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Abstract. Often we need to work in scenarios where events happen over time and preferences are associated with event distances
and durations. Soft temporal constraints allow one to describe in a natural way problems arising in such scenarios.

In general, solving soft temporal problems requires exponential time in the worst case, but there are interesting subclasses
of problems which are polynomially solvable. In this paper we identify one of such subclasses, that is, simple fuzzy temporal
problems with semi-convex preference functions, giving tractability results. Moreover, we describe two solvers for this class of
soft temporal problems, and we show some experimental results. The random generator used to build the problems on which tests
are performed is also described. We also compare the two solvers highlighting the tradeoff between performance and robustness.

Sometimes, however, temporal local preferences are difficult to set, and it may be easier instead to associate preferences to
some complete solutions of the problem. To model everything in a uniform way via local preferences only, and also to take
advantage of the existing constraint solvers which exploit only local preferences, we show that machine learning techniques can
be useful in this respect. In particular, we present a learning module based on a gradient descent technique which induces local
temporal preferences from global ones. We also show the behavior of the learning module on randomly-generated examples.
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1. Introduction and motivation

Several real world problems involving the manipu-
lation of temporal information can naturally be viewed
as having preferences associated with local temporal
decisions. By a local temporal decision we mean one
associated with how long a single activity should last,
when it should occur, or how it should be ordered with
respect to other activities.

For example, an antenna on an earth orbiting satel-
lite such as Landsat 7 must be slewed so that it is point-
ing at a ground station in order for recorded science to
be downlinked to earth. Assume that as part of the daily
Landsat 7 scheduling activity a window W is identified
within which a slewing activity to one of the ground
stations for one of the antennae can begin, and thus
there are choices for assigning the start time for this
activity. Notice that the time window represents a hard
constraint in the sense that no slewing can happen out-
side such a time interval. Antenna slewing on Land-

sat 7 has been shown to occasionally cause a slight vi-
bration to the satellite. Consequently, it is preferable
for the slewing activity not to overlap any scanning ac-
tivity. Thus, if there are any start times t within W such
that no scanning activity occurs during the slewing ac-
tivity starting at t, then t is to be preferred. Of course,
the cascading effects of the decision to choose t on the
scheduling of other satellite activities must be taken
into account as well. For example, the selection of t,
rather than some earlier start time within W , might
result in a smaller overall contact period between the
ground station and satellite, which in turn might limit
the amount of data that can be downlinked during this
period. This may conflict with the preference for at-
taining maximal contact times with ground stations, if
possible.

Reasoning simultaneously with hard temporal con-
straints and preferences, as illustrated in the example
just given, is crucial in many situations. We tackle this
problem by exploiting the expressive power of semi-
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ring based soft constraints [5,6], an approach which al-
lows to handle hard requirements and preferences at
the same time. In particular, we embed this method for
handling preferences into an existing model for han-
dling temporal hard constraints. The framework we ob-
tain allows to model temporal preferences of different
types. Problems specified in this framework are in gen-
erally difficult to solve. However, there are subclasses
of such problems which are tractable. In this paper we
consider one of such subclasses, which is identified by
a specific underlying hard constraint structure (Sim-
ple Temporal Problems [11]), by a specific semi-ring
(the Fuzzy semiring where the goal is to maximize the
minimum of the local preferences), and by preference
functions shaped in a certain way (semi-convex func-
tions).

While it is easy to imagine that the general frame-
work can be used in many scenarios, one may wonder
whether the specific tractable subclass we consider is
useful in practice. We will consider each restriction in
turn.

Simple temporal problems [11] require that the al-
lowed durations or distances between two events are
contained in a single temporal interval. This is a
reasonable restriction in many problems. For exam-
ple, this approach has been used to model and solve
scheduling problems in the space application domain
[1]. In general, what simple temporal constraints do
not allow are disjunctions of the form “I would like
to go swimming either before or after dinner”. When
such disjunctions are needed, one can always decom-
pose the problem into a set of simple temporal prob-
lems [47]. However, this causes the complexity of the
problem to increase.

Maximizing the minimum preference can be re-
garded as implementing a cautious attitude. In fact,
considering just the minimum preference as the assess-
ment of a solution means that one focuses on the worst
feature. Preferences higher than the worst one are com-
pletely ignored. The optimal solutions are those where
the worst feature is as good as possible. This approach,
which is usually called “fuzzy” [12,51], is appropriate
in many critical applications where risks avoidance is
the main goal. For example, this is the case of medical
and space applications.

Semi-convex preference functions are, informally,
functions with only one peak. Such functions can
model a wide range of common temporal preference
statements such as “This event should last as long (or
as little) as possible”, “I prefer this to happen around
a given time”, or “I prefer this to last around a given
amount of time”.

For the tractable subclass considered in this paper,
we provide two solvers, we study their properties, and
we compare them in terms of efficiency on randomly
generated temporal problems. This experiments, to-
gether with the tractability results of the paper, show
that solving such problems is feasible in practice. This
is not so obvious, since it proves that adding the ex-
pressive power of preferences to simple temporal con-
straints does not make the problems more difficult.

In some scenarios, specifying completely the local
preference functions can be difficult, while it can be
easier to rate complete solutions. This is typical in
many cases. For example, it occurs when we have an
expert, whose knowledge is difficult to code as lo-
cal preferences, but who can immediately recognize a
good or a bad solution.

In the second part of this paper we will consider
these scenarios and we will induce local preference
functions, via machine learning techniques, from solu-
tion ratings provided by an external source. The ma-
chine learning approach is useful when it is not known
or evident how to model such ratings as a combina-
tion of local preferences. This methodology allows us
to induce tractable temporal problems with preferences
which approximate as well as possible the given set
solution ratings. Experimental results show that the
learned problems generalize well the given global pref-
erences.

We envision several fields of application for the re-
sults presented in this paper. However, planning and
scheduling for space missions has directly inspired our
work, so we will refer to two examples in this area.

NASA has a wealth of scheduling problems in which
temporal constraints have shown to be useful in some
respect but have also demonstrated some weaknesses,
one of which is the lack of capability to deal with pref-
erences. Remote Agent [28,32], represents one of the
most interesting examples. This experiment consisted
of placing an artificial intelligence system on board to
plan and execute spacecraft activities. Before this ex-
periment, traditional spacecrafts were subject to a low
level direct commanding with rigid time-stamps which
left the spacecraft little flexibility to shift around the
time of commanding or to change the hardware used
to achieve the commands. One of the main features of
Remote Agent is to have a desired trajectory specified
via high-level goals. For example, goals can specify
the duration and the frequency of time windows within
which the spacecraft must take asteroid images. This
experiment proved the power of temporal constraint-
based systems for modeling and reasoning in a space
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application. The benefit of adding preferences to this
framework would be to allow the planner to maximize
the mission manager’s preferences. Reasoning on the
feasibility of the goals while maximizing preferences
can then be used to allow the plan execution to proceed
while obtaining the best possible solution preference-
wise. Notice that our cautious approach to preferences
is appropriate in this context due to its intrinsic critical
nature.

Our learning approach has a direct application in
this field as well. Consider for example Mapgen, the
mixed-initiative activity plan generator, developed to
produce the Mars daily plans for the two exploration
rovers Spirit and Opportunity [1]. The main task per-
formed by such a system is to generate plans and
schedules for science and engineering activities, allow-
ing hypothesis testing and resource computation and
analysis. Such system has been developed using a hard
constraint approach and in particular Simple Tempo-
ral Problems are the main underlying reasoning en-
gine. Given a complete plan generated by Mapgen for
a rover, it is rated globally according to several crite-
ria. For example, an internal tool of Mapgen allows a
computation of the energy consumption of such a plan,
from which a resource-related preference can be ob-
tained. On the other side, the judgment of the scien-
tist requesting the data is fundamental. Furthermore,
the engineers, who are responsible for the status of
the instruments, should be able to express their pref-
erences on the length and modality of usage of each
equipment on board. During the mission, all these pref-
erences were collected and an optimal plan was gen-
erated through human-interaction by tweaking manu-
ally the initial proposed plan. Since most of such pref-
erences are provided as global ratings by the experts
and have no explicit encoding in local terms, we be-
lieve our learning and solving system could allow the
human-interaction phase to start directly from highly
ranked plans. The application we foresee would allow,
as a first step, to induce local preferences on the hard
temporal constraints used by Mapgen from the differ-
ent sources. Then the second step, which solves the
obtained problems, would provide useful guidance to
judge unexplored plans in terms of the different crite-
ria.

The paper is organized as follows: Section 2 gives
an overview of the background underlying our work.
In particular, fundamental definitions and main results
are described for temporal constraints, soft constraints,
and machine learning. In Section 3 Temporal Con-
straints with Preferences (TCSPPs) are formally de-

fined and various properties are discussed. After show-
ing that TCSPPs are NP-hard, Simple Temporal Prob-
lems with Preferences (STPPs), that is, TCSPPs with
one interval on each constraint, are studied. In partic-
ular, a subclass of STPPs, characterized by assump-
tions on both the underlying semiring and the shape
of the preference functions, is shown to be tractable.
In Section 5 two different solvers for such STPPs are
described. Experimental results on the performance of
both solvers are supplied in Section 6. In Section 7 a
learning module designed for tractable STPPs is de-
scribed, and experimental results on randomly gener-
ated problems are given.

Earlier versions of parts of this paper have appeared
in [18,36,38,39].

2. Background

In this section we give an overview of the back-
ground on which our work is based. First we will de-
scribe temporal constraint satisfaction problems [11],
a well-known framework for handling quantitative
time constraints. Then we will define semiring-based
soft constraints [6]. Finally, we will give some back-
ground on inductive learning techniques, which we
will use in Section 7 for learning local temporal pref-
erences from global ones.

2.1. Temporal constraints

One of the requirements of a temporal reasoning
system is its ability to deal with metric information. In
other words, a well-designed temporal reasoning sys-
tem must be able to handle information on duration of
events (“It will take from ten to twenty minutes to get
home”) and ordering of events (“Let’s go to the cinema
before dinner”). Quantitative temporal networks pro-
vide a convenient formalism to deal with such infor-
mation because they consider time points as the vari-
ables of a problem. A time point may be a beginning
or an ending point of some event, as well as a neutral
point of time. An effective representation of quantita-
tive temporal networks is based on constraints [11].

Definition 1 (TCSP). A Temporal Constraint Satisfac-
tion Problem (TCSP) consists of a set of variables
{X1, . . . , Xn} and a set of unary and binary constraints
over pairs of such variables. The variables have con-
tinuous or discrete domains; each variable represents
a time point. Each constraint is represented by a set
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of intervals1 {I1, . . . , Ik} = {[a1, b1], . . . , [ak, bk]}.
A unary constraint Ti restricts the domain of variable
Xi to the given set of intervals; that is, it represents the
disjunction (a1 � Xi � b1) ∨ · · · ∨ (ak � Xi � bk).
A binary constraint Tij over variables Xi and Xj con-
strains the permissible values for the distance Xj−Xi;
it represents the disjunction (a1 � Xj − Xi � b1) ∨
· · · ∨ (ak � Xj − Xi � bk). Constraints are assumed
to be given in the canonical form in which all intervals
are pair-wise disjoint.

A TCSP can be represented by a directed constraint
graph where nodes represent variables and an edge
Xi −→ Xj indicates constraint Tij and it is labeled by
the corresponding interval set. A special time point X0
is introduced to represent the “beginning of the world”.
All times are relative to X0; thus, we can treat each
unary constraint Ti as a binary constraint T0i.

Example 1. Alice has lunch between noon and 1 pm
and she wants to go swimming for two hours. She can
either go to the pool from 3 to 4 hours before lunch,
since she must shower and drive home, or 3 to 4 hours
after lunch since it is not safe to swim too soon after
a meal. This scenario can be modeled as a TCSP, as
shown in Fig. 1. There are five variables: X0, Ls (start-
ing time for lunch), Le (end time for lunch), Ss (start
swimming), Se (end swimming). For example, the con-
straint from X0 to Ls states that lunch must be between
12 and 1 pm while, the constraint from Ls to Ss states
that the distance between the start of the swimming ac-
tivity and the start of lunch must be either between 3
and 4 hours, or between −4 and −3 hours. Similarly
for the other constraints.

Given a TCSP, a tuple of values for its variables,
say {v1, . . . , vn}, is called a solution if the assignment
{X1 = v1, . . . , Xn = vn} does not violate any con-

Fig. 1. A TCSP.

1For simplicity, we assume closed intervals; however the same
applies to semi-open intervals.

straint. A TCSP is said to be consistent if it has a so-
lution. Also, vi is a feasible value for variable Xi if
there exists a solution in which Xi = vi. The set of
all feasible values for a variable is called its minimal
domain. A minimal constraint Tij between Xi and Xj

is the set of values v such that v = vj − vi, where vj

is a feasible value for Xj and vi is a feasible value for
Xi. A TCSP is minimal if its domains and constraints
are minimal. It is decomposable if every assignment of
values to a set of its variables which does not violate
the constraints among such variables can be extended
to a solution.

Constraint propagation over TCSPs is defined using
three binary operations on constraints: union, intersec-
tion and composition.

Definition 2. Let T = {I1, . . . , Il} and S = {J1, . . . ,
Jm} be two temporal constraints defined on the pair of
variables Xi and Xj . Then:

– The Union of T and S, denoted T ∪ S, is: T ∪ S =
{I1, . . . , Il, J1, . . . , Jm}.

– The Intersection of T and S, denoted T ⊕S, is: T ⊕
S = {Kk = Ii ∩ Jj |i ∈ {1, . . . , l}, j ∈ {1, . . . , }}.

Definition 3. Let T = {I1, . . . , Il} be a temporal
constraint defined on variables Xi and Xk and S =
{J1, . . . , Jm} a temporal constraint defined on vari-
ables Xk and Xj . Then the composition of T and S,
denoted by T ⊗ S is a temporal constraint defined
on Xi and Xj as follows: T ⊗ S = {K1, . . . , Kn},
Kh = [a + c, b + d], ∃Ii = [a, b], Jj = [c, d].

Notice that the composition of two temporal con-
straints, say S and T , defined respectively on the pairs
of variables (Xi, Xk) and (Xk, Xj), is a constraint de-
fined on the pair (Xi, Xj) which allows only pairs of
values, say (vi, vj), for which there exists a value vk,
such that (vi, vk) satisfies S and (vk, vj) satisfies T .

Given a TCSP, the first interesting problem is to de-
termine its consistency. If the TCSP is consistent, we
may wish to find some solutions, or to answer queries
concerning the set of all solutions. All these problems
are NP-hard [11].

Notions of local consistency may be interesting as
well. For example, a TCSP is said to be path consistent
iff, for each of its constraint, say Tij , we have Tij ⊆
⊕∀k(Tik ⊗ Tkj).

A TCSP in which all constraints specify a single in-
terval is called a Simple Temporal Problem. In such
a problem, a constraint between Xi and Xj is repre-
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sented in the constraint graph as an edge Xi −→ Xj
labeled by a single interval [aij , bij] that represents the
constraint aij � Xj − Xi � bij . An STP can also
be associated with another directed weighted graph
Gd = (V , Ed), called the distance graph, which has
the same set of nodes as the constraint graph but twice
the number of edges: for each binary constraint over
variables Xi and Xj , the distance graph has an edge
Xi −→ Xj which is labeled by weight bij , represent-
ing the linear inequality Xj − Xi � bij , as well as
an edge Xj −→ Xi which is labeled by weight −aij ,
representing the linear inequality Xi − Xj � −aij .

Each path from Xi to Xj in the distance graph Gd,
say through variables Xi0 = Xi, Xi1 , Xi2 , . . . , Xik =
Xj induces the following path constraint: Xj − Xi �∑k

h=1 bih−1ih . The intersection of all induced path
constraints yields the inequality Xj −Xi � dij , where
dij is the length of the shortest path from Xi to Xj ,
if such a length is defined, i.e., if there are no nega-
tive cycles in the distance graph. An STP is consis-
tent if and only if its distance graph has no negative
cycles [21,46]. This means that enforcing path consis-
tency is sufficient for solving STPs [11]. It follows that
a given STP can be effectively specified by another
complete directed graph, called a d-graph, where each
edge Xi −→ Xj is labeled by the shortest path length
dij in the distance graph Gd.

In [11] it is shown that any consistent STP is
backtrack-free (that is, decomposable) relative to the
constraints in its d-graph. Moreover, the set of tempo-
ral constraints of the form [−dji, dij] is the minimal
STP corresponding to the original STP and it is possi-
ble to find one of its solutions using a backtrack-free
search that simply assigns to each variable any value
that satisfies the minimal network constraints compat-
ibly with previous assignments. Two specific solutions
(usually called the latest and the earliest one) are given
by SL = {d01, . . . , d0n} and SE = {d10, . . . , dn0},
which assign to each variable respectively its latest and
earliest possible time [11].

The d-graph (and thus the minimal network) of
an STP can be found by applying Floyd–Warshall’s
All-Pairs-Shortest-Path algorithm [14] to the distance
graph with a complexity of O(n3) where n is the num-
ber of variables. Since, given the d-graph, a solution
can be found in linear time, the overall complexity of
solving an STP is polynomial.

2.2. Soft constraints

In the literature there are many formalizations of the
concept of soft constraints [33,41,44]. Here we refer

to the one described in [5,6], which however can be
shown to generalize and express many of the others
[4,6].

In a few words, a soft constraint is just a classical
constraint where each instantiation of its variables has
an associated element (also called a preference) from a
partially ordered set. Combining constraints will then
have to take into account such additional elements,
and thus the formalism has also to provide suitable
operations for combination (×) and comparison (+)
of tuples of preferences and constraints. This is why
this formalization is based on the concept of semiring,
which is just a set plus two operations.

Definition 4 (Semirings and c-semirings). A semiring
is a tuple 〈A, +,×, 0, 1〉 such that:

– A is a set and 0, 1 ∈ A;
– + is commutative, associative and 0 is its unit ele-

ment;
– × is associative, distributes over +, 1 is its unit ele-

ment and 0 is its absorbing element.

A c-semiring is a semiring 〈A, +,×, 0, 1〉 such that:

– + is defined over possibly infinite sets of elements
of A in the following way:
* ∀a ∈ A,

∑
({a}) = a;

*
∑

(∅) = 0 and
∑

(A) = 1;
*

∑
(
⋃

Ai, i ∈ S) =
∑

({
∑

(Ai), i ∈ S}) for all
sets of indexes S, that is, for all sets of subsets of
A (flattening property);

– × is commutative.

Let us consider the relation �S over A such that
a �S b iff a + b = b. Then it is possible to prove that
(see [5]):

– �S is a partial order;
– + and × are monotone on �S ;
– 0 is its minimum and 1 its maximum;
– 〈A, �S〉 is a complete lattice and, for all a, b ∈ A,

a + b = lub(a, b).

Moreover, if × is idempotent, then 〈A, �S〉 is a com-
plete distributive lattice and × is its glb. Informally, the
relation �S gives us a way to compare (some of the)
tuples of preferences and constraints. In fact, when we
have a �S b, we will say that b is better than (or pre-
ferred to) a.

Definition 5 (Constraints). Given a c-semiring S =
〈A, +,×, 0, 1〉, a finite set D (the domain of the vari-
ables), and an ordered set of variables V , a constraint is
a pair 〈def , con〉 where con ⊆ V and def : D|con| → A.
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Therefore, a constraint specifies a set of variables
(the ones in con), and assigns to each tuple of values in
D of these variables an element of the semiring set A.
This element can be interpreted in many ways: as a
level of preference, or as a cost, or as a probability, etc.
The correct way to interpret such elements determines
the choice of the semiring operations.

Definition 6 (SCSP). A soft constraint satisfaction
problem is a pair 〈C, con〉, where con ⊆ V and C is a
set of constraints over V .

Note that classical CSPs are isomorphic to SCSPs
where the chosen c-semiring is: SCSP = 〈{false, true},
∨,∧, false, true〉.

Fuzzy CSPs [41,43] extend the notion of classical
CSPs by allowing non-crisp constraints, that is, con-
straints which associate a preference level with each
tuple of values. Such level is always between 0 and 1,
where 1 represents the best value and 0 the worst one.
The solution of a fuzzy CSP is then defined as the
set of tuples of values (for all the variables) which
have the maximal value. The way they associate a
preference value with an n-tuple is by minimizing the
preferences of all its subtuples. The motivation for
such a max–min framework relies on the attempt to
maximize the value of the least preferred tuple. It is
easy to see that Fuzzy CSPs can be modeled in the
SCSP framework by choosing the c-semiring: SFCSP =
〈[0, 1], max, min, 0, 1〉.

Definition 7 (Combination). Given two constraints
c1 = 〈def 1, con1〉 and c2 = 〈def 2, con2〉, their combi-
nation c1⊗c2 is the constraint 〈def , con〉, where con =
con1∪con2 and def (t) = def 1(t ↓con

con1
)×def 2(t ↓con

con2
).2

The combination operator ⊗ can be straightfor-
wardly extended also to finite sets of constraints: when
applied to a finite set of constraints C, we will write
⊗C. In words, combining constraints means building a
new constraint involving all the variables of the origi-
nal ones, and which associates to each tuple of domain
values for such variables a semiring element which is
obtained by multiplying the elements associated by the
original constraints with the appropriate subtuples.

Definition 8 (Projection). Given a constraint c =
〈def , con〉 and a subset I of V , the projection of c

2By t ↓X
Y

we mean the projection of tuple t, which is defined over
the set of variables X , over the set of variables Y ⊆ X .

over I , written c⇓I , is the constraint 〈def ′, con′〉, where
con′ = con ∩ I and def ′(t′) =

∑
t/t↓con

I∩con=t′ def (t).

Informally, projecting means eliminating some vari-
ables. This is done by associating to each tuple over
the remaining variables a semiring element which is
the sum of the elements associated by the original con-
straint with all the extensions of this tuple over the
eliminated variables.

Definition 9 (Solution constraint). The solution con-
straint of an SCSP problem P = 〈C, con〉 is the con-
straint Sol(P ) = (⊗C) ⇓con.

That is, to obtain the solution constraint of an SCSP,
we combine all constraints, and then project over the
variables in con. In this way we get the constraint over
con which is “induced” by the entire SCSP.

Definition 10 (Solution). Given an SCSP problem P ,
consider Sol(P ) = 〈def , con〉. A solution of P is a pair
〈t, v〉, where t is an assignment to all the variables in
con and def (t) = v.

Definition 11 (Optimal solution). Given an SCSP
problem P , consider Sol(P ) = 〈def , con〉. An optimal
solution of P is a pair 〈t, v〉 such that t is an assign-
ment to all the variables in con, def (t) = v, and there
is no t′, assignment to con, such that v <S def (t′).

Therefore optimal solutions are solutions which are
not dominated by any other solution in terms of prefer-
ences. The set of optimal solutions of an SCSP P will
be written as Opt(P ).

Example 2. Figure 2 shows an example of a fuzzy
CSP. Variables are within circles, and constraints are
undirected links among the variables. Each constraint
is defined by associating a preference level (in this case
between 0 and 1) to each assignment of its variables to

Fig. 2. A fuzzy CSP and two of its solutions.
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values in their domains. Figure 2 shows also two solu-
tions, one of which (S2) is optimal.

SCSPs can be solved by extending and adapting
the techniques usually used for classical CSPs. For
example, to find the best solution, we could employ
a branch-and-bound search algorithm (instead of the
classical backtracking). Also the so-called constraint
propagation techniques, like arc-consistency [22] and
path-consistency, can be generalized to SCSPs [5,6].

The detailed formal definition of constraint propa-
gation (sometimes called also local consistency) for
SCSPs can be found in [5,6]. For the purpose of this
paper, what is important to say is that a propagation
rule is a function which, given an SCSP, generates the
solution constraint of a subproblem of it. It is pos-
sible to show that propagation rules are idempotent,
monotone, and intensive functions (over the partial or-
der of problems) which do not change the solution con-
straint. Given a set of propagation rules, a constraint
propagation algorithm applies them in any order un-
til stability. It is possible to prove that constraint prop-
agation algorithms defined in this way have the fol-
lowing properties if the multiplicative operation of the
semiring is idempotent: equivalence, termination and
uniqueness of the result.

Thus we can notice that the generalization of local
consistency from classical CSPs to SCSPs concerns the
fact that, instead of deleting values or tuples of values,
obtaining local consistency in SCSPs means changing
the semiring value associated with some tuples or do-
main elements. The change always brings these values
towards the worst value of the semiring, that is, the 0.

2.3. Inductive learning

The problem of learning temporal preferences from
examples of solutions ratings can be formally de-
scribed as an inductive learning problem [24,40]. In-
ductive learning can be defined as the ability of a sys-
tem to induce the correct structure of a map t(·) which
is known only for particular inputs. More formally,
defining an example as a pair (x, t(x)), the computa-
tional task is as follows: given a collection of examples
of t(·), i.e., the training set, return a function h(·) that
approximates t(·). Function h(·) is called a hypothesis.

A common approach to inductive learning is to eval-
uate the quality of a hypothesis h on the training set
through an error function [16]. An example of a pop-
ular error function, that can be used over the reals, is
the sum of squares error [16]: SSE = 1

2

∑n
i=1(t(xi) −

h(xi))2, where (xi, t(xi)) is the i-th example of the
training set. Other error functions that can be used
to evaluate the quality of a hypothesis are the maxi-
mum absolute error and mean absolute error, respec-
tively defined as: Emax = max1,...,n |t(xi)−h(xi)|, and
Emed = (

∑
i=1,...,n |t(xi) − h(x1)|)/n. Given a start-

ing hypothesis h0, the goal of learning is to minimize
the chosen error function by modifying h0. This can be
done by using a definition of h which depends on a set
of internal parameters W , i.e., h ≡ hW , and then ad-
justing these parameters. This adjustment can be for-
mulated in different ways, depending on whether their
domain is isomorphic to the reals or not. The usual way
to be used over the reals, and if hW is continuous and
differentiable, is to follow the negative of the gradient
of the error function with respect to W . This technique
is called gradient descent [16]. Specifically, the set of
parameters W is initialized to small random values at
time τ = 0 and updated at time τ + 1 according to
the following equation, known as ∆-rule: W (τ + 1) =
W (τ ) + ∆W (τ ), where ∆W (τ ) = −η ∂E

∂W (τ ) and η is
the step size used for the gradient descent, called the
learning rate. Learning is usually stopped when a min-
imum of the error function is reached. Note that, in
general, there is no guarantee that the minimum found
this way is a global minimum for the function to be
learned.

Once the learning phase is finished, the resulting
function h is evaluated over a set of examples, called
the test set, which is disjoint from the training set. The
evaluation is done by computing the error, with the
same options as for the error computation on the train-
ing set.

As far as how the examples are used, learning tech-
niques can be divided in two categories: stochastic
(also called online) and batch (also called offline)
learning. Batch supervised learning is the classical ap-
proach in machine learning: a set of examples is ob-
tained and used in order to learn a good approximat-
ing function (i.e. train the system), before the system
is used. On the other hand, in on-line learning, data
gathered during the normal operation of the system
are used to continuously adapt the learned function.
For example, in batch learning, when minimizing the
sum of squares error, the sum would be computed as
in SSE = 1

2

∑n
i=1(t(xi) − h(xi))2, where x1, . . . , xn

are all the examples of the training set. On the other
hand, in stochastic learning, the weights are updated
after the presentation of each training example, which
may be sampled with or without repetition. This corre-
sponds to the minimization of the instantaneous error
which, in the case of sum of squares error, would be
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SSE = 1
2 (t(xi) − h(xi))2 when computed on the i-th

example. It can be shown that, for sufficiently small
values of the learning rate η, stochastic gradient de-
scent converges to the minimum of a batch error func-
tion [16].

Although batch learning seems faster for small train-
ing sets and systems, stochastic learning is faster for
large training sets, it helps escaping local minima
and provides a more natural approach for learning
non-stationary tasks [2,24,42,48]. Moreover, stochas-
tic methods seem more robust to errors, omissions or
redundant data in the training set can be corrected or
ejected during the training phase. Additionally, train-
ing data can often be generated easily and in great
quantities when the system is in operation, whereas it
is usually scarce and precious before. In a broad sense,
stochastic learning is essential if the goal is to obtain a
learning system as opposed to a merely learned one, as
pointed out in [49].

The learning module we will present in Section 7
performs a stochastic gradient descent on SSE.

3. Temporal CSPs with preferences

Although very expressive, TCSPs are able to model
just hard temporal constraints. This means that all con-
straints have to be satisfied, and that the solutions of a
constraint are all equally satisfying. However, in many
real-life scenarios these two assumptions do not hold.
In particular, sometimes some solutions are preferred
with respect to others. Therefore the global problem is
not to find a way to satisfy all constraints, but to find a
way to satisfy them optimally, according to the prefer-
ences specified.

To address such problems we propose a framework,
where each temporal constraint is associated with a
preference function, which specifies the preference for
each distance or duration. This framework is based on
both TCSPs and semiring-based soft constraints. The
result is a class of problems which we will call Tempo-
ral Constraint Satisfaction Problems with Preferences
(TCSPPs).

Definition 12 (Soft temporal constraint). A soft tem-
poral constraint is a 4-tuple 〈(X , Y ), I , A, f〉 consist-
ing of

– an ordered pair of variables (X , Y ) over the integers,
called the scope of the constraint;

– a set of disjoint intervals I = {[a1, b1], . . . , [an,
bn]}, where all ai’s and bi’s are integers, and ai � bi
for all i = 1, . . . , n;

– a set of preferences A;
– a preference function f , where f :

⋃n
i=1[ai, bi] →

A, which is a mapping of the elements belonging to
an interval of I into preference values, taken from
set A.

Given an assignment of the variables X and Y , say vx

and vy , we say that this assignment satisfies the con-
straint 〈(X , Y ), I , A, f〉 iff there is [ai, bi] ∈ I such
that ai � vy − vx � bi. In such a case, the prefer-
ence associated with the assignment by the constraint
is f (vy − vx).

Definition 13 (TCSPP). Given a semiring S = 〈A, +,
×, 0, 1〉, a Temporal Constraint Satisfaction
Problems with Preferences over S is a pair 〈V , C〉,
where V is a set of variables and C is a set of soft tem-
poral constraints over pairs of variables in V and with
preferences in A.

Definition 14 (Solution). Given a TCSPP 〈V , C〉 over
a semiring S, a solution is an assignment to all the vari-
ables in V , say t, that satisfies all the constraints in C.
An assignment t is said to satisfy a constraint c in C
with preference p if the projection of t over the pair of
variables of c satisfies c with an associated preference
equal to p. We will write pref (t, c) = p.

Each solution has a global preference value, ob-
tained by combining, via the × operator of the semi-
ring, the preference levels at which the solution satis-
fies the constraints in C.

Definition 15 (Solution’s preference). Given a TCSPP
〈V , C〉 over a semiring S and one of its solutions
t = 〈v1, . . . , vn〉, its preference, denoted by val(t), is
computed by

∏
c∈C pref (s, c), where the product here

is performed by using the multiplicative operation of
semiring S.

The optimal solutions of a TCSPP are those solu-
tions which are not dominated by any other solution in
preference terms.

Definition 16 (Optimal solutions). Given a TCSPP
P = 〈V , C〉 over the semiring S, a solution t of P is
optimal if for every other solution t′ of P , t′ �S t.

To see an instance of TCSPPs, consider TCSPPs
over the semiring Sfuzzy = 〈[0, 1, ], max, min, 0, 1〉,
used for fuzzy constraint solving [43]. In this case, the
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global preference value of a solution is the minimum of
all the preference values associated with the distances
selected by this solution in all constraints, and the op-
timal solutions are those with the maximal value. We
will use this class of TCSPPs, also called fuzzy TC-
SPPs, extensively in this paper.

A justification of the max–min framework adopted
in fuzzy TCSPPs is to formalize the criterion of maxi-
mizing the value of the least preferred tuple. This can
be interpreted as a having a conservative attitude which
identifies a solution with its weakest part. For example,
the same approach has been used in a temporal context
in [13,31].

Example 3. Consider again the scenario described in
Example 1, where Alice can go swimming either be-
fore or after lunch. Alice might, for example, prefer to
have lunch as early as possible. Moreover, if she goes
swimming in the morning, she might want to go as late
as possible so she can sleep longer, while, if she goes
in the afternoon, she might prefer to go as early as pos-
sible so she will have more time to get ready for the
evening. These preferences can be represented by the
TCSPP shown in Fig. 3. Since we assume to use the
fuzzy semiring, the preferences are between 0 and 1
and higher values are more preferred. It is easy to see
that the assignment 〈Ls = 12, Ss = 15〉 (we omit-
ted X0 since we assume its value always to be 0) is
an optimal solution, since it has preference 1, while
the assignment 〈Ls = 13, Ss = 16〉 has preference
min(0.7, 1) = 0.7 and thus it is not optimal. The same
holds also for the assignment 〈Ls = 12, Ss = 16〉
which has preference min(1, 0.5) = 0.5.

Notice that our framework is a generalization of
TCSPs, since TCSPs are just TCSPPs over the semi-
ring Scsp = 〈{false, true},∨,∧, false, true〉, which al-
lows to describe hard constraint problems [23].

As for TCSPs, a special instance of TCSPPs is char-
acterized by a single interval in each constraint. We call
such problems Simple Temporal Problems with Prefer-

Fig. 3. The constraint graph of a fuzzy TCSPP.

ences (STPPs), since they generalize Simple Temporal
Problems (STPs) [11]. This case is interesting because,
as noted above, STPs are polynomially solvable, while
general TCSPs are NP-hard, and the computational ef-
fect of adding preferences to STPs is not immediately
obvious. STPPs are also expressive enough to repre-
sent many real life scenarios.

Example 4. Consider the Landsat 7 example given in
the introduction. In Fig. 4 we show an STPP that mod-
els it. There are 3 events to be scheduled: the start time
(Ss) and ending time (Se) of a slewing activity, and
the start time of an image retrieval activity (Is). Here
the beginning of time is represented by variable Ss.
The slewing activity in this example can take from 3
to 10 units of time, but it is preferred that it takes the
shortest time possible. This is modeled by the con-
straint from Ss to Se. The image taking can start any
time between 3 and 20 units of time after the slewing
has been initiated. This is described by the constraint
from Ss to Is. The third constraint, from Se to Is, mod-
els the fact that it is better for the image taking to start
as soon as the slewing has stopped.

In the following example, instead, we consider an
STPP which uses the set-based semiring: Sset =
〈℘(A),∪,∩, ∅, A〉. Notice that, as in the fuzzy semi-
ring, the multiplicative operator, i.e., intersection, is
idempotent, while the order induced by the additive op-
erator, i.e., union, is partial.

Example 5. Consider a scenario where three friends,
Alice, Bob and Carol, want to meet for a drink and
then for dinner and must decide at what time to meet
and where to reserve dinner depending on how long it
takes to get to the restaurant. The variables involved in
the problem are: the global start time X0, with only the
value 0 in its domain, the start time of the drink (Ds),

Fig. 4. The STPP for the Landsat 7 example.
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the time to leave for dinner (De), and the time of arrival
at the restaurant (Rs). They can meet, for the drink,
between 8 and 9:00 and they will leave for dinner af-
ter half an hour. Moreover, depending on the restau-
rant they choose, it will take from 20 to 40 minutes to
get to dinner. Alice prefers to meet early and have din-
ner early, like Carol. Bob prefers to meet at 8:30 and
to go to the best restaurant which is the farthest. Thus,
we have the following two soft temporal constraints.
The first constraint is defined on the variable pair
(X0, Ds), the interval is [8:00, 9:00] and the preference
function, fs, is such that, fs(8 : 00) = {Alice, Carol},
fs(8 : 30) = {Bob} and fs(9 : 00) = ∅. The sec-
ond constraint is a binary constraint on pair (De, Rs),
with interval [20, 40] and preference function fse, such
that, fse(20) = {Alice, Carol} and fse(20) = ∅ and
fse(20) = {Bob}. There is an additional “hard” con-
straint on the variable pair (Ds, De), which can be mod-
eled by the interval [30, 30] and a single preference
equal to {Alice, Carol, Bob}. The optimal solution is
(X0 = 0, Ds = 8:00, De = 8:30, Rs = 8:50), with
preference {Alice, Carol}.

3.1. Complexity of solving TCSPPs and STPPs

As noted in Section 2, TCSPs are NP-hard prob-
lems. Since the addition of preference functions can
only make the problem of finding the optimal solutions
more complex, it is obvious that TCSPPs are NP-hard
problems as well. In fact, TCSPs are just TCSPPs over
the SCSP semiring.

We now turn our attention to the complexity of gen-
eral STPPs. We recall that STPs are polynomially solv-
able, thus one might speculate that the same is true for
STPPs. However, it is possible to show that, in general,
STPPs fall into the class of NP-hard problems.

Theorem 1 (Complexity of STPPs). Solving STPPs is
NP-hard.

Proof. We prove this result by reducing an arbitrary
TCSP to an STPP. Consider a TCSP, and take any
of its constraints, say I = {[a1, b1], . . . , [an, bn]}.
We will now obtain a corresponding soft temporal
constraint containing just one interval (thus belong-
ing to an STPP). The semiring that we will use
for the resulting STPP is the classical one: Scsp =
〈{false, true},∨,∧, false, true〉. Thus the only allowed
preference values are false and true. Assuming that
the intervals in I are ordered such that ai � ai+1 for
i ∈ {1, . . . , n − 1}, the interval of the soft constraint

is just [a1, bn]. The preference function will give value
true to all elements belonging to an interval in I and
false to the others. Thus we have obtained an STPP
whose set of solutions with value 1 (which are the opti-
mal solutions, since false �S true in the chosen semi-
ring) coincides with the set of solutions of the given
TCSP. Since finding the set of solutions of a TCSP is
NP-hard, it follows that the problem of finding the set
of optimal solutions to an STPP is NP-hard. �

However, in the following of the paper we will show
there are classes of STPPs which are polynomially
solvable: a sufficient condition is having semi-convex
preference functions and a semiring with a total order
of preference values and an idempotent multiplicative
operation. In [12] it has been shown that the only ag-
gregation operator on a totally ordered set that is idem-
potent is min, i.e. the multiplicative operator of the
SFCSP semiring.

3.2. Path consistency for TCSPPs

Given a constraint network, it is often useful to find
the corresponding minimal network in which the con-
straints are as explicit as possible. This task is normally
performed by enforcing various levels of local consis-
tency. For TCSPPs, in particular, we can define a no-
tion of path consistency by just extending the notion of
path consistency for TCSPs [11]. Given two soft con-
straints, and a semiring S, we define:

– The intersection of two soft constraints Tij and T ′
ij ,

defined on the same pair of variables, written Tij⊕S
T ′

ij , as the soft temporal constraint T ′′
ij = 〈Iij ⊕

I ′ij , f〉, where:
* Iij ⊕ I ′ij is the pairwise intersection of intervals

in Iij and I ′ij , and
* f (a) = fij(a) ×S f ′

ij(a) for all a ∈ Iij ⊕ I ′ij ;
– The composition of two soft constraints Tik and Tkj ,

with variable Xk in common, written Tik⊗S Tkj , as
the soft constraint Tij = 〈Iik ⊗ Ikj , f〉, defined on
variables Xi and Xj , where:
* a ∈ Iik ⊗ Ikj iff there exists a value a1 ∈ Iik and

a2 ∈ Ikj such that a = a1 + a2, and
* f (a) =

∑
{fik(a1)×S fkj(a2)|a = a1 +a2, a1 ∈

Iik, a2 ∈ Ikj}.

The path-induced constraint on variables Xi and Xj

is Rpath
ij = ⊕S∀k(Tik ⊗S Tkj), i.e., the result of per-

forming ⊕S on each way of generating paths of length
two from Xi to Xj . A constraint Tij is path-consistent
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iff Tij ⊆ R
path
ij , i.e., Tij is at least as strict as R

path
ij .

A TCSPP is path-consistent iff all its constraints are
path-consistent.

It is interesting to study under which assumptions,
by applying the path consistency operation Tij :=
Tij⊕S (Tik⊗STkj) to any constraint of a given TCSPP,
the resulting TCSPP is equivalent to the given one, that
is, it has the same set of solutions with the same pref-
erences. The assumptions can be derived directly from
those which are sufficient in generic SCSPs, as stated
by the following theorem.

Theorem 2. Consider an TCSPP P defined on a semi-
ring which has an idempotent multiplicative operator.
Then, applying operation Tij := Tij ⊕S (Tik ⊗S Tkj)
for any k to any constraint Tij of P returns an equiva-
lent TCSPP.

Proof. Consider TCSPPs P1 and P2 on the same set
of variables {X1, . . . , Xn} and defined over a semiring
with an idempotent multiplicative operator. Assume
also that the set of constraints of P2 consists of the con-
straints of P1 minus {Tij} plus {Tij ⊕S (Tik⊗S Tkj)}.

To show that P1 is equivalent to P2 we must show
that every solution t of P1 with preference val(t) is a
solution of P2 with the same preference. Notice that P1
and P2 differ only for the constraint defined on vari-
ables Xi and Xj , which is Tij = 〈I , f〉 in P1 and
T ′

ij = Tij ⊕S (Tik ⊗S Tkj) = 〈I ′, f ′〉 in P2, where
Tik = 〈Iik, fik〉 and Tkj = 〈Ikj , fkj〉 are the same in
P1 and P2.

Now, since T ′
ij = Tij ⊕S (Tik ⊗S Tkj) = 〈I ′, f ′〉,

then I ′ = I ⊕ (I1 ⊗ I2). This means that I ′ ⊆ I .
Assuming I ′ ⊂ I , we will now show that no element
a ∈ I − I ′ can be a projection of a solution s of P1.
Assume to the contrary that s is a solution of P1 such
that s ↓Xi,Xj

= (si, sj) and sj − si = a ∈ I − I ′.
Then, since a /∈ I ′ means that there is no a1 ∈ Iik nor
a2 ∈ Ikj such that a = a1 + a2, then either sk − si =
a1 /∈ Iik or sj − sk = a2 /∈ Ikj . But this cannot be the
case, since s is assumed to be a solution of P1.

From the above argument we can conclude that, for
any solution t of P1, we have t ↓Xi,Xj

∈ I ′. Thus P1
and P2 have the same set of solutions.

Consider solution t in P1. Then, as stated in the pre-
vious section, the global preference associated with t
in P1 is val(t) = ×{fpq(vq−vp)|(vp, vq) = t ↓Xp,Xq

},
which can be rewritten, highlighting the preferences
obtained on constraints Tij , Tik and Tkj , as: val(t) =
f (vj − vi) × f (vk − vi) × f (vj − vk) × B, where

B = ×{fpq(vq − vp)|(vp, vq) = t ↓Xp,Xq
, (p, q) /∈

{(i, j), (k, i), (j, k)}}.
Similarly, in P2 the global preference of t is

val′(t) = f ′(vj − vi) × f (vk − vi) × f (vj − vk) × B.
We want to prove that val(t) = val′(t). Notice that B
appears in val(t) and in val′(t), hence we can ignore it.

By definition: f ′(vj − vi) = f (vj − vi) × Q, where
Q =

∑
v′

k
|(v′

k
−vi)∈Iik ,(vj−v′

k
)∈Ikj

[f (v′k −vi)×f (vj −
v′k)].

Now, among the possible assignments to variable
Xk, say v′k, such that (v′k − vi) ∈ Iik and (vj − v′k) ∈
Ikj , there is the assignment given to Xk in solution t,
say vk. Thus we rewrite f ′(vj − vi) in the following
way: f ′(vj −vi) = f (vj −vi)×{[f (vk −vi)×f (vj −
vk)]+

∑
v′

k|(v′
k−vi)∈Iik ,(vj−v′

k)∈Ikj ,v′
k �=vk

[f (v′k−vi)×
f (vj − v′k)]}.

At this point, the preference of solution t in P2 is
val′(t) = f (vj − vi) × {[f (vk − vi) × f (vj − vk)] +∑

v′
k
|(v′

k
−vi)∈Iik ,(vj−v′

k
)∈Ikj ,v′

k
�=vk

[f (v′k−vi)×f (vj−
v′k)]} × f (vk − vi) × f (vj − vk) × B.

We will now show a property that holds for any two
elements a, b ∈ A of a semiring with an idempotent
multiplicative operator: a × (a + b) = a. In [6] it is
shown that × is intensive with respect to the ordering
of the semiring, that is, for any a, c ∈ A we have a ×
c �S a. In particular this holds for c = (a+b) and thus
a× (a + b) �S a. On the other hand, since a + b is the
lub of a and b, (a+b) �S a, and by monotonicity of ×
we get that a×(a+b) � a×a. At this point we use the
idempotency assumption on × and obtain a × a = a
and, thus, a× (a+ b) �S a. Therefore a× (a+ b) = a.

We now use this result in the formula describing
val′(t), setting a = (f (vk − vi) × f (vj − vk)), and
b =

∑
v′

k
|(v′

k
−vi)∈Iik ,(vj−v′

k
)∈Ikj ,v′

k
�=vk

[f (v′k − vi) ×
f (vj − v′k)]. We obtain: val′(t) = f (vj − vi)× f (vk −
vi) × f (vj − vk) × B, which is exactly val(t). �

Under the same condition, applying this operation to
a set of constraints (rather than just one) returns a final
TCSPP which is always the same independently of the
order of application. Again, this result can be derived
from the more general results that hold for SCSPs [6],
as shown by following theorem.

Theorem 3. Consider an TCSPP P defined on a semi-
ring with an idempotent multiplicative operator. Then,
applying operation Tij := Tij ⊕S (Tik ⊗S Tkj) to a
set of constraints of P returns the same final TCSPP
regardless of the order of application.
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Proof. Applying operation Tij := Tij⊕S (Tik⊗STkj)
can be seen as applying a function f to an TCSPP P
that returns another TCSPP f (P ) = P ′. The local con-
sistency algorithm that applies this operation until qui-
escence can thus be seen as the repetitive application of
function f . As in the case of generic SCSPs, it is pos-
sible to use a result of classical chaotic theory [9] that
ensures the independence of the result on the order of
application of closure operators, that is, functions that
are idempotent, monotone and intensive. We will now
prove that function f satisfies such requirements if the
multiplicative operator is idempotent. In particular, un-
der such an assumption, function f is:

Idempotent: In fact, applying twice operation Tij :=
Tij⊕S (Tik⊗S Tkj) to constraint Tij , when constraints
Tik and Tkj have not changed, gives the same result as
applying it only once;

Monotone: Consider the ordering on SCSPs defined
in [6]. Such ordering can be redefined here as follows:
given TCSPP P1 and TCSPP P2 we say that P1 �P P2
iff for every constraint T 1

pq = 〈I1
pq , f1

pq〉 in P1 and
corresponding constraint T 2

pq = 〈I2
pq , f2

pq〉 in P2, then
I1
pq ⊆ I2

pq and ∀w ∈ I1
pq we have f1

pq(w) � f2
pq(w).

If now we apply operation f to P1 and P2 we get two
new TCSPPs, f (P1) and f (P2), that differ respectively
from P1 and P2 only on constraint T 1

ij and T 2
ij . By in-

tensivity of ×, applying Tij := Tij ⊕S (Tik ⊗S Tkj) to
a constraint can only shrink its interval and lower the
preferences corresponding to the remaining elements.
Since this change depends only on the preferences on
constraints Tik and Tkj , and by assumption we have
that T 1

ik �P T 2
ik and T 1

kj �P T 2
kj , by monotonicity

of × the new preferences in constraint T 1
ij in f (P1)

are smaller than or equal to those on constraint T 2
ij in

problem f (P2).
Intensive: That is, f (P1) �P P1 for any TCSPP

P1. In fact, as mentioned in the previous point, f (P1)
differs from P1 only by constraint Tij . However, f
ensures that constraint Tij in f (P1) can only have a
smaller or equal interval with respect to that in P1 and
that remaining elements can have preferences smaller
than or equal to the ones in P1. �

Thus any TCSPP can be transformed into an equiva-
lent path-consistent TCSPP by applying the operation
Tij := Tij ⊕S (Tik ⊗S Tkj) to all constraints Tij until
no change occurs on any constraint. We will call this
path consistency enforcing algorithm TCSPP_PC-2
when applied to an TCSPP and STPP_PC-2 when ap-
plied to an STPP.

Fig. 5. The path consistent constraint graph of the TCSPP in Fig. 3.

Figure 5 shows the TCSPP obtained by applying
path consistency to the TCSPP in Fig. 3.

Path consistency is proven to be polynomial for
TCSPs, with complexity O(n3R3), where n is the
number of variables and R is the range of the con-
straints [11]. However, applying it is, in general, not
sufficient to find a solution. Again, since a TCSP is a
special instance of TCSPP over the SCSP semiring, ap-
plying path consistency is not sufficient to find an op-
timal solution of an TCSPP either. On the other hand,
with STPPs over the same semiring, that is STPs, ap-
plying STPP_PC-2 is sufficient [11]. It is easy to infer
that the hardness result for STPPs, given in Section 3.1,
derives either from the nature of the semiring or from
the shape of the preference functions.

4. Tractability and path consistency

When the preference functions are linear, and the
semiring chosen is such that its two operations main-
tain such linearity when applied to the initial prefer-
ence function, it can be seen that the initial STPP can
be written as a linear programming problem, solving
which is tractable [8]. In fact, consider any given TC-
SPP. For any pair of variables X and Y , take each
interval for the constraint over X and Y , say [a, b],
with associated linear preference function f . The in-
formation given by each of such intervals can be rep-
resented by the following inequalities and equation:
X − Y � b, Y − X � −a and fX ,Y = c1(X −
Y )+c2. Then if we choose the fuzzy semiring SFCSP =
〈[0, 1], max, min, 0, 1〉, the global preference value V
will satisfy the inequality V � fX ,Y for each pref-
erence function fX ,Y defined in the problem, and the
objective function is max(V ). If instead we choose the
semiring 〈R, min, +,∞, 0〉, where the objective is to
minimize the sum of the preference level, we have
V = f1 + · · · + fn,3 and the objective function is

3In this context, the “+” is to be interpreted as arithmetic “+”.
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min(V ). In both cases, the resulting set of formulas
constitutes a linear programming problem.

Linear preference functions are expressive enough
in many cases, but there are also several situations in
which we need preference functions which are not lin-
ear. A typical example arises when we want to state
that the distance between two events must be as close
as possible to a single value. Then, unless this value is
one of the extremes of the interval, the preference func-
tion is convex, but not linear. Another case is one in
which preferred values are as close as possible to a sin-
gle distance value, but in which there are some subin-
tervals where all values have the same preference. In
this case, the preference criteria define a step function,
which is not even convex.

We consider the class of semi-convex functions
which includes linear, convex, and also some step func-
tions. More formally, a semi-convex function f is one
such that, for all y ∈ �+, the set {x ∈ X such that
f (x) � y} forms an interval. For example, the close
to k criteria cannot be coded into a linear preference
function, but it can be specified by a semi-convex pref-
erence function, which could be f (x) = x for x � k
and f (x) = 2k − x for x > k. Figure 6 shows some
examples of semi-convex and non-semi-convex func-
tions.

Semi-convex functions are closed under the oper-
ations of intersection and composition, when certain
semirings are chosen. For example, this happens with
the fuzzy semiring, where the intersection performs the
min and composition performs the max operation.

Theorem 4 (Closure under intersection). Given two
semi-convex preference functions f1 and f2 which
return values over a totally-ordered semiring S =

Fig. 6. Examples of semi-convex functions [(a)–(f)] and
non-semi-convex functions [(g)–(i)].

〈A, +,×, 0, 1〉 with an idempotent multiplicative oper-
ator ×, let f be defined as f (a) = f1(a)×f2(a). Then,
f is a semi-convex function as well.

Proof. Given any y, consider the set {x : f (x) � y},
which by definition coincides with = {x : f1(x) ×
f2(x) � y}. Since × is idempotent then we also
have f1(x) × f2(x) = glb(f1(x), f2(x)). Moreover,
since S is totally ordered, we have glb(f1(x), f2(x)) =
min(f1(x), f2(x)), that is the glb coincides with one
of the two elements, that is the minimum of the
two [6]. Thus, we have {x : f1(x) × f2(x) � y} =
{x : min(f1(x), f2(x)) � y}. Of course, {x : min(f1(x),
f2(x)) � y} = {x : f1(x) � y and f2(x) � y} =
{x : x ∈ [a1, b1] and x ∈ [a2, b2]} since each of f1
and f2 is semi-convex. Now, by definition, {x : x ∈
[a1, b1] and x ∈ [a2, b2]} = [a1, b1] ∩ [a2, b2] =
[max(a1, a2), min(b1, b2)]. We have thus proven the
semi-convexity of f , since {x : f (x) � y} is a unique
interval. �

A similar result holds for the composition of semi-
convex functions:

Theorem 5 (Closure under composition). Given a to-
tally ordered semiring with an idempotent multiplica-
tive operation ×, let f1 and f2 be semi-convex func-
tions which return values over the semiring. Define f
as f (a) =

∑
b+c=a(f1(b) × f2(c)), where b + c is the

sum of two integers. Then f is semi-convex.

Proof. From the definition of semi-convex functions,
it suffices to prove that, for any given y, the set S =
{x : f (x) � y} identifies a unique interval. If S is
empty, then it identifies the empty interval. In the fol-
lowing we assume S to be not empty.

By definition of f : {x : f (x) � y} = {x :∑
u+v=x(f1(u) × f2(v)) � y}, where u + v is the

sum of two integers and
∑

generalizes the additive
operator of the semiring. In any semiring, the addi-
tive operator is the lub operator. Moreover, if the semi-
ring has an idempotent × operator and is totally or-
dered, the lub of a finite set is the maximum element
of the set. Thus, {x :

∑
u+v=x(f1(u) × f2(v)) � y} =

{x : maxu+v=x(f1(u) × f2(v)) � y} which coincides
with {x :∃u, v | x = u + v and (f1(u) × f2(v)) � y}.

Using the same steps as in the proof of Theorem 4,
we have: {x :∃u, v | x = u + v and (f1(u) × f2(v)) �
y} = {x :∃u, v | x = u + v and min(f1(u), f2(v)) �
y}. But this set coincides with {x :∃u, v | x =
u + v and f1(x) � y and f2(x) � y} = {x :∃u, v |
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x = u + v and ∃a1, b1, a2, b2 | u ∈ [a1, b1] and v ∈
[a2, b2]} since each of f1 and f2 is semi-convex. This
last set coincides with {x : x ∈ [a1 + a2, b1 + b2]}.
We have thus shown the semi-convexity of a function
obtained by combining semi-convex preference func-
tions. �

These results imply that applying the STPP_PC-2
algorithm to an STPP with only semi-convex prefer-
ence functions, and whose underlying semiring con-
tains a multiplicative operation that is idempotent and
a totally ordered preference set, will result in an STPP
whose induced soft constraints have only semi-convex
preference functions.

Consider now an STPP with semi-convex preference
functions and defined on a semiring with an idempo-
tent multiplicative operator and a totally ordered pref-
erence set, like SFCSP = 〈[0, 1] max, min, 0, 1〉. In the
following theorem we will prove that, if such an STPP
is also path consistent, then all its preference functions
must have the same maximum preference value.

Theorem 6. Consider a path consistent STPP P with
semi-convex functions defined on a totally-ordered
semiring with an idempotent multiplicative operator.
Then all its preference functions have the same maxi-
mum preference.

Proof. All the preference functions of an STPP have
the same maximum iff any pair of soft temporal con-
straints of the STPP is such that their preference func-
tion have the same maximum. Notice that the theorem
trivially holds if there are only two variables. In fact, in
this case, path consistency is reduced to performing the
intersection on all the constraints defined on the two
variables and a single constraint is obtained.

For the following of the proof we will denote with
TIJ = 〈IIJ , fIJ 〉 the soft temporal constraint defined
on variables I and J .

Let us now assume that there is a pair of constraints,
say TAB and TCD , such that ∀h ∈ IAB , fAB(h) �
M , and ∃r ∈ IAB , fAB(r) = M , and ∀g ∈
ICD, fCD(g) � m, and ∃s ∈ ICD , fCD(s) = m and
M > m.

Let us first note that any soft temporal constraint
defined on the pair of variables (I , J) induces a con-
straint on the pair (J , I), such that maxh∈IIJ

fIJ (h) =
maxg∈IJI

fJI (g). In fact, assume that IIJ = [l, u].
This constraint is satisfied by all pairs of assignments
to I and J , say vI and vJ , such that l � vJ − vI � u.
These inequalities hold iff −u � vI − vJ � −l hold.

Thus the interval of constraint TJI must be [−u,−l].
Since each assignment vJ to J and vI to I which iden-
tifies element h ∈ [l, u] with a preference fIJ (x) = p
identifies element −x ∈ [−u,−l], it must be that
fIJ (x) = fJI (−x). Thus fIJ and fJI have the same
maximum on the respective intervals.

Consider now the triangle of constraints TAC , TAD

and TDC . To do this, we assume that, for any three
variables, there are constraints connecting every pair
of them. This is without loss of generality because we
assume to work with a path-consistent STPP.

Given any element a of IAC , since the STPP is path
consistent it must be that: fAC (a) �∑

a1+a2=a(fAD(a1) × fDC (a2)), where a1 is in IAD

and a2 is in IDC .
Let us denote with max(fIJ ) the maximum of the

preference function of the constraint defined on vari-
ables I and J on interval IIJ . Then, since × and +
are monotone, the following must hold: fAC (a) �∑

a1+a2=a((fAD(a1) × fDC (a2))) � max(fAD) ×
max(fDC ). Notice that this must hold for every ele-
ment a of IAC , thus also for those with maximum pref-
erence, thus: max(fAC ) � max(fAD) × max(fDC ).
Now, since × is intensive, we have max(fAD) ×
max(fDC ) � max(fDC ). Therefore, max(fAC ) �
max(fDC ) = m.

Similarly, if we consider the triangle of constraints
TCB , TCD , and TDB we can conclude that
max(fCB) � max(fCD) = m.

We now consider the triangle of constraints TAB ,
TAC and TCB . Since the STPP is path consistent, then
max(fAB) � max(fAC ) and max(fAB) � max(fCB).
But this implies that max(fAB) � m, which contra-
dicts the hypothesis that max(fAB) = M > m. �

Consider an STPP P that satisfies the hypothesis of
Theorem 6 having, hence, the same maximum pref-
erence M on every preference function. Consider the
STP P ′ obtained by P taking the subintervals of ele-
ments mapped on each constraint into preference M .
In the following theorem we will show that, if P is a
path consistent STPP, then P ′ is a path consistent STP.

Theorem 7. Consider a path consistent STPP P with
semi-convex functions defined on a totally ordered
semiring with idempotent multiplicative operator. Con-
sider now the STP P ′ obtained from P by consider-
ing on each constraint only the subinterval mapped by
the preference function into its maximal value for that
interval. Then, P ′ is a path consistent STP.
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Proof. An STP is path consistent iff all its constraints
are path consistent, that is, for every constraint TAB ,
we have TAB ⊆ ⊕K (TAK ⊗ TKB), where K varies
over the set of variables of the STP [11]. Assume that
P ′ is not path consistent. Then there must be at least
a hard temporal constraint of P ′, say TAB , defined on
variables A and B, such that there is at least a vari-
able C, with C �= A and C �= B, such that TAB �⊂
TAC ⊗ TCB . Let [l1, u1] be the interval of constraint
TAB , [l2, u2] the interval of constraint TAC and [l3, u3]
the interval of constraint TCB . The interval of con-
straint TAC ⊗TCB is, by definition, [l2 + l3, u2 + u3].
Since we are assuming that TAB �⊂ TAC ⊗ TCB , it
must be that l1 < l2 + l3, or u2 + u3 < u1, or both.

Let us first assume that l1 < l2 + l3 holds. Now,
since l1 is an element of an interval of P ′, by Theo-
rem 6 it must be that fAB(l1) = M , where fAB is
the preference function of the constraint defined on A
and B in STPP P and M is the highest preference
in all the constraints of P . Since P is path consis-
tent, then there must be at least a pair of elements,
say a1 and a2, such that a1 ∈ IAC (where IAC is
the interval of the constraint defined on A and C in
P ), a2 ∈ ICB (where ICB is the interval of the con-
straint defined on C and B in P ), l1 = a1 + a2, and
fAC (a1)×fCB(a2)) = M . Since × is idempotent and
M is the maximum preference on any constraint of P ,
it must be that fAC (a1) = M and fCB(a2) = M .
Thus, a1 ∈ [l2, u2] and a2 ∈ [l3, u3]. Therefore, it
must be that l2 + l3 � a1 + a2 � u2 + u3. But this
is in contradiction with the fact that l1 = a1 + a2 and
l1 < l2 + l3.

Similarly for the case in which u2 + u3 < u1. �

Notice the above theorem, and the fact that an STP
is path consistent iff it is consistent (i.e., it has at least
a solution) [11] allows us to conclude that if an STPP
is path consistent, then there is at least a solution with
preference M . In the theorem that follows we will
claim that M is also the highest preference assigned to
any solution of the STPP.

Theorem 8. Consider a path consistent STPP P with
semi-convex functions defined on a totally-ordered
semiring with idempotent multiplicative operator and
with maximum preference M on each function. Con-
sider now the STP P ′ obtained from P by considering
on each constraint only the subinterval mapped by the
preference function into M . Then, the set of optimal
solutions of P is the set of solutions of P ′.

Proof. Let us call Opt(P ) the set of optimal solutions
of P , and assume they all have preference opt. Let us
also call Sol(P ′) the set of solutions of P ′. By Theo-
rem 7, since P is path consistent and hence globally
consistent, we have Sol(P ′) �= ∅.

First we show that Opt(P ) ⊆ Sol(P ′). Assume that
there is an optimal solution s ∈ Opt(P ) which is not
a solution of P ′. Since s is not a solution of P ′, there
must be at least a hard constraint of P ′, say I ′ij on vari-
ables Xi and Xj , which is violated by s. This means
that the values vi and vj which are assigned to vari-
ables Xi and Xj by s are such that vj − vi /∈ I ′ij . We
can deduce from how P ′ is defined, that vj − vi can-
not be mapped into the optimal preference in the cor-
responding soft constraint in P , Tij = 〈Iij , fij〉. This
implies that the global preference assigned to s, say
f (s), is such that f (s) � fij(vj − vi) < opt. Hence
s /∈ Opt(P ) which contradicts out hypothesis.

We now show Sol(P ′) ⊆ Opt(P ). Take any solu-
tion t of P ′. Since all the intervals of P ′ are subinter-
vals of those of P , t is a solution of P as well. In fact, t
assigns to all variables values that belong to intervals in
P ′ and are hence mapped into the optimal preference
in P . This allows us to conclude that t ∈ Opt(P ). �

5. Solving simple temporal problems with
fuzzy preferences

In this section we will describe two solvers for
STPPs. Both find an STP such that all its solutions
are optimal solutions of the STPP given in input.
Both solvers require the tractability assumptions on the
shape of the preference functions and on the underly-
ing semiring, to hold. In particular, we will consider
semi-convex preferences based on the fuzzy semiring.

5.1. Path-solver: a solver based on path consistency

The theoretical results of the previous section can
be translated in practice as follows: to find an opti-
mal solution for an STPP, we can first apply path-
consistency and then use a search procedure to find a
solution without the need to backtrack. Summarizing,
we have shown that:

(1) Semi-convex functions are closed w.r.t. path-
consistency: if we start from an STPP P with semi-
convex functions, and we apply path-consistency, we
get a new STPP P ′ with semi-convex functions (by
Theorems 4 and 5); the only difference in the two prob-
lems is that the new one can have smaller intervals and
worse preference values in the preference functions.
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Pseudocode for path-solver
1. input STPP P ;
2. STPP P ′=STPP_PC-2(P );
3. if P ′ inconsistent then return ∅;
4. STP P ′′=REDUCE_TO_BEST(P ′);
5. return EARLIEST_BEST(P ′′).

Fig. 7. Path-solver.

(2) After applying path-consistency, all preference
functions in P ′ have the same best preference level (by
Theorem 6).

(3) Consider the STP obtained from the STPP P ′

by taking, for each constraint, the sub-interval corre-
sponding to the best preference level; then, the solu-
tions of such an STP coincide with the best solutions
of the original P (and also of P ′). Therefore, finding a
solution of this STP means finding an optimal solution
of P .

Our first solving module, which we call path-solver,
relies on these results. In fact, the solver takes as in-
put an STPP with semi-convex preference functions,
and returns an optimal solution of the given problem,
working as follows and as shown in Fig. 7: First, in
line 2 path-consistency is applied to the given prob-
lem, by function STPP_PC-2, producing a new prob-
lem P ′. Then, in line 4 an STP corresponding to P ′ is
constructed, applying REDUCE_TO_BEST to P ′, by
taking the subintervals corresponding to the best pref-
erence level and forgetting about the preference func-
tions. Finally, a backtrack-free search is performed to
find a solution of the STP, specifically the earliest one
is returned by function EARLIEST_BEST in line 5.
All these steps are polynomial, so the overall complex-
ity of solving an STPP with the above assumptions is
polynomial, as stated by the following theorem.

Theorem 9. Given an STPP with semi-convex prefer-
ence functions, defined on a semiring with an idem-
potent multiplicative operator, with n variables, max-
imum size of intervals r, and l distinct totally or-
dered preference levels, the complexity of path-solver
is O(n3rl).

Proof. Let us follow the steps performed by path-
solver to solve an STPP. First we apply STPP_PC-2.
This algorithm must consider n2 triangles. For each
of them, in the worst case, only one of the preference
values assigned to the r different elements is moved
down of a single preference level. This means that we
can have O(rl) steps for each triangle. After each tri-

angle is visited, at most n new triangles are added to
the queue. If we assume that each step which updates
Tij needs constant time, we can conclude that the com-
plexity of STPP_PC-2 is O(n3rl).

After STPP_PC-2 has finished, the optimal solution
must be found. Path-solver achieves this by finding a
solution of the STPP P ′′, obtained from P ′ by con-
sidering only intervals mapped into maximum prefer-
ence on each constraint. In [11] it has been shown that
this can be done without backtracking in n steps (see
also Section 2.1). At each step, a value is assigned to
a new variable while not violating the constraints that
relate this variable with the previously assigned vari-
ables. Assume there are d possible values left in the
domain of the variable, then the compatibility of each
value must be checked on at most n − 1 constraints.
Since for each variable the cost of finding a consistent
assignment is O(rd), the total cost of finding a com-
plete solution of P ′ is O(n2d). The complexity of this
phase is clearly dominated by that of STPP_PC-2. This
allows us to conclude that the total complexity of find-
ing an optimal solution of P is O(n3rl). �

In the above proof we have assumed that each step of
STPP_PC-2 Tij := Tij ⊕S (Tik ⊗S Tkj) is performed
in constant time. If we count the arithmetic operations
performed during this step, we can see that there are
O(r3) of them. In fact, each constraint of the triangle
has at most r elements in the interval, and, for each el-
ement of the interval in constraint Tij , the preference
of O(r2) decompositions must be checked. With this
measure, the new complexity of finding an optimal so-
lution is O(r4n3l).

Example 6. In Fig. 8 we show the effect of applying
path-solver on the example in Fig. 4. As it can be seen,
the interval on the constraint on variables Ss and Is has
been reduced from [3, 20] to [3, 14] and some prefer-
ences on all the constraints have been lowered. It is
easy to see that the optimal preference of the STPP is 1
and the minimal STP containing all optimal solutions
restricts the duration of the slewing to interval [4, 5],
the interleaving time between the slewing start and the
image start to [3, 5] and the interleaving time between
the slewing stop and the image start to [0, 1].

An approach similar to that in path-solver is pro-
posed in [50], in which Fuzzy Temporal Constraint
Networks are defined. In such networks, fuzzy inter-
vals are used to model a possibility distribution (see
[51]) over intervals. Although our work and the work
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Fig. 8. The STPP representing the Landsat 7 scenario depicted in
Figure 4 after applying STPP_PC-2.

in [50] have two completely different goals, since ours
is to model temporal flexibility in terms of preferences,
while in [50] they consider vagueness of temporal rela-
tions, there are many points in common. In fact, despite
the different semantics, the framework is very close to
ours since they give results for Fuzzy Simple Temporal
Problems with unimodal possibility distribution, where
unimodal is a synonym of semi-convexity. Thus, they
combine the possibilities with min and compare them
with max, as we do with preferences. To test whether
a fuzzy temporal network is consistent, they propose
a generalization of the classical path consistency algo-
rithm (PC-1) [25], while we extend the more efficient
version for TCSPs (PC-2) proposed in [11]. They com-
pute the minimal network and detect inconsistency if
an interval becomes empty. However, they do not prove
that after path consistency the possibilities are all low-
ered to the same maximum and that the STP obtained
considering only intervals mapped into that maximum
is also minimal. This is what allows us to find an opti-
mal solution in polynomial time. Another difference is
that our approach is more general, since TCSPPs can
model other classes of preferences than just fuzzy ones.

We will show in Section 6.4 that, also because of its
generality, the path consistency approach is substan-
tially slower in practice than the chopping solver that
we will describe in the next section.

5.2. Chop-solver

Given an STPP and an underlying semiring with set
of preference values A, let y ∈ A and 〈I , f〉 be a soft
constraint defined on variables Xi and Xj in the STPP,
where f is semi-convex. Consider the interval defined
by {x : x ∈ I and f (x) � y}. Since f is semi-convex,
this set defines a single interval for any choice of y.
Let this interval define a constraint on the same pair

Xi and Xj . Performing this transformation on each
soft constraint in the original STPP results in an STP,
which we refer to as STPy . Notice that this procedure is
related to what are know as α-cuts in fuzzy set theory
[20].

Not every choice of y will yield an STP that is solv-
able. Let opt be the highest preference value (in the or-
dering induced by the semiring) such that STPopt has
a solution. We will now prove that the solutions of
STPopt are the optimal solutions of the given STPP.

Theorem 10. Consider any STPP P with semi-convex
preference functions over a totally ordered semiring
with × idempotent. Take opt as the highest y such that
STPy has a solution. Then the solutions of STPopt are
the optimal solutions of P .

Proof. First we prove that every solution of STPopt is
an optimal solution of P . Take any solution of STPopt,
say t. This instantiation t, in P , has global preference
val(t) = f1(t1)× · · ·× fn(tn), where any tk is the dis-
tance vj−vi for an assignment to variables Xi and Xj ,
that is, (vi, vj) = t ↓Xi,Xj

, and fi is the preference
function associated with the soft constraint 〈Ii, fi〉,
with vj − vi ∈ Ii. Now assume that t is not optimal
in P . That is, there is another instantiation t′ such that
val(t′) > val(t). Since val(t′) = f1(t′1) × · · · × fn(t′n),
by monotonicity of ×, val(t′) > val(t) implies that
there is at least one i such that fi(t′i) > fi(ti). Let us
take the smallest of the fi(t′i), call it w′, and construct
STPw′ . It is easy to see that STPw′ has at least t′ as a
solution, therefore opt is not the highest value of y such
that STPy has a solution, contradicting our assumption.

Next we prove that every optimal solution of P is
a solution of STPopt. Take any t optimal for P , and
assume it is not a solution of STPopt. This means that,
for some constraint i, f (ti) < opt. Therefore if we
compute val(t) in P , we have that val(t) < opt. Then
take any solution t′ of STPopt. Since × is idempotent,
we have that val(t′) � opt, thus t was not optimal for
P as initially assumed. �

This result suggests a way to find an optimal solu-
tion of an STPP with semi-convex functions: we can
iteratively choose a w ∈ A and then solve STPw, until
STPopt is found. Both phases can be performed in poly-
nomial time, and hence the entire process is polyno-
mial. The second solver for STPPs that we have imple-
mented [36], and that we will call ‘chop-solver’, fol-
lows this approach.
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Pseudocode for Chop-solver
1. input STPP P ;
2. input precision;
3. integer n ← 0;
4. real lb ← 0, ub ← 1, y ← 0, STP STP0 ← Chop(P , y);
5. if (Consistency(STP0))
6. y ← 1, STP STP1 ← Chop(P , y);
7 if (STP0 = STP1) return solution of STP0;
8. if (Consistency(STP1)) return solution;
9. else
10. y ← 0.5, n ← n + 1;
11. while (n <= precision)
12. if (Consistency(Chop(P , y)))
13. lb ← y, y ← y + (ub − lb)/2, n ← n + 1;
14. else
15. ub ← y, y ← y − (ub − lb)/2, n ← n + 1;
16. end of while;
17. return solution;
18. else exit.

Fig. 9. Chop-solver.

The solver finds an optimal solution of the STPP
identifying first STPopt and then returning its earliest.
Preference level opt is found by performing a binary
search in [0, 1]. In Fig. 9 we show the pseudocode for
this solver.

Three variables are maintained during the search:
ub containing the lowest level at which an inconsis-
tent STP was found, lb containing the highest level at
which a consistent STP was found, and y for the cur-
rent level at which we need to perform the “chopping”.
It is easy to see that ub and lb are the upper and lower
bound of the portion of the [0, 1] interval to which we
can restrict our search.

The algorithm takes in input an STPP P and the de-
sired precision (lines 1 and 2). Then a counter, which
will be used to store the current level of precision
achieved in each step of the algorithm, is initialized
to 0 (line 3). In line 4 variable ub is initialized to 1,
variable lb to 0 and the search for the optimal pref-
erence level starts with y = 0. Function Chop ap-
plied to an STPP P and a preference level w returns
the STP STPw obtained by chopping P at w. STP0
is the STP we would obtain by considering all the
soft constraints as hard constraints, that is, with pref-
erence function equal to 1 on the elements of the in-
terval and to 0 everywhere else. If it is found not to be
consistent the algorithm stops, informing the user that
the whole problem is inconsistent (line 5). Otherwise
STP1, obtained chopping the STPP at level 1, is con-
sidered (line 6). If STP1 is the same (in the sense it has
exactly the same constraints) as STP0 then a solution
of STP0 is returned (line 7). This happens when the al-
gorithm is given in input a consistent hard constraint

problem. If, instead, STP0 and STP1 are different but
STP1 is consistent, then, since 1 is the highest pref-
erence value in the preference set, a solution of STP1
is returned (line 8). Otherwise the search proceeds up-
dating the three values, ub, lb and y, depending on the
outcome of the consistency test (lines 9–17). Function
Consistency receives, as input, an STP, and it checks if
it is consistent. Such test is performed using All-Pairs-
Shortest-Path (see Section 2.1). If the number of deci-
mal digits given in input is reached, then Chop-solver
returns a solution (either the earliest or the latest so-
lution, respectively corresponding to the assignments
xi = −di0 and xi = d0i). If instead the last STP con-
sidered is inconsistent a solution of the last consistent
one is returned.

For example, Chop-solver when applied to the trian-
gular STPP shown in Fig. 4 will stop the search when
it reaches preference level 1 (line 8) and finds that the
STP obtained chopping the STPP at 1 is consistent The
corresponding minimal network has the following con-
straints: [4, 5] on the constraint on Ss and Se, [3, 5] on
the constraint on Ss and Is, and [0, 1] on the constraint
Is and Se.

The following theorem shows that chop-solver finds
an optimal solution of an STPP respecting the tractabil-
ity assumptions in polynomial time.

Theorem 11. The complexity of chop-solver is
O(k × n3), where n is the number of variables and k
is the number of decimal digits of the preferences.

Proof. At each preference level considered within the
binary search, the chopping of the preference functions
is linear in the number of constraints and hence takes
O(n2), where n is the number of variables. At each
step, Floyd–Warshall’s algorithm is applied to solve
STPy with complexity O(n3) (see Section 2.1). Thus,
we can conclude that the overall complexity of chop-
solver is O(k × n3) where k is the maximum number
of steps allowed in the binary search, i.e. the number
of decimal digits corresponding to the precision of the
preference representation. �

6. Experimental results for the solvers

In this section we will describe our random gener-
ator of STPPs, and we will give experimental results
on solvers, comparing their performance on classes of
randomly generated STPPs.
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6.1. Generating random STPPs

Both STPP solvers described in the previous sec-
tions have been tested on randomly-generated prob-
lems. The random generator we have developed fo-
cuses on a particular subclass of semi-convex prefer-
ence functions: convex quadratic functions of the form
ax2 + bx + c, with a � 0. The choice has been sug-
gested both by the expressiveness of such a class of
functions and also by the ease of expressing functions
in this class by just three parameters: a, b and c. More-
over, it generates fuzzy STPPs, thus preference values
are between 0 and 1.

An STPP is generated according to the value of the
following parameters:

– number n of variables;
– range r for the initial solution: to assure that the

generated problem has at least one solution, we first
generate such a solution, by giving to each variable
a random value within the range [0, r];

– density d: percentage of constraints that are not uni-
versal (that is, with the maximum range and prefer-
ence 1 for all interval values);

– maximum expansion max from initial solution: for
each constraint, the bounds of its interval are set
by using a random value between 0 and max, to be
added to and subtracted from the timepoint identi-
fied for this constraint by the initial solution;

– perturbation of preference functions (pa, pb, pc):
each preference function, being of the form ax2 +
bx+ c, can be described by three values (a, b and c);
to set such values for each constraint, the generator
starts from a standard quadratic function which has
value 0 at the end points of the interval and value 0.5
at the middlepoint, and then modifies its three para-
meters according to the percentages pa, pb and pc. In
more detail, for each parameter q = a, b, c, a value
in the interval [−|q ∗ pq/100|, |q ∗ pq/100|] is se-
lected and added to the corresponding parameter. If
the new parabola does not satisfy the requirements it
is discarded and a new perturbation is generated and
tested.

For example, if we call the generator with the pa-
rameters 〈10, 20, 30, 40, 20, 25, 30〉, it will generate a
fuzzy STPP with 10 variables. Moreover, the initial so-
lution will be chosen by giving to each variable a value
between 0 and 20. Among all the constraints, 70% of
them will be universal, while the other 30% will be
specified as follows: for each constraint, consider the
timepoint specified by the initial solution, say t; then

the interval will be [t − t1, t + t2], where t1 and t2 are
random numbers between 0 and 40. Finally, the prefer-
ence function in each constraint is specified by taking
the default one and changing its three parameters a, b,
and c, by, respectively, 20%, 25% and 30%.

To compare our generator with the usual one for
classical CSPs, we notice that the maximum expan-
sion (max) for the constraint intervals roughly corre-
sponds to the tightness. However, we do not have the
same tightness for all constraints, because we just set
an upper bound to the number of values allowed in a
constraint. Also, we do not explicitly set the domain of
the variables, but we just set the constraints. This is in
line with other temporal CSP generators, like the one
in [45].

6.2. Experimental results for path-solver

In Figs 10 and 11 we show some results for finding
an optimal solution for STPPs generated by our gen-
erator using path-solver, which has been developed in
C++ and tested on a Pentium III at 1 GHz.

It must be noted that the implementation of path-
solver uses a point-wise representation of the con-
straint intervals and of their preference functions. This
makes the solver more general, since it can repre-
sent any kind of preference functions, even those that
don’t have an analytical representation via a small
set of parameters. In fact, even starting from convex
quadratic functions, which need just three parameters,
the first solving phase, which applies path-consistency,
can yield new preference functions which are not rep-
resentable via three parameters only. For example, we

Fig. 10. Time needed by path-solver to find an optimal solution (in
seconds), as a function of the density. The other parameters are:
n = 20, r = 100, pa = 20, pb = 20 and pc = 30. Mean on
30 examples.
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Fig. 11. Time needed by path-solver to find an optimal solution (in
seconds), as a function of density (d). The other parameters are:
n = 50, r = 100, pa = 20, pb = 20 and pc = 30. Mean on
30 examples.

could get semi-convex functions which are generic step
functions, and thus not representable by giving new
values to the initial three parameters.

Among the input parameters of the random genera-
tor, we have chosen to vary the number of variables n
(n = 20 in Fig. 10 and n = 50 in Fig. 11), the density
(from 20% to 80% on the x-axis), and the maximum
range of intervals (20, 50 and 100 elements).

We have chosen to leave parameter r, representing
the range of the first solution, fixed to 100, since it
clearly does not effect the speed of execution. In fact,
changing r and maintaining all other parameters with
the same value, it corresponds to a “translation” of
the problem. The other parameters which are fixed in
our experiments are the distortion parameters of the
parabolas: pa, pb and pc. Such values are related to
the shape of the parabolas and, indirectly, determine
the maximum number of distinct preference levels. The
percentages we have chosen, that is, pa = 20, pb = 20
and pc = 30, have proven to allow a wide variety of
preference levels between 0 and 1.

The curves depicted in Figs 10 and 11 represent the
mean on 30 generated problems. By looking at these
experimental results, we can see that:

– The time needed to solve the problem is directly pro-
portional to the number of variables. This is an obvi-
ous consequence of the complexity of the algorithm
which is polynomial in n;

– The time is also directly proportional to the size of
the intervals (max). This is due to the point-wise rep-
resentation of constraints used by the algorithm;

– It is instead inverse proportional to the density of the
constraints. The reason for this is that the constraints

generated have smaller intervals than the universal
constraints;

– Moreover, the smaller the maximum range max, the
weaker the impact on performance of varying the
density. This is another clear consequence of the rel-
evance of the size of intervals w.r.t. performance.

As it can be seen, this solver is very slow. For ex-
ample, it takes 200 seconds to solve a problem with
20 variables, maximum size 50 of the intervals, and
density 20%. The main reason is that it uses a point-
wise representation of the constraint intervals and of
their preference functions.

6.3. Experimental results for chop-solver

Figure 12 shows some experimental results for
chop-solver. We have used basically the same ran-
dom generator used to test the solver described in Sec-
tion 3, although it has been slightly modified since the
two solvers use two different representations of a con-
straint. In fact, while path-solver has a point-wise rep-
resentation of the constraints and their preference func-
tions, chop-solver represents each preference function
by the values of its three parameters. More precisely,
each constraint is represented by only two integers for
the left and right ends of the interval and three doubles
as parameters of the preference function.

We have tested chop-solver by varying the number
of variables, from a minimum of 25 up to a maximum
of 1000, and the density from 20% to 80%, keeping
precision fixed to 8 digits.

From Fig. 12 we can see that chop-solver is not sen-
sitive to variations in the density. The tested implemen-
tation of chop-solver uses Floyd–Warshall’s algorithm
which is the best choice for problems with high den-
sity, as the ones considered here. It should be noticed,
however, that for problems with a sparse graph, as can
be the case in some scheduling problems, Bellman–
Ford’s algorithm should be used instead.

Chop-solver is sensitive to the number of variables
since it yields an increase of the number of con-
straints on which the intersection procedure must be
performed.

The choice of maintaining a fixed maximum en-
largement of the intervals, that can be interpreted as
a fixed tightness, is justified by the continuous repre-
sentation of the constraint this solver uses. Increasing
max affects this representation of a constraint only by
making these values bigger. However, this change does
not affect the complexity of any of the operations per-
formed by chop-solver.
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Fig. 12. Time, in seconds, required by chop-solver to solve an STPP.
The number of variables (x-axis) and the density vary. The values
of the other parameters are: r = 100000, max = 50000, pa = 5,
pb = 5 and pc = 5. Mean on 10 examples.

6.4. Path-solver vs. chop-solver

In Tables 1, 2 and 3 we can see a comparison be-
tween chop-solver and path-solver.

It appears clear that chop-solver is much faster than
path-solver. It is also true that, in a sense, it’s also
more precise since it can find an optimal solution with
a higher precision. It must be kept in mind, though,
that path-solver is more general. In fact, the point-wise
representation of the constraints, to be blamed for its
poor performance, allows one to use any kind of semi-
convex function, e.g. step functions, that cannot be
easily compactly parametrized. We recall that such a
point-wise representation is required in order to apply
path consistency. It is also true that, in general, time is
dealt with as a discretized quantity, which means that,
once the measuring unit that is most significant for the
involved events is fixed, the problem can be automat-
ically cast in the point-wise representation. Moreover,
even wanting to extend the types of parametrized func-
tions in the continuous representation for chop-solver,
we must remember that the system deriving from in-
tersecting the constant at chopping level and the func-
tion must be solvable in order to find the possible inter-
sections. However, the continuous representation used
by chop-solver is, undoubtedly, more natural because it
reflects the most obvious idea of temporal preferences
that is, an interval plus a preference function over it.

7. Inductive learning of local temporal preferences

It is not always easy to specify the preference func-
tions in each temporal constraint in a way that the real-

Table 1

Time, in seconds, needed by path-solver and chop-solver to solve
STPPs with n = 30, r = 100, max = 50, pa = 10, pb = 10,
pc = 5 and varying density D. Results are mean on 30 examples

D = 20 D = 40 D = 60 D = 80

Path-solver 515.95 235.57 170.18 113.58

Chop-solver 0.01 0.01 0.02 0.02

Table 2

Time, in seconds, needed by path-solver and chop-solver to solve
STPPs with n = 40, r = 100, max = 50, pa = 10, pb = 10,
pc = 5 and varying density D. Results are mean on 30 examples

D = 20 D = 40 D = 60 D = 80

Path-solver 1019.44 516.24 356.71 320.28

Chop-solver 0.03 0.03 0.03 0.03

Table 3

Time, in seconds, used by path-solver and chop-solver to solve
STPPs with n = 50, r = 100, max = 50, pa = 10, pb = 10,
pc = 5 and varying density D. Results are mean on 30 examples

D = 20 D = 40 D = 60 D = 80

Path-solver 2077.59 1101.43 720.79 569.47

Chop-solver 0.05 0.05 0.06 0.07

life problem at hand is faithfully modeled. This hap-
pens because sometimes it is easier to specify only
global preference functions, to be associated with en-
tire solutions, rather than local preference functions to
be attached to the constraints. For this reason, and since
the whole TCSPP machinery is based on local prefer-
ence functions, we propose here a method to induce
local preferences from global ones.

We now describe our methodology to learn prefer-
ences in STPPs from examples of solution ratings. As
we did for the two solvers described above, also in this
part of the paper we focus on classes of STPPs which
are tractable, rather than general TCSPPs.

7.1. A general strategy for learning soft
temporal constraints

Learning in our context can be used to find suit-
able preference functions to be associated with the con-
straints of a given STP. More precisely, let P = (V , C)
be an STP where V is a set of variables and C is a set
of distance constraints of the form l � X − Y � u.
Let also t be a function t : S → A, where S is the set
of solutions of P and A is a set of values indicating the
“quality” of the solution.

The learning task consists of transforming the STP
into an STPP, with each constraint ci,j ∈ C replaced
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by a soft constraint 〈ci,j , fi,j〉, where fi,j is the local
preference function for ci,j .

The examples to be used in the learning task consist
of pairs (s, t(s)), where s is a solution to the original
STP and t(s) is its “score”. In the following, we use
P to denote an STP and P ′ to denote a corresponding
STPP. The goal of the learning procedure is to define
P ′ in a way such that the preference associated with a
solution s in P ′, that is valP ′ (s), approximates well the
one assigned by the target function t.

Let P and f be as defined above, and suppose a
set of examples TR = {(s1, t(s1)), . . . , (sm, t(sm))}
is given. To infer the local preferences, we must also
be given the following: a semiring whose element set
A contains the values t(si) in the examples; a distance
function over such a semiring. Given all of the above,
the goal of the learning procedure is to define a cor-
responding STPP P ′ over the same semiring such that
P and P ′ have the same set of variables, variable do-
mains and interval constraints, and for each t such that
(s, t(s)) is an example, dist(valP ′ (s), t(s)) < ε, where
ε > 0 and small.

Once the semiring is decided, the only free para-
meters that can be arbitrarily chosen are the values to
be associated with each distance. For each constraint,
cij = Iij = [lij , uij] in an STP P , the idea is to asso-
ciate, in P ′, a free parameter wd, where d = Xj −Xi,
to each element d in Iij . This parameter will repre-
sent the preference over that specific distance. With the
other distances, those outside Iij , we associate the con-
stant 0 (the lowest value of the semiring (w.r.t. �S)).

If Iij contains many time points, we would need a
great number of parameters. To avoid this problem, we
can restrict the class of preference functions to a sub-
set which can be described via a small number of pa-
rameters. For example, linear functions just need two
parameters a and b, since they can be expressed as
a · (Xj − Xi) + b. In general, we will have a function
which depends on a set of parameters W , thus we will
denote it as fW : (W × Iij) → A.

The value assigned to each solution s in P ′ is

valP ′ (s) =
∏

cij∈P ′

[ ∑
d∈Iij

check(d, s, i, j)

× fW (d)

]
,

where
∏

generalizes the × operation,
∑

general-
izes +, Iij is the set of intervals associated with con-

straint cij , and check(d, s, i, j) = 1 if d = s ↓Xj
−

s ↓Xi
and 0 otherwise. Note that, for each con-

straint cij , there is exactly one distance d such that
check(d, s, i, j) = 1, namely d = t ↓Xj

−t ↓Xi
. Thus,

valP ′ (s) =
∏

cij∈P ′ fW (s ↓Xj
−s ↓Xi

). The values
of the free parameters in W may be obtained via a min-
imization of the error function, which will be defined
according to the distance function of the semiring.

Suppose we are given a class of STPs to be “soft-
ened” via the learning approach defined above. As we
know, STPs are tractable [11]. However, in general
we may end up with STPPs which are not tractable,
since there is no guarantee that our learning approach
returns preference functions which are semi-convex.
For this reason the technique described in [3,34] can-
not be used directly and a new learning algorithm is
introduced, in order to guarantee the tractability of
the STPP produced in output. Moreover, one needs to
choose a semiring which preserves semi-convexity. To
force the learning framework to produce semi-convex
functions, we can specialize it for a specific class of
functions with this property. For example, we could
choose convex quadratic functions (parabolas) of the
form f (d) = a · d2 + b · d + c, where a � 0. In
this case we just have three parameters to consider:
W = {a, b, c}.

Of course, by choosing a specific class of semi-
convex functions fW , not all local preference shapes
will be representable. Even if one chooses fW to cover
any semi-convex function, there is no guarantee that
the desired solution ratings will be matched. In general,
the learning process will return a soft temporal prob-
lem which will approximate the desired rating as much
as possible, considering the chosen class of functions
and the error function. But we will gain tractability for
the solution process of the resulting problems: starting
from the class of STPs, via the learning approach we
will obtain a class of STPPs which is tractable as well.

Our learning module uses the gradient descent ap-
proach, as described in Section 2.3. Since the problem
we tackle is numerical, no symbolic approach is suit-
able. Moreover, the function we want to learn involves
the min function, which is not differentiable, and thus
it difficult to minimize the error function. To solve this
problem, we use a differentiable approximation of the
min function. The approximation we use is a good one
because it has a parameter which allows us to control
the degree of approximation. However, it introduces a
non-linearity. In this case, gradient descent is the sim-
plest technique to use.
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7.2. The learning module

We will now describe in detail how the gradient
descent technique can be implemented when all the
preference functions are convex quadratics and the
underlying semiring is the fuzzy semiring SFCSP =
{[0, 1], max, min, 1, 0}. If the problem we are consid-
ering has n variables, only ν = ( (n−1)n

2 ) − n of the
n2 constraints need to be considered, since the remain-
ing are just reciprocal. Given solution s, let si be its
projection on the i-th constraint. The global preference
assigned to s is then:

h(s) = valP ′ (s) =
ν∏

i=1

fi(si), (1)

where fi is the preference function of the i-th con-
straint. Since the multiplicative operator of the fuzzy
semiring is min and the function s are all semi-convex
quadratics, we can rewrite the above as:

h(s) = min
i=1,...,ν

{ais
2
i + bisi + ci}. (2)

We can now substitute what we have obtained in the
sum of squares error:

SSE =
1
2

∑
s∈Tr

(
t(s)

− min
i=1,...,ν

{ais
2
i + bisi + ci}

)2

.

The learning module performs a stochastic gradient de-
scent (see Section 2), which means that the error and
its update are computed after considering each exam-
ple of the training set. We must therefore ignore the
summation on all the examples, obtaining:

SSE(s) =
1
2

(
t(s)

−
[

min
i=1,...,ν

{ais
2
i + bisi + ci}

])2

.

For the sake of notations we will, from now on, indi-
cate SSE(s) simply with E. Our aim is to derive the er-
ror function with respect to the parameters of the prob-
lem, {a1, b1, c1, . . . , aν , bν , cν}, and to modify the pa-
rameters in a way such that the error decreases. In other
words, following the opposite direction at which the

gradient points. In order to be able to compute ∂E
∂ai

,
∂E
∂bi

and ∂E
∂ci

, we must replace min with a continuous
approximation [15]:

min
i=1,...,ν

(αi) � minβ
ν (αi)

= − 1
β

ln

(
1
ν

ν∑
i=1

e−βαi

)
,

where parameter β � 0 determines the goodness of
the approximation. Recalling that in our context αi =
ais

2
i + bisi + ci, we obtain the final formulation of the

error:

E =
1
2

(
t(s)

+
1
β

ln

(
1
ν

ν∑
i=1

e−β(ais
2
i+bisi+ci)

))2

.

From this expression we can obtain the updated val-
ues for the parameters of the parabolas on all the con-
straints following the ∆-rule:

ãi = ai + ∆ai with ∆ai = −η
∂E

∂ai
,

b̃i = ai + ∆bi with ∆bi = −η
∂E

∂bi
,

c̃i = ci + ∆ci with ∆ci = −η
∂E

∂ci
.

In these formulas, parameter η is the learning rate
which controls the magnitude of the update. More pre-
cisely, ∂E

∂ai
is:

∂E

∂ai
=

(
t(s) − h(s)

)(
−

(
∂h(s)
∂ai

))
,

in which only h(s) depends on {a1, b1, c1, . . . , aν , bν ,
cν}, while t(s) is the target preference of s in the train-
ing set and it is totally independent from the above pa-
rameters. Consider h(s) rewritten using the continuous
approximation of min, that is:

h(s) = − 1
β

ln

(
1
ν

ν∑
j=1

e−β(ajs2
j+bjsj+cj )

)

and the expression for ∂h(s)
∂ai

, which can be obtained
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through a few easy steps:

∂h(s)
∂ai

=
1

(
∑ν

j=1 e−β(ajs2
j+bjsj+cj ))

×
(
s2
i e−β(ais

2
i+bisi+ci)).

In what follows let us set

Q1 =
1

(
∑ν

j=1 e−β(ajs2
j+bjsj+cj ))

and

Q2 = e−β(ais
2
i+bisi+ci),

∂E

∂ai
=

(
t(s) − h(s)

)
Q1(−s2

iQ2).

Similarly, we can compute the derivative of the error
w.r.t. bi and ci:

∂E

∂bi
=

(
t(s) − h(s)

)
Q1(−siQ2),

∂E

∂ci
=

(
t(s) − h(s)

)
Q1(−Q2).

Finally, we can write the complete expression for the
update:

ãi = ai − η
[(

t(s) − h(s)
)
Q1(−s2

iQ2)
]
, (3)

b̃i = bi − η
[(

t(s) − h(s)
)
Q1(−siQ2)

]
, (4)

c̃i = ci − η
[(

t(s) − h(s)
)
Q1(−Q2)

]
. (5)

For each solution s, following the formulas illus-
trated above, we compute the error E and the update
ãi, b̃i and c̃i. In changing the parameters of the pref-
erence functions, two conditions must hold at all time:
(1) all of the functions must be semi-convex and (2) the
image of the function (that is, fi(I) if I is the interval
of the temporal constraint), must be contained in [0, 1],
due to the fuzzy semiring.

A parabola is semi-convex iff a � 0. The algorithm
maintains this property for all the parabolas, simply re-
placing an updated parameter a that is strictly positive
with 0.

This method is, in some way, similar to projec-
tive methods [30], often used in practice. Let us con-
sider in detail how it affects the update of a parameter
ai : ãi = ai−η[(t(s)−h(s))Q1(−s2

iQ2)]. Suppose this

is the first update of ai to a strictly positive ãi. We can
then assume that ai < 0. In order for ãi to be positive
it must be that: −η[(t(s) − h(s))Q1(−s2

iQ2)] � 0 or
equivalently, η[(t(s) − h(s))Q1(s2

iQ2)] � 0.
This can only happen if all the factors are positive.

But this implies that the error (t(s)−h(s)) must be pos-
itive, which means that the hypothesized preference is
smaller than the true one, that is, t(s) � h(s). More-
over, the difference between t(s) and h(s) must be big
enough to allow for the second addend to be bigger in
modulo than |ai|. Forcing ãi = 0 means behaving as
if the error would be smaller, that is, only sufficient to
make the second addend equal to ai.

As for the second condition, we introduce the notion
of truncated, or fuzzy, parabola. For any semi-convex
parabola, the corresponding fuzzy parabola is the semi-
convex function that coincides with the original func-
tion on all the elements that are mapped into values be-
tween 0 and 1, and that maps all the elements originally
mapped to negative values to 0, and all the elements
mapped to values greater than 1 to 1.

Fuzzy parabolas fit well into the fuzzy schema but,
on the other side, their first derivatives are discontinu-
ous. For the implementation of the algorithm, three dif-
ferent possibilities have been considered: (a) perform
learning using only fuzzy parabolas and their deriva-
tives; (b) use fuzzy parabolas for the update keeping
the derivatives of the continuous parabolas; (c) use the
parabolas and let them free to evolve during the learn-
ing phase even out of the [0, 1] interval, and consider
fuzzy parabolas only after the completion of the learn-
ing phase. Hypothesis (a) has been discarded due to the
difficulty of dealing with the discontinuity of the first
derivatives of fuzzy parabolas. Hypothesis (b) has been
implemented but a detailed study of the consequences
of the distortion of the gradient descent it creates has
convinced us to drop it. The final learning module has
been implemented according to hypothesis (c).

We compute the following errors:

– The error used by the learning module: sum of
squares error with parabolas, E, and with fuzzy
parabolas, Ef .

– The maximum absolute error and mean absolute er-
ror with both parabolas, Emax and Emed, and fuzzy
parabolas, E

f
max ed E

f
med. The maximum error tells

us how much the hypothesized preference value of
a solution is far from the target in the worse case. It
can thus be defined in general as maxs |t(s) − h(s)|,
where, in Emax, h(s) is computed using parabolas,
while in Ef

max it is computed using fuzzy parabo-
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las. In the case of parabolas this allows us to see
immediately if functions outside the [0, 1] interval
are learned, while in the case of fuzzy parabolas
it gives a strict upper bound to the worst perfor-
mance on any solution. The mean absolute error, in-
stead, gives an overall measure of the quality of the
learned functions. It gives the average over all so-
lutions of the distance of the hypothesized prefer-
ence and the true one. In general it can be defined

as

∑
s∈T

|t(s)−h(s)|
|T | , where |T | is the number of so-

lutions considered (e.g., those in the training set or
those in the test set). We have chosen the improve-
ment in terms of the mean absolute error as the cri-
terion to stop the learning phase.

Once the learning phase has ended, the STPP re-
turned by the algorithm is with fuzzy parabolas. It is
safe to do so since the errors computed with parabolas
dominate those with fuzzy parabolas as stated in the
following theorem.

Theorem 12. Consider an STPP P with preference
functions described as convex parabolas with positive
values, and the corresponding STPP F with the same
parabolas as P , where all values greater than 1 have
been lowered to 1 (i.e., with fuzzy parabolas). Then:

1. Given any solution of P (and F ′) s and correspond-
ing target t(s), with 0 � t(s) � 1, the sum of
squares error of s in P is greater than or equal to
that in F , that is, SSEP (s) � SSEF (s);

2. Given a set of solutions of P with their correspond-
ing target, say T = {(s, t(s))| s solution of P , 0 �
t(s) � 1}, the maximum error on T computed
in P , that is, EP

max = maxs∈T |t(s) − valP (s)|, is
greater than or equal to that computed in F , that is,
EP

max � EF
max;

3. Given a set of solutions of P with their correspond-
ing target, say T = {(s, t(s))| s solution of P , 0 �
t(s) � 1}, then the mean error on T computed in P ,

EP
med =

∑
s∈T

|t(s)−valP (s)|
|T | is greater than or equal

to that computed in F , that is, EP
med � EF

med.

Proof. (1) Consider any constraint C in P and let
p(x) = ax2 + bx + c be its preference function and
fp(x) the corresponding fuzzy parabola in F . Con-
sider solution s and its projection on C, sC . Now
p(sC ) = fp(sC ) if p(sC ) � 1, otherwise p(sC ) > 1
and fp(sC ) = 1 (by definition of fuzzy parabola).
By definition we have that: SSEP (s) = 1

2 (t(s) −

[mini=1,...,ν{pi(si)}])2, while: SSEF (s) = 1
2 (t(s) −

[mini=1,...,ν{fpi(si)}])2.
The only case in which valP (s) =

mini=1,...,ν{pi(si)} and valF (s), which is
mini=1,...,ν{fpi(si)}, differ is if pi(si) > 1, ∀i. In such
case we will have valP (s) > 1 and valF (s) = 1. This
means that |t(s) − valP (s)| > |t(s) − valF (s)|, since
0 � t(s) � 1, which implies that (t(s) − valP (s))2 >
(t(s)−valF (s))2. This leads us to SSEP (s) � SSEF (s).

(2) By what is stated above, we have that for any
s ∈ T either |t(s) − valP (s)| = |t(s) − valF (s)|
or |t(s) − valP (s)| > |t(s) − valF (s)|. This means
that EP

max = maxs∈T |t(s) − valP (s)| � EF
max =

maxs∈T |t(s) − valF (s)|.
(3) Again, since for any s ∈ T either |t(s) −

valP (s)| = |t(s) − valF (s)| or |t(s) − valP (s)| >
|t(s) − valF (s)|, when we sum the distances on all
the solutions it must be that

∑
s∈T |t(s) − valP (s)| �∑

s∈T |t(s) − valF (s)|. �

Notice that, while in the derivatives the approxima-
tion of min is used, everywhere else when h(s) must be
computed the actual min function is used. The reason
for this is that it’s better to use approximations only
when it is necessary.

The pseudocode of the learning module is shown in
Fig. 13. In line 1 the algorithm takes as input STPP P .
P contains all the intervals, in some sense the “hard”
constraints of the problems. Its preference functions
are initialized according to some criterion that decides
the a, b and c values for each of them. For example, the
preference functions might be set to the constant func-
tion f (x) = 1 by setting a = 0, b = 0 and c = 1. Once

Algorithm STPP_LEARNING_MODULE
1. initialize STPP P ;
2. do
3. for each s ∈ Tr;
4. compute E;
5. UPDATE(P , E, η, β);
6. end of for;
7. compute E, Emax, Emed, Ef , E

f
max, E

f
med,

PLIfEmed
, on training set;

8. if (PLIfEmed
< Thres) stopcount++;

9. if (PLIfEmed
� Thres) stopcount = 0;

10. while(stopcount<maxit);
11. compute Ets

c , Ets
max, Ets

med on test set;
12. output;

Fig. 13. Pseudocode of STPP_LEARNING_MODULE.
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the initialization is completed, the algorithm must start
scanning the solutions and corresponding global pref-
erences contained in the training set (lines 2, 3).

For each solution the algorithm updates the pa-
rameters of all the preference functions following
the ∆-rule, that is, the procedure described earlier
in this paragraph (lines 4–6). Notice that function
UPDATE(P , E, η, β) updates the parameters on all the
parabolas given the current problem P , the sum of
squares error E, the learning rate η and the min approx-
imation parameter β according to Eqs (3), (4) and (5).

Once all the examples in the training set have been
examined the errors E, Emax, Emed, Ef , E

f
max and

E
f
med are computed. The percentage of improvements

of E
f
med w.r.t. its last value, PLIfEmed

, is computed as
well (line 7). This value is used as the stopping crite-
rion for the learning module. In detail, if the values of
E

f
med at iterations j, j + 1 and j + 2 are respectively,

ej , ej+1 and ej+2 then PLIfEmed
at iteration j + 2 is

(ej+2 − ej+1), the value of threshold Thres that ap-
pears in lines 8 and 9, is α × (ej+1 − ej), where α is
a parameter chosen in [0.5, 1]. If for a certain number
of iterations, maxit, PLIfEmed

fails to exceed threshold
Thres, the algorithm stops (line 10).

At this point the parabolas are reduced to fuzzy
parabolas and the testing phase starts (line 11). A set
of examples, i.e. pairs (solution, target), none of which
appears in the training set, namely the test set, is evalu-
ated using the STPP produced by the module. By com-
paring the preferences assigned to the solutions by the
STPP with their targets, errors Ets, Ets

max and Ets
med are

computed. They are, obviously, the sum of squares er-
ror, the maximum absolute error and the mean absolute
error on the test set. In line 12 the output is given. More
precisely, the output will consist of the learned STPP
and some data collected during the learning and the
testing phase. Although the data to be collected can
be specified at experimental setup time, usually it will
contain all the errors computed at each iteration and
the errors computed in the testing phase.

Using machine learning techniques to induce local
preferences from global ones is not novel. In [7] the
author considers the problem of eliciting from a user a
utility function which represents her preferences over
a set of alternatives. Each alternative, or outcome, is
decomposed into a set of attributes and the utility func-
tion is assumed to be a linear combination of the utili-
ties over the attributes.

Comparing this approach to ours, the outcomes in
[7] are solutions of the STPP and the attributes are con-

straints. Given an outcome, the global utility of that
outcome is a weighted sum of the local utilities of the
attributes while, for us, is the minimum preference on
any constraint. The data from which they perform the
updating is a set of ordered pairs of outcomes, while
we have a set of solutions with a rankings attached to
them. Their learning technique is based on attaching
weights to linear constraints and altering the weights
until the LP problem is satisfiable. In our context, the
global preference is not linear, and the learning tech-
nique is different since it is based on gradient descent
and the update of the parameters is not based on the
satisfaction of a set of constraints.

Another related work is presented in [17], which is
in the context of search engines. In particular, it pro-
poses to use a learning technique that will change the
ranking function of the engine according to the click-
through data retrieved from the user. In other words, an
agent asks a search engine a query q, and the engine
propose a list of links which is produced by its rank-
ing function. Such links are presented in order of im-
portance (or relevance). If however the order in which
the user clicks on such links is not the one proposed by
the engine, then such information (called clickthrough
data) can be used to change the engine’s ranking func-
tion.

This work is related to ours since the concern is
again to modify the modeling of the user’s preferences
by looking at his preferences over solutions (links in
this case). The context is however different, since we
deal with temporal problems and we do not consider
the possibility of a repeated interaction between the
system and the user. Another work which is based on
our learning approach but considers an online environ-
ment and a repeated interaction is [35].

7.3. Experimental results

The learning module has been tested on some ran-
domly generated problems: every test involves the gen-
eration of an STPP via the generator described in Sec-
tion 6.1, and then the random selection of some exam-
ples of solutions and their rating.

Among the input parameters of the generator, we
have chosen to maintain fixed the range of the first so-
lution. In fact, the learning module is not sensitive to
the position in the time-line of the timepoints around
which the problem is generated. This is true even if a
translation of the STPP does change the parameters of
the parabolas on the constraints. The learning is how-
ever not sensitive to the magnitude of such parameters.
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Table 4

Ets
med on STPPs with n = 25, r = 40, pa = 10, pb = 10 and

pc = 5

max D = 40 D = 60 D = 80

20 0.017 0.007 0.0077

(0.013, 0.022) (0.006, 0.008) (0.0075, 0.0081)

30 0.022 0.013 0.015

(0.017, 0.025) (0.01, 0.017) (0.005, 0.028)

40 0.016 0.012 0.0071

(0.011, 0.019) (0.012, 0.013) (0.006, 0.0079)

This is true for learning systems in general, since the
regularity and shape of functions have a much bigger
impact on the difficulty of learning than the size of the
parameters, assuming an appropriated learning rate η.
In all the experiments we have kept such a domain at
r = 40, so all the problems have a solution within the
first 40 units of time.

We have also maintained fixed the distortion para-
meters to the values pa = 10, pb = 10 and pc = 5.
These values have been chosen to allow for a wide
range of different preference values.

We have instead decided to vary the number of vari-
ables n. In particular, Table 4 shows results for prob-
lems with n = 25, Table 5 for problems with n = 20
and Table 6 for problems with n = 15.

We have also considered three different sizes of the
intervals: max = 20, max = 30 and max = 40. Ac-
cording to the maximum size of the intervals, we have
also changed the size of the training and the test set. In
particular, we have given 500 examples to the training
set and 500 to the test set for problems with max = 15;
while 600 examples have been used in each set for
problems with max = 20 and 700 examples for prob-
lems with max = 25. Notice that in all cases the size
of the training and test set was less than 1% of the total
number of solutions.

Another parameter which we have varied is the den-
sity of non-universal constraints. In particular, we have
considered densities D = 40%, D = 60% and D =
80%. These are fairly high values, but we have cho-
sen to consider highly constrained networks since they
have more non-trivial preference functions and are,
hence, more interesting from a learning point of view.

As for the parameters of the learning module, we
have set them as follows: β = 8 and η = 10−7. The
learning process starts with all the preference functions
set to the constant y = 1. The stop criterion has been
set to 100 consecutive steps with an improvement of
the average absolute error on the training set, Emed,
smaller than the 70% of the previous one.

Table 5

Ets
med on STPPs with n = 20, r = 40, pa = 10, pb = 10 and

pc = 5

max D = 40 D = 60 D = 80

20 0.032 0.012 0.005

(0.022, 0.043) (0.01, 0.016) (0.004, 0.006)

30 0.032 0.018 0.0074

(0.021, 0.040) (0.016, 0.021) (0.0073, 0.0077)

40 0.033 0.023 0.016

(0.05, 0.021) (0.025, 0.022) (0.011, 0.021)

Table 6

Ets
med on STPPs with n = 15, r = 40, pa = 10 pb = 10 and

pc = 5

max D = 40 D = 60 D = 80

20 0.018 0.009 0.009

(0.01, 0.028) (0.007, 0.012) (0.007, 0.012)

30 0.021 0.014 0.016

(0.018, 0.027) (0.011, 0.017) (0.010, 0.021)

40 0.024 0.019 0.0086

(0.023, 0.026) (0.019, 0.021) (0.007, 0.01)

In Tables 4, 5 and 6 we show results on Ets
med, that is,

the mean absolute error on the test set. The first value
is the mean on 30 examples, while the values between
brackets are respectively the minimum and the maxi-
mum mean absolute error obtained.

From the experimental results we can see that the
error is reasonable, since it ranges from 0.004 to 0.05,
while the preference values are in [0, 1]. Moreover, it
seems not to be affected by the number of variables.
This means that there can be larger problems that are
less difficult to learn. Finally, there is a loose connec-
tion between the density and the error. A reason for
this could be that a greater density ensures a wider va-
riety of preference values, which in turn translates into
a training set with many different preference values,
helping the module in the inference process.

We conclude by giving some information on the
number of iterations and the time used by the algo-
rithm. All the tests have been performed on a machine
with a Pentium III 1 GHz processor and 512 Mb of
RAM. The minimum number of iterations has been
357 while the maximum number has been 3812. The
shortest time used has been of 2 minutes and 31 sec-
onds while the longest 8 minutes and 18 seconds. Note
that these results were obtained on over 4 different
problems since the time needed for a single iteration is
not constant.
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8. Conclusions and future work

Summarizing, the main results of this paper are:

– The definition of a framework, based on temporal
constraints [11] and soft constraints [5,6], capable of
modeling temporal preferences;

– Theoretical complexity results for solving temporal
problems with preferences as well as the identifica-
tion of a tractable sub-class;

– The design and implementation of two solvers for
the tractable class (that is, for simple temporal prob-
lems with fuzzy semi-convex functions): the first
one based on a local consistency rule known as path
consistency [10], and the second one based on a de-
composition approach using α-cuts [20]; the one de-
fined by fuzzy semi-convex temporal preferences);

– The design and implementation of a learning mod-
ule capable of eliciting local preferences from global
ones;

– A complete experimental scenario to assess the
value of the solvers and the learning module on
randomly generated temporal problems with fuzzy
preferences.

The results presented in this paper have inspired
many new lines of research. For example, different op-
timization criteria, such as Pareto optimality and util-
itarian max-plus, have been considered in [19] and in
[26]. The STPP framework has also recently been ex-
tended to deal with disjunctive temporal constraints
[29]. Another line of research combines preferences
and uncertainty in temporal problems. For example,
in [37] the notion of optimality w.r.t. preferences is
paired with that of robustness to uncontrollable events,
while in [27] the authors provide a system which
combines probabilistic information on uncertain events
with preferences.

Many issues remain open. An interesting line of
work is to consider conditional preferences, that is,
preferences that change depending on when other
events occur. We also plan to test further our solvers
and to try applying different learning techniques for in-
ducing local preferences. We are also considering other
optimization criteria and developing specific solvers
that follow them, possibly using search.
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