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Abstract

We consider the compilation of different reasoning tasks
into the evaluation problem of quantified boolean formulas
(QBFs) as an approach to develop prototype reasoning sys-
tems useful for, e.g., experimental purposes. Such a method
is a natural generalization of a similar technique applied to
NP-problems and has been recently proposed by other re-
searchers. More specifically, we present translations of sev-
eral well-known reasoning tasks from the area of nonmono-
tonic reasoning into QBFs, and compare their implementa-
tion in the prototype systemQUIP with established NMR-
provers. The results show reasonable performance, and docu-
ment that the QBF approach is an attractive tool for rapid pro-
totyping of experimental knowledge-representation systems.

Introduction
Several important knowledge-representation tasks (KR tasks
for short) can be efficiently reduced toSAT, the satisfiabil-
ity problem of classical propositional logic. Thus, prac-
tically efficient algorithms forSAT can be used to solve
such problems. Successful applications of this idea include,
e.g., reductions of constrained-based planning problems to
SAT (Kautz & Selman 1996).

The feasibility of this approach relies on the proviso that
the considered problem is in NP, i.e., that it can be solved by
a nondeterministic Turing machine working in polynomial
time, and on the fact thatSAT is the “prototypical” problem
in NP. The latter property refers to the NP-completeness of
SAT, stating that any problem in NP is expressible (in poly-
nomial time) asSAT instance.

It is natural to apply an analogous method to problems be-
yond NP—in particular, many interesting KR problems are
known to belong to PSPACE, the class of problems solvable
in polynomial space. Now, since the prototypical PSPACE-
problem is the evaluation of quantified boolean formulas
(QBFs), these KR problems can thus be solved by efficient
translations to QBFs.

In this paper, we consider an approach of this kind for
problems belonging to the second level of the polynomial
hierarchy. We present efficient (polynomial-time) trans-
lations of major reasoning problems from several propo-
sitional nonmonotonic reasoning (NMR) formalisms into
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QBFs. To the best of our knowledge, except for an encod-
ing of conditional planning problems into QBFs (Rintanen
1999a), concrete transformations of KR tasks beyond NP
into QBFs have not been presented so far. In particular,
we provide polynomial-time translations of problems from
abduction, default logic, autoepistemic logic, and disjunc-
tive logic programming into QBFs. As well, we recall that
propositional circumscription isipso factoa QBF.

In addition, we present a prototype implementation,
QUIP, for solving KR problems using the reductions
discussed above. QUIP employs as underlying QBF-
evaluator the publicly available propositional theorem
proverboole (bddlib), which is based on binary decision
diagrams (BDDs) (Bryant 1986). Choosingboole is mo-
tivated by the fact that it can handle arbitrary QBFs, and
because it is a highly sophisticated package developed over
many years.

In order to evaluate the feasibility of the method in prac-
tice, we compare the prototype systemQUIP with exist-
ing NMR theorem provers. In particular, comparisons are
performed with Theorist (Poole 1989), DeRes (Cholewin-
ski, Marek, & Truszczy´nski 1996),dlv (Eiter et al. 1997),
and smodels (Niemelä & Simons 1996). As shown by
the experimental results, even with no optimization meth-
ods applied, our (ad hoc) NMR implementations via QBFs
compare reasonably well to these systems, some of which
represent the state-of-the-art.

The approach discussed in this paper has been advo-
cated in (Cadoli, Giovanardi, & Schaerf 1998; Rintanen
1999b), where algorithms for evaluating QBFs are pre-
sented. Although these Davis-Putnam style algorithms (like
the resolution-style algorithm discussed in (Kleine B¨uning,
Karpinski, & Flögel 1995)) could equally be used as under-
lying QBF-solvers, they suffer from the disadvantage that
the input QBF is required to be inprenex clausal normal
form, i.e., all quantifiers of the given formula must be at the
front and its quantifier-free part must be in conjunctive nor-
mal form. As a consequence, since the “natural” reductions
of KR problems to QBFs (as outlined in the present paper)
do in general not yield a QBF in a particular normal form,
the adoption of these algorithms would necessitate an addi-
tional normal form translation, which may result either in
an exponential blow-up of the resultant input QBF or an in-
crease of the number of variables.
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Translations into QBFs
In this section, we discuss how some well-known logical for-
malisms in AI can be mapped to QBFs in polynomial time.
We focus here on major NMR formalisms. For space rea-
sons, the exposition is necessarily succinct.

All formalisms are propositional. We assume a finite set
of propositional variablesV and constants 1, 0, denoting
truth and falsity, respectively. The setL of propositional
formulas is defined in the usual way, using the sentential
connectives¬, ∧, ∨,→, and↔. Formulas will be denoted
by Greek lower-case letters. Atheory, T , is a finite set of
formulas. In general, a theoryT will be identified with the
formula

∧
φ∈T φ.

Quantified boolean formulas (QBFs) generalize ordinary
propositional formulas by the admission of quantifications
over propositional variables (QBFs are denoted by Greek
upper-case letters).

The truth value of a QBFΦ without free variables (i.e.,
where all variables inΦ are within the scope of a quantifier)
is recursively defined as follows:

• if Φ = 1, thenΦ is true;

• if Φ = 0, thenΦ is false;

• if Φ = ¬Ψ, thenΦ is true iff Ψ is false;

• if Φ = Φ1 ∨ Φ2, thenΦ is true iff eitherΦ1 or Φ2 is true.

• If Φ = ∃xΨ, thenΦ is true iff Ψ[x/0] ∨Ψ[x/1] is true.

(Here,Ψ[v/c] denotes the substitution ofc for v in Ψ.) The
cases of the remaining operators follow from the given ones
in the usual way.

Let S = {φ1, . . . , φn} andT = {ψ1, . . . , ψn} be sets of
formulas. Then,S ≤ T abbreviates

∧n
i=1(φi → ψi), and

S < T is a shorthand for(S ≤ T ) ∧ ¬(T ≤ S). Further-
more, for a setP = {p1, . . . , pn} of propositional variables
and a quantifierQ ∈ {∀, ∃}, we letQP φ stand for the for-
mulaQp1Qp2 · · ·Qpn φ.

Abduction. Classical abduction from a theoryT on V
may be defined as follows (Selman & Levesque 1990;
Poole 1989). LetH ⊆ V be a set ofhypotheses, and let
p ∈ V be a distinguished atom. A subsetE ⊆ H is an
abductive explanationfor p from T andH , if

(i) T ∪ E is consistent, and

(ii) T ∪ E |= p, i.e.,T ∪ E logically impliesp.

An explanationE is minimal, if no proper subsetE′ ⊂ E is
an abductive explanation.

Assume thatH = {h1, . . . , hm}, and let G =
{g1, . . . , gm} be a set of new propositional variables. The
following QBFTabd(H, p, T ) expresses whetherp has some
abductive explanation (by monotonicity of classical logic,
equivalently a minimal abductive explanation):

∃G
[
∃V

(
T ∧ (G ≤ H)

)
∧ ∀V

(
(T ∧ (G ≤ H))→ p

)]
.

Intuitively, G guesses an explanation (determined by those
gi which are true), and the two conjuncts in the scope of∃G
express conditions (i) and (ii), respectively.

The relevance problemis deciding whether a given hy-
pothesish belongs to some abductive explanation. This is
expressed by the following QBFT rel

abd (H, p, T, h):

∃G
[
∃V

(
T∧(G ≤ H)∧h

)
∧∀V

(
(T∧(G ≤ H)∧h)→ p

)]
.

For minimal abductive explanations, the relevance problem
is expressed by a QBFT mrel

abd (H, p, T, h) which results from
T rel

abd (H, p, T, h) by adding within the scope of∃G a con-
junct for the minimality check:
m∧

i=1

[
gi → ∃V

(
T ∧ (G \ {gi} ≤ H \ {hi}) ∧ ¬hi ∧ ¬p

)]
.

It encodes (in terms of the auxiliary variable setG) the well-
known property that a setE ⊆ H is minimal iff E \ {e} is
not an explanation, for anye ∈ E, i.e.,T ∪(E \{e})∪{¬p}
is satisfiable, and wheree is false.

Theorem 1 The QBFsTabd(H, p, T ), T rel
abd (H, p, T, h), and

T mrel
abd (H, p, T, h) evaluate to true iff the answer of the cor-

responding abduction task is “yes”.

Autoepistemic logic. The language of Moore’s autoepis-
temic logic (Moore 1985) contains the modal operatorL,
whereLφ intuitively means thatφ is believed. ByLL we
denote the languageL extended byL. In what follows, for-
mulasLφ are viewed as propositional variables, which are
calledmodal atoms.

A stable expansionof an autoepistemic theoryT ⊆ LL is
a set of formulasE ⊆ LL such that

E = Cn(T ∪ {Lφ | φ ∈ E} ∪ {¬Lφ | φ ∈ LL \ E}),
whereCn(·) is the classical consequence operator with re-
spect to the extended languageLL.

The existence of a stable expansion can be expressed as
follows (Niemelä 1992). LetT ⊆ LL be an autoepistemic
theory,M be the set of all modal atoms occurring inT , and
V be the set of ordinary(non-modal) atoms inT . We say
thatΛ ⊆ M ∪ {¬φ | φ ∈ M} is T -full iff, for all Lφ ∈ M ,
it holds that(i) T ∪ Λ |= φ iff Lφ ∈ Λ, and(ii) T ∪ Λ 6|= φ
iff ¬Lφ ∈ Λ.

Proposition 1 (Niemelä 1992)T ⊆ LL has a stable expan-
sion iff there exists aT -full set.

ForT ,M , andV as above, this condition is easily translated
into the following QBFTael(T ):

∃M
[
∀V

(
T →

∧
Lφ∈M (Lφ→ φ)

)
∧

∧
Lφ∈M

(
¬Lφ→ ∃V (T ∧ ¬φ)

)]
.

Theorem 2 A finite autoepistemic theoryT ⊆ LL has a
stable expansion iffTael(T ) evaluates to true.

Default Logic. A default theoryis a pairT = (W,∆),
whereW ⊆ L is a set of formulae and∆ is a set ofdefaults
of the form α : β

γ .1 Intuitively, the default is applied (γ is

1For simplicity, we omit multiple justifications here. Our QBF
translations can be easily extended to the more general form of
defaults.



concluded) ifα is provable and thejustificationβ can be
consistently assumed.T is said to befinite iff W is finite.

The semantics ofT = (W,∆) is defined in terms ofex-
tensions(Reiter 1980). Following (Marek & Truszczy´nski
1993), extensions can be characterised thus. For anyS ⊆ L,
let ∆(S) be the monotonic rules{α

γ |
α : β

γ ∈ ∆,¬β /∈ S}.
Then,E ⊆ L is an extension ofT iff E = Cn∆(E)(W ),
whereCn∆(E)(W ) is the set of all formulae derivable from
W using classical logic together with the rules from∆(E).

Adopting this characterization, we next express the exis-
tence of an extension of a finite default theory(W,∆) in
terms of a QBF.

Suppose∆ = {δi = αi : βi

γi
| 1 ≤ i ≤ n}. Let

D = {d1, . . . , dn} andD′ = {d′1, . . . , d′n} be sets of new
propositional variables. Intuitively,di is true ifδi is selected
into ∆(E), andd′i is true if δi fires in the construction ofE,
i.e., if γi ∈ Cn∆(E)(T ). Then, the following QBF expresses
existence of an extension:

Tdl(T ) = ∃D′∃D((D′ ≤ D) ∧ Φ1 ∧Φ2 ∧ Φ3 ∧Φ4),

whereCn(W ∪ {γi | d′i is true}) is the guess for the ex-
tensionE andΦ1, . . . ,Φ4 express the following tests (G de-
notes the set{γ1, . . . , γn}):
• Φ1 tests whether the justificationβi of each defaultδi in

the guessed set∆(E) is consistent with the guess forE:

Φ1 =
∧n

i=1

[
di → ∃V

(
βi ∧W ∧ (D′ ≤ G)

)]
.

• Φ2 tests whether no applicable default in∆(E) is missing
with respect to the guessedD′; i.e., for everyδi such that
di is true butd′i is false, the setE ∪ {¬αi} is satisfiable:

Φ2 =
∧n

i=1

[
(di∧¬d′i)→ ∃V

(
¬αi∧W ∧ (D′ ≤ G)

)]
.

• Φ3 tests whether for each defaultδi /∈ ∆(E), its justifica-
tion βi is inconsistent withE, i.e.,¬βi is derivable:

Φ3 =
∧n

i=1

[
¬di → ∀V

(
(W ∧ (D′ ≤ G))→ ¬βi

)]
.

• Φ4 tests whether all defaults in∆(E) assumed to be ap-
plied (d′i is true) are actually applied (i.e.,Cn∆(E)(W ) |=
{γi | d′i is true}). This amounts to checking whether∧n

i=1(d
′
i → γi) ∈ Cn∆(E)(W ), i.e., whether(D′ ≤

G) ∈ Cn∆(E)(W ). Applying a result shown in (Got-
tlob 1995),φ /∈ Cn∆(E)(W ) iff there exists a subset
C ⊆ G = {γ1, . . . , γn} such that (i)W ∪C∪{¬φ} is sat-
isfiable, and (ii) for eachγi /∈ C, the setW ∪C ∪ {¬αi}
is satisfiable. Using the setC = {c1, . . . , cn} of new vari-
ables,Φ4 is as follows:

∀C
{
C ≤ D →
[
∀V ¬

(
W ∧ ¬(D′ ≤ G) ∧ (C ≤ G)

)
∨

n∨
i=1

(
di ∧ ¬ci ∧ ∀V ¬

(
W ∧ ¬αi ∧ (C ≤ G)

))]}
.

Theorem 3 A finite default theoryT = (W,∆) has an ex-
tension iffTdl(T ) evaluates to true.

An alternative (and more succinct) translation of default
logic into QBFs is possible using Niemel¨a’s characterization
of extensions in terms of full sets (Niemel¨a 1995). To this
end, for a set∆ of defaults and a setS of formulas, define
j(∆) = {β | α : β

γ ∈ ∆} and ∆p(S) = {α
γ |

α : β
γ ∈

∆, β ∈ S}.
Rephrasing a definition in (Niemel¨a 1995), a subsetΛ ⊆

j(∆) is a full set for (W,∆) iff everyβ ∈ j(∆) satisfies the
following condition:β ∈ Λ iff ¬β /∈ Cn∆p(Λ)(W ).

Proposition 2 (Niemelä 1995)There is a one-to-one cor-
respondence between the extensions and the full sets of
(W,∆). In addition, each extensionE is given by
Cn∆p(Λ)(W ), whereΛ is the full set corresponding toE.

We now express the existence of a full set in terms of a
QBF. ConsiderT = (W,∆) where∆ = {αi : βi

γi
| i =

1, . . . , n}.
Let J = {j1, . . . , jn} be a set of new variables. Intu-

itively, ji is true if βi can be consistently assumed, i.e., if
¬βi is not provable. Consider the following QBF:

T fs
dl (T ) = ∃J

[∧n
i=1

(
ji ↔ N (W,∆J ,¬βi)

)]
,

where ∆J = {αi

γi
| αi : βi

γi
∈ ∆, ji is true} and

N (T,∆J ,¬βi) expresses nonderivability of¬βi from W
using the rules from∆J , i.e., N (T,∆J ,¬βi) states that
¬βi /∈ Cn∆J

(W ). Analogous to the characterization used
for the QBFΦ4 above,N (T,∆J ,¬βi) is of the following
form (C = {c1, . . . , cn} is again a set of new variables):

∃C
{∧n

k=1

[
(jk ∧ ¬ck)→

[
∃V

(
W ∧ βi ∧

∧n
l=1(¬jl ∨ ¬cl ∨ γl)

)
∧

∃V
(
W ∧ ¬αk ∧

∧n
l=1(¬jl ∨ ¬cl ∨ γl)

)]]}
.

Theorem 4 A finite default theoryT = (W,∆) has an ex-
tension iffT fs

dl (T ) evaluates to true.

Brave inference,(W,∆) |=b φ, of a formulaφ, i.e., mem-
bership ofφ in some extension of(W,∆), can be easily ex-
pressed by adding inT fs

dl (T ) the formula¬N (W,∆J , φ).
Similarly, cautious inference,(T,D) |=c φ, i.e., member-
ship ofφ in all extensions of(W,∆), can be expressed by
adding inT fs

dl (T ) the formulaN (W,∆J , φ) and negating
the result.

It is natural to ask how the equivalent translationsTdl(·)
andT fs

dl (·) compare with respect to evaluation time. Intu-
itively, T fs

dl (·) is less involved and should thus be evaluated
faster. However, experiments indicate thatTdl(·) yields in
general better performance results thanT fs

dl (·) (cf. compar-
isons below).

Disjunctive Logic Programming. A disjunctive logic
program,P , is a finite set of clauses

r : H(r)← P (r), N(r),
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Figure 1:QUIP’s system architecture.

whereH(r) is a disjunction of variables,P (r) is a conjunc-
tion of variables, andN(r) is a conjunction of negated vari-
ables. A Herbrand interpretationI of V is astable modelof
P (Gelfond & Lifschitz 1988; Przymusinski 1991), if it is
a minimal model (with respect to set-inclusion) of the pro-
gramP I resulting fromP as follows: remove each clause
r such thatI |= a for some¬a in N(r), and removeN(r)
from all remaining clauses.

We express the existence of a stable model by a QBF. Let
P be a program,V = {v1, . . . , vn} be the atoms occurring
in P , andV ′ = {v′1, . . . , v′n} be a set of new variables. Con-
sider the QBFTlp(P ):

∃V
{
P ∧ ∀V ′

[
¬(V ′ < V )∨
∨

r∈P ¬
(
(N(r) ∧B′(r))→ H ′(r)

)]}
,

whereB′(r) andH ′(r) result fromB(r) andH(r), re-
spectively, by replacing each occurrence ofvi with v′i (i =
1, . . . , n).

Theorem 5 P has a stable model iffTlp(P ) evaluates to
true.

Brave inference,P |=b p, of an atomp is expressed by
addingp as a conjunct in the scope of∃V in Tlp(P ), and
cautious inference,P |=c p, by adding similarly¬p there
and negating the resulting formula.

Circumscription. In contrast to the formalisms described
above, propositional circumscription is already a quantified
boolean formula, hence it does not require a separate reduc-
tion. We recall the basic concepts of circumscription (Mc-
Carthy 1980).

In the propositional case, the parallel circumscription of
a set of atomsP = {p1, . . . , pn} in a theoryT , where
the atomsQ are fixed and the remaining atomsZ =
{z1, . . . , zm} = V \ (P ∪ Q) may vary, is given by the
following QBFCIRC (T ;P,Z), cf. (Lifschitz 1985):

T ∧∀P ′ ∀Z ′
(
(T [P/P ′, Z/Z ′]∧ (P ′ ≤ P ))→ (P ≤ P ′)

)
.

Here,P ′ = {p′1, . . . , p′n} andZ ′ = {z′1, . . . , z′m} are sets
of new propositional variables corresponding toP andZ,
respectively, andT [P/P ′, Z/Z ′] results fromT by substitu-
tion of the variables inP ′ ∪Z ′ for those inP ∪ Z. Circum-
scriptive inference of a formulaφ from a theoryT is then
expressed by the following QBF:

∀V (CIRC (T ;P,Z)→ φ).

QUIP
QUIP implements the transformations described in the pre-
vious section. The architecture ofQUIP is depicted in Fig-
ure 1. The problem description (e.g., a default theory, a dis-
junctive logic program, an abductive theory, etc.) is read and
translated to a QBF by thefilter program, which is then
sent to the QBF-evaluatorboole . The result ofboole ,
usually a formula in disjunctive normal form (often called
sum of products, SOP), is interpreted byint . The latter
part associates a meaningful interpretation to the formulas
occurring in SOP and provides an explanation in terms of
the underlying problem instance (e.g., an extension, a stable
model, an abductive explanation, etc.). The interpretation
relies on a mapping of internal variables of the generated
QBF into concepts of the problem description which is pro-
vided byfilter .

The QBF-evaluatorboole is a publicly available propo-
sitional theorem prover based on binary decision diagrams
(the program, together with its source code, can be down-
loaded from the web; see (bddlib)). One of the advantages
of boole is the fact that it enables a direct processing of
the translations discussed in the previous section, without
the need of an additional normal-form translation.

Finally, all parts ofQUIP are written in C using standard
tools like LEX and YACC which are easily portable to vari-
ous platforms.

In order to incorporate new formalisms intoQUIP, one
has to extend thefilter program responsible for the ap-
propriate reductions, the mapping of the variables, and the
interpreterint . The deductive engine remains unchanged
in this process.

Experimental Results
We compareQUIP with several established tools from the
literature on the basis of five benchmark problems. The tools
are DeReS (Cholewinski, Marek, & Truszczy´nski 1996),
dlv (Eiter et al. 1997), smodels (Niemelä & Simons
1996), and Theorist (Poole 1989). Four of the five test
sets are taken from TheoryBase (Cholewinskiet al. 1995),
a well-known test-bed for nonmonotonic formalisms; the
other test set consists of abductive diagnosis problems for
n-bit full adders. The latter problem is used to compare the
abduction part ofQUIP with both Theorist and the diag-
nosis front-end ofdlv , whilst the problems from Theory-
Base are used to compare the two default-logic encodings
and the logic-programming encoding ofQUIP with DeReS,
dlv , andsmodels . More precisely, both encodings of the
default-logic part ofQUIP are compared with DeRes, and
the logic-programming encoding is compared withdlv and



smodels . All tests have been performed on a SUN ULTRA
60 with 256MB RAM; the running time is measured in sec-
onds (with an upper time limit set to ten minutes) and com-
prises the sum of both user time and system time. The fol-
lowing program releases have been used:dlv release from
November 24, 1999,smodels 2.24, andlderes 1.1.0.

The results for the abduction problems are shown in Ta-
ble 1. The full adder is considered as a black box. The
observations consists of output values (including carry bits),
the input values are given by the theory. Entries with “min”
give the running time for the computation of all minimal ex-
planations; the remaining entries reflect the corresponding
results for the computation of all non-minimal explanations.
Furthermore, the values in the row “Theorist (1)” are deter-
mined by using our formalization of the n-bit adder, whereas
the row “Theorist (2)” contains the results employing the
formalization given in the User’s Guide of Theorist. Due to
space limitations, the details of the problem descriptions are
omitted here. Note, however, that in order to perform ab-
ductive diagnosis, it is necessary that the respective problem
descriptions contain both a model of the correct behaviour
of the given components, as well as the specification of pos-
sible malfunctions (the so-calledfault model). Furthermore,
albeit the diagnosis front-end ofdlv is based on a different
semantics than bothQUIP and Theorist, the considered for-
malizations are chosen in such a way that equivalent results
are obtained.

Tables 2–5 contain the results for the problems from The-
oryBase. This test-bed encodes different graph problems ei-
ther as a default theory or as an equivalent logic program.
The measurements represent the running time for the com-
putation of all extensions of the given default theory, or of all
stable models of the corresponding logic program (labeled
with “LP”). The results for the two default logic reductions
of QUIP are indicated by “Tdl” and “T fs

dl ”, respectively.
The following problems from TheoryBase have been cho-

sen:∆ind is an encoding for maximal independent sets in a
given graph,∆match is an encoding for maximal matching,
∆3

col is an encoding for graph coloring, and∆ham is an en-
coding for Hamiltonian cycles. Moreover, TheoryBase ad-
mits different underlying graph-classes; here, chess graphs
and cycle graphs have been used. (N.B. For the results in
Table 2, it was necessary to resort to an earlier version of
DeReS, becauselderes 1.1.0 displayed occasional execu-
tion errors for the chosen problem class.)

The results of these tests show thatQUIP compares suf-
ficiently well. In fact, in some instances of the diagnosis
example,QUIP performs actually better than bothdlv and
Theorist. This can be explained by the fact that the diagnosis
front-end ofdlv , as well as Theorist andQUIP, aread hoc
implementations developed to demonstrate the feasibility of
the corresponding approach. On the other hand, it is clear
that QUIP cannot compete withsmodels or (the logic-
programming part of)dlv because these tools are highly
optimized systems developed with a particular semantics in
mind, whereas the purpose ofQUIP is to provide auniform
method to deal with several knowledge-representation for-
malisms at the same time. In any case,QUIP demonstrates
the practical usefulness of our approach.

n 1 2 3 4 5
dlv 0 0 1 14 132
dlv (min) 0 2 22 231 787
QUIP 0 0 1 12 161
QUIP (min) 0 0 1 3 18
Theorist (1) > 1500 — — — —
Theorist (2) 54 > 3600 — —

Table 1: Results for the n-bit full adder.

# vertices 15 20 25 30 35 40
DeReS 1 26 480 — — —
QUIP (Tdl) 0 0 1 4 19 90
QUIP (T fs

dl ) 1 1 3 8 25 113
dlv (LP) 0 0 0 1 3 15
QUIP (LP) 0 0 1 4 18 85
smodels (LP) 0 0 0 1 2 10

Table 2: Test set based on cycle graphs and∆ind.

# vertices 22 26 30 34 38 42
DeReS 0 2 18 147 1140 —
QUIP (Tdl) 0 1 2 6 18 63
QUIP (T fs

dl ) 1 2 5 10 25 72
dlv (LP) 0 0 0 1 3 12
QUIP (LP) 0 0 2 5 18 65
smodels (LP) 0 0 0 1 2 7

Table 3: Test set based on chess graphs and∆match.

# vertices 6 8 10 12 14 16
DeRes 0 0 0 0 2 8
QUIP (DE) 1 3 8 19 63 250
QUIP (DEfs) 27 90 240 493 — —
dlv (LP) 0 0 0 1 3 15
QUIP (LP) 0 1 2 9 45 211
smodels (LP) 0 0 0 1 3 10

Table 4: Test set based on cycle graphs and∆3
col.

# vertices 6 8 10 12 14 16
DeRes 0 0 1 11 116 —
QUIP (Tdl) 0 1 2 7 29 121
QUIP (T fs

dl ) 2 9 24 69 153 267
dlv (LP) 0 0 0 0 0 0
QUIP (LP) 0 0 1 5 22 105
smodels (LP) 0 0 0 0 0 0

Table 5: Test set based on cycle graphs and∆ham.



Ongoing Work and Conclusion
Our experiments document that moderately sized instances
of some NMR problems can be solved reasonably well by
using ad hoc translations to QBFs. We expect a similar
behavior for other KR formalisms, and believe that QBF-
based problem solvers likeQUIP are valuable tools for re-
searchers experimenting with KR formalisms, and in partic-
ular with KR logics. Of course, a performance increase will
be achieved by designing more sophisticated translations of
the problems into QBFs, or by using more advanced BDD
packages thanboole . The power of the current framework
is, however, that it realizes an easy-to-use system handling
all problems in PSPACE (providing an appropriate reduction
has been implemented).

Our ongoing and future work includes the following is-
sues. We are investigating the implementations of theorem
provers for modal logics inQUIP. The validity problem of
standard logics like K, T, or S4 is in PSPACE, and can thus
be polynomially reduced to QBFs. Notice that currently
only for few modal logics theorem provers are available.

Another issue of research concerns alternative translations
of the same problem into QBFs. The experimental results of
the different QBFsTdl(·) andT fs

dl (·), which both express
existence of a default-logic extension, have shown that the
chosen translation crucially affects the performance. Further
research is needed to get a clearer picture of more optimized
translations.

Furthermore, different platforms for evaluating QBFs,
based on (extensions of) the Davis-Putnam procedure
(Cadoli, Giovanardi, & Schaerf 1998; Rintanen 1999b), res-
olution (Kleine Büning, Karpinski, & Flögel 1995) and bi-
nary decision diagrams, will be compared with respect to
NMR prototype implementations. We plan to extendQUIP
into a system for hybrid parallel QBF evaluation. The idea
is to evaluate a particular QBF on different machines using
different algorithms in parallel. This approach allows for an
easy incorporation of new QBF algorithms, and exploits dif-
ferent strengths of the employed QBF algorithms. As well,
for solving subformulas, an intertwined use of these algo-
rithms may be considered.

Results on the above research issues will contribute for a
better assessment of the suitability of the QBF approach re-
garding the computation of KR tasks. For expressing prob-
lem descriptions in a function-free language, it would be
convenient to have an evaluator for a generalization of QBFs
to function-free formulas with variables. Intelligent ground-
ing algorithms, based on ideas in (Eiteret al. 1997), might
be investigated.
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Kleine Büning, H.; Karpinski, M.; and Fl¨ogel, A. 1995.
Resolution for Quantified Boolean Formulas.Information
and Computation117(1):12–18.
Lifschitz, V. 1985. Computing Circumscription. InProc.
IJCAI-85, 121–127.
Marek, W., and Truszczy´nski, M. 1993. Nonmonotonic
Logics. Springer.
McCarthy, J. 1980. Circumscription – A Form of Non-
Monotonic Reasoning.Artificial Intelligence13:27–39.
Moore, R. 1985. Semantical Considerations on Nonmono-
tonic Logics.Artificial Intelligence25:75–94.
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