, TheoryBase ad-
mits different underlying graph-classes; here, chess graphs
and cycle graphs have been used. (N.B. For the results in
Table 2, it was necessary to resort to an earlier version of
DeReS, becaudderes 1.1.0 displayed occasional execu-
tion errors for the chosen problem class.)

The results of these tests show tAtIP compares suf-
ficiently well. In fact, in some instances of the diagnosis
example QUIP performs actually better than bodtv and
Theorist. This can be explained by the fact that the diagnosis
front-end ofdlv , as well as Theorist anQUIP, aread hoc
implementations developed to demonstrate the feasibility of
the corresponding approach. On the other hand, it is clear
that QUIP cannot compete wittsmodels or (the logic-
programming part offdlv because these tools are highly
optimized systems developed with a particular semantics in
mind, whereas the purpose QfUIP is to provide auniform
method to deal with several knowledge-representation for-
malisms at the same time. In any ca@JIP demonstrates
the practical usefulness of our approach.

n 1 2] 3 4 5
div 0 O 1] 141 132
dlv (min) 0 2| 22| 231 787
QUIP 0 0| 1| 12 161
QUIP (min) 0 0| 1 3| 18
Theorist (1) || > 1500 — = = —
Theorist (2) 54| >3600| — | —

Table 1: Results for the n-bit full adder.

# vertices 15/ 20| 25|30| 35| 40
DeReS 1126480 — | — ] —
QUIP (7y) 0| O 1| 4119 90
QUIP (7) 1| 1| 3| 8]|25]|113
div (LP) 0| O 0| 1| 3| 15
QUIP (LP) 0| O 1| 4|18 85
smodels (LP) 0| O o 1| 2| 10

Table 2: Test set based on cycle graphs Ang;.

# vertices 221 26| 30| 34 38| 42
DeReS O| 2|18 147 | 1140| —
QUIP (7y) 0| 1| 2 6 18 | 63
QUIP () 1| 2| 5| 10| 25|72
div (LP) ol ol o 1 3]12
QUIP (LP) 0| 0 2 5 18 | 65
smodels (LP) o 0] O 1 2|1 7

Table 3: Test set based on chess graphs/sng;.r..

# vertices 6| 8| 10| 12| 14| 16
DeRes 0| O 0 0| 2 8
QUIP (DE) 1] 3 8| 19| 63| 250
QUIP (DEys) || 27 | 90| 240 | 493 | — | —
div (LP) 0| O 0 1| 3| 15
QUIP (LP) 0| 1| 2| 945|211
smodels (LP) 0| O 0 1| 3| 10
Table 4: Test set based on cycle graphs Afg.

# vertices 6|8|10|12| 14| 16
DeRes O[O0 1]11|116| —

QUIP (7y) oO|1| 2| 7| 29| 121
QUIP () 29| 24|69 153| 267
div (LP) 0|0|] 0] O 0 0

QUIP (LP) 0/0| 1| 5| 22| 105
smodels (LP) || 0| 0| O| O 0 0

Table 5: Test set based on cycle graphs Ang,.,.



Ongoing Work and Conclusion

Our experiments document that moderately sized instances
of some NMR problems can be solved reasonably well by
using ad hoctranslations to QBFs. We expect a similar
behavior for other KR formalisms, and believe that QBF-
based problem solvers liIKQUIP are valuable tools for re-
searchers experimenting with KR formalisms, and in partic-
ular with KR logics. Of course, a performance increase will
be achieved by designing more sophisticated translations of
the problems into QBFs, or by using more advanced BDD
packages thahoole . The power of the current framework

is, however, that it realizes an easy-to-use system handling
all problems in PSPACE (providing an appropriate reduction
has been implemented).

Our ongoing and future work includes the following is-
sues. We are investigating the implementations of theorem
provers for modal logics iQUIP. The validity problem of
standard logics like K, T, or S4 is in PSPACE, and can thus
be polynomially reduced to QBFs. Notice that currently
only for few modal logics theorem provers are available.

Anotherissue of research concerns alternative translations
of the same problem into QBFs. The experimental results of

the different QBFsTy;(-) and 7J;(-), which both express
existence of a default-logic extension, have shown that the
chosen translation crucially affects the performance. Further
research is needed to get a clearer picture of more optimized
translations.

Furthermore, different platforms for evaluating QBFs,
based on (extensions of) the Davis-Putham procedure
(Cadoli, Giovanardi, & Schaerf 1998; Rintanen 1999b), res-
olution (Kleine Bining, Karpinski, & Fbgel 1995) and bi-
nary decision diagrams, will be compared with respect to
NMR prototype implementations. We plan to extepdIP
into a system for hybrid parallel QBF evaluation. The idea
is to evaluate a particular QBF on different machines using
different algorithms in parallel. This approach allows for an
easy incorporation of new QBF algorithms, and exploits dif-
ferent strengths of the employed QBF algorithms. As well,
for solving subformulas, an intertwined use of these algo-
rithms may be considered.

Results on the above research issues will contribute for a
better assessment of the suitability of the QBF approach re-
garding the computation of KR tasks. For expressing prob-
lem descriptions in a function-free language, it would be
convenientto have an evaluator for a generalization of QBFs
to function-free formulas with variables. Intelligent ground-
ing algorithms, based on ideas in (Eitdral. 1997), might
be investigated.
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