
Solving and Learning Soft Temporal Constraints:

Experimental Scenario and Exampl_es

F. Rossi, K.B. Venable

Department of Pure and Applied Mathematics, University of Padova, Italy

frossi@math.unipd.it, kvenableQstudenti, math.u}Hpd.it

.A. Sperduti .,

Department of Computer Science, University of Pisa,: Italy

perso@di.unipi.it :i
:,

L. Khatib(*), P. Morris, R. Morris :
I.

(*) Kestrel Technology

NASA Ames Research Center, Moffett Field, CA_, USA

{lina,pmorris,m orris } @ptolemy. arc.n asa.gov

October 1, 2001

Abstract

Soft temporal constraint problems allow to describe in a natural way

scenarios where events happen over time and preferences are associated to

event distances and durations. However, sometimes such local preferences

are difficult to set, and it may be easier instead to associate preferences

to some complete solutions of the problem. To model everytM_ _ in a -

umform way via local preferences only, and also to take advantag¢_Qf the

existing constraint solvers which exploit only local preferenceS] we5 use
...... __- ' , _! i't

machine learning techmques whmh learn the local preferences from the

global ones.
In this paper we describe the existing framework for both solving a_d

learning preferences in temporal constraint problems, the implemented
modules, the experimental scenario, and preliminary results on some ex-

amples. , _ _:.

1 Introduction and motivation

Several real world problems involving the manipulation of tempera! information
: 1.

in order to find an assignment of times to a set of activities or e:,ents can natu-

rally be viewed as having preferences associated with local tempq_M decisions,
where by a Iocal temporal decision we mean one associated with laow long a

:i

' !i! ,



single activity should last, when it should occur, or how it shoui& be ordered

with respect to other activities.

However, in many temporal reasoning problems it is difficult or impossible

to specify a local preference on durations. In real world scheduling problems,

for example, it is sometimes easier to see how preferrable is a solut]on, but it

may be virtually impossible to specify how specific ordering choices between

pairs of events contribute to such global preference value. If such knowledge
were at hand, it could be used as heuristics to guide the scheduler to prefer

local assignments that were found to yield better solutions.

We solve this problem by automatical/y generating local teml_Pralpreference
information xda a machine learning approach using a representation of local

preferences in terms of soft constraints I7, 1, 8]. -]] :: :

This paper presents the current formalism and results for soft temporal con-
straint problems, and describes the machinery we have developed for both solv-

ing and learning such problems. The implemented modules rely on the theoret-

ical results (such as those on tractability of some classes of problems) and make

some assumptions for both traztability and efficiency. In pa_:lrtar, oar solver

is able to deal with soft temporal constraints with one interx._i_:_,-c,,:_straint,

and with a particular shape of the preference functions, which as_:,_mtractabil-

ity (like for Simple Temporal Constraints in the case of hard cO,2S_ints); our

random problem generator is based on some parameters to gener_:_e a soft tem-
poral problem, which suitably extend the usual ones for hard CS.Ps (density,

tightness, ...); our learning module learns preference functions which have the

shape of convex quadratic functions, to assure a trade-off between efficiency and

generality, and assumes that preferences are dealt with via a fuzzy (max-min)

framework. We also show the results of some tests of our modules on randomly
generated problems and also toy problems. ._:_

r

2 Temporal constraint problems with prefierences

The Temporal CSP framework (TCSP) [3] has been used wid.ely_t_ go_ve tem-

poral reasoning problems. This framework is based on knowledge.represented

as constraints on distances or durations of events. More precisely,, variables rep-
resent events happening over time, and each constraint gives an allowed _range

for the distances or durations, expressed as a set of intervals .over the time line.

For example, a constraint over X and Y could say that 5 _< Y - X < 10 or

15 _< Y - X _< 30, which is formally represented by the two in':;e.wals [5, 10]

and [15, 30]. Informally, this constraint states that the distance'between the

two events should be either between 5 and 10, or between 15 and 30. Satisfying

such a constraint means choosing any of the allowed distances. A solution for a

TCSP consisting of a set of temporal constraints is an assignment _f values to
its variables such that all constraints are satisfied.

As expected, general TCSPs are NP-hard. However, TCSPs with just one

interval for each constraint, called STPs, are polynomially solvable.• .In fact, one

can transform the given STP into a distance graph, apply to this graph,]a shortest



path algorithm,and then assignto each variablethe valuecorresp6ndingto the

shortestdistancethus found (see[3]fordetails).

Although very expressive,TCSPs are able tomodel just hard temporal con-

straints.This means that allconstraintshave to be satisfied,.and that the

solutionsof a constraintaxe allequallysatisfying.However, in many real-life

scenariosthese two assumptions do not hold. In particular,sometimes some

solutionsare preferredwith respectto others.Therefore the globalproblem is

not to find a way to satisfyallconstraints,.but to find a way to satisfythem

optimally, according to the preferences specified. _ " '

To address such problems, recently [5] a new framework hhs been proposed,
where each temporal constraint is associated with a preference function, which

specifies the preference for each distance. This fraznework is based on a simple

merger of TCSPs and soft constraints, where for soft constraints we have taken

a general framework based on semirings [2]_ The result is a ciass of problems

called Temporal Constraint Satisfaction problems with preference:-." (TCSPPs).

A soft temporal constraint in a TCSPP is represented by a pair consisting of a

set of disjoint intervals and a preference function: (I -- {[al, bl], • .-, l_, b,_]}, f},
where f: !2 -+ A, is a mapping of the elements of/" into preference v_dues, taken
from a set A.

A solution to a TCSPP is a complete assignment to all the va_-iables that

satisfies the distance constraints. Each solution has a global preference value,

obtained by combining the local preference values found in the codstraints. To

formalize the process of combining local preferences into a global preference and

comparing solutions, we impose a semiring structure onto the T-CSpP frazne-
work. ,__i4.1_.i ,LL

A semiring is a tuple (A,+, x,0,1) such that A is a set _;_t,;iJ'E A; +,

the additive operation, is commutative, associative and 0 is it_"uhi_ __lement;
×, the multiplicative operation, is associative, distributes ove_;_, :1 _:its unit

element and 0 is its absorbing element. A e-semiring is a S_ih_i:_ which

+ is idempotent (i.e., a + a = a,a E A), 1 is its absorbing elen{e_ti_and x is
commutative. These additional properties (w.r.t. usual semiringsi_e required

to cope with the usual nature of constraints.

C-semirings allow for a partial order relation _<s over A to be defined as

a _<s b iff a + b = b. Informally, _<s gives us a way to comp:ize tuples of
values and constraints, and a _<s b can be read b is be_er than a, Moreover,

one can prove that + and x are monotone on _<s; 0 is its minimum and 1 its

maximum; (A, _<s) is a complete lattice where, for all a, b E A, a 4__._ lub(a, b)

(where lub=least upper bound); if x is idempotent, then (A, _<s) is a complete

distributive lattice and x is its greatest lower bound (glb).

Given a semiring 2 with a set of values A, each preference function f asso-
ciated with a soft constraint (I, f) of a TCSPP takes an elemen£!(from 2" and

returns an element of A, where A is the carrier of a semiring. Th:_P_i]ows us to

associate a preference with a duration or a distance. :-_.'_,,::;i_.

1Here by I we mean the set of all elements appearing in the intervals of._._%;! ;_
2For simplicity from now on we will write semiring meaning c-semirin_:: _'_'_'_.:

,4 .4-,:_ i-,



The two semiring operations allow for complete solutions to be evaluated in

terms of the preference values assigned locally. More precisely, given a solution t

in a TCSPP with associated semiring (A, +, ×, 0, 1), let Tij = (Ii,j, f':5) be a soft

constraint over variables X_, Xj and (v_, v3.) be the projection of t over the values

assigned to variables Xi and Xj (abbreviated as (vi,vj) = t;x,,x_).! Then, the

corresponding preference value given by f_j is f_j (vj - vi), where,_ji,T- vi E Ii,j.
Finally, where F = {xl,..., xk } is a set, and x is the multiplicati_ I:p_erator on
the semiring, let ×F abbreviate ¢1 × ... × Xk. Then the global preference value

of t, val(t), is defined to be val(t) = ×{fiy(vj -vi) I (vi,vj) _:f)_}. The
optimal solutions of a TCSPP are those solutions which have, _h¢.best global

preference value, where "best" is determined by the ordering _<s .of t.he values

in the semiring. :. _,_' , _:
For example, consider the semiring S]_ = ([0, 1], maz, rain', 0::i'_', used for

fuzzy constraint solving [9]• The global preference value of a solutio_ will be the

minimum of all the preference values associated with the distances selected by
this solution in all constraints, and the best solutions will be those with the maxi-

mal value. Another example is the semiring S_sp = ({false, true}, "_: ;., false, true),

which allows to describe hard constraint problems [6]•

A special case occurs when each constraint of a TCSPP c_>nta_ a single
interval. We call such problems Simple Temporal Problems wi_:. Pr_.ferences

(STPPs), due to the fact that they generalize Simple Temporal Probte_(STPs)

[3]. This case is interesting because, as noted above, STPs are p0iynomially

solvable, while general TCSPs are NP-hard, and the computational effect of

adding preferences to STPs is not immediately obvious. In [5] it has_een shown
that, while in general TCSPPs are NP-hard, under certain restri6't_bns on the

"shape" of the preference functions and on the semiring, STPPs:::_eiJtractable.

Semi-convex functions are such that, ff one draws a hormontal' li_'anywhere
in the Cartesian plane defined by the function, the set of X su_cl_'_-_i_ f(X) is

• - . .,_ _,h. _i(_. '
not below the hne forms an interval. More formally a semi-co_ve$'tdiICt'ion f is

n :"<'_ '¢_' ,ibm. .o e such that, for all Y, the set {X such that f(X) > Y} forms a_ 1fi%erval. It m

easy to see that semi-convex functions include linear ones, as _ell ia_ :c_nvex and
".j_: :J f . .some step functions. For example, the close to k criteria cannot De 'coaea into

a linear preference function, but it caa be specified by a semi-¢onv_ preference

function, which could be f(x) = x for x _ k and f(x) = 2k - x for x > k.
Figure 1 shows some examples of semi-convex and non-semi-convex :flmctions.

It is proven in [5] that STPPs with semi-convex preference fu_.:ations and a

semiring with a total order of preference values and an idempotent mult_plicative
operation can be solved in polynomial time.

3 A solving module for STPPs

The tractability results for STTPs can be translated in practice:, as follows:

to final an optimal solution for an STPP, we can first apply pa_c.0nsistency
(suitably adapted to STPPs, see [5]) and then use a search proce._:Ufe to find a

solution without the need to backtrack. More in details, it m l_S_bl_, to show



Ca) (b)

(g) (h) (i)

"ij ",,_:&

.... : ] :_j'.

F

Figure 1: Examples of semi-convex functions (a)-(f) and non-semi-':_6nvex func-

tions (g)- (i)

that:

• Semi-convex functions are closed w.r.t, path-consistency: if we start from
an STPP P with semi-convex functions, and we apply pathrconsistency

we get a new STPP P' with semi-convex functions (see [5]).._!The only dif-
ference in the two problems is that the new one can have worde _pJ_reference

values in the preference functions. *.:_ :w

After applying path-consistency, all preference functions m,_(have the

same best preference level. : ,:.: : _:

• Consider the STP obtained from the STPP P' by taking ;f6r,!_gch con-

straint, the sub-interval corresponding to the best preferenc@]evel; then,
the solutions of such an STP coincide with the best solutions.bf the orig-

inal P (and also of P'). Therefore, finding a solution of this STP means

finding an optimal solution of P.

Our solving module relies on these results. In fact, the STPP solver takes as

input an STPP with semi-convex preference functions_ and returns an optimal

solution of the given problem, working as follows:

• First, path-consistency is applied to the given problem, producing a new

problem P'. ._

• Then, an STP corresponding to P' is constructed by taking)_he subinter-

vals corresponding to the best preference level and forgetti_i,g_about the

preference functions. -',_:"_.!i_:_,_:

• Finally, a backtrack-free search is performed to find a solutl_n_o_._he STP.

The STPP solver has been tested both on toy problems and o_' r_domly-

generated problems. The random generator we have developed f_usses on a



particularsubclassofsemi-convexpreferencefunctions:convexquadraticfunc-
tionsoftheformax 2 + bx + c, with a _< 0. The choice has been Su_g6sted both

by the expressiveness of such a class of functions and also by th,e f_cility of ex;

pressing functions in this class (just three parameters). Moreo_/er_ _t' generates
fuzzy STPPs, thus preference values are between 0 and 1. ,',i !_,._'

An STPP is generated according to the value of the following iharameters:

• number of variables;

• range r for the initial solution: to assure that the generated problem has

at least a solution, we first generate such a solution, by gbring to each

variable a random value within the range [0, r] ;

• density: percentage of constraints that are not universal (that i_., with the

biggest interval and preference 1 for all interval values);

• maximum expansion from initial solution (max): for each constraint, the
bounds of its interval are set by using a random value b_e_een 0 and

max, to be added to and subtracted from the timepoint identified for this

constraint by the initial solution.
_i , "i h

• perturbation of preference functions (pa, pb, pc): we recall thgt_e&ch pref-

erence function can be described by three values (a, b, a_dac!,;: t_o__et such

values for each constraint, the generator starts from a si;an_la_d: qliadratic
function which passes through the end points of the inter_a_ v_K,h value

0, and the middlepoint, with value 0.5, and then modifies it i_cording to
the percentages specified for a, b, and c.

For example, if we call the generator with the parameters (10,25 30, 40, 20,

25, 30), it will generate a fuzzy STPP with 10 variables. Moreover, the initial
solution will be chosen by giving to each variable a value between 0 and 20.

Among all the constraints, 70% of them will be universal, while t_,e other 30%
will be specified as follows: for each constraint, consider the timeRbknt specified

by the initial solution, say t; then the interval will be it - tl, t + t2]: •where tl
and _2 are random numbers between 0 and 40. Finally, the preferer, ce function

in each constraint is specified by taking the default one and chan_:ng its three
parameters a, b, and c, by, respectively, 20%, 25%, and 30%. _

To compare our generator with the usual one for classical C_P_ilwe notice
• . ,,_'% _ .'!.

that the maximum expansion (max) for the constraint intervals roughly cor-

responds to the tightness. However, we do not have the same t_ghtness for all

constrmnts, because we just set an upper bound to the number ._:{y_u_ allowed

in a constraint. Also we do not explicitely set the domain of t_:_bles, but
we just set the constraints. This is in line with other temporal:_CSB.igen6rators,

like the one in [10]. _",V_'_:_::_"_'_:

In Table 1 we show some results for finding an optimal so1_utio_..i.for $TPPs

generated by our generator, which has been developed in C+_- and £ested on a
Pentium III 1GHz. As it can be seen, our current solver is very Slow. The main

constrm_it .m_ervals andreason is that it uses a pointwise representation of the "" '"

• .- j::,'



•! Ļ

n=sb - ....•
d=2o% 1'22-

t 802" 13'34" 47'i3" >lh ''_
3'53" 6'30" 14'37" 25'5" i,.d=40% 28"

d=60% 16" 2'37" 4'24" 9'28" 18 'i

d=80% 8" 1'11" I 2'49" 4'34" 11us"_i

Table 1: Time needed to find an optimal solution, as a function of thenumber of

variables (n) and the density (d). The other parameters are: range for the initial
solution = 100, maximum expansion for all constraints = 100, pert:;rbation for

p'reference functions: 20, 30, 30.

the preference functions. This makes the solver more general, since:it can repre-

sent any kind of preference functions, even those that don't have :_n analytical
representation via a small set of parameters. In fact, even starting _bm convex

quadratic functions, which need just three parameters, the first';sdtVing phase,
which applies path-consistency, can yield new preference functions:whi'_h axe not

representable via three parameters only. For example, we coul_ get:S_i_-convex

functions which are generic step functions, and thus not repre_e'i_'tal3te 'l_y giving
new values to the initial three parameters. =_:i _L. :.":

A new solver, which uses a different solving algorithm, =not b_e_l on path-

consistency, is under development. This solver wilI be able to avoM the pointwise
representation and will perform a binary search over the preference Value range

¢. 5" _ "
to find the optimal preference level:(the same one that is now _:o'4nd by path-

consistency). We are confident that thenew solver will be much f,_.ter than the
current one. However, it will be less general because it will work w-ith specific

classes of preference functions with specific analytical representat[cn_ ..
-. j

4 Learning soft temporal constraints

We now describe our methodology to learn preferences in STPPS from exam-

ples of solution ratings. Notice that for now we focus on STPpS::.:_ather than
considering general TCSPPs, since STPPs are, with some restrict_ong, _tractable

problems, and since the whole point of this paper is to make :_6_i':_empora]
reasoning more practical. _: " _'''_ :'

The problem to be considered here can be formally describe:d_!tas::_::_ductive

learning problem [11]. Inductive learning can be defined a_L_/b,_!abfl_ty of a

system to induce the correct structure of a map d which is"t_ a 'only for
particular inputs. More formally, defining an example as a pair':_@_d(x)), the
computational task is as follows: given a collection of examples (_fd, i.e., the

training set, return a function h that approximates d. Function h i_ called a
hypothesis. ;'

A common approach to inductive learning, especially in the con_ext of neural

networks, is to evaluate the quality of a hypothesis h (on the .t.raining set)

through an error function [41. An example of popular error function, that can be

,':':_::i:,:t i_} _.':;_
,_ ,L_'izr}::!_}ii'



usedoverthereals,is thesumofsquareserror[4]:E = ½_i_1 (d(_) - h(xi)) 2,
where (zi, d(zi)) is the i-th example of the training set.

Given a starting hypothesis ho, the goal of learning is to mi,_rniZs the error

function E by modifying ho. This can be done by using a definition of h which

depends on a set of internal parameters W, i.e., h =_ hw, and tSen adjusting

these parameters. This adjustment can be formulated in different w_:ys, depend-

ing on whether the domain is isomorphic to the reals Or not. The usual way
to be used over the reals, and if hw is continuous and derivable, is to follow

the negative of the gradient of E with respect to W. This technique is called

gradient descent [4J. Specificedly, the set of parameters W is initialic.ed to small
random values at time r = 0 and updated at time _- + 1 accor_iri_fo the fol-

lowing equation: W(T + 1) = W(T) + AW(T), where AW(r) _-' :_._, and

_7 _s the step sine used for the gradient descent. Learning zs stopped when a
minimum of E is reached. Note that, in general, there is no gU_afgh_d_:/_hat the
found minimum is global.

Learning in our context can be used to find suitable preference,_ctions to

be associated to the constraints of a given STP. More precis: y:qet':P --: (1/, C)
be an STP where V is a set of variables with domains consistil :g'c_"-'_ir_egaTstants,

and C is a set of distance constraints of the form l < X-Y < u, _-_r,_'(T.Y, E V

and l, u axe time points• Let f be a function f : S --+ U, where ,'_.::s _he set of

solutions to P and U is a set of values indicating the "quality" r_f _;_:?solution.
The learning task consists of transforming the STP into an S:!'FP,wit_ each

constraint ci,j E C replaced by a soft constraint (ci,j, fi.j), where jS_ fs the local

preference function for ci.j.
The examples to be used in the ]earning task consist of pairs (s_ f(s)), where

s is a solution to the original STP and f(s) is its "score". In the following, we
use P to denote an STP and P' to denote a corresponding STPP. Ais6, valp, (t)
is used to indicate the value of a solution t over p, ,n_.:

Semiring choice. Let P and / be as defined above, and sup_p$6s'e_a set of

examples TR = {(t_,r(t])),..., (tin, r(tm))} ,s g_ven. To mfer.theq_cal pref-
erences, we must also be haven the following: a sem_rmg whose eldment set A

contains t e alues r(ti) m the examples; and a dmtance func_mn: over such a

semiring. For example, if the score values axe positive real numbers; we could
. :P. i_ _

choose the semiring (_+, rain, +, +_, 0) and, as d_stance fanct_qnii the usual
one over reals: dis_(valp, (t), r(t)) = I valp, (t) -r(t) I. Given all the above, the
goal is to define a corresponding STPP P' over the same semiring such that P

and P' have the same set of variables, domains and interval constt_ff_s, and for
each t such that (t, r(t)) is an example, dist(valp, (t), r(t)) < e, where e > 0 and
small.

Parameters. If the first condition is true, the only free parametdrs that can
be arbitrarily chosen in order to satisfy the other conditions are the _'alues to be

associated to each distance. For each constraint ci_ = {[a_, b_],... ,[a_, bn]} in

P, the idea is to associate, in P', a free parameter wd, where d = =_)-Xi (note

i_,,_i ' 'L.'./-;( J,

- " iV"



that such a parameter must belong to the set of the chosen semiring), to each

element d in I = Ui[ai, b_]. This parameter will represent the pTeference over

that specific distance. With the other distances, those outside I, we" associate

the constant 0, (the lowest value of the semiring (w.r.t. _<s)). .

If I contains an infinite number of distances, we would need'an infinite

number of parameters, which would make learning impossible.: .-T6 avoid this

problem, we can restrict the class of preference functions to a' S{_bset which

can be descmbed waa fimte number of parameters. For example, if we use only

linear functions, we just need two parameters a and b, since ever'y, !in_/function
can be expressed as a. (Xj - X_) ÷ b. In general, we will have £ fuNc_._6n which
depends on a set of parameters W, thus we will denote it as ]w : (V_ × I)--+ A.

t

The value assigned to each solution t in P' is

,azp,(t) = II [ check(d,t, i,j) × fw(g)] '
c_j EP' dEUDer_i l:)

where 1_ generalizes the × operation, _ generalizes +, !i2_ i_ the ,,_et of in-

tervals associated to constraint c_j, and check(d, t, i,j) = 1 if d -'t _-j -t Sx_

and 0 otherwise• Note that, for each constraint c_j, there is exact'z, one dis-
tance d such that check(d,t,i,j) = 1, namely d = t Sx,- -t _X,-_. Thus,

valp,(t) = l_.¢,jeP, fw(t Sxj -t J_x,). The values of the free parameters in
W may be obtained via a minimization of the error function, which will be

defined according to the distance function of the semiring. ,:., ..

Learning semi-convex preference functions. Suppose we _e_yen a class
of STPs to be "softened" via the learning approach defined aboy.e:'._s_e know,

STPs are tractable/3]. However, in general we may end up _vi_h:S_RP_s which
are not tractable, since there is no guarantee that our learning:_p_]_:aC_ireturns

preference functions which are semi-convex. Moreover, one he@_!t0_::d_ioose a
semiring which preserves semi-convexivity. '-':;" '

To force the learning framework to produce semi-convex funct'i0ns, we can

specialize it for a specific class of functions with this property. For @xample, we

could choose convex quadratic functions of the form f(d) = a.d _ _b. d÷c, where

a _< 0. In this case we just have three parameters to consider: W la,_ b, c}.
Of course, by choosing a specific class of semi-convex functior:s fw, not all

local preference shapes will be representable. Therefore, there wi!!.be cases in

which the desired solution ratings, as specified in the training set, Cannot be
matched. For example, the user could have specified a set of exa_ples which

is not consistent with any soft temporal constraint problem usingthat class of

semi-convex preference functions. Even if one chooses fw to cover any semi-

convex function, there is no guarantee that the desired solution ra_mgs will be
matched. _,."i_

In general, the learning process will return a soft temporal p_b_em which

will approximate the desired rating as much as possible, cons_deFin_. _e chosen
class of functmns and the error function. But we w_ll gain tracta_Htty for the



Mean error (rain,max) Number of examples;[

so 0.03(0.02,0•04) 500
30 0.03 (0.02,0.04) 600 ;:ir_":,,i._!,..

40 0.0333 (0.02,0.05) 700 _,_':_r,_f:_':_. _

Table 2: Mean error and number of examples for learning prefe_'_es_." t .. in, some
STPPs. .... '_" ,_'_

solution process of the resulting problems: starting from the class _f STPs, via

the learning approach we will obtain a class of STPPs which is tractable as well.

5 The learning module ..

We have developed a learning module which can learn fuzzy STP_Pz_ where the
preference functions are quadratic functions of the form ax 2 + bx + c _vlth a <_ O.

Notice that this class includes both constant, linear, and semi-conwx quadratic
functions•

The input is a set of pairs consisting of a solution and its preference. Part
of this set will be used as the training set, and the rest as the test.•_t: Learning
is performed via a gradient descent technique using an approximat:_ iVersion of

......... >_.,:;_'i_
the mm operat;on which _s continuous and derivable. Learnmg..g_'_:_hen the

• ".... i_3,_:_*;_7_._'_; _ .

global error is under a certain threshold. At thin point, we ha__P with

preference functmns in the shape of convex quadratic functions_ ve_/ose, solution

are ranked very mmflarly to the original examples m the m_ut.( ::. _:

The learning module has been tested on some randomly gefl'efa_.ed pboblems:

every test involves the generation of.an STPP via our generator, _')d.then the
generation of some examples of solutions and their rating. Then I,_he STPP,

without its preference functions, is given to the learning module, which, starting

from the examples, learns new prefernce functions over the constrai_/_, until the
error (that is, the difference between the solution ratings in the t,.,.,_ _t and in

the new problem) is small enough.

Figure 2 shows the number of examples in the training (m_d Mso in the

test) set, and the mean error(computed as the average of the me_z_ errorfor

threeproblems), for learningpreferencesinSTPPs with 20 variab_; range =

40, density= 40_o,and function perturbationparameters 10, I0(..a_.d 5. The

maximum expansion, which, we recall,isrelatedto the tightnessnotion,is20,

30, and 40. :_'_

What can be notmed, even w_th such a small number of test_.i { that the

mean error increases as the parameter max increases, even .if._ _'ses more

examples (which should ease the learning process). This is due_'_ _ifact that• . '_.:_:,i_¢,_
a larger value for max may ymlds larger intervals, and thus pref_,¢ _-t_nctions

.... ,:_" .. _ '

w_th larger domains and a larger number of solutmns, which re_i_ _'re work
from the learning algorithm. Th_s trend seems _o be confirmed_als, :by other
experimental results not reported here• .i-_,;'!e:: .pr



',i

: _,i'¸,-

6 Conclusions and future work

This paper has presented the experimental scenario and fir_ exami_lesl for both

solving and learning soft temporal constraints. We plan to _U_hei-_test the

overall system, composed of the solver and the learning module, using other

classes of randomly generated STPPs and also real-life problem instances such

as satellite event scheduling.
We also plan to extend our solver to deal with soft temporal prc:blems which

are not simple, or which have preference functions which are not -semi-convex. In

this line, we already have some theoretical results which suggest us to decompose

such problems into STPPs, find their solutions, and then suitably combine the

solution sets to generate the best solutions of the original problem• _5re plan to

follow such results in the development of such solver.

References (

[1] A. Biso, F. Rossi, and A. Sperduti. Experimental Results ov Lemming Soft

Constraints. Proc. KR 2PO0, Morgan Kaufmann, 2000. .. 4,':

[2] S. Blstarelh U. Montanam and F. Ross1. Semimng-based_C0ffst/-_nt Solv-

ing and Optimization. Journal of the A CM, 44(2):201-23_ii_,:1997.

[3] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint, nettleD: Ar_ificlM
Intelligence, Vol. 49, 1991, pp. 61-95. '_;

[4] S. Haykin. Neural Networks: a comprehensive Foundation. IEEE Press,
1994.

[5] L. Khatib, P. Morris, R. Morris, F. Rossi. Temporal Constraint Reasoning
With Preferences• Proe. IJCAI 200i.

[6] A.K. Mackworth. Constraint satisfaction. In Stuart C. ShaiDiZ_; editor,

Encyclopedia of A7 (second edition), volume 1, pages 285-293. John Wiley

& Sons, 1992.

[7] F. Rossi and A. Sperduti. Learning solution preferences in constraint prob-

lems. Journal of Experimental and Theoretical Computer Science, 1998.
Vol 10. ._ ,_._:_l

[8] L. Khatib, P. Morris, R Morris, F. Rossi, A. Sperduti. LearlJ_{hgTPreferences

on Temporal Constraints: A Preliminary Report• Proe. TS_:-:_O_I, IEEE
Computer Society Press, 2001. ,+>. _:_:

[9] T. Schiex. Possibilistic constraint satisfaction prob]ems,:ortkt_Ttb handle

soft constraints?". In Proc. 8th Con]• of Uncertainty in AT. pages 269-275,
1992.

[10] E. Schwalb, R. Dechter. Coping with disjunctions in tempo_M constraint
satisfaction problems• In Proc. AAAPg3, 1993•

..!:T.:'

"._:} 1_,7"f =t't'



_:3_;_: _ _},

• ,.

[1I] S. Russell and P. Norvig. Artificial Intelligence: A Modern App_bzch. Pren-

tice Hall, 1995.

t'

.," $:


