Solving and Learning Soft Temporal Constraints:
Experimental Scenario and Examples

F. Rossi, K.B. Venable
Department of Pure and Applied Mathematics, University of Padova, Italy
frossi@math.unipd.it, kvenable@studenti.math.unipd.it

A. Sperduti S
Department of Computer Science, University of Pisa, Italy
perso@di.unipi.it S

L. Khatib®, P. Morris, R. Morris
(*) Kestrel Technology o
NASA Ames Research Center, Moffett Field, CA, USA
{lina,pmorris,morris}@ptolemy.arc.nasa.gov

October 1, 2001

Abstract

Soft temporal constraint problems allow to describe in a natural way
scenarios where events happen over time and preferences are associated to
event distances and durations. However, sometimes such local preferences
are difficult to set, and it may be easier instead to associate preferences
to some complete solutions of the problem. To model everythifg in a -
uniform way via local preferences ouly, and also to take advantq_ég?df the
existing constraint solvers which exploit only local preferencgé,‘j%; use
machine learning techniques which learn the local preferences £r§'m"ghe

global ones. o
In this paper we describe the existing framework for both solving and
blems, the implemented

learning preferences in temporal constraint pro
modules, the experimental scenario, and preliminary results on some ex-

amples.

1 Introduction and motivation

Several real world problems involving the manipulation of tempora! information
in order to find an assignment of times to a set of activities or events can natu-
rally be viewed as having preferences associated with local tempdral decisions,
where by a local temporal decision we mean one associated with how long a

single activity should last, when it should occur, or how it should be ordered

with respect to other activities.
However, in many temporal reasoning problems it is difficult or impossible

to specify a local preference on durations. In real world scheduling problems,
for example, it is sometimes easier to see how preferrable is a solution, but it
may be virtually impossible to specify how specific ordering choices between
pairs of events contribute to such global preference value. If such knowledge
were at hand, it could be used as heuristics to guide the scheduler to prefer
local assignments that were found to yield better solutions. - :

We solve this problem by automatically generating local temﬁg;a.l preference
information via a machine learning approach using a representation of local
preferences in terms of soft constraints [7, 1, §]. s

This paper presents the current formalism and results for soft temporal con-
straint problems, and describes the machinery we have developed for both solv-
ing and learning such problems. The implemented modules rely on the theoret-
ical results (such as those on tractability of some classes of problems) and make
some assumptions for both tractability and efficiency. In particidar, cur solver
is able to deal with soft temporal constraints with one interva¥pes-canstraint,
and with a particular shape of the preference functions, which asstremtractabil-
ity (like for Simple Temporal Constraints in the case of hard consiraints); our
random problem generator is based on some parameters to generaie & soft tem-
poral problem, which suitably extend the usual ones for hard CSPs (density,
tightness, ...); our learning module learns preference functions which have the
shape of convex quadratic functions, to assure a trade-off between efficiency and
generality, and assumes that preferences are dealt with via a fuzzy (max-min)
framework. We also show the results of some tests of our modules Q_’n randomly

generated problems and also toy problems.

2 Temporal constraint problems with ;:)"‘If‘féférlences

The Temporal CSP framework (TCSP) [3] has been used widelyto solve tem-
poral reasoning problems. This framework is based on knowledge represented
as constraints on distances or durations of events. More precisely, variables rep-
resent events happening over time, and each constraint gives an allowed range
for the distances or durations, expressed as a set of intervals over the time line.
For example, a constraint over X and Y could say that 5 <V -~ X < 10 or
15 £ Y — X < 30, which is formally represented by the two intervals [5,10]
and [15,30]. Informally, this constraint states that the distance between the
two events should be either between 5 and 10, or between 15 and 30. Satisfying
such a constraint means choosing any of the allowed distances. A solution for a
TCSP consisting of a set of temporal constraints is an assignment of values to
its variables such that all constraints are satisfied. '

As expected, general TCSPs are NP-hard. However, TCSPs with just one
interval for each constraint, called STPs, are polynomially solvable, ;In fact, one
can transform the given STP into a distance graph, apply to this gra‘ph‘\a shortest

path algorithm, and then assign to each variable the value corresponding to the
shortest distance thus found (see [3] for details).

Although very expressive, TCSPs are able to model just hard temporal con-
straints. This means that all constraints have to be satisfied, and that the
solutions of a constraint are all equally satisfying. However, in-'mé;iy real-life
scenarios these two assumptions do not hold. In particular, sometimes some
solutions are preferred with respect to others. Therefore the global problem is
not to find a way to satisfy all constraints, .but to find a way to satisfy them
optimally, according to the preferences specified. e

To address such problems, recently [5] a new framework has béen proposed,
where each temporal constraint is associated with a preference function, which
specifies the preference for each distance. This framework is based on a simple
merger of TCSPs and soft constraints, where for soft constraints we have taken
a general framework based on semirings [2]- The result is a class of problems
called Temporal Constraint Satisfaction problems with preferencez (TCSPPs).

A soft temporal constraintin a TCSPP is represented by a pair consisting ofa
set of disjoint intervals and a preference function: (I ={[a1,b1),-- - [#a.bnl},),
where f-: I* — A, is a mapping of the elements of I into preference values, taken
from a set A. ‘

A solution to a TCSPP is a complete assignment to all the vasiables that
satisfies the distance constraints. Each solution has a global preference value,
obtained by combining the local preference values found in the constraints. To
formalize the process of combining local preferences into a global préférence, and

comparing solutions, we impose a semiring structure onto the TCSPP frame-
BRI S o)

work.

A semiring is a tuple (A4, +, x,0,1) such that A is a set and 0,1 € 4; +,
the additive operation, is commutative, associative and 0 is its"unit ‘element;
x, the multiplicative operation, is associative, distributes ovet' 4, 11 “its unit
element and 0 is its absorbing element. A c-semiring is a sémiring i which
+ is idempotent (i.e., a + a = a,a € A), 1 is its absorbing eleméit, and x is
commutative. These additional properties (w.r.t. usual semirings)*are required
to cope with the usual nature of constraints. ‘

C-semirings allow for a partial order relation <s over A to be defined as
a <s b iff a+b = b Informally, <s gives us a way to compwse tuples of
values and constraints, and a <s b can be read b is better than a. Moreover,
one can prove that + and x are monotone on <g; 0 is its minimum and 1 its
maximum; {4, <s) is a complete lattice where, for all a,b € A, a+a = lub(a, b)
(where lub=least upper bound); if x is idempotent, then (A, <s) is & complete
distributive lattice and x is its greatest lower bound (gib).

Given a semiring? with a set of values A, each preference function f asso-
ciated with a soft constraint (I, f) of a TCSPP takes an element from I and
returns an element of A, where A is the carrier of a semiring. Thi \llows us to
associate a preference with a duration or a distance. o

1Here by I we mean the set of all elements appearing in the intervals of:
2For simplicity, from now on we will write semiring meaning c-semirif

The two semiring operations allow for complete solutions to bé evaluated in
terms of the preference values assigned locally. More precisely, given a solution ¢
in a TCSPP with associated semiring (4, +, x,0,1), let T}; = (I; ;, f:.7) be asoft
constraint over variables X;, X; and (v;, v;) be the projection of t over the values
assigned to variables X; and X; (abbreviated as (vi,v5) = tyx, x;) Then, the
corresponding preference value given by f;; is fij(v; — v;), where 1 Ui—v € L 5.

Finally, where F' = {z;,...,z;} is a set, and X is the multiplicative gf)erator on
the semiring, let x F' abbreviate z; x .

. X zz. Then the global preference value

of t, val(t), is defined to be val(t) = x{f,J(v] vi) | (vi,v;) =8ix;3x,}. The
optimal solutions of a TCSPP are those solutions which have the. best global
preference value, where “best” is determined by the ordenng <sof the values
in the semiring. s

For example, consider the semiring Sty..y = ([0, 1], maz, mzn O 1) used for
fuzzy constraint solving [9]. The global preference value of a solutlon will be the
minimum of all the preference values associated with the distances selected by
this solution in all constraints, and the best solutions will be those with the maxi-

mal value. Ancther example is the semiring Sesp = ({false, true}, % -, false true),

which allows to describe hard constraint problems [6].
A special case occurs when each constraint of a TCSPP confairs a single

interval. We call such problems Simple Temporal Problems with Preferences
(STPPs), due to the fact that they generalize Simple Temporal Probiarms- (STPs)
[3]. This case is interesting because, as noted above, STPs are polynomially
solvable, while general TCSPs are NP-hard, and the computational effect of
adding preferences to STPs is not immediately obvious. In [5] it has’been shown
that, while in general TCSPPs are NP- hard, under certain restnttlons on the
shape of the preference functions and on the semiring, STPPs: ¥
Semi-convex functions are such that, if one draws a horizontal iiné a.nywhere
in the Cartesian plane defined by the functlon the set of X sut haﬁ f(X)is
not below the line forms an interval. More formally, a semi- co'ni)e.*z: Fk ?tmn fis
one such that, for all Y, the set {X such that f(X) > Y} forms34 ftiterVal. It is
easy to see that semi-convex functions include linear ones, as well as-convex and
some step functions. For example, the close to k criteria cannot Be Jcoded into
~ a linear preference function, but it can be specified by a semi-convéx preference
function, which could be f(:c) =zforz < kand f(z) =2k —z forz > k.
Figure 1 shows some examples of semi-convex and non-semi-convex functions.
It is proven in [5] that STPPs with semi-convex preference funitions and a
semiring with a total order of preference values and an idempotert rulitiplicative

operation can be solved in polynomial time.

3 A solving module for STPPs

The tractability results for STTPs can be translated in practiceas follows:
to find an optimal solution for an STPP, we can first apply pa onsistency
(suitably adapted to STPPs, see [5]) and then use a search procediire to find a

solution without the need to backtrack. More in details, it is p@)s bIe to show

(a)

®

FaYN U

Figure 1: Examples of semi-convex functions (a)-(f) and non-semi- convex func-
tions (g)-(i) g

that:

Semi-convex functions are closed w.r.t. path-consistency: if we start from
an STPP P with semi-convex functions, and we apply path-consistency,
we get a new STPP P’ with semi-convex functions (see [5]):#The only dif-
ference in the two problems is that the new one can have worse p.ereference

values in the preference functions.

g
o After applying path-consistency, all preference functxons m P’ have the

same best preference level.

Consider the STP obtained from the STPP P’ by takmg, for: ‘each con-
straint, the sub-interval corresponding to the best p;eference level then,
the solutions of such an STP coincide with the best sohitions of the orig-
inal P (and also of P'). Therefore, finding a solution of this STP means

finding an optimal solution of P.

Our solving module relies on these results. In fact, the STPP solver takes as
input an STPP with semi-convex preference functions, and returns an optimal
solution of the given problem, working as follows: :

e First, path-consistency is applied to the given problem, prodicing a new

problem P'. .

e Then, an STP corresponding to P’ is constructed by taking ;'qhe subinter-
vals corresponding to the best preference level and forgettin about the

preference functions.

e Finally, a backtrack-free search is performed to find a solu':thn he STP.
The STPP solver has been tested both on toy problems and on randomly-
generated problems. The random generator we have developed focusses on a

.:\ e

R

particular subclass of semi-convex preference functions: convex quadratic func-
tions of the form az?® + bz + ¢, with a < 0. The choice has been suggested both
by the expressiveness of such a class of functions and also by t};ie fac1hty of ex-
pressing functions in this class (just three parameters). Morec':)'\\:f'e’r’l,;"i’g"fgénerates
fuzzy STPPs, thus preference values are between 0 and 1. W RS

An STPP is generated according to the value of the following parameters:

» number of variables;

range r for the initial solution: to assure that the generatec problem has
at least a solution, we first generate such a solution, by giving to each
variable a random value within the range [0, 7] ;

e density: percentage of constraints that are not universal (that is, with the
biggest interval and preference 1 for all interval values);

* maximum expansion from initial solution (max): for each constraint, the
bounds of its interval are set by using a random value be{vﬁgeen 0 and
max, to be added to and subtracted from the timepoint ide‘n‘piﬁ;egd for this

constraint by the initial solution. '

* perturbation of preference functions (pa, pb, pe): we recaﬂ(’é}};a ‘-
erence function can be described by three values (a, b, and.¢);
values for each constraint, the generator starts from a sta,xggp.r]
function which passes through the end points of the interval; with value
0, and the middlepoint, with value 0.5, and then modifies it;agcording to
the percentages specified for a, b, and c. -

For example, if we call the generator with the parameters (10,.2G; 30, 40, 20,
25, 30), it will generate a fuzzy STPP with 10 variables. Morecvir, the initial
solution will be chosen by giving to each variable a value between 0 and 20.
Among all the constraints, 70% of them will be universal, while the other 30%
will be specified as follows: for each constraint, consider the timeppint specified
by the initial solution, say t; then the interval will be [t —t1,t + ¢2), where t1
and ¢2 are random numbers between 0 and 40. Finally, the preference function
in each constraint is specified by taking the default one and changing its three
parameters a, b, and c, by, respectively, 20%, 25%, and 30%.

To compare our generator with the usual one for classical Cs
that the maximum expansion (max) for the constraint intervai§'iﬁ tghly cor-
responds to the tightness. However, we do not have the same tj ‘htn.e_ss for all
constraints, because we just set an upper bound to the number@f; Y@.i,uéﬁ;aﬂowed
in a constraint. Also, we do not explicitely set the domain of the.var
we just set the constraints. This is in line with other temporal:GSPB g
like the one in [10]. il ‘

In Table 1 we show some results for finding an optimal soiutiogg;for STPPs
generated by our generator, which has been developed in C-++ and tested on a
Pentium IIT 1GHz. As it can be seen, our current solver is very slow. The main
reason is that it uses a pointwise representation of the constraint ietervals and

. we notice

A4

P

[[0=10 [n=20 | n=30 | n=40 [n=50 | - -
d=20% || 122" | 802" | 13'34” [47'13" | >1h T
d=40% || 28" | 358" | 630" | 14'37" | 25’5”
d=60% 16 | 2737 | 4247 | 928" 18
d=80% 8” 71D | 249" | 4347 | 11'18" & .

Table 1: Time needed to find an optimal solution, as a function of the iumber of
variables (n) and the density (d). The other parameters are: range for the initial
solution = 100, maximum expansion for all constraints = 100, perturbation for

preference functions: 20, 30, 30.

the preference functions. This makes the solver more general, since:it can repre-
sent any kind of preference functions, even those that don’t havé ‘an analytical
representation via a small set of parameters. In fact, even starting from convex
quadratic functions, which need just three parameters, the first'sclving phase,
which applies path-consistency, can yield new preference functions’ whitch are not
representable via three parameters only. For example, we could get-semi-convex
functions which are generic step functions, and thus not representable By giving
new values to the initial three parameters. S)

A new solver, which uses a different solving algorithm, not ba$ed on path-
consistency, is under development. This solver will be able to avoid the pointwise
representation and will perform a binary search over the preference value range
to find the optimal preference level (the same one that is now found by path-
consistency). We are confident that the ‘new solver will be much faster than the
current one. However, it will be less general because it will work with specific
classes of preference functions with specific analytical representaticns. -

4 Learning soft temporal constraints
-
We now describe our methodology to learn preferences in STPPs from exam-
ples of solution ratings. Notice that for now we focus on STPPs.rather than
considering general TCSPPs, since STPPs are, with some restrictions,tractable
problems, and since the whole point of this paper is to make temporal
reasoning more practical. A
The problem to be considered here can be formally describédias ‘anvinductive
learning problem [11]. Inductive learning can be defined asthe! ability of a

system to induce the correct structure of a map d which is khown ‘only for
;d(z)), the

particular inputs. More formally, defining an example as a pair"i o
onal task is as follows: given a collection of examples. of d, i.e., the
d. Functior h is called a

computati
training set, return a function h that approximates

hypothesis.
A common approach to inductive learning, especially in the corivext of neural
networks, is to evaluate the quality of a hypothesis h (on the training set)

through an error function [4]. An example of popular error function, that can be

used over the reals, is the sum of squares error [4): E= 130 (dlz:)— h(z:))?,
where (z;,d(z;)) is the i-th example of the training set. .

Given a starting hypothesis ko, the goal of learning is to minirnizs the error
function E by modifying hg. This can be done by using a definition of A which
depends on a set of internal parameters W, ie., h = ki, and thHen adjusting
these parameters. This adjustment can be formulated in different wrys, depend-
ing on whether the domain is isomorphic to the reals or not. The usual way
to be used over the reals, and if hy is continuous and derivable, ‘is to follow
the negative of the gradient of E with respect to W. This technique is called
gradient descent [4]. Specifically, the set of parameters W is initialized to small
random values at time 7 = 0 and updated at time 7 + 1 accordirig to the fol-
lowing equation: W (r + 1) = W(r) + AW(r), where AW (7) E'_;'Qéy%%, and
7 is the step size used for the gradient descent. Learning is‘_gtblbp’e’dl_‘when a
minimum of E is reached. Note that, in general, there is no gué.f@htié'ez_f;fhat the
found minimum is global. AR

Learning in our context can be used to find suitable preferenée.gi"fict.ions to
be associated to the constraints of a given STP. More preciseivilet P =: (V, C)
be an STP where V is a set of variables with domains consistii g cétiresnstants,
and C is a set of distance constraints of the form { SX-Y <u, sderedGY, e V
and /,u are time points. Let f be a function f:8 = U, where § °s the set of
solutions to P and U is a set of values indicating the “quality” <f uk= solution.

The learning task consists of transforming the STP into an STPP, with each
constraint ¢; ; € C replaced by a soft constraint (¢;, 4s fi,7), where f; , is the local
preference function for c; ;. o

The examples to be used in the learning task consist of pairs (s, /(s)), where
s is a solution to the original STP and f(s) is its “score”. In the following, we
use P to denote an STP and P’ to denote a corresponding STPP. Also, valp:(t)
is used to indicate the value of a solution ¢ over P’.

Semiring choice. Let P and f be as defined above, and s&gph
examples TR = {(t1,7(t1)),..., (tm,r(tm))} is given. To infe;{,{ 1
erences, we must also be given the following: a semiring whose elément set A
contains the values r(t;) in the examples; and a distance funé{i’ibfﬁ-‘ﬁ\';é?’such a
semiring. For example, if the score values are positive real n‘urnb'e:js;; we could
choose the semiring (R, min, +,+400,0) and, as distance -functic'gri;;; the usual
one over reals: dist(valp (t),r(t)) = | valp: (t) — r(t) |. Given all the above, the
goal is to define a corresponding STPP P’ over the same semiring such that P
and P’ have the same set of variables, domains and interval constrairts, and for
each ¢ such that (¢,7(t)) is an example, dist(valp: (t),7(t)) < €, where ¢ > 0 and

small.

g_‘é_aa set of
“la.'cal pref-

Parameters. If the first condition is true, the only free pa.ramete‘rS) that can

be arbitrarily chosen in order to satisfy the other conditions are the ~alues to be

associated to each distance. For each constraint ¢i; = {[a1,b1),...,[an,bn]} in

P, the idea is to associate, in P’, a free parameter wg, where d =)3(35_ X; (note
. -

i

that such a parameter must belong to the set of the chosen semiring); to each
element d in I = (J;[a;s,b;]. This parameter will represent the preference over
that specific distance. With the other distances, those outside I, we associate
the constant 0, (the lowest value of the semiring (w.r.t. <))

If T contains an infinite number of distances, we would need; an infinite
number of parameters, which would make learning impossible. " T6 ‘avoid this
problem, we can restrict the class of preference functions to a’ subset which
can be described via a finite number of parameters. For examplé’,“if"%&é use only
linear functions, we just need two parameters a and b, since evefy _lihéa".i‘_"“function
can be expressed as a- (X; — X;) +b. In general, we will have afunctlon which
depends on a set of parameters W, thus we will denote it as fiv: (WxI)— A

The value assigned to each solution t in P’ is

walp®= J[[3 check(dt,if) x fw(@) (1)

ci; EFP’
ij dEUDEIij D

where [] generalizes the x operation,) generalizes +, I;; is the set of in-
tervals associated to constraint ¢;;, and check(d,t,4,7) = Lif d =t {x; —t x:
and 0 otherwise. Note that, for each constraint c;;, there is exactly one dis-
tance d such that check(d,t,i,j) = 1, namely d = ¢ lx; —t tx.. Thus,
valp(t) = [L.,;ep fw(t 1x; —t x;). The values of the free parameters in
W may be obtained via a minimization of the error function, which will be
defined according to the distance function of the semiring. “

T

Learning semi-convex preference functions. Suppose we are,given a class
of STPs to be “softened” via the learning approach defined aboye:! As,we know,
STPs are tractable [3]. However, in general we may end up with:STERs which
are not tractable, since there is no guarantee that our learning approach returns
preference functions which are semi-convex. Moreover, one neéd§ to, choose a
semiring which preserves semi-convexivity. RERTAN

To force the learning framework to produce semi-convex functions; we can
specialize it for a specific class of functions with this property. For example, we
could choose convex quadratic functions of the form f(d) = a-d® +b-d+c, where
a < 0. In this case we just have three parameters to consider: W = {a,b,c}.

Of course, by choosing a specific class of semi-convex functious fw, not all
local preference shapes will be representable. Therefore, there will be cases in
which the desired solution ratings, as specified in the training set, cannot be
matched. For example, the user could have specified a set of exaraples which
is not consistent with any soft temporal constraint problem using-that class of
semi-convex preference functions. Even if one chooses fw to cover any semi-
convex function, there is no guarantee that the desired solution raﬁfings will be

183

matched.
In general, the learning process will return a soft temporal

will approximate the desired rating as much as possible, conside
class of functions and the error function. But we will gain tracita.

Mo

| Max [Mean error (min,max) | Number of exa.mples']

20 0.03 (0.02,0.04) 500
30 0.03 (0.02,0.04) 600
40 0.0333 (0.02,0.05) 700

Table 2: Mean error and number of examples for learning prefer des! m some
STPPs. EAR SIS

solution process of the resulting problems: starting from the class of STPs, via
the learning approach we will obtain a class of STPPs which is tractable as well.

5 The learning module

We have developed a learning module which can learn fuzzy STPFs where the
preference functions are quadratic functions of the form az? + bz +c with a <0.
Notice that this class includes both constant, linear, and semi-convex quadratic
functions.

The input is a set of pairs consisting of a solution and its prefexence Part
of this set will be used as the training set, and the rest as the testset_ Learning
is performed via a gradient descent technique using an approximated ‘version of
the min operation which is continuous and derivable. Learning: tn hen the
global error is under a certain threshold. At this point, we havﬂ L ‘TPP with
preference functions in the shape of convex quadratic functions, wh solution
are ranked very similarly to the original examples in the inpu ;

The learning module has been tested on some randomly gerié
every test involves the generation of an STPP via our generator, a.nd then the
generation of some examples of solutions and their rating. Then the STPP,
without its preference functions, is given to the learning module, whxch starting
from the examples, learns new prefernce functions over the constr a.ms until the
error (that is, the difference between the solution ratings in the tesi set and in
the new problem) is small enough.

Figure 2 shows the number of examples in the training (and akso in the
test) set, and the mean error (computed as the average of the medi srror for
three problems), for learning preferences in STPPs with 20 variablés: range =
40, density = 40%, and function perturbation parameters 10, 10, ‘and 5. The
maximum expansion, which, we recall, is related to the tightness notlon is 20
30, and 40. ;

What can be noticed, even with such a small number of tes
mean error increases as the parameter max increases, even if on
examples (which should ease the learning process). ThlS is duesty
a larger value for max may yields larger intervals, and thus pref;
with larger domains and a larger number of solutions, which reqtf]
from the learning algorithm. This trend seems to be conﬁrme
experimental results not reported here. e

: problems:

6 Conclusions and future work

. il
This paper has presented the experimental scenario and first éxampleél for both
solving and learning soft temporal constraints. We plan to firtther 'test the
overall system, composed of the solver and the learning modxle, ‘using other
classes of randomly generated STPPs and also real-life problem instances such
as satellite event scheduling. .

We also plan to extend our solver to deal with soft tempor
are not simple, or which have preference functions which are not sexai-convex. In
this line, we already have some theoretical results which suggest us to decompose
such problems into STPPs, find their solutions, and then suitabiy combine the
solution sets to generate the best solutions of the original problem. ¥ plan to
follow such results in the development of such solver.

al pr-a'bi_ems which

References

[1] A. Biso, F. Rossi, and A. Sperduti. Experimental Results on Léé,n)ing Soft
Constraints. Proc. KR 2000, Morgan Kaufmann, 2000.

(2] S. Bistarelli, U. Montanari,énd F. Rossi. Semiring—based:jC_%Qr‘l‘sftr‘ali;ht Solv-
ing and Optimization. Journal of the ACM, 44(2):201-236, Ma 1.1997.

[3] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint neté‘cr'd'ffjcfs?‘Artiﬁcial
Intelligence, Vol. 49, 1991, pp. 61-95. R

[4] S. Haykin. Neural Networks: a comprehensive Foundation. IEEE Press,
1994, -

[5] L. Khatib, P. Morris, R. Morris, F. Rossi. Temporal Constramt Reasoning
With Preferences. Proc. IJCAI 2001. '

[6] A.K. Mackworth. Constraint satisfaction. In Stuart C. Shag}ig:r)‘; editor,
Encyclopedia of AI (second edition), volume 1, pages 285-293. John Wiley
& Sons, 1992.

[7] F. Rossi and A. Sperduti. Learning solution preferences in constraint prob-
lems. Journal of Experimental and Theoretical Computer Science, 1998.

Vol 10.
[8] L.Khatib, P. Morris, R. Morris, F. Ross, A. Sperduti. Learning ‘r,g::ferences

on Temporal Constraints: A Preliminary Report. Proc. TH
Computer Society Press, 2001. il

[9] T. Schiex. Possibilistic constraint satisfaction problems,’of_th ow''to handle
T, pages 269-275,

soft constraints?”. In Proc. 8th Conf. of Uncertainty in Al
1992.

[10] E. Schwalb, R. Dechter. Coping with disjunctions in temporai constraint
satisfaction problems. In Proc. AAAI-93, 1993.

g

[11] S. Russell and P. Norvig. Artificial Intelligence: A Modern Ap;v vack. Pren-

tice Hall, 1995.

'
s

W
i

