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Abstract:The paper extends recently developed idea of sta-

ble evaluation of the Gaussian kernel. Owing to this, the

Gaussian radial basis function that is sensitive to the shape

parameter can be stably evaluated and applied to interpo-

lation problems as well as to solve di�erential equations,

giving highly accurate results. But it can be done only with

grids being the Cartesian product of sets of points, what

limits the use of this idea to rectangular domains. In the

present paper, by the association of an appropriate trans-

formation with the mentioned method, the latter is ap-

plied to solve biharmonic problems on quadrilateral irreg-

ular domains. As an example, in the present work this ap-

proach is applied to solve bending as well as free vibration

problem of thin plates. In the paper some strategies for the

implementation of the boundary conditions are also pre-

sented and examined due to the accuracy. The numerical

tests show high accuracy and usefulness of the method.

Keywords: stable RBF basis, Mercer series, Gaussian ker-

nel, blending functions, biharmonic equation

1 Introduction

In recent years a signi�cant development of the meshless

methods can be observed. Many formulations of the meth-

ods have been developed [1–3]. The main their advantage

is the �exibility in the discretization of the domain – scat-

tered nodes can be used to this end. It simpli�es prepro-

cessing procedures and the use of adaptation algorithms,

providing powerful tool for analyzing complex-shaped en-

gineering structures. Some of these methods make use of

the radial basis functions (RBFs) to form the interpolant

(sought solution), since the RBFs are found to be very use-

ful in problems of scattered data approximation [4–6].
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TheRBFs fall into amore general category of functions,

called kernels. Most of RBFs contain a constant parame-

ter, which controls their �atness. The value of the shape

parameter has signi�cant in�uence on the stability of the

solution process and �nally on the accuracy of the results.

Some information on the issue can be found in several pa-

pers [7–10].

Unfortunately, the values that theoretically should

lead to more accurate results make the system ill-

conditioned, what causes numerical di�culties in the so-

lution process and �nally inaccurate results. A signi�cant

e�ort has been done to �nd an optimal value of the param-

eter [11–14], butmost of the approaches are a kind of trade-

o� between stability and accuracy.

Another group of the approaches aims to �nd a new

stable basis spanned over the space created by the RBFs.

In [15, 16] the new basis is obtained by QR or SVD fac-

torization of kernel matrix. In [17] another interesting ap-

proach is presented. It di�ers from the mentioned ones

by the fact that the kernel matrix, which is prone to be

ill-conditioned, is not formed. In order to obtain the sta-

ble basis appropriate factorization of the kernel matrix is

done on the base of its approximation following fromMer-

cer’s theorem. Thus far, this method has been successfully

applied in some approximation problems and in solving

di�erential equations [18–20]. The results obtained show

that the instability due to the shape parameter is removed

and the parameter can be tuned according to the theoreti-

cal �ndings, giving very accurate results.

The method gives promising results, but its variant

in [18] can be applied in higher dimensions only on grids

that are the Cartesian product of one-dimensional sets

of points. It signi�cantly limits the applicability of the

method – the scattered nodes cannot be further used as in

typicalmeshless techniques. Itmakes a serious problem in

solving tasks on irregular domains that are often encoun-

tered in engineering problems.

To preserve the stable solution and allow the method

to be useful for problems de�ned on irregular domains, in

the present paper the method developed in [17] and mod-

i�ed in [18] is appropriately extended. To this end, the

method is associated with a domain transformation tech-
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nique. The latter takes advantage of the blending func-

tion interpolation used to transform the quadrilateral re-

gions [21]. So far, this technique has been successfully as-

sociated with some pseudospectral methods [22, 23].

In the paper, the method is used to solve biharmonic

equations, which can describe some engineering prob-

lems, e.g. associatedwith analysis of thin plates. Using col-

locationmethods to solve such type of problems one has to

overcome an inconvenience following from the existence

of multiple boundary conditions. In the paper two strate-

gies to implement such boundary conditions are proposed

and examined.

The paper is organized as follows: in section 2 the ba-

sic information on the kernel-based methods as well as

on the derivation of the stable basis is provided, in sec-

tion 3 two strategies to implement boundary conditions

are proposed, in section 4 the treatment of irregular do-

mains with the aid of the mentioned transformation is ex-

plained,while in section 5 the numerical resultswith some

comments are presented. Finally in section 6 concluding

remarks are drawn.

2 Stable basis for Gaussian kernel

The kernel function is understood as a real-valued func-

tion of two variables coming from d-dimensional space,

i.e. K : Ω × Ω →, Ω ∈ d. Using such a function

one can conveniently construct a data dependent basis
{

K(·, x1), . . . , K(·, xN)
}

that are a crucial point of kernel-

based methods. The latter are very useful in solving inter-

polationproblems aswell as di�erential equations de�ned

on domains in higher dimensions.

2.1 Kernel-based method

Let us consider a boundary value problem in a general

form as

L u = f in Ω, B u = g on ∂Ω (1)

where L andBdenote linear di�erential operators imposed

on the sought function u in the domain Ω and on the

boundary ∂Ω, respectively and f, g are known functions.

Alternatively one can introduce corresponding eigen-

value problem as follows

Lu = λu in Ω, B u = 0 on ∂Ω (2)

where λ is an eigenparameter.

After discretizing the domain as well as the boundary

using scatter nodes xi, i = 1,. . . , N we can construct the

sought solution for the di�erential problem using the ker-

nel basis as

uh(x) =

N
∑

j=1

cjK(x, xj) = k(x)Tc (3)

where c denotes the vector of interpolation coe�cients to

be determined.

By introducing Eq. (3) into Eq. (1) and by applying col-

location procedure one obtains

KLB · c = F (4)

The structures of system matrix KLB and vector F are as

follows

KLB =

[

KL

KB

]

,

where KL =









Lk(xi1)
T

...

Lk(xiNi
)
T









, KB =









Bk(xb1)
T

...

Bk(xbNb
)
T









F =

[

f

g

]

,

where f =









f (xi1)
...

f (xiNi
)









, g =









g(xb1)
...

f (xbNb
)









Similarly, the eigenvalue equation can be discretized by in-

corporating Eq. (3) into Eq. (2), yielding the generalized al-

gebraic eigenvalue problem

KLB · c = λK · c (5)

where K is the extended kernel matrix of the form

K =

[

K

0

]

,

where K =









k(xi1)
T

...

k(xiNi
)
T









.

In the above objects, there is the distinction between

interior nodes xij , j = 1, . . . , Ni and boundary nodes

xbj , j = 1, . . . , Nb. Note that the total number of nodes is

N = Ni + Nb.

If only the system matrix of Eq. (4) is not singular, the

interpolation coe�cients canbe computed and the approx-

imate solution in the form of Eq. (3) is determined. As one

can see, the procedure of the kernel-basedmethod applied

to the solution of di�erential equations is straightforward.



58 | A. Krowiak et al.

Moreover, the solution is obtained in analytic form, what

can be viewed as another advantage of the method. As the

kernel functions, the RBFs are willingly used.

The main drawback of the method is high ill-

conditioning of the system (Eq. (4)). When using RBFs this

ill-conditioning can be controlled by properly determined

shape parameter but then the theoretically estimated high

accuracy of the method is not achievable.

In order to maintain the possibility of achieving spec-

tral accuracy, in the present paper another way to over-

come the instability is applied. To this end a stable basis

for RBFs that has been derived from Mercer’s theorem is

used.

2.2 Derivation of stable basis

According to Mercer’s theorem, every positive de�nite ker-

nel can be represented by an in�nite series composed

of eigenvalues λn and eigenfunctions φn of associated

Hilbert-Schmidt eigenvalue problem [17]. This representa-

tion can be put as follows

K(x, z) =

∞
∑

n=1

λn φn(x)φn(z) (6)

Since the Gaussian RBF e−ε
2‖x−z‖2 is a positive de�nite ker-

nel it can be presented in such a way. Generally, if one op-

erates in d-dimensional spaces, d-dimensional eigenval-

ues and eigenfunctions for Gaussian kernel follow imme-

diately from the univariate ones via tensor product form

of this kernel. In most common one- or two-dimensional

cases (Ω ∈ R or Ω ∈ R
2), Eq. (6) for Gaussian kernel takes

the form

e−ε
2
(x−z)

2

=

∞
∑

n=1

λn φn(x)φn(z) (7)

or

e−ε
2‖x−z‖2 =

∑

n∈2

λn φn(x)φn(z) (8)

=
∞
∑

n1=1

∞
∑

n2=1

λn2λn1 φn1 (x1)φn2 (x2)φn1 (z1)φn2 (z2)

where x = (x1, x2)
T , z = (z1, z2)

T . The eigenvalues and

eigenfunctions from Eq. (7) and (8) assume the following

form

φn(x) = γne
−δ2x2Hn−1(α β x) (9)

λn =

√

α2

α2 + δ2 + ε2

(

ε2

α2 + δ2 + ε2

)n−1

(10)

where Hn is the Hermite polynomial of degree n, and

β =

(

1 +

(

2ε

α

)2
)

1
4

, γn =

√

β

2n−1Γ(n)
, (11)

δ2 =
α2

2

(

β2 − 1
)

are constants including: ϵ – the shape parameter of the

Gaussian function, α – a parameter, which parametrizes

the weight function in the Hilbert-Schmidt integral opera-

tor and the associated inner product.

To take advantage of Mercer’s theorem in numerical

computation the series has to be truncated. The number of

terms, which is taken into account, in relation to number

of nodes leads to three general approaches for derivation

of alternate basis. These approaches are described in de-

tail in [24]. In the present work the case that the number

of terms equals the number of nodes is considered. It was

found [20] that this case give a good trade-o� between ac-

curacy and economy of computation.

In this case the Mercer series given by Eq. (6) assumes

the form

K(x, xj) =

N
∑

n=1

λnφn(x)φn(xj) = ϕ(x)TΛϕ(xj) (12)

where ϕ(x) =









φ1(x)

...

φN(x)









and Λ =









λ1
. . .

λN









.

With this assumption the base vector from Eq. (3) can

be put as

k(x)T = ϕ(x)T Λ
[

ϕ(x1), . . . ,ϕ(xN)
]

(13)

= ϕ(x)T ΛΦT

and the sought solution from Eq. (3) takes the form

uh(x) = ϕ(x)T ΛΦT
· c (14)

In above equations matrixΦ is as follows

Φ =









ϕ(x1)
T

...

ϕ(xN)
T









.

Following the idea of the kernel-based method all we

have to do is to introduce Eq. (14) into Eq. (1) or into Eq. (2),

dependently on the problem considered, and collocate the

governing equation at the interior nodes and the boundary

condition at the boundary nodes, what, in the case of the

boundary-value problem, yields

ΦLBΛΦT
· c = F (15)
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In above equations matrixΦLB has the structure

ΦLB =

[

ΦL

ΦB

]

,

whereΦL =









Lϕ(xi1)
T

...

Lϕ(xiNi
)
T









,ΦB =









Bϕ(xb1)
T

...

Bϕ(xbNb
)
T









.

Solving Eq. (15) with respect to interpolation coe�-

cients c and evaluating the sought solution (14) one ob-

tains

uh(x) = ϕ(x)T ΛΦT Φ−TΛ−1Φ−1
LB F = ϕ(x)TΦ−1

LB F (16)

The main conclusion following from Eq. (16) is that

the eigenvalue matrix, which is the main source of ill-

conditioning [17], is algebraically removed. The eigenfunc-

tions contained in vectorϕ(x) play the role of the basis for

the assumed solution. To determine the solution one only

needs to take the number of eigenfunctions that equals

the number of nodes.With the use of these eigenfunctions,

base vector ϕ(x) and matrix ΦLB can be formulated and

the solution can be constructed using formula (16). Since

the main source of ill-conditioning (matrix Λ) is removed

the process of the inversion of ΦLB is much more stable

than using Gaussian kernel, even for very small values of

the shape parameter. It leads to theoretically proved spec-

tral accuracy. Therefore vectorϕ(x) can be treated as a vec-

tor of stable basis for assumed solution. The solution de-

scribed by Eq. (14) can be alternatively put as

uh(x) = ϕ(x)T · b (17)

where b is the vector containing new interpolation coe�-

cients. It has the form b = ΛΦT
· c.

The eigenvalue equation (2), written with the use of

expression given by Eq. (17), takes the form

ΦLB · b = λΦ · b (18)

where matrix Φ is a modi�cation of matrix Φ introduced

in Eqs. (13) and (14), and has the structure

Φ =

























ϕ(xi1)
T

...

ϕ(xiNi
)
T

0

...

0

























.

Solving such de�ned eigenvalue problem one does not op-

erate highly ill-conditioned matrix Λ, therefore eigenpairs

(λi, bi), i =1 . . . Ni can be stably and accurately obtained.

In higher dimensions, e.g. x ∈ R
2, the kernel method

from [18] associatedwith stably evaluated Gaussian kernel

work only on grids being the result of the Cartesian prod-

uct. It is a serious limitation comparing to RBF kernels that

work properly on scattered nodes.

Moreover, the use of the collocation procedure re-

quires a special treatment of problemspossessingmultiple

boundary conditions, such as biharmonic problems.

In the next sections some approaches are introduced

to extend the possibility of the application of the method

in biharmonic problems de�ned on irregular quadrilateral

domains.

3 The use of the stable basis in

solving biharmonic problems

Let us introduce a biharmonic problem in the form

∆2u = f in Ω ∈ R
2
, (19)

B1u = g1, B2u = g2 on ∂Ω

Since ∆2 is the biharmonic operator, two boundary con-

ditions on the boundary are required to make the prob-

lemwell-posed. Similarly one can consider corresponding

eigenvalue problem as

∆2u = λu in Ω ∈ R
2
, (20)

B1u = 0, B2u = 0 on ∂Ω

where λ is the eigenparameter.

If Ω is a rectangular area, the kernel-based method

with the stable basis can be used to obtain analytic, ap-

proximate solution. In order to implement two boundary

conditions at each boundary nodes two strategies are pro-

posed.

3.1 Implementation of boundary conditions

– strategy 1

In this strategy the distinction is made between not only

interior and boundary nodes but also between nodes adja-

cent to the boundary, denoted in Figure 1 by crosses.

At the interior nodes (xik – un�lled circle) the govern-

ing equation is applied while at the boundary nodes (xbk –

�lled circle) the �rst boundary condition is implemented.

The nodes denoted by crosses are unused during the col-

location procedure. Instead of this the second boundary

condition is written at these boundary nodes which are ad-

jacent to the unused points. This gives the same number
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Figure 1: Discretization of the domain in strategy 1

of equations as the number of nodes and the latter corre-

sponds to the number of unknowns.

In this strategy the solution is described by Eq. (16),

where vector of base functionsϕ(x) is unchanged, the only

di�erence is in some entries of systemmatrixΦLB. The lat-

ter has now following form

ΦLB =







ΦL

ΦB1

ΦB2







, (21)

where ΦL =









Lϕ(xi1)
T

...

Lϕ(xiNi
)
T









, ΦB1
=









B1ϕ(xb1)
T

...

B1ϕ(xbNb
)
T









, ΦB2
=











B2ϕ(xb21 )
T

...

B2ϕ(xb2Nb2

)
T











Note, that nodes xb2
k

are a subset of all boundary

nodes. The subset contains these boundary nodes that are

the projection of the adjacent nodes on the proper bound-

ary, as it is shown in Figure 1. The approach leads to the

system matrix of size N × N.

The associated eigenvalue problem is also de�ned by

matrix from Eq. (21) as well as by matrix Φ introduced in

Eq. (18).

3.2 Implementation of boundary conditions

– strategy 2

In this strategy the distinction is made only between inte-

rior and boundary nodes as Figure 2 suggests.

At the interior nodes the governing equation is ap-

plied, while at the boundary nodes two boundary condi-

tions are implemented. Tomaintain the square systemma-

trixΦLB, thenumber of eigenfunctionshas to be increased.

Figure 2: Discretization of the domain in strategy 2.

Instead of N eigenfunctions that correspond to total num-

ber of nodes, now their number is increased to N+Nb. The

vector of basis functions assumes the form

ϕ(x) =









φ1(x)

...

φN+Nb
(x)









The structures and entries of the objects included in

Eq. (16) and in the associated eigenvalue problem are sim-

ilar as previously (Eq. (21)) with the di�erence that matrix

ΦB2 is created with the use of all boundary nodes x
b
k . The

approach leads to systemmatrix of size (N +Nb)× (N +Nb).

4 Treatment of irregular domain

The kernel-based method with stable basis can be applied

on grids being a result of the Cartesian product. It implies

that the domain of the problem has a rectangular shape.

When the boundaries are curved the direct application of

the method is impossible. To extent the usefulness of the

method the advantage of the domain transformation can

be taken.

In this approach, graphically presented in Figure 3,

one needs a transformation between regular domain in (ξ ,

η) plane and irregular one in (x, y) plane, what can be gen-

Figure 3: Domains: (a) physical domain; (b) computational one
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erally written as
{

x = x(ξ , η)

y = y(ξ , η)
(22)

To this end, a method that uses so-called blending func-

tions [21] can be applied. In the method the transforma-

tion between the regions is done by following interpola-

tion function

s =
1

2

[

(1 − η) s1(ξ ) + (1 + ξ ) s2(η) (23)

+ (1 + η) s3(ξ ) + (1 − ξ ) s4(η)
]

−
1

4

[

(1 − ξ )(1 − η) s1

+ (1 + ξ )(1 − η) s2 + (1 + η) (1 + ξ )s3 + (1 − ξ ) (1 + η)s4

]

where s = [x, y]T , si are parametric curves that repre-

sent the curvilinear boundaries and si are Cartesian coor-

dinates of the corner points of the quadrilateral region in

(x, y) plane.

If only it is possible to �nd parametric representations

of the curves the method exactly maps computational do-

main onto physical one.

By the use of this transformation all spatial derivatives

with respect to physical variables, contained in the equa-

tion, have to bewritten as derivatives with respect to ξ and

η.

With the chain rule of di�erentiation the transforma-

tion of the �rst derivatives is obtained as
{

∂
∂ξ
∂
∂η

}

=

[

xξ yξ
xη yη

]{

∂
∂x
∂
∂y

}

= J

{

∂
∂x
∂
∂y

}

(24)

where J denotes the Jacobian matrix.

Then, the invers transformation is as follows

{

∂
∂x
∂
∂y

}

= J−1

{

∂
∂ξ
∂
∂η

}

(25)

where the invers of the Jacobian matrix has the form

J−1 =

[

ξx ηx

ξy ηy

]

=
1

|J|

[

yη −yξ
−xη xξ

]

(26)

In Eq. (26) |J| denotes determinant of the Jacobian matrix.

Similarly higher order derivatives with respect to the

physical coordinates, in terms of the computational ones,

can be obtained. In this way one is able to derive the trans-

formation formulas for all partial derivatives contained in

the biharmonic equation. This equation, i.e. Eq. (19), as-

sumes the form

D(41)u,ξξξξ + D
(42)u,ξξξη + D

(43)u,ξξηη + D
(44)u,ξηηη (27)

+ D(45)u,ηηηη + D
(31)u,ξξξ + D

(32)u,ξξη + D
(33)u,ξηη

+ D(34)u,ηηη + D
(21)u,ξξ + D

(22)u,ξη + D
(23)u,ηη

+ D(11)u,ξ + D
(12)u,η = f

Similarly the eigenvalue problem, corresponding to

Eq. (20), can be written.

The coe�cients contained in Eq. (27) depend on the

derivatives of physical variables with respect to computa-

tional ones and their explicit form can be found in [22].

Since Eq. (27) physically can describe the de�ection of

thin plate under load represented by function f, the associ-

ated boundary conditions can follow from the type of con-

strains on plate edges.

Typical homogenous boundary conditions are associ-

ated with the clamped edge (vanishing normal rotation to

the edge) or with simply-supported edge (vanishing nor-

mal moment to the edge). They have the following form in

(x, y) coordinates

u = 0, ux cos ϑ + uy sin ϑ = 0 (28)

or

u = 0, (29)
(

cos2ϑ + υsin2ϑ
)

uxx +
(

sin2ϑ + υcos2ϑ
)

uyy

+ 2(1 − υ) cos ϑ sin ϑuxy = 0

In above equations ϑ is the angle between the normal to

the boundary and x axes, while υ is Poisson’s ratio.

These boundary conditions transformed onto compu-

tational region in (ξ , η) coordinates assume the form

u = 0, uξ = 0 along ξ = const, (30)

uη = 0 along η = const

or

u = 0, uξξ −
2b

a
uξη + s uξ = 0 along ξ = const, (31)

uηη −
2b

g
uξη + t uη = 0 along η = const

The explicit form of all coe�cients contained in Eqs. (30)

and (31) is shown in [22].

Once the transformation between the domains is es-

tablished one can take advantage of the above equations.

Following the procedure presented in section 2, the sought

solution, nowwritten as a linear combination of eigenfunc-

tions of Gaussian kernel formed in computational coordi-

nates

uh(ζ) = ϕ(ζ)T · b, (32)

where ζ = [ξ , η]T should be introduced into Eq. (27) or into

the corresponding eigenvalue problem as well as into ap-

propriate boundary conditions (Eq. (30) or (31)). After the

collocation procedure, where the chosen strategy for the

implementation of boundary conditions is involved, inter-

polation coe�cients b can be found, giving the analytic

approximate solution.
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5 Numerical results

To validate the method the biharmonic problems have

been solved on two irregular domains presented in Fig-

ure 4.

As a measure of the quality of the results the mean

relative error (MRE) has been assumed. For the boundary-

value problem the error is obtained by the formula

MRE =
1

N

N
∑

i=1

∣

∣

∣
uh(xi) − u

ref
i

∣

∣

∣

urefi

(33)

while for the eigenvalue one

MRE =
1

5

5
∑

i=1

∣

∣

∣
λi − λ

ref
i

∣

∣

∣

λrefi

(34)

In Eqs. (33) and (34) urefi and λrefi are the reference val-

ues computed by the di�erential quadrature method [25],

which is a kind of pure numerical, pseudospectral tech-

nique. To compute the reference results this techniquewas

also associated with domain transformation.

5.1 Quarter section of the elliptical domain

In this case the transformation between physical and com-

putational domain is done by the function

x = (0.6255 · η + 2.6255) · cos(0.25 · (ξ + 1) · π), (35)

y = (0.8755 · η + 1.8755) · sin(0.25 · (ξ + 1) · π)

The results obtained are presented in Table 1-4 depen-

dently on the typeof theboundary conditions and the strat-

egy of their implementation.

In Figure 5 two �rst vibration modes are presented.

In order to show the stability of the method due to the

shape parameter, in Figure 6 the in�uence of this parame-

ter on the accuracy as well as on the condition number of

the system is shown, when solving BVP. For comparison,

similar results obtained by Gaussian kernel are also pre-

sented in the �gure.

Figure 4: Shapes of the domains: quarter section of the elliptical domain (left), triangular domain with corner cut-out (right).

Figure 5: The �rst (left) and the second (right) vibration mode for the simply-supported quarter section of the elliptical plate.
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Figure 6: Influence of the shape parameter on the accuracy – left, and condition number – right. Stable basis – solid line, Gaussian kernel

– dash line. Results for the BVP on the quarter section of the elliptical domain with boundary conditions given by Eq. (28) implemented by

strategy 1.

Table 1: The results from solving the biharmonic problems on the quarter section of the elliptical domain. The boundary conditions given by

Eq. (28) implemented using strategy 1.

BVP Eigenvalue problem

N umax MRE λ1 λ2 λ3 λ4 λ5 MRE

11 × 11 1.686e−2 2.970e−7 9.598 12.742 16.910 22.144 24.093 9.545e−7

Reference results 1.686e−2 9.598 12.742 16.910 22.144 24.093

13 × 13 1.657e−2 5.057e−5 9.595 12.715 16.721 22.382 24.071 3.462e−7

Reference results 1.657e−2 9.595 12.715 16.721 22.382 24.071

15 × 15 1.686e−2 1.271e−5 9.591 12.718 16.767 22.251 24.039 6.153e−4

Reference results 1.686e−2 9.595 12.717 16.745 22.250 24.068

Table 2: The results from solving the biharmonic problems on the quarter section of the elliptical domain. The boundary conditions given by

Eq. (28) implemented using strategy 2.

BVP Eigenvalue problem

N umax MRE λ1 λ2 λ3 λ4 λ5 MRE

11 × 11 1.685e−2 1.084e−3 9.595 12.717 16.737 22.085 24.067 3.257e−3

Reference results 1.686e−2 9.598 12.742 16.910 22.144 24.093

13 × 13 1.657e−2 2.116e−3 9.601 12.714 16.761 22.275 24.068 1.620e−3

Reference results 1.657e−2 9.595 12.715 16.721 22.382 24.071

15 × 15 1.686e−2 1.019e−2 9.592 12.717 16.363 22.225 24.007 5.356e−3

Reference results 1.686e−2 9.595 12.717 16.745 22.250 24.068

Table 3: The results from solving the biharmonic problems on the quarter section of the elliptical domain. The boundary conditions given by

Eq. (29) implemented using strategy 1.

BVP Eigenvalue problem

N umax MRE λ1 λ2 λ3 λ4 λ5 MRE

11 × 11 6.641e−2 1.878e−7 3.989 7.429 10.090 16.002 18.007 8.231e−2

Reference results 6.641e−2 4.841 7.626 11.661 16.007 16.757

13 × 13 6.608e−2 3.687e−7 4.918 7.625 11.496 16.008 16.988 6.214e−3

Reference results 6.608e−2 4.841 7.592 11.394 16.007 16.954

15 × 15 6.557e−2 2.449e−4 4.967 7.750 11.344 16.004 16.654 1.206e−2

Reference results 6.556e−2 4.842 7.595 11.444 16.008 16.569
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Table 4: The results from solving the biharmonic problems on the quarter section of the elliptical domain. The boundary conditions given by

Eq. (29) implemented using strategy 2.

BVP Eigenvalue problem

N umax MRE λ1 λ2 λ3 λ4 λ5 MRE

11 × 11 6.642e−2 4.833e−4 4.849 7.599 11.450 16.008 16.581 6.761e−3

Reference results 6.641e−2 4.841 7.626 11.661 16.007 16.757

13 × 13 6.608e−2 1.300e−4 5.356 7.640 10.884 16.004 16.621 3.542e−2

Reference results 6.608e−2 4.841 7.592 11.394 16.007 16.954

15 × 15 6.557e−2 1.214e−4 2.062e−2

Reference results 6.556e−2 4.842 7.595 11.444 16.008 16.569

Figure 7: The �rst (left) and the second (right) vibration mode for the clamped triangular plate with corner cut-out.

Figure 8: Influence of the shape parameter on the accuracy – left, and condition number – right. Stable basis – solid line, Gaussian kernel

– dash line. Results for the BVP on the triangular domain with corner cut-out with boundary conditions given by Eq. (28) implemented by

strategy 1.

5.2 Triangular domain with corner cut-out

In this case the transformation between physical and com-

putational domain is done by the function

x = 0.25 · cos
(

0.125 · (η + 1) · π
)

(1 − ξ ) (36)

+ 0.75 · (ξ + 1)

y = 0.25 · sin
(

0.125 · (η + 1) · π
)

(1 − ξ )

+ 0.75 · (ξ + η + ξη + 1)

The results obtained are presented in Tables 5 – 8 depen-

dently on the typeof theboundary conditions and the strat-

egy of their implementation.

In Figure 7 two �rst vibration modes are presented.

The in�uence of the shape parameter on the accuracy

and condition number is shown in Figure 8.
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Table 5: The results from solving the biharmonic problems on the triangular domain with corner cut-out. The boundary conditions given by

Eq. (28) implemented using strategy 1.

BVP Eigenvalue problem

N umax MRE λ1 λ2 λ3 λ4 λ5 MRE

11 × 11 8.964e−4 4.623e−7 41.788 71.228 87.881 110.452 130.841 4.518e−7

Reference results 8.964e−4 41.788 71.228 87.881 110.452 130.841

13 × 13 8.967e−4 7.227e−3 41.787 71.263 87.898 110.702 130.377 1.746e−6

Reference results 8.965e−4 41.787 71.263 87.898 110.702 130.377

15 × 15 8.991e−4 1.779e−1 41.938 71.256 87.704 110.975 130.417 1.695e−3

Reference results 8.983e−4 41.786 71.257 87.895 110.688 130.426

Table 6: The results from solving the biharmonic problems on the triangular domain with corner cut-out. The boundary conditions given by

Eq. (28) implemented using strategy 2.

BVP Eigenvalue problem

N umax MRE λ1 λ2 λ3 λ4 λ5 MRE

11 × 11 8.961e−4 8.379e−2 41.791 71.261 87.905 110.344 130.471 9.256e−4

Reference results 8.964e−4 41.788 71.228 87.881 110.452 130.841

13 × 13 8.9604 1.055e−2 41.772 71.255 87.893 110.610 130.451 3.840e−4

Reference results 8.965e−4 41.787 71.263 87.898 110.702 130.377

15 × 15 8.982e−4 3.380e−2 42.711 71.548 82.654 115.608 130.435 2.607e−2

Reference results 8.983e−4 41.786 71.257 87.895 110.688 130.426

Table 7: The results from solving the biharmonic problems on the triangular domain with corner cut-out. The boundary conditions given by

Eq. (29) implemented using strategy 1.

BVP Eigenvalue problem

N umax MRE λ1 λ2 λ3 λ4 λ5 MRE

11 × 11 3.133e−3 7.001e−8 22.247 45.621 58.890 77.534 96.667 1.075e−6

Reference results 3.133e−3 22.247 45.621 58.890 77.534 96.667

13 × 13 3.133e−3 2.721e−5 22.250 45.700 58.940 77.872 96.147 1.394e−7

Reference results 3.133e−3 22.250 45.700 58.940 77.872 96.147

15 × 15 3.134e−3 6.387e−4 22.251 45.699 58.940 7.853 96.263 1.874e−6

Reference results 3.138e−3 22.251 45.699 58.940 77.853 96.263

Table 8: The results from solving the biharmonic problems on the triangular domain with corner cut-out. The boundary conditions given by

Eq. (29) implemented using strategy 2.

BVP Eigenvalue problem

N umax MRE λ1 λ2 λ3 λ4 λ5 MRE

11 × 11 3.133e−3 4.171e−4 22.251 45.699 58.940 77.853 96.264 2.205e−3

Reference results 3.133e−3 22.247 45.621 58.890 77.534 96.667

13 × 13 3.133e−3 2.002e−4 22.251 45.699 58.940 77.853 96.251 2.795e−4

Reference results 3.133e−3 22.250 45.700 58.940 77.872 96.147

15 × 15 3.138e−3 9.752e−4 22.251 45.699 58.940 77.853 96.263 3.063e−5

Reference results 3.138e−3 22.251 45.699 58.940 77.853 96.263
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5.3 Comments to the results

It should be mentioned that all the results contained in

the tables have been obtained using Chebyshev-Gauss-

Lobatto grid (points concentrated near boundaries) and

with the shape parameter ε = 0.01.

General analysis of the results obtained indicates that

the method provides solutions that are very close to the

reference ones.

Comparing MRE between appropriate tables it is easy

to notice that the implementation of boundary conditions

with the use of strategy 1 leads to more accurate results,

despite of the fact that this strategy employs smaller num-

ber of interior nodes to discretize the governing equation

than strategy 2. The reason may lie in conditioning of the

system. Strategy 2 usesmore base functions then strategy 1

for the same number of total points. It means that the Her-

mite polynomials of higher degrees are employed in the

discretization process,whatmakes conditioning of the sys-

tem worse.

This fact also means that increasing the number of

nodes does not always lead to more accurate results, re-

gardless of the strategy used.

Analyzing Figures 6 and 8 one can conclude that the

derived bases is stable due to the shape parameter – the

in�uence of this parameter on the conditioning of the sys-

tem is not as signi�cant as for the conventional Gaussian

kernel. Therefore very small values of the parameter still

allow to carry out stable computation and give very accu-

rate results, according to the theoretical �ndings on RBF

kernels.

6 Conclusion

Although the modi�ed kernel method with stable basis is

an improvement of the well-known RBF collocation meth-

ods it limits their applicability. The RBF kernels easily al-

low to take advantage of the scattered nodes, while the

mentioned method does not. The method can be applied

on the Cartesian product grids. It means that the method

cannot be used directly to solve the problems with curvi-

linear boundaries.

In the present paper an extension of the applicability

of the kernel method with stable basis has been shown.

The method, which can be directly used for problems on

regular domains has been applied on irregular ones. By us-

ing the blending functions, the transformation between ir-

regular and computational domain has been done. There-

fore the computation can be carried out on the regular grid.

Solving higher order equations such as biharmonic

ones, the problemwith implementation ofmultiple bound-

ary conditions appears, when using collocation methods.

In the paper this problem has been solved by the use of

two strategies.

The results obtained indicate that the method pro-

vides very accurate results, maintaining its main feature

– stability due to the shape parameter. It allows, according

to the theoretical �ndings, to take very small value of this

parameter and expect very accurate results.

On the other hand more collocation points require to

use basis functions of higher degrees, what worsen the

conditioning of the system and the results may not be im-

proved in this case.

Therefore the reasonable choice is to use a coarse grid

and control the accuracy by the shape parameter.

It is worth to notice that the use of themethod requires

to derive, operate and evaluate complicatedmathematical

expressions, what can viewed as a drawback. But with the

use of modern computer algebra systems this task can be

signi�cantly simpli�ed.
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