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1. INTRODUCTION

The efficient numerical solution of partial differential equations (PDEs) via boundary
integral formulations plays an important role in diverse applications, such as acous-
tics, electrostatics, computational electromagnetics or elasticity [Colton and Kress
2013; Nédélec 2001; Harrington and Harrington 1996]. Consider as an example a
Laplace problem of the form

−∆u(x) = 0 (1)
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of Computer Science, University College London, London, UK; T. Betcke and J. Phillips, Department of
Mathematics, University College London, London, UK.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© YYYY ACM 0098-3500/YYYY/01-ARTA $15.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.
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in some domain Ω ⊂ R
d with piecewise smooth Lipschitz boundary Γ, where d = 2, 3.

Green’s representation theorem allows us to write the solution u as

u(x) =

∫

Γ

g(x,y)
∂

∂n
u(y) dΓ(y)−

∫

Γ

∂

∂n(y)
g(x,y)u(y) dΓ(y) for x ∈ Ω. (2)

Here, n is the unit outward pointing normal at Γ and g(x,y) is the Laplace Green’s
function defined as

g(x,y) =

{

− 1
2π log |x− y|, d = 2,
1

4π|x−y| , d = 3.
(3)

Hence, in principle if either u or ∂
∂nu is known on Γ, we can recover the unknown

quantity by restricting (2) to the boundary and solving for the unknown boundary
data.

The advantage of boundary-integral formulations of PDE problems is that we re-
quire only O(Nd−1) unknowns to discretise the boundary Γ, where N is the number
of variables in each space dimension. In contrast, for domain-based methods we need
O(Nd) variables. Moreover, solving exterior problems in Ω+ := R

d \ Ω is naturally
possible with boundary integral equations. Yet there are also some fundamental dis-
advantages compared to domain formulations. Probably the most significant ones are:

— Calculation of matrix entries requires the evaluation of complicated singular inte-
grals, which in the case of Galerkin formulations for problems in d = 3 are four-
dimensional.

— The operators are non-local, leading to dense matrices. Hence, the cost of a matrix-
vector product for problems in d = 3 space dimensions is O(N4), while for standard
finite elements with sparse discretisations the cost is O(N3).

Traditionally, the cost of dense-matrix storage and evaluation has restricted the appli-
cability of boundary element methods to problems of moderate size. However, advances
in the evaluation of singular integrals appearing in boundary element methods and the
development of fast formulations based on H-matrices, wavelets or the fast multipole
method (FMM) have made it possible to solve very large application problems with
boundary elements. The fast formulations reduce the cost and storage of matrix-vector
products to O(N2 logαN) (α ≥ 0 depends on the formulation) for problems in three
space dimensions [Of et al. 2006; Cheng et al. 2006; Bebendorf 2008; Harbrecht and
Schneider 2006; Sauter and Schwab 2011].

In this paper we describe a novel project to develop a modern open-source library for
boundary-element calculations, BEM++. It combines many of the recent advances in
the development of boundary element methods into one easy-to-use software package.

The library itself is written in C++. In addition, we provide Python bindings for
almost all high-level features of the library. The Python wrappers also contain several
simple visualisation functions that facilitate interactive use of the library.

To allow a natural strong formulation of boundary integral problems the library uses
the concepts of spaces, dual spaces, operators, and grid functions. Weak-form discreti-
sations are done automatically when they are needed. Automatic projections provide
mappings between function spaces and their duals so that functions on grids are al-
ways represented in the correct spaces.

Extensibility is ensured by building heavily on C++ object orientation. The library
uses templates for its low-level implementation, on which a standard object-oriented
layer is built. The latter makes use of runtime polymorphism and inheritance to allow
the user to extend the library, e.g. by providing new kernels, function spaces or grid
types.
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Reuse of existing high-quality software was an important principle from the start.
The grid management is done with Dune-Grid [Bastian et al. 2008b; Bastian et al.
2008a; DUNE 2012], a high-performance parallel grid library, which supports features
such as load balancing and adaptive refinement. Although this advanced functionality
of Dune is not yet used in the current version of BEM++, it ensures the availability of
the basic infrastructure for parallelisation on HPC clusters. For the solution of linear
systems we provide interfaces to Trilinos [Heroux et al. 2005; Trilinos 2012], giving
access to a range of high-quality iterative solvers, and allow to use BEM++ objects
without conversion in more complex Trilinos-based applications. Fast solution of large
boundary-element problems is made possible by an interface to AHMED [Bebendorf
2008; 2012], which implements the adaptive cross approximation (ACA) algorithm and
a complete H-matrix algebra.

The library is an ongoing project and its functionality is continuously extended. The
most recent version of BEM++, 2.0, includes the following features:

— Galerkin discretisation of the single-, double- and adjoint double-layer potential
boundary operators and hypersingular boundary operators associated with the
Laplace and Helmholtz equations in three dimensions, as well as of the single- and
double-layer potential boundary operators associated with the Maxwell equations in
three dimensions.

— Off-surface evaluation of potentials.
— Piecewise polynomial scalar basis functions of order up to 10 (continuous or discon-

tinuous) and Raviart-Thomas basis functions of the lowest order.
— Grids composed of planar triangular elements; import of grids in Gmsh format.
— Solution of discretised equations using iterative solvers from Trilinos (including

GMRES, CG).
— Interfaces to AHMED for H-matrix assembly, H-matrix-vector product and H-matrix-

based preconditioners.
— Parallel matrix assembly and matrix-vector product on shared-memory machines.
— Python wrappers of the main library features.

These features permit the current version of the library to be used already in a wide
range of contexts while development of advanced features, in particular MPI support,
is ongoing.

The current version of the library relies on Galerkin discretisations of boundary
integral equations. We do not claim that this is always the best approach. Collocation,
and in particular Nyström methods have been used highly successfully in a range
of application areas. The initial focus on Galerkin discretisations was motivated by
their suitability for a natural description of FEM-BEM coupling and by the aim of
incorporating at a later stage novel developments about a posteriori error estimation.
(A future goal is to provide results together with good error estimates.) However, the
software design of the library is open to other types of discretisation methods, and in
future we may choose to add support for e.g. Nyström methods.

The library itself is available under a permissive MIT license, which allows unre-
stricted use in open-source and commercial applications. The licenses of the dependen-
cies are compatible with this model in the sense that they do not restrict the license of
the main library. The only exception is AHMED, which is only open for non-commercial
applications. The use of AHMED in BEM++ is optional.

The source code of the library is available from its home page, www.bempp.org. The
library comes with a dedicated Python-based installer that automatically downloads
and installs all necessary dependencies before building and installing BEM++ itself.
Full installation instructions can be found on the website of the library.
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BEM++ is not the only recent open-source software project whose aim is to develop
a versatile boundary element library. The Fortran package Maiprogs [Maischak 2013]
makes it possible to use Galerkin BEM to solve the Laplace, Helmholtz, Lamé and
Stokes equations. High-order basis functions, including the hp variant of BEM, are
supported. BEMLAB [Wieleba and Sikora 2011] is a C++ library capable of solving
the Laplace and Helmholtz equations; piecewise constant, linear and quadratic basis
functions are supported. The Concepts C++ library [Schmidt 2013] currently contains
an implementation of BEM for the Laplace equation. Both the Galerkin and the collo-
cation variants are available, with piecewise constant or linear basis functions. All the
preceding libraries handle both 2D and 3D geometries. However, only dense matrix
assembly is possible (FMM and ACA are not supported), which limits the applicability
of these libraries to problems of modest size.

Two general-purpose libraries implementing accelerated variants of BEM are
HyENA (Hyperbolic and Elliptic Numerical Analysis [Messner et al. 2010])1 and BETL
(Boundary Element Template Library [Hiptmair and Kielhorn 2012; Kielhorn 2012]).
HyENA uses ACA to speed up the solution of the Laplace, Helmholtz and Lamé equa-
tions in 2D and 3D using the Galerkin or collocation approaches. Up to quadratic basis
functions are supported. BETL provides access to implementations of both ACA and
FMM, and can be used to discretise boundary operators associated with the Laplace,
Helmholtz and Maxwell equations in 3D using the Galerkin approach. Isoparametric
elements of order up to 4 are available. An in-depth overview of BETL can be found in
Hiptmair and Kielhorn [2012].

In addition, there exist several codes designed for solving a particular equation with
BEM. For instance, Puma-EM [van den Bosch 2013] is a C++/Python package that
calculates electromagnetic fields scattered by perfectly conducting 3D obstacles using
FMM-accelerated BEM.

Like BETL and HyENA, BEM++ provides an accelerated BEM implementation
based on ACA, thanks to its interface to the AHMED library. However, while both
HyENA and BETL are designed as pure C++ template libraries. BEM++ has been
developed for easy access from scripting languages, making very different design deci-
sions necessary (see section 3.2). Another difference is the high-level operator interface
in BEM++, which allows natural formulations of products of two operators and prod-
ucts of operators and functions. The correct mappings between the spaces are handled
automatically by BEM++ (see section 3.5).

The plan of this article is as follows. In section 2 we review the foundations of bound-
ary element methods. Section 3 is devoted to a presentation of the major features of
BEM++. The practical use of BEM++ is demonstrated in section 4, where we develop
example Python scripts that use the library to solve particular PDEs. Finally, in sec-
tion 5 we discuss plans for further development of the library.

2. GALERKIN BOUNDARY ELEMENTS

2.1. Boundary integral operators and Calderón projection

Elliptic equations. In this section we will give a brief overview of some of the con-
cepts of boundary integral equations for the solution of the Laplace problem (1). For a
complete presentation of the theory of boundary integral equations see e.g. Steinbach
[2008].

We denote by v := γint
0 u the Dirichlet trace of u(x) onto the boundary Γ and by

t := γint
1 u the conormal derivative, which in the case of the Laplace problem is just

the normal derivative, or Neumann trace, of the solution u(x) on Γ. By convention we

1We would like to thank the developers of the HyENA project for making available their implementation of
the Sauter-Schwab quadrature rules [Sauter and Schwab 2011] to BEM++.
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assume that normal directions point to the exterior of the domain Ω. We use the symbol
Hs(Ω) for the standard Sobolev space of order s ∈ R on Ω, as defined in Steinbach

[2008, p. 33]. Define the single-layer potential operator V : H− 1

2 (Γ) → H1(Ω) and the

double-layer potential operator K : H
1

2 (Γ) → H1(Ω) by

[Vψ](x) =
∫

Γ

g(x,y)ψ(y) dΓ(y), [Kφ](x) =
∫

Γ

γint
1,yg(x,y)φ(y) dΓ(y), x ∈ Ω. (4)

Using Green’s representation theorem (2) the solution u now takes the form

u = Vt−Kv. (5)

Then by taking traces on both sides of (5), we get

v =

(
1

2
I −K

)

v + V t. (6)

where V : H− 1

2 (Γ) → H
1

2 (Γ) is the single-layer potential boundary operator and K :

H
1

2 (Γ) → H
1

2 (Γ) the double-layer potential boundary operator, defined by

[V ψ](x) :=

∫

Γ

g(x,y)ψ(y) dΓ(y) and [Kφ](x) :=

∫

Γ

γint
1,yg(x,y)φ(y) dΓ(y) (7)

for (ψ, φ) ∈ H− 1

2 (Γ)×H 1

2 (Γ). The identity operator in (6) results from the jump relation
of the double-layer potential. In a strict sense the pre-factor 1

2 is only valid almost
everywhere [Steinbach 2008, p. 123]. Taking the conormal derivative on both sides
of (5) leads to

t = Dv +

(
1

2
I + T

)

t. (8)

Here, D : H
1

2 (Γ) → H− 1

2 (Γ) is the hypersingular operator and T : H− 1

2 (Γ) → H− 1

2 (Γ)
is the adjoint double-layer potential boundary operator. They are defined by

[Tψ](x) :=

∫

Γ

γint
1,xg(x,y)ψ(y) dΓ(y) (9)

and

[Dφ](x) := −γint
1,x

[∫

Γ

γint
1,yg(x,y)φ(y) dΓ(y)

]

. (10)

Combining (6) and (8) we obtain the Calderón projection
[
v
t

]

=

[
1
2I −K V
D 1

2I + T

] [
v
t

]

. (11)

By prescribing either v or t we can derive from (11) an equation for the correspond-

ing other unknown. A pair (v, t) ∈ H
1

2 (Γ) ×H− 1

2 (Γ) describes the boundary trace and
conormal trace of a solution of the Laplace problem (1) if and only if this pair satis-
fies (11). With a suitable kernel g(x, y) the representation in (11) is also valid for other
elliptic PDEs, e.g. the Helmholtz equation.

Maxwell equations. Consider a domain Ω with boundary Γ, filled with a material
with permittivity ǫ and permittivity µ, and define the wavenumber k := (ǫµ)1/2ω. The
treatment of the time-harmonic Maxwell equations

∇×E = iωµH, ∇×H = −iωǫE, (12)
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in BEM++ closely follows that of Buffa and Hiptmair [2003]. Let u stand for either the
electric field E or the magnetic field H. The interior Dirichlet trace γD,intu of u at a
point x ∈ Γ is defined as

[γD,intu](x) ≡ u|Γ,int(x)× n(x), (13)

where n is the outward unit vector normal to Γ at x and u|Γ,int(x) is the limit of u(y) as
y approaches x from within Ω. The interior Neumann trace γN,intu at x ∈ Γ is defined
as

[γN,intu](x) ≡
1

ik
(∇× u)|Γ,int(x)× n(x). (14)

The exterior traces are defined analogously. Both the Dirichlet and Neumann trace

belong to the Sobolev space H
−1/2
× (divΓ,Γ) defined in Buffa and Hiptmair [2003].

Owing to the duality between the electric and magnetic field, only two integral op-
erators are needed rather than four as in the Laplace case: the single-layer potential
operator ΨSL,k and the double-layer potential operator ΨDL,k. They are defined by

[ΨSL,kv](x) := ik

∫

Γ

gk(x,y)v(y) dΓ(y)−
1

ik
∇x

∫

Γ

gk(x,y) (∇Γ · v)(y) dΓ(y), (15a)

[ΨDL,kv](x) := ∇x ×
∫

Γ

gk(x,y)v(y) Γ(y). (15b)

where

gk(x,y) ≡
exp(ik|x− y|)

4π|x− y| (16)

is the Green’s function of the Helmholtz equation with wave number k and v(x) is a
vector-valued function defined on a surface Γ.

Taking the interior and exterior Dirichlet and Neumann traces of the Stratton-
Chu representation formula [Buffa and Hiptmair 2003, theorem 6], one arrives at the
boundary integral equations

(

−1

2
I+Ck

)

γD,intu+ SkγN,intu = 0, (17a)

−SkγD,intu+

(

−1

2
I+Ck

)

γN,intu = 0, (17b)

where the single-layer boundary operator Sk : H
−1/2
× (divΓ,Γ) → H

−1/2
× (divΓ,Γ) and

double-layer boundary operator Ck : H
−1/2
× (divΓ,Γ) → H

−1/2
× (divΓ,Γ) denote the aver-

ages of the interior and exterior traces of the corresponding potential operators with
wavenumber k, and I stands for the identity operator. Similarly, Maxwell equations
in an exterior domain R

3 \ Ω filled with a material corresponding to wave number k,
with the Silver-Muller boundary conditions imposed at infinity, can be reduced to the
boundary integral equations

(
1

2
I+Ck

)

γD,extu+ SkγN,extu = 0, (18a)

−SkγD,extu+

(
1

2
I+Ck

)

γN,extu = 0. (18b)
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2.2. Boundary element spaces

To discretise the Sobolev spaces H− 1

2 (Γ) and H
1

2 (Γ) we introduce the triangulation Th
of Γ with triangular surface elements τℓ and associated nodes xi such that Th =

⋃

ℓ τℓ.
Here, h denotes the mesh size. We define two spaces of functions.

— The space of piecewise constant functions S0
h(Γ) := span{ψ(0)

k } with

ψ
(0)
k (x) =

{
1 for x ∈ τk
0 for x /∈ τk.

(19)

— The space of continuous piecewise linear functions S1
h(Γ) := span{φ(1)j } with

φ
(1)
j (xi) =

{
1 for i = j

0 for i 6= j.
(20)

Approximation results for these spaces are given, for instance, in Steinbach [2008,
section 10.2].

To discretise the Sobolev space H
−1/2
× (divΓ,Γ) we use the space of lowest-order

Raviart-Thomas functions [Raviart and Thomas 1977].
In the following we distinguish between shape functions, defined on a reference el-

ement (typically the unit triangle or the unit square), element-level basis functions,
obtained by mapping the shape functions onto a (single) physical element, and basis
functions, obtained by joining together one or more element-level basis functions de-
fined on one or more adjacent physical elements. This usage is consistent with e.g.

Szabo and Babuška [1991, p. 95] and Šolı́n [2005, p. 67]. We call the family of all shape
functions associated with a particular reference element a shapeset. For example, a
shapeset associated with the unit triangle with vertices x1 = (0, 0), x2 = (0, 1) and

x3 = (1, 0) might be the set of the three linearly independent linear functions φ
(1)
j

(j = 1, 2, 3) defined on that triangle and satisfying eq. (20).

2.3. Galerkin discretisation of a Dirichlet problem

Laplace equation. We now describe as an example the Galerkin discretisation of a
Dirichlet problem. Here, the boundary data v are given and we need to compute t.
Using the first row of (11) we obtain

V t =

(
1

2
I +K

)

v. (21)

Denote by

〈f, g〉 :=
∫

Γ

f(x) g(x) dΓ(x) (22)

the standard L2(Γ) inner product. The variational formulation of (21) is now given as

follows. Find t ∈ H
1

2 (Γ) such that

〈ψ, V t〉 =
〈

ψ,

(
1

2
I +K

)

v

〉

(23)

for ψ ∈ H− 1

2 (Γ). By restricting H
1

2 (Γ) to S1
h(Γ) and restricting H− 1

2 (Γ) to S0
h(Γ) we

obtain the corresponding discretised Galerkin formulation, which takes the matrix
form

Vt =

(
1

2
M+ K

)

v.
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A:8 W. Śmigaj et al.

The matrices are defined by

Vi,j =

∫

Γ

ψ
(0)
i (x)

∫

Γ

g(x,y)φ
(0)
j (y) dΓ(y) dΓ(x),

Mi,j =

∫

Γ

ψ
(0)
i (x)φ

(1)
j (x) dΓ(x),

Ki,j =

∫

Γ

ψ
(0)
i (x)

∫

Γ

g(x,y)φ
(1)
j (y) dΓ(y) dΓ(x).

If the solution t is piecewise sufficiently smooth then the following error estimate
holds [Steinbach 2008, Chapter 12]:

‖t− th‖
H−

1

2 (Γ)
= O(h

3

2 ),

where th is the solution of the discretised variational problem. This reflects the power
of Galerkin boundary elements. We achieve superlinear convergence in the right space
for the unknown t despite only using piecewise constant basis functions to approxi-
mate t.

Note the importance of the concept of dual spaces in the context of Galerkin bound-

ary element methods. The functions on both sides of (21) are elements of H
1

2 (Γ). In

order for (23) to be well defined we need that ψ ∈ H− 1

2 (Γ), the dual space of H
1

2 (Γ).
BEM++ understands this notion of dual spaces of range spaces, and requires the user
to define the domain, the range, and the dual-to-range space for linear operators.

A drawback of Galerkin boundary elements compared to collocation methods is that
the corresponding matrix elements are expensive to evaluate. The computation of V

and K requires the evaluation of four-dimensional integrals over singular kernels if
the support elements of the basis functions interface or intersect each other. Fast
numerical quadrature rules have been developed to deal with this problem (see e.g.
Sauter and Schwab [2011], Chernov et al. [2011], Chernov and Schwab [2012] and
Polimeridis et al. [2013]). In special cases semi-analytical [Rjasanow and Steinbach
2007; Polimeridis and Mosig 2010], or even fully analytical [Lenoir and Salles 2012],
rules have also been developed.

Maxwell equations. Following Buffa and Hiptmair [2003], the Galerkin weak forms
of the operators Sk and Ck are defined with respect to the antisymmetric pseudo-inner
product

〈u,v〉τ,Γ ≡
∫

Γ

u(x) · [v(x)× n(x)] dΓ(x). (24)

Explicit expressions for the weak forms of Sk and Ck are given in eqs. (32) and (33)
from Buffa and Hiptmair [2003] (the former needs to be multiplied by i to adapt it to
the convention used in BEM++).

3. AN OVERVIEW OF BEM++

3.1. General structure

The BEM++ library is composed of five major parts, schematically illustrated in fig. 1.
The Grid module is responsible for grid management. It is essentially a wrapper of

the Dune-FoamGrid library [Gräser and Sander 2012], which provides an implemen-
tation of the abstract grid interface defined by the Dune-Grid package.

The Fiber (Fast Integration Boundary Element Routines) module is a key compo-
nent of the library, incorporating most of its low-level functionality. It is responsible
for the local assembly, i.e. the evaluation of boundary-element integrals on single ele-
ments or pairs of elements, without taking into account their connectivity. In addition
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Grid

Grid GridView

Entity Geometry

Space

Space

Assembly

AbstractBoundaryOperator

BoundaryOperator

DiscreteBoundaryOperator

PotentialOperator

Context GridFunction

Fiber

CollectionOfKernels

CollectionOfShapesetTransformations

LocalAssemblerForOperators

FunctionBasis

TestKernelTrialIntegral

TestKernelTrialIntegrator

LinAlg

Solver

DefaultIterativeSolver

Fig. 1. The five modules of BEM++, together with their most important classes.

to classes performing the actual integration, Fiber defines a set of interfaces represent-
ing elements of weak forms of boundary-integral operators, such as kernels and shape
function transformations, which will be discussed in section 3.9. This module is inde-
pendent from the rest of BEM++ except for a small set of auxiliary header files used
throughout the library. It could therefore be used in separate boundary-element codes,
providing the most basic functionality common to all boundary-element libraries—
evaluation of elementary integrals. With this in mind, the members of Fiber are de-
fined in separate C++ namespace, Fiber, rather than the Bempp namespace used in the
rest of BEM++.

The Space module consists of the Space class and its derivatives. A Space repre-
sents a space of functions defined on the elements of a grid. It provides a mapping
between those elements and shapesets (Fiber::Shapeset objects) defined on the cor-
responding reference elements. It also acts as a degree-of-freedom manager, using its
knowledge of element-to-element connectivity and the function space continuity prop-
erties to generate a mapping from local to global degrees of freedom and vice versa.
Table I lists the main spaces which are currently available in BEM++. Some of these
spaces have additional “discontinuous” and “barycentric” variants not included in the
table. The basis functions of a “discontinuous” space are identical to the element-level
basis functions of its non-“discontinuous” version. “Barycentric spaces”, e.g. the space
PiecewiseLinearContinuousScalarSpaceBarycentric, have the same basis functions
as their non-barycentric counterparts, but are defined over a barycentric refinement of
a grid. These additional spaces are not normally created explicitly by the user, but are
needed internally. For example, “barycentric” spaces are used during the construction
of opposite-order preconditioners (see section 4.1).

The Assembly module is the largest part of the library. It defines classes representing
integral operators and functions defined on grids, which will be discussed in sections
3.3–3.6. In particular, it contains the code responsible for the global assembly, i.e. the

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.
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Table I. Main spaces available in BEM++

Name Description

PiecewiseConstantScalarSpace Space S
(0)
h of piecewise constant functions.

PiecewiseConstantDualGridScalarSpace Space of piecewise constant functions defined
on the dual grid.

PiecewiseLinearContinuousScalarSpace Space S
(1)
h of continuous piecewise linear func-

tions.
PiecewiseLinearDiscontinuousScalarSpace Space of element-wise linear functions.
PiecewisePolynomialContinuousScalarSpace Space of continuous piecewise polynomial

functions.
PiecewisePolynomialDiscontinuousScalarSpace Space of element-wise polynomial functions.
RaviartThomas0VectorSpace Space of lowest-order Raviart-Thomas basis

functions.
UnitScalarSpace Space of globally constant functions.

formation of matrices of discretised operators from elementary integrals produced by
the Fiber module.

Finally, the LinAlg module provides interfaces to a range of linear solvers. These
will be briefly discussed in section 3.7.

3.2. Design for scriptability

A major goal in the development of BEM++ was to provide Python bindings in addition
to the core C++ interface. This aim had a significant influence on the overall structure
of the BEM++ code.

Numerous scientific libraries written in C++, such as the BEM codes HyENA and
BETL and the grid-management library Dune, make heavy use of C++ templates to
maximise performance. In such codes, quantities such as integration order, element
shape or integral operator type tend to be parameters of class or function templates
and are determined at compile time. The total number of possible variants of any
template can be very large, but in a particular user program a template is actually
instantiated only for a small number of parameter combinations.

This code flavour is perfectly reasonable for libraries intended to be used from C++
only; however, it becomes much less convenient when scripting-language interfaces
are to be developed. A scripting-language wrapper of a C++ library typically requires
access to a binary containing the compiled version of all the C++ code it may need to
execute. For template-based libraries, this means that the templates need to be ex-
plicitly instantiated for all the permissible parameter combinations. Since the number
of these grows exponentially with the number of template parameters, scriptable C++
codes need to use templates sparingly. For this reason, BEM++ relies mostly on dy-
namic polymorphism (technically implemented with virtual functions) and restricts
the use of templates to two areas.

First, many classes in BEM++ are templates parametrised by the type used to rep-
resent values of (scalar components of) basis functions, and/or the type used to repre-
sent values of (scalar components of) functions produced by integral operators acting
on these basis functions. These parameters are usually called BasisFunctionType and
ResultType, respectively. Occasionally, other parameter names, such as ValueType, are
also used. The parameters are allowed to take at most four values—float, double,
std::complex<float> and std::complex<double>—corresponding to the single- and
double-precision real and complex numbers, and the templates are explicitly instan-
tiated for each sensible combination of these parameters. This gives at most eight
different variants (mixing different precisions is not allowed).

Second, to improve performance and reduce code duplication, in some low-level code
we combine coarse-grained dynamic polymorphism and fine-grained static polymor-
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 «abstract» 

Function
Functor

BEM++

 «abstract» 

Function

SurfaceNormalIndependentFunction<Functor>

User code

Functor

SurfaceNormalIndependentFunction<Functor>

Fig. 2. Dependencies between some of the classes related to evaluation of user-define functions.

phism. This is most easily shown with an example. In the process of assembling
the right-hand side of an integral equation, the user typically needs to expand a
known function f , defined analytically or by interpolation of experimental data, in
a boundary-element space. In BEM++, such functions are represented with classes
derived from the abstract Function base class. The latter contains, in particular, the
virtual function Function::evaluate(), which takes the geometrical data (e.g. global
coordinates, surface normals etc.) associated with a list of points and is expected to pro-
duce the list of values of f at these points. The coarse-grained nature of this interface—
with several evaluations of f per virtual-function call—helps to reduce the overhead
due to dynamic polymorphism. However, it comes at the price of increased complexity
of implementation: the body of the evaluate() method of every concrete subclass of
Function now needs to contain a loop over the supplied points.

To remedy this, BEM++ provides a number of class templates, such as Surface-
NormalIndependentFunction, derived from Function and parameterised with the name
of a user-defined functor class (see fig. 2). This class should provide an evaluate()
method able to calculate f at a single point. The implementation of SurfaceNor-
malIndependentFunction::evaluate() loops over the supplied points and calls the
evaluate() method of the functor object for each of these points separately, gathering
the results and storing them in an array that is subsequently returned to the caller.

This mechanism has several advantages. The use of static polymorphism on the fine-
grained level allows us to the reduce amount of code that needs to be written by user
to the bare minimum (evaluation of f a single point), which simplifies development
and limits the room for errors. It also improves performance, as the calls to the func-
tor’s evaluate() method can be inlined and potentially automatically vectorised by
the compiler. On the other hand, the presence of the abstract Function class prevents
the “spill-out” of the functor-type template parameter into other fragments of the li-
brary and the ensuing combinatorial explosion of the number of necessary template
instantiations. It also permits us to provide a separate set of subclasses of Function
that implement the virtual evaluate() method by calling a user-defined Python func-
tion. For the purposes of code external to the Function hierarchy, there is no difference
between functions defined in C++ and in Python.

A similar approach (abstract base class + derived class templates parametrised with
functors) is also used to represent terms occurring in boundary integrals, such as ker-
nels or shape function transformations (standing for e.g. element-level basis functions
or their curls). This will be discussed further in section 3.9.

3.3. Abstract and discrete boundary operators

BEM++ distinguishes between two types of boundary operators: abstract and discrete
ones.

Abstract operators, subclasses of the AbstractBoundaryOperator class, represent
boundary operators in their strong form. An abstract operator is a mapping L : Xh →
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BoundaryOperator
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AbstractBoundaryOperator
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DiscreteDenseBoundaryOperator

DiscreteAcaBoundaryOperator

Fig. 3. Relationships between the main classes representing boundary operators.

Yh, where the domain Xh and the range Yh are two (finite-dimensional) spaces of func-
tions defined on surfaces Γ and Σ (Xh and Yh may be equal). Discrete operators, sub-
classes of the DiscreteBoundaryOperator class, represent boundary operators in their
Galerkin weak form. The weak form of L is obtained by applying it to each basis func-
tion of the trial space Xh and projecting the result on the basis functions of the test
space Y ′

h dual to Yh. This yields a matrix L (see section 2.3). Interpreted as an opera-
tor, this matrix L : Cm → C

n acts on (algebraic) vectors of dimension m = dimXh and
produces vectors of dimension n = dimY ′

h.
Abstract operators can be divided into two main categories: local and non-local op-

erators. Let f(x) be a function from Xh; we say that L is local if (Lf)(x) depends only
on the values of f in an infinitesimal neighbourhood of x. The identity operator and
differential operators, such as the Laplace-Beltrami operator, are local and their dis-
cretised weak forms are sparse matrices. Conversely, integral operators are in general
non-local and their discretised weak forms are dense matrices.

Figure 3 depicts the relationships between the BoundaryOperator, Abstract-
BoundaryOperator and DiscreteBoundaryOperator classes, showing also some sub-
classes of the latter two.

It is obviously possible to use the discrete operators directly to solve a given
boundary-element problem. However, BEM++ provides also a higher-level interface,
in which direct access to discrete operators is not necessary. This allows programs to
be written in a manner following more closely the simpler strong-form formulation of
problems.

With this aim in mind, BEM++ defines the BoundaryOperator class, which acts as
a wrapper of a pair of shared pointers referencing an AbstractBoundaryOperator and
its discretised version, a DiscreteBoundaryOperator. The second pointer is at first null
and is initialised only after the first call to BoundaryOperator::weakForm(). To create
a BoundaryOperator object representing a standard integral operator, the user calls a
non-member constructor function, e.g.
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Table II. Functions that construct the elementary operators currently defined in BEM++.

Function Weak form

identityOperator()
∫
Γ φ(x)ψ(x) dΓ(x)

maxwell3dIdentityOperator()
∫
Γ φ(x) · [ψ(x)× n(x)]

laplaceBeltrami3dOperator()
∫
Γ ∇Γφ(x) ·∇Γψ(x) dΓ(x)

laplace3dSingleLayerBoundaryOperator()
∫
Γ

∫
Σ φ(x) g(x,y)ψ(y) dΓ(x) dΣ(y)

laplace3dDoubleLayerBoundaryOperator()
∫
Γ

∫
Σ φ(x) ∂n(y)g(x,y)ψ(y) dΓ(x) dΣ(y)

laplace3dAdjointDoubleLayerBoundaryOperator()
∫
Γ

∫
Σ φ(x) ∂n(x)g(x,y)ψ(y) dΓ(x) dΣ(y)

laplace3dHypersingularBoundaryOperator()
∫
Γ

∫
Σ curlΓ φ(x) · g(x,y) curlΣ ψ(y) dΓ(x) dΣ(y)

helmholtz3dSingleLayerBoundaryOperator()
∫
Γ

∫
Σ φ(x) gk(x,y)ψ(y) dΓ(x) dΣ(y)

helmholtz3dDoubleLayerBoundaryOperator()
∫
Γ

∫
Σ φ(x) ∂n(y)gk(x,y)ψ(y) dΓ(x) dΣ(y)

helmholtz3dAdjointDoubleLayerBoundaryOperator()
∫
Γ

∫
Σ φ(x) ∂n(x)gk(x,y)ψ(y) dΓ(x) dΣ(y)

helmholtz3dHypersingularBoundaryOperator()
∫
Γ

∫
Σ gk(x,y)[curlΓ φ(x) · curlΣ ψ(y)

−k2 φ(x)n(x) · ψ(y)n(y)] dΓ(x) dΣ(y)

maxwell3dSingleLayerBoundaryOperator()
∫
Γ

∫
Σ gk(x,y)[−ikφ(x) ·ψ(y)

−
1
ik

divΓ φ(x) divΣ ψ(y)] dΓ(x) dΣ(y)

maxwell3dDoubleLayerBoundaryOperator()
∫
Γ

∫
Σ ∇xgk(x,y) · [φ(x)×ψ(y)] dΓ(x) dΣ(y)

template <typename BasisFunctionType, typename ResultType>
BoundaryOperator<BasisFunctionType, ResultType>
laplace3dSingleLayerBoundaryOperator(

const shared_ptr<const Context<
BasisFunctionType, ResultType> >& context,

const shared_ptr<const Space<BasisFunctionType> >& domain,
const shared_ptr<const Space<BasisFunctionType> >& range,
const shared_ptr<const Space<BasisFunctionType> >& dualToRange,
const std::string& label = "",
int symmetry = NO_SYMMETRY);

The key parameters are the first four ones. The parameter context controls the de-
tails of subsequent operator discretisation and will be described in section 3.4. The
next three parameters are the spaces representing the domain of the abstract opera-
tor, its range and the space dual to the range. They might for example be chosen as
the space of functions piecewise constant or piecewise linear on elements making up
a specific grid. The domain and the space dual to the range are used during subse-
quent discretisation of the operator as the trial and test space, respectively. The range,
in turn, is used in the creation of functions obtained by acting with the operator on
already defined functions. This will be covered in more detail in section 3.5.

Most predefined abstract operators in BEM++ are represented with instances of the
GeneralSingularIntegralBoundaryOperator or GeneralLocalBoundaryOperator class,
which will be presented in detail in sections 3.9 and 3.10. For example, the laplace-
3dSingleLayerBoundaryOperator() function discussed above creates a new instance
of GeneralSingularIntegralBoundaryOperator and wraps it in a BoundaryOperator
object, which is then returned to the caller. The mechanism of construction of other
operators is completely analogous, as will be evident from the examples presented in
section 4. Table II lists the elementary boundary operators that are currently defined
in BEM++.

Both in the C++ and Python interface to BEM++, the arithmetic operators (+, -, *
and /) acting on BoundaryOperators are overloaded. Thus, the user can easily create
composite operators representing linear superpositions of elementary ones, as in the
code below:
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typedef BoundaryOperator<double, double> BO;
BO I = identityOperator<double, double>(...);
BO K = laplace3dDoubleLayerBoundaryOperator<double, double>(...);
BO combined = 0.5 * I + K;

It is also possible to create operators consisting of several blocks in order to solve
systems of boundary integral equations. Such operators are represented with the
BlockedBoundaryOperator class, whose instances are treated analogously to those of
BoundaryOperator—for example, the user can pass them to solver classes or extract
their discrete weak forms. Example code creating a blocked boundary operator will be
presented in section 4.2.

3.4. Construction of discrete weak forms

The discrete weak form of a given boundary operator is created on the first call to its
weakForm() method, which returns a shared pointer to a DiscreteBoundaryOperator
object. The details of the discretisation procedure are controlled by the Context object
previously passed to the constructor of the BoundaryOperator. It is essentially a com-
bination of two more specialised objects: QuadratureStrategy and AssemblyOptions.
The former defines the strategy used to evaluate the element-by-element integrals oc-
curring in the entries of the discretised weak form of the operator. Currently BEM++
offers a single concrete subclass of QuadratureStrategy: the NumericalQuadrature-
Strategy, which implements Sauter-Schwab quadrature rules [Sauter and Schwab
2011]. More information about the quadrature-related classes in BEM++ will be given
in section 3.11. The AssemblyOptions object controls higher-level aspects of the weak-
form assembly. Most importantly, it determines whether the ACA algorithm is used to
accelerate the assembly and to reduce the memory consumption. AssemblyOptions can
also be used to switch between serial and parallel assembly.

After the construction of a weak form, a shared pointer to it is stored in the
BoundaryOperator object, so that any further calls to the weakForm() method do not
trigger the costly recomputation of the discrete operator. Moreover, the implementa-
tion of BoundaryOperator ensures that all copies of a given BoundaryOperator (objects
generated by calling its copy constructor) share a single DiscreteBoundaryOperator
representing their common weak form, regardless of whether these copies are made
before or after the discretisation. Thus if, for instance, a given elementary integral
operator is reused in several blocks of a blocked boundary operator, or occurs on both
the left- and the right-hand-side of an integral equation, it is discretised only once. Of
course, this holds also if the operator is used as part of a more complex expression, e.g.
a superposition of several operators. The possibility of this reuse of discrete weak forms
relies crucially on the fact that most objects in BEM++, such as those representating
grids, function spaces and abstract operators, are immutable.

3.5. Grid functions

Functions defined on surfaces are represented in BEM++ with GridFunction objects.
As opposed to a Function, which can be defined in an arbitrary way (with an analytical
formula, interpolation of experimental data etc.), a GridFunction is expressed as a
superposition of the basis functions of a certain space defined on a boundary-element
grid. One of the GridFunction constructors transforms a Function to a GridFunction.

The interaction of operators and functions is an area where the strong-form lan-
guage proves particularly convenient. Consider an operator A : X → Y . We ap-
proximate the spaces X, Y and the dual space Y ′ by the finite-dimensional spaces
Xh := span{xi}mi=1, Yh := span{yi}ni=1 and Y ′

h := span{y′i}pi=1. The Galerkin weak-form

approximation of A in these finite-dimensional spaces is the matrix A
(h)
ij := 〈y′i, Axj〉,
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i = 1, . . . , p, j = 1, . . . ,m. Now consider a function f :=
∑m

j=1 f
(h)
j xj ∈ Xh with as-

sociated coefficient vector f (h). Then the result of the action of A on f is a function

g = Af ∈ Y . To obtain an approximation g̃ =
∑n

j=1 g̃
(h)
j yj ∈ Yh of g we compute the

vector of projections

〈y′i, g〉 = 〈y′i, Af〉 =
[
A
(h)f (h)

]

i
=: µi, i = 1, . . . , p.

We then solve the least-squares problem

〈y′i, g̃〉 =
n∑

j=1

〈y′i, yj〉g̃
(h)
j = µi, i = 1, . . . , p

to obtain the coefficients g̃
(h)
j of g̃ ∈ Yh, which can be done by multiplying the vector µ

with the pseudoinverse of the mass matrix M with elements Mij = 〈y′i, yj〉. The pseu-
doinverse takes the form M

† = (MH
M)−1

M
H for p ≥ n and M

H(MM
H)−1 otherwise. In

BEM++ the multiplication by pseudoinverse is implemented using sparse direct solves
with the product MH

M or MM
H , respectively.

The calculation of the vector of coefficients of a function g generated by an integral
operator is necessary whenever g needs to be evaluated or acted upon with another
operator. For example, if one wants to evaluate the function h = ABf , two such con-
versions from projections to coefficients are needed. As we have seen, at least when the
spaces X, Y and Y ′ are nonequal, the process involves a fair number of algebraic op-
erations. With its interface modelled after the strong formulation, BEM++ completely
encapsulates these manipulations, letting the user obtain the function h simply by
writing

GridFunction<BasisFunctionType, ResultType> h = A * (B * f);

To this end, the GridFunction class offers a dual interface. A GridFunction can be con-
structed either from a list of coefficients in a primal space Yh or projections on the basis
of a dual space Y ′

h (in the latter case, the primal space also needs to be provided). Sim-
ilarly, in addition to the coefficients() method that returns the vector of coefficients
of a given function in its primal space, GridFunction provides the projections(const
Space<BasisFunctionType>& dualSpace) method that calculates on the fly the vector
of scalar products of the GridFunction with the basis functions of dualSpace. Thus, a
GridFunction can convert freely between its primal and dual representation.

3.6. Potential operators

In sections 3.3 and 3.4 we discussed the classes representing boundary operators—
integral operators defined on (d−1)-dimensional surfaces embedded in a d-dimensional
space. In order to evaluate the solution of a boundary integral equation problem
away from the surface, we need to use the representation formula from eq. (5), con-
taining the potential operators V and K defined in eq. (4). These potential operators
map from the boundary Γ into the domain Ω and are therefore treated differently in
BEM++ than the boundary operators V and K, which map from Γ into Γ. Specifi-
cally, they are represented with a hierarchy of classes implementing the interface de-
fined by the PotentialOperator abstract base class. Its most important member is the
evaluateAtPoints() function, which applies the operator to a supplied GridFunction
and evaluates the resulting potential at specified points. The use of potential operators
will be illustrated in section 4.2.
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3.7. Solution of equations

The discrete operator objects in BEM++ are meant to be easily usable from the Trili-
nos library. For this reason, the DiscreteBoundaryOperator class is derived from
Thyra::LinearOpBase, which defines the fundamental operator interface in Trilinos.
This interface includes, in particular, the apply() method implementing the matrix-
vector product (more precisely, the y := αAx+βy operation). As a result, discretisations
of integral operators assembled by BEM++ can be directly passed to a wide range of
solvers provided by various components of Trilinos, such as the iterative linear solvers
from the Stratimikos-Belos module or the eigensolvers from the Anasazi module.

To facilitate the common task of solving linear equations involving integral op-
erators, BEM++ provides a common high-level interface to the solvers from Stra-
timikos-Belos, including a GMRES and a CG solver, in the form of the Default-
IterativeSolver class. In particular, the DefaultIterativeSolver constructor accepts
a BoundaryOperator (or a BlockedBoundaryOperator), rather than its discretisation,
while the right-hand side and the solution are passed as GridFunctions rather than
algebraic vectors. Thus, it is possible to use consistently the strong-form description of
an integral-equation problem both during its formulation (construction of constituent
boundary operators) and its solution. The only part where a transition to the descrip-
tion in terms of discrete weak forms is necessary is the construction of a preconditioner.
This is by design, to allow greater flexibility in adding a preconditioner. An example
demonstrating the construction of a preconditioner will be discussed in section 4.2.

3.8. Python interface

The Python bindings to BEM++ are generated using SWIG, a well-known and mature
package for connecting programs written in C/C++ with a wide range of high-level
programming languages [Beazley 2003; SWIG 2012]. The C++ and Python interfaces
to BEM++ are in general very similar; here we will briefly discuss the few aspects
handled differently.

The most important difference concerns the construction of objects. As was men-
tioned in section 3.2, most C++ classes and non-member functions in BEM++
depend on the BasisFunctionType and/or ResultType template parameters. Since
Python has no notion of templates, SWIG generates a separate Python function
or class for each allowed combination of these parameters. Thus, for example,
the Python function laplace3dSingleLayerBoundaryOperator float64 complex128()
acts as a proxy for the C++ function template laplace3dSingleLayerBoundary-
Operator<BasisFunctionType, ResultType>() instantiated with BasisFunction-
Type=double and ResultType=std::complex<double> >. (The declaration of this func-
tion template was shown in section 3.3.) It would be cumbersome, though, and go
against the weak-typed nature of Python to have to specify these types explicitly each
time an object is constructed.

To remedy this, we first of all extend the Python wrappers of all C++ tem-
plate classes with the additional methods basisFunctionType() and/or resultType(),
which return the (Pythonic) name of the respective type used in the class template
instantiation. For example, the method Laplace3dSingleLayerBoundaryOperator
float64 complex128.basisFunctionType() returns the string "float64". Second, in
the bempp.lib module we define a family of factory functions that deduce the exact
types of the objects to be constructed from the types of their arguments. For instance,
the standard way of constructing a single-layer potential boundary operator in Python
is to call the function

createLaplace3dSingleLayerBoundaryOperator(
context, domain, range, dualToRange, label=None)
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from bempp.lib. This function retrieves the basis function type and result type from
the context object, verifies that the three spaces have the same basis function type,
and finally calls the appropriate laplace3dSingleLayerBoundaryOperator * *() wrap-
per.

In some cases, the constructor’s parameters are not enough to determine some
or all of the types. For example, the constructor of the PiecewiseConstantScalar-
Space<BasisFunctionType> C++ class template takes a single parameter: a shared
pointer to a constant Grid object. Since Grid is not a class template, it does not con-
strain the value of BasisFunctionType. In such cases, the Python factory function takes
a Context object as an additional parameter; this object is then used to determine the
values of all the necessary types. Thus, the signature of the createPiecewiseConstant-
ScalarSpace() function is

createPiecewiseConstantScalarSpace(context, grid)

and the type used to represent the values of the basis function of the newly constructed
space is determined by calling context.basisFunctionType().

In the end, therefore, the basis function type and return type must be specified ex-
plicitly only once: during the construction of the NumericalQuadratureStrategy, which
is normally the first BEM++ object to be created. Thus, the factory function

createNumericalQuadratureStrategy(
basisFunctionType, resultType, accuracyOptions)

takes strings ("float64", "complex128" etc.) as its first two arguments. The use of the
factory functions from the bempp.lib module will be illustrated by the examples from
section 4.

A second area where the two interfaces of BEM++ differ is the construction of
GridFunctions. The Python interface contains special implementations of the abstract
Function interface, described in section 3.2, with the evaluate() method invoking a
Python callable object. Thus, the user can construct a GridFunction representing e.g.
input Dirichlet or Neumann data simply by writing a Python function evaluating these
data at a prescribed point and passing this function to the createGridFunction() fac-
tory. The actual discretisation process is naturally slower than it would be in pure C++,
since it involves repeated callbacks from C++ to Python, but this overhead is normally
insignificant in comparison to the total time taken by a boundary-element calculation.

Finally, the third difference concerns the array classes used in both interfaces. In
the C++ version, we use mainly the 1-, 2- and 3-dimensional array classes Col, Mat
and Cube provided by the Armadillo library [Sanderson 2012]. For technical reasons,
low-level code also employs simpler multidimensional array classes Array2d, Array3d
and Array4d defined in the Fiber module. In the Python bindings, Armadillo arrays
are transparently converted into “native” NumPy arrays.

3.9. Low-level representation of integral operators

Basic concepts. BEM++ supports boundary integral operators with almost com-
pletely general weak forms. The two basic ingredients of weak forms are collections
of kernels and collections of shape function transformations.

A kernel is a function mapping a pair of points (x,y) located on two, possibly iden-
tical, elements of a grid to a scalar, vector or tensor of a fixed dimension, with real or
complex elements. It can depend on any geometrical data related to x and y—not only
their global coordinates, but also the unit vectors normal to the grid at these points or
the Jacobian matrices. A collection of kernels is a set of one or more such kernel func-
tions, which are evaluated together and hence may reuse results of any intermediate
calculations.
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A shape function transformation is a function mapping a point x located at an ele-
ment of a grid to a scalar or vector of a fixed dimension, with real or complex elements.
In addition to any geometrical data related to x, it can depend on the value and/or
the first derivatives of a shape function defined on the reference element (e.g. the unit
triangle or the unit square). A shape function transformation can, for example, map
shape functions to element-level basis functions or to their surface curls. A collection
of shape function transformations is a set of one or more such transformation, again
evaluated together.

A boundary integral operator is defined by its characteristic collection of kernels,
collection of transformations of test functions, collection of transformations of trial
functions, and the overall structure of its weak form, i.e. the way in which the kernels
and transformed shape functions are linked together. For example, the weak form of
the single-layer potential boundary operator for the Helmholtz equation,

〈φ, V ψ〉 =
∫

Γ

∫

Σ

eik|x−y|

4π|x− y|
︸ ︷︷ ︸

Kernel1

φ(x)

︸︷︷︸

TestBFT1

ψ(y)

︸ ︷︷ ︸

TrialBFT1

dΓ(x) dΣ(y), (25)

involves only a single kernel, test and trial function transformation, which are com-
bined by simple scalar multiplication. In the above formula, Γ and Σ are surfaces in
R

3, which may, but need not, be equal. In contrast, the weak form of the hypersingular
operator

〈φ,Dψ〉 =
∫

Γ

∫

Σ

[
eik|x−y|

4π|x− y|
︸ ︷︷ ︸

Kernel1

curlS φ(x)

︸ ︷︷ ︸

TestBFT1

· curlT ψ(y)
︸ ︷︷ ︸

TrialBFT1

− k2
eik|x−y|

4π|x− y|
︸ ︷︷ ︸

Kernel2

φ(x)n(x)

︸ ︷︷ ︸

TestBFT2

·ψ(y)n(y)
︸ ︷︷ ︸

TrialBFT2

]

dΓ(x) dΣ(y)

(26)

can be decomposed into two kernels and two test and trial function transformations,
combined with an integrand of the form

2∑

i=1

KerneliTestBFTi ·TrialBFTi.

In an alternative decomposition, we could use just one kernel (Kernel1) and an inte-
grand of the form

Kernel1(TestBFT1 ·TrialBFT1 − k2 TestBFT2 ·TrialBFT2).

Abstract interfaces. BEM++ defines abstract interfaces representing the concepts de-
fined above. For instance, it introduces the CollectionOfKernels abstract base class,
whose declaration (slightly abridged) looks as follows:

template <typename ValueType_>
class CollectionOfKernels
{
public:

typedef ValueType_ ValueType;
typedef typename ScalarTraits<ValueType>::RealType CoordinateType;

virtual void addGeometricalDependencies(
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size_t& testGeomDeps, size_t& trialGeomDeps) const = 0;

virtual void evaluateAtPointPairs(
const GeometricalData<CoordinateType>& testGeomData,
const GeometricalData<CoordinateType>& trialGeomData,
CollectionOf3dArrays<ValueType>& result) const = 0;

virtual void evaluateOnGrid(
const GeometricalData<CoordinateType>& testGeomData,
const GeometricalData<CoordinateType>& trialGeomData,
CollectionOf4dArrays<ValueType>& result) const = 0;

};

The class is parametrised with the type used to represent the values of kernel func-
tion components (float, std::complex<double> etc.). An implementation of Collec-
tionOfKernels::addGeometricalDependencies() is expected to set those bits in the
testGeomDeps and trialGeomDeps bitfields that correspond to the types of geometrical
data required by the kernels. This function and analogous functions defined by other
elements of the weak form are invoked by the code responsible for the weak-form as-
sembly to determine the full list of geometrical data needed by a particular weak form.
The function evaluateAtPointPairs() is provided with the geometrical data requested
by addGeometricalDependencies() corresponding to a list of test points {xi}ni=1 and a
list of trial points {yi}ni=1 of equal length, and it is expected to store the values of
the kernel functions at the point pairs {(xi,yi)}ni=1 in the output argument result. In
turn, the function evaluateOnGrid() obtains geometrical data corresponding to test
points {xi}mi=1 and trial points {yj}nj=1 and is expected to evaluate the kernel func-
tions at all the point pairs {(xi,yj)}mi=1,

n
j=1. It is therefore used in the evaluation of

integrals with tensor-product quadrature rules, while the former function is used with
non-tensor-product rules. The CollectionOfndArrays classes are wrappers of lists of
n-dimensional arrays, supporting some special operations, such as slicing. The exact
format of these arrays is explained in the documentation of CollectionOfKernels.

The CollectionOfShapesetTransformations interface is of a similar nature. The
main difference is that the evaluate() function is provided not only with Geometrical-
Data, but also with a reference to a BasisData object, which encapsulates the values of
shape functions and/or their derivatives at evaluation points.

The weak-form integrals over pairs of elements are evaluated by implementations
of the TestKernelTrialIntegral interface, which defines, in particular, the

virtual void evaluateWithNontensorQuadratureRule(
const GeometricalData<CoordinateType>& testGeomData,
const GeometricalData<CoordinateType>& trialGeomData,
const CollectionOf3dArrays<BasisFunctionType>& testTransforms,
const CollectionOf3dArrays<BasisFunctionType>& trialTransforms,
const CollectionOf3dArrays<KernelType>& kernels,
const std::vector<CoordinateType>& quadWeights,
arma::Mat<ResultType>& result) const = 0;

function and a similar evaluateWithTensorQuadratureRule() function. These are pro-
vided with the data produced by the collections of kernels and test and trial function
transformations of a given operator, the list of quadrature weights and, if need be, ad-
ditional geometrical data, and are expected to fill the matrix result with the values
of the weak form integral for all pairs of test and trial functions defined on the pair of
elements under consideration.
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Finally, the ElementaryIntegralOperator interface defines the necessary attributes
of an integral operator. It is a subclass of AbstractBoundaryOperator and introduces
five new pure virtual functions:

virtual const CollectionOfKernels& kernels() const = 0;
virtual const CollectionOfShapesetTransformations&

testTransformations() const = 0;
virtual const CollectionOfShapesetTransformations&

trialTransformations() const = 0;
virtual const TestKernelTrialIntegral& integral() const = 0;
virtual bool isRegular() const = 0;

The first four of these should return references to the relevant elements of the
weak form of the operator; the fifth informs whether all elements of the collection
of kernels of the operator are regular. Currently all integral operators implemented in
BEM++ are singular. There exists a dedicated ElementarySingularIntegralOperator
class that overrides isRegular() to return false.

Default implementations. As in the case of functions used for the construction of
right-hand sides (see section 3.2), a user implementing a new operator does not usu-
ally need to implement from scratch a new subclass of any of the abstract base classes
discussed above. BEM++ provides default implementations of the classes represent-
ing the weak forms and their elements—DefaultCollectionOfKernels and so on—
declared as class templates parametrised with the name of a functor class. This func-
tor should evaluate the kernel or weak form at a single pair of points, or the shape
function transformation at a single point. Several commonly used functors are already
defined. For example, ScalarFunctionValueFunctor transforms scalar shape functions
into element-level basis functions (effectively simply copying the contents of an ar-
ray into another one), while SurfaceCurl3dFunctor calculates the surface curl of an
element-level basis function. SimpleTestScalarKernelTrialIntegrandFunctor calcu-
lates an integrand of the form

Kernel1TestBFT1 ·TrialBFT1

with a scalar kernel and scalar or vector test and trial function transforma-
tions. Finally, Laplace3dSingleLayerPotentialKernelFunctor, Helmholtz3dDouble-
LayerPotentialKernelFunctor etc. evaluate the kernels of particular integral oper-
ators.

The implementations of DefaultCollectionOfKernels::evaluateOnGrid(), De-
faultCollectionOfKernels::evaluateAtPointPairs() etc. repeatedly call the pro-
vided functor to evaluate the kernel at each quadrature point pair and store the re-
sult in the appropriate element of the result array. The implementations of analo-
gous evaluate...() functions of DefaultCollectionOfShapesetTransformations and
DefaultTestKernelTrialIntegral are done in the same way.

A general-purpose concrete subclass of ElementarySingularIntegralOperator,
GeneralElementarySingularIntegralOperator, is also defined. Its constructor

template <typename KernelFunctor, typename TestTransformationsFunctor,
typename TrialTransformationsFunctor,
typename IntegrandFunctor>

GeneralElementarySingularIntegralOperator(
const shared_ptr<const Space<BasisFunctionType> >& domain,
const shared_ptr<const Space<BasisFunctionType> >& range,
const shared_ptr<const Space<BasisFunctionType> >& dualToRange,
const std::string& label,
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int symmetry,
const KernelFunctor& kernelFunctor,
const TestTransformationsFunctor& testTransformationsFunctor,
const TrialTransformationsFunctor& trialTransformationsFunctor,
const IntegrandFunctor& integrandFunctor) :

Base(domain, range, dualToRange, label, symmetry), // call c’tor of base
m_kernels(

new Fiber::DefaultCollectionOfKernels<KernelFunctor>(kernelFunctor)),
...

is a function template taking, apart from the first five standard parameters passed
ultimately to the constructor of AbstractBoundaryOperator, four functor objects. These
are used to create instances of the default implementations of the four elements of the
operator’s weak form, parametrised with the type of the relevant functor. The instances
are stored in internal member variables and the implementations of kernels() etc.
simply return references to these objects.

To extend the library with a new integral operator, therefore, it is normally enough
to define functors representing any elements of the weak form not yet provided
by BEM++ (often only a kernel functor) and to write a wrapper for a call to the
constructor of GeneralElementarySingularIntegralOperator. Indeed, most BEM++
functions returning BoundaryOperator objects encapsulating elementary integral op-
erators, e.g. laplace3dSingleLayerBoundaryOperator(), helmholtz3dAdjointDouble-
LayerBoundaryOperator() etc., are implemented in this way.

3.10. Low-level representation of local operators

In contrast to integral operators, whose weak forms are given by integrals over pairs of
elements, the weak forms of local operators are integrals over single elements. These
operators are represented with subclasses of ElementaryLocalOperator. The interface
of this class is very similar to ElementaryIntegralOperator, and its most important
components are the virtual functions

virtual const CollectionOfShapesetTransformations&
testTransformations() const = 0;

virtual const CollectionOfShapesetTransformations&
trialTransformations() const = 0;

virtual const TestTrialIntegral& integral() const = 0;

As in the case of integral operators, there exists a generic implementation of this
interface, the GeneralElementaryLocalOperator class, whose constructor takes func-
tors used to create instances of CollectionOfShapesetTransformations and Test-
TrialIntegral, subsequently returned by the implementation of the above methods.
A GeneralElementaryLocalOperator object is internally constructed, in particular, by
the laplaceBeltrami3dOperator() function.

3.11. Quadrature

BEM++ makes it possible to customise the quadrature rules under use at several levels
of generality and complexity.

As was mentioned in section 3.1, the Fiber module is responsible for the local assem-
bly, i.e. the evaluation of boundary-element integrals on single elements or pairs of ele-
ments, without taking into account their connectivity. In particular, in the process of in-
tegral operator discretisation, the QuadratureStrategy implementation in use creates
an object derived from LocalAssemblerForIntegralOperators. The evaluateLocal-
WeakForms() method of the latter is then repeatedly called to evaluate the element-
by-element integrals contributing to each matrix entry that needs to be calculated.
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Thus, one can change completely the method used to evaluate integrals by deriv-
ing a new class from LocalAssemblerForIntegralOperators, and implementing its
evaluateLocalWeakForms() method. This class should be accompanied by a new sub-
class of QuadratureStrategy, whose implementation of makeAssemblerForInternal-
Operators() will return an instance of the custom local assembler class. In this way
one could, for example, envisage implementation of semianalytic quadrature rules for
a particular family of operators.
NumericalQuadratureStrategy, the builtin implementation of QuadratureStrategy,

is strongly customisable; as long as one is happy with numerical quadrature, therefore,
implementation of a custom local assembler is probably unnecessary. The quadrature
rule used to approximate a particular integral is built in two steps. First, an imple-
mentation of the QuadratureDescriptorSelectorForIntegralOperators interface con-
structs a DoubleQuadratureDescriptor object that specifies (a) whether the test and
trial elements integrated upon share any (and if so, which) vertices or edges and (b) the
desired order of accuracy of the quadrature rule. The QuadratureDescriptorSelector-
ForIntegralOperators has access to the geometrical data of the grid (positions of el-
ement vertices), so that it can, for example, vary the quadrature order with distance
between elements. Second, once a quadrature descriptor has been created, an imple-
mentation of the DoubleQuadratureRuleFamily interface builds a list of quadrature
points and weights making up a quadrature rule of the required order and, if the ele-
ments are not disjoint, adapted to the singularity expected from the integrand.

By default, NumericalQuadratureStrategy uses an instance of DefaultQuadrature-
DescriptorSelectorForIntegralOperators to construct quadrature descriptors. This
class by default makes regular integrals be evaluated with the lowest-order quadra-
ture rule ensuring exact integration of a product of any test and trial functions defined
on the given elements. The order of singular quadrature rules is by default chosen to
be greater by 5 from that of regular ones. These choices can be modified by passing an
AccuracyOptionsEx object to a constructor of NumericalQuadratureStrategy; in this
way it is possible to set quadrature orders to fixed values, increase them by a fixed
amount with respect to defaults, or even make the regular quadrature order depen-
dent on the interelement distance. An example of how this can be done will be given
in section 4.1. Note that since integral operator weak forms contain kernel functions
in addition to test and trial functions, it is a good idea to increase slightly at least the
regular quadrature orders even for coarse grids.

The default implementation of DoubleQuadratureRuleFamily, DefaultDouble-
QuadratureRuleFamily, uses tensor products of Dunavant’s [1985] rules for triangles
to approximate integrals on regular pairs of elements and Sauter-Schwab transforma-
tions of tensor (four-dimensional) Gauss-Legendre rules to approximate integrals on
singular element pairs.

The user can pass custom instances of QuadratureDescriptorSelectorFactory
(a factory class used to create QuadratureDescriptorSelectorForIntegralOperators
objects supplied with geometric data specific to individual operators) or Double-
QuadratureRuleFamily to constructors of NumericalQuadratureStrategy. These in-
stances will then be used instead of the default implementations. Quadrature rules
used in the discretisation of local operators, construction of grid functions and eval-
uation of potentials can be customised in a similar way, using a parallel hierarchy
of classes such as QuadratureDescriptorSelectorForPotentialOperators or Single-
QuadratureRuleFamily.

The number of classes responsible for the selection of quadrature rules may at first
seem overwhelming. However, they make it possible to modify selected aspects of the
process without reimplementing everything from scratch. For example, here is how
specific modifications of the BEM++ integration mechanism might be implemented:
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— To set quadrature orders to a fixed amount, change them by a fixed amount or make
the regular quadrature order depend on interelement distance, construct an appro-
priate AccuracyOptionsEx object and pass it to a NumericalQuadratureStrategy con-
structor.

— To replace the Sauter-Schwab coordinate transformations [Sauter and Schwab 2011]
by the ones proposed by Polimeridis et al. [2013], derive a new class from Double-
QuadratureRuleFamily and pass an instance of it to a NumericalQuadratureStrategy
constructor.

— To make the quadrature order selection dependent on element shape (e.g. raising
it for strongly deformed elements), derive new classes from QuadratureDescriptor-
SelectorForIntegralOperators and QuadratureDescriptorSelectorFactory and
pass an instance of the latter to a constructor of NumericalQuadratureStrategy.

— To use semianalytic quadrature rules or to evaluate integrals adaptively, derive a
new class from LocalAssemblerForIntegralOperators and make it used by a new
subclass of QuadratureStrategy.

4. EXAMPLES

In this section we will present a number of examples demonstrating the use and capa-
bilities of BEM++. In the first part, we will introduce the Python interface to BEM++
by creating a script solving possibly the simplest problem of all—the Laplace equa-
tion in a bounded domain with Dirichlet boundary conditions. We will also discuss the
solution of other classes of Laplace problems. In the second part, we will turn our at-
tention to the Helmholtz equation, considering in particular acoustic wave scattering
on permeable and non-permeable obstacles. This will allow us to demonstrate the cre-
ation of blocked operators and preconditioners and evaluation of solutions away from
a discretised surface. surface. In the third part, we will show how to handle mixed
(part Dirichlet, part Neumann) boundary conditions. Finally, in the fourth part, we
will discuss the solution of Maxwell equations with BEM++.

4.1. Laplace equation with Dirichlet and Neumann boundary conditions

Introduction. In this section we will first develop a Python script using BEM++ to
solve eq. (21), the Dirichlet problem for the Laplace equation in a bounded domain
Ω ∈ R

3 with boundary Γ.

Initialisation. We start by importing the symbols from the lib module of the bempp
package. We also load NumPy, the de-facto standard Python module providing a pow-
erful multidimensional-array data type:

from bempp.lib import *
import numpy as np

Before creating the operators, we need to specify certain options controlling the man-
ner in which their weak form will be assembled.

The first of them is QuadratureStrategy, which determines how individual integrals
occurring in the weak forms are calculated. Currently BEM++ only supports numerical
quadrature, and thus we construct a NumericalQuadratureStrategy object:

accuracyOptions = createAccuracyOptions()
accuracyOptions.doubleRegular.setRelativeQuadratureOrder(4)
accuracyOptions.singleRegular.setRelativeQuadratureOrder(2)
quadStrategy = createNumericalQuadratureStrategy(

"float64", "float64", accuracyOptions)

The createNumericalQuadratureStrategy() function takes three parameters. The
first two are used to determine the BasisFunctionType and ResultType parameters
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described in section 3.2. They can be set to "float32", "float64", "complex64" or
"complex128", which are the standard NumPy names of single- and double-precision
real and complex types. In our case, we want both the basis function values and the
values of functions produced by boundary integral operators to be represented with
double-precision real numbers, so we set the above parameters to "float64". The last
parameter controls the numerical quadrature accuracy, and should be set to an in-
stance of AccuracyOptions or AccuracyOptionsEx. The numerical quadrature strategy
uses three separate families of quadrature rules to perform single integrals of regular
functions, double integrals of regular functions and double integrals of singular func-
tions. By default, regular quadrature is done using the least expensive rule ensuring
exact integration of a product of a test and a trial function. Since boundary-element
integrals contain, in addition, kernel functions, it is often a good idea to increase the
regular quadrature orders slightly, as we did in the above code snippet. (A call to set-
RelativeQuadratureOrder(delta ) increases the quadrature order by delta with re-
spect to the default; alternatively, setAbsoluteQuadratureOrder(order ) may be used
to set the order to the fixed value order.) The default singular quadrature order is
usually adequate, so in the above snippet we left it unchanged. If necessary, it can
be increased by calling set...QuadratureOrder() on the doubleSingular member of
AccuracyOptions.

Higher-level aspects of the weak-form assembly are controlled by AssemblyOptions
objects. In particular, these determine whether the ACA algorithm is used to acceler-
ate the assembly and to reduce the memory consumption. They can also be used to
switch between serial and parallel assembly. To turn on ACA (which is off by default),
it suffices to write

assemblyOptions = createAssemblyOptions()
acaOptions = createAcaOptions()
assemblyOptions.switchToAca(acaOptions)

One can also fine-tune the ACA parameters by editing the AcaOptions object—for ex-
ample, the ACA tolerance can be set to 10−5 by inserting

acaOptions.eps = 1e-5

before the last line of the previous snippet.
The quadrature strategy and assembly options must now be merged into a so-called

assembly context:

context = createContext(quadStrategy, assemblyOptions)

This object encompasses all the parameters influencing operator assembly, including
the chosen basis-function and result types. It will be passed to the constructors of most
objects created in the sequel.

Grid and spaces. We proceed by loading a triangular grid approximating the sur-
face Γ from a file in the Gmsh [Geuzaine and Remacle 2009; 2012] format:

grid = createGridFactory().importGmshGrid("triangular",
"sphere-ico-3.msh")

The file sphere-ico-3.msh is included in the Supplementary Material and contains a
1280-element triangulation of a sphere with unit radius and centred at the origin.

Now we can define the approximation spaces. As described in section 2.2, we will use
the space S1

h(Γ) of continuous, piecewise linear scalar functions to approximate v and
the space S0

h(Γ) of piecewice constant scalar functions to approximate t:

pconsts = createPiecewiseConstantScalarSpace(context, grid)
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plins = createPiecewiseLinearContinuousScalarSpace(context, grid)

Operators. At this point we are ready to create the individual operators. Looking at
eq. (21), we see that we need the single- and double-layer potential boundary operators
for the 3D Laplace equation and the identity operator:

slpOp = createLaplace3dSingleLayerBoundaryOperator(
context, pconsts, plins, pconsts)

dlpOp = createLaplace3dDoubleLayerBoundaryOperator(
context, plins, plins, pconsts)

idOp = createIdentityOperator(
context, plins, plins, pconsts)

These three calls produce BoundaryOperator objects (combining a reference to an ab-
stract boundary operator with one to its, initially null, discretisation). The meaning of
the parameters is the same as for the C++ laplace3dSingleLayerBoundaryOperator()
function described in section 3.3.

The composite operator 1
2I + K occurring on the right-hand side of eq. (21) can be

constructed simply by writing

rhsOp = 0.5 * idOp + dlpOp

since BEM++ provides appropriate overloads of the typical arithmetic operators for
BoundaryOperator objects. It is important to stress that the result, rhsOp, will not store
its discrete weak form as a single H-matrix. Instead, invocation of rhsOp.weakForm()
will trigger discretisation of idOp and dlpOp, and rhsOp operator will only store refer-
ences (technically, shared pointers) to the resulting weak forms. The matrix-vector
product for rhsOp will then be realised by processing the results generated by the
matrix-vector products of the elementary operators idOp and dlpOp.

This implicit treatment of composite operators mirrors the design of the Thyra mod-
ule of Trilinos [Bartlett 2007] and makes it easy to construct even very complicated
operators. Occasionally the need arises, however, to “compress” a composite operator
to a single H-matrix, for example to calculate its H-LU decomposition or to eliminate
the memory overhead incurred by storing individual terms of a superposition of oper-
ators as separate H-matrices. A way to do it, the asDiscreteAcaBoundaryOperator()
method, will be presented in section 4.2.

Right-hand side. We now need an object representing the expansion of the known
Dirichlet trace v in the space of piecewise linears. We will take v to correspond to the
exact solution of the Laplace equation

uexact(x) =
1

4π|x− x0|
with x0 = (2, 2, 2). (27)

We define, therefore, a native Python function

def evalDirichletTrace(point):
x, y, z = point
dist = np.sqrt((x - 2)**2 + (y - 2)**2 + (z - 2)**2)
return 1 / (4 * np.pi * dist)

receiving an array of coordinates of a single point and returning the value of v at this
point. Subsequently, we pass it as the last argument of createGridFunction():

dirichletTrace = createGridFunction(
context, plins, pconsts, evalDirichletTrace)

whose declaration looks as follows:
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def createGridFunction(context, space, dualSpace, callable,
surfaceNormalDependent=False)

Internally, this routine calculates the vector of projections of the function f defined
by the Python callable object callable on the basis functions of the space represented
by the object dualSpace, and then converts this vector into the vector of coefficients
of f in space in the manner described in section 3.5. In our example, we choose
space to be a space of piecewise linears and dualSpace a space of piecewise constants.
The assembly context context provides the quadrature strategy used to evaluate the
necessary scalar products, while the surfaceNormalDependent argument determines
whether callable needs information about the orientation of the vector normal to the
grid at the evaluation point. If so, the components of this vector are passed as the
second parameter to callable.

To construct the function standing on the right-hand side of eq. (21), we act with the
operator rhsOp on the Dirichlet trace, using an appropriate overload of the multiplica-
tion operator:

rhs = rhsOp * dirichletTrace

This produces a GridFunction expanded in the range space of rhsOp, i.e. the space of
piecewise linears.

Solution. We have now assembled all the elements of the equation and we are ready
to solve it. We will use the wrapper of the GMRES solver from Trilinos provided by
BEM++:

solver = createDefaultIterativeSolver(slpOp)
solver.initializeSolver(defaultGmresParameterList(1e-8))
solution = solver.solve(rhs)
print solution.solverMessage()
solFun = solution.gridFunction()

As can be seen, the solver takes the operator as a BoundaryOperator object and the
right-hand side as a GridFunction; the discretisation is done automatically and there
is no need to access the ensuing matrices and vectors explicitly. The solution, the Neu-
mann trace t, is also extracted in the form of a GridFunction.

To see a plot of the Neumann trace on Γ, we can use the bempp.visualization mod-
ule, which provides a number of functions for rapid visualization of solutions calculated
with BEM++. Internally, it is based on TVTK [Ramachandran 2005], a set of Python
bindings of the VTK toolkit [Kitware 2012b]. To plot a single grid function, it suffices
to write

import bempp.visualization as vis
vis.plotGridFunction(solFun, "cell_data")

The string "cell data" indicates that the function should be treated as constant on
each element of the grid, which is consistent with the space we have chosen to expand
the Neumann trace. The default mode is "vertex data", which causes the function to
be linearly interpolated from its values at vertices of the grid. Figure 4 shows the plot
generated by the above code snippet.

For serious data analysis it may be preferable to use a dedicated VTK viewer, such
as Paraview [Kitware 2012a]. By calling

solFun.exportToVtk("cell_data", "neumann_trace", "solution")

one can export the solution to a VTK file solution.vtu as a cell-data series labelled
neumann trace.
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Fig. 4. Neumann trace of the solution calculated with the code presented in section 4.1.

The full code of the above program can be found in the interior laplace
dirichlet.py script included in the Supplementary Material.

Benchmarks. To give an idea about the speed of calculations, table III lists the time
used to assemble the discrete weak forms of the two boundary operators and to solve
the resulting algebraic equation for a series of triangular grids generated by repeat-
edly refining an icosahedron and projecting the resulting nodes on the unit sphere.
The table also lists the relative error of the obtained solution, defined as ‖v− v0‖/‖v0‖,
where v0 is the exact Neumann trace, v its approximation computed numerically, and

‖. . .‖ stands for either the L2 or the H− 1

2 -norm.2 The calculations were done on a
12-core, 2.80-GHz Intel workstation. The BEM++ library, built with the GCC 4.4.5
compiler using the -O3 -m64 -march=native compilation flags, was linked against the
Intel MKL library. Regular Galerkin integrals over element pairs were approximated
using quadrature rules of order greater by 4 than default3 and singular integrals with
quadrature rules of the default order of accuracy.4 Regular integrals over single ele-
ments, evaluated during the discretisation of input Dirichlet data, were approximated
using quadrature rules of order greater by 2 than default, comprising 4 quadrature
points. Iterative solver tolerance was set to 1E−8. We have verified that increasing
the quadrature rule orders or decreasing the solver tolerance had only a negligible ef-
fect on the accuracy of the solution. In contrast, the accuracy was somewhat affected
by the ACA tolerance parameter (ǫ), thus for each grid we present results for several
values of ǫ. Provided that this parameter is chosen sufficiently small, we recover the
theoretically predicted convergence rates of O(h) in the L2 norm and O(h3/2) in the
H−1/2 norm, with h the element size [Steinbach 2008, pp. 264-265]. In this and all
other examples, the η parameter occurring in the admissibility condition used in ACA
[Bebendorf 2008, section 1.3] was left at the default value of 1.2.

It can be seen that the weak-form assembly of the double-layer potential boundary
operator K takes approximately three times longer than that of the single-layer poten-

2The method used to calculate Sobolev-space norms is discussed later in this section.
3Specifically, a 6 × 6-point rule was used to approximate entries of the matrix of operator V , discretised
with piecewise constant test and trial functions, and 6× 7-point rule was used to approximate entries of the
matrix of operator K, discretised with piecewise constant test and piecewise linear trial functions.
4Specifically, Sauter-Schwab quadrature rules based on the 3- and 4-point Gauss-Legendre rules were used
in the discretisation of operators V and K, respectively.
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Table III. Benchmarks for the solution of the Dirichlet problem for the Laplace equation inside a unit sphere.
Abbreviations: #Elem. = Number of elements; tol. = tolerance; op. = operator; Mem. = Memory; t = Time; #It. = Number
of iterations. The memory use of ACA-compressed operators is listed in megabytes and in percent of the memory use
of equivalent dense operators. The number of unknowns is equal to the number of elements.

ACA
DLP op. SLP op. Solver

Relative Relative

#Elem. tol. Mem. (MB / %) t (s) Mem. (MB / %) t (s) #It. t (s) L2 error H−

1

2 error

80 1E−2 0.0 / 100 0.1 0.0 / 100 0.0 15 0.0 8.56E−2 2.95E−2
80 1E−3 0.0 / 100 0.1 0.0 / 100 0.0 15 0.0 8.56E−2 2.95E−2
80 1E−4 0.0 / 100 0.1 0.0 / 100 0.0 15 0.0 8.56E−2 2.95E−2

320 1E−3 0.3 / 81 0.2 0.7 / 96 0.0 24 0.1 4.11E−2 9.34E−3
320 1E−4 0.3 / 88 0.1 0.8 / 97 0.0 23 0.1 4.11E−2 9.33E−3
320 1E−5 0.4 / 99 0.1 0.8 / 99 0.0 23 0.2 4.11E−2 9.33E−3

1280 1E−3 2.6 / 41 0.4 4.2 / 34 0.1 35 0.1 1.98E−2 3.17E−3
1280 1E−4 3.0 / 47 0.4 5.1 / 41 0.1 33 0.1 1.97E−2 3.12E−3
1280 1E−5 3.5 / 55 0.5 6.1 / 49 0.1 33 0.0 1.97E−2 3.12E−3

5120 1E−4 16.0 / 16 2.0 29.4 / 15 0.6 45 0.2 9.72E−3 1.09E−3
5120 1E−5 20.9 / 21 2.3 36.6 / 18 0.7 44 0.3 9.71E−3 1.08E−3
5120 1E−6 26.0 / 26 2.7 45.3 / 23 0.8 43 0.3 9.71E−3 1.08E−3

20480 1E−4 92.1 / 6 10.4 150.3 / 5 3.3 55 1.8 4.92E−3 4.04E−4
20480 1E−5 121.8 / 8 12.6 192.6 / 6 3.9 53 1.7 4.83E−3 3.81E−4
20480 1E−6 155.4 / 10 15.1 244.8 / 8 4.7 53 1.7 4.83E−3 3.81E−4

81920 1E−5 669.5 / 3 69.7 958.6 / 2 20.6 62 10.2 2.41E−3 1.35E−4
81920 1E−6 866.9 / 3 84.7 1238.7 / 2 24.9 61 10.3 2.41E−3 1.34E−4
81920 1E−7 1065.6 / 4 99.5 1541.3 / 3 29.8 61 11.2 2.41E−3 1.34E−4

327680 1E−6 4755.7 / 1 469.5 6004.8 / 1 125.5 68 41.6 1.21E−3 4.75E−5
327680 1E−7 5892.2 / 1 555.1 7515.7 / 1 150.7 68 46.2 1.21E−3 4.75E−5
327680 1E−8 7083.8 / 2 643.5 9124.5 / 1 178.0 68 46.6 1.21E−3 4.75E−5

tial boundary operator V . This is because the trial space of K consists of continuous
piecewise linear functions whose supports extend over several elements, so the weak-
form assembly requires the evaluation of, on average, three times more elementary
integrals.

To complement these data, table IV presents the results obtained for the Neumann
problem, formulated as

Dv =

(
1

2
I − T

)

t; (28)

the operators D and T have been defined in section 2.1. As before, v and t are expanded
in the spaces of piecewise linears and piecewise constants, respectively. The solution
of the Neumann problem for the Laplace equation is determined only up to a constant,
so we introduced the constraint

〈1, v〉 = 〈1, γint
0 uexact〉, (29)

where 1 denotes the unit function, and solved the problem with the method of La-
grange multipliers. The script interior laplace neumann.py used to obtain these re-
sults is included in the Supplementary Material.5

For the Neumann problem, the theoretically predicted convergence rate in the L2

norm is quadratic in the element size h [Steinbach 2008, p. 280]. At the accuracy levels

5The same quadrature orders were used as in the previous example. Regular and singular integrals occur-
ring in the matrix of operator D were evaluated using 4 × 4-point tensor rules and Sauter-Schwab rules
based on the 4-point Gauss-Legendre rule, respectively. In the case of operator T 4 × 3- and 3-point rules
were used.
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Table IV. Benchmarks for the solution of the Neumann problem for the Laplace equation inside a unit sphere.
Abbreviations: #Elem. = Number of elements; tol. = tolerance; op. = operator; Mem. = Memory; t = Time; #It. = Number of iterations.
The memory use of ACA-compressed operators is listed in megabytes and in percent of the memory use of equivalent dense
operators. The number of unknowns is roughly equal to half of the number of elements.

ACA
Adjoint DLP op. Hypersingular op. Solver

Relative Relative

#Elem. tol. Mem. (MB / %) t (s) Mem. (MB / %) t (s) Tol. #It. t (s) L2 error H
1

2 error

80 1E−2 0.0 / 100 0.1 0.0 / 101 0.1 1E−8 8 0.0 2.20E−3 3.67E−2
80 1E−3 0.0 / 100 0.1 0.0 / 101 0.1 1E−8 8 0.0 2.20E−3 3.67E−2

320 1E−3 0.3 / 81 0.2 0.2 / 93 0.2 1E−8 10 0.0 4.96E−4 1.24E−2
320 1E−4 0.3 / 88 0.2 0.2 / 100 0.2 1E−8 10 0.0 4.95E−4 1.24E−2
320 1E−5 0.4 / 98 0.2 0.2 / 100 0.2 1E−8 10 0.0 4.95E−4 1.24E−2

1280 1E−4 3.0 / 47 0.4 1.9 / 60 1.0 1E−8 15 0.1 1.20E−4 4.33E−3
1280 1E−5 3.5 / 55 0.5 2.2 / 69 1.1 1E−8 15 0.1 1.20E−4 4.33E−3
1280 1E−6 3.9 / 63 0.5 2.5 / 78 1.3 1E−8 15 0.1 1.20E−4 4.33E−3

5120 1E−5 20.9 / 21 2.4 15.3 / 30 7.3 1E−8 20 0.1 2.97E−5 1.52E−3
5120 1E−6 26.0 / 26 2.9 18.3 / 37 8.3 1E−8 20 0.1 2.97E−5 1.52E−3
5120 1E−7 31.1 / 31 3.3 21.9 / 44 10.0 1E−8 20 0.1 2.97E−5 1.52E−3

20480 1E−6 155.3 / 10 16.6 116.2 / 15 49.4 1E−8 26 0.3 7.42E−6 5.38E−4
20480 1E−7 189.2 / 12 19.2 139.9 / 17 57.8 1E−8 26 0.3 7.40E−6 5.38E−4
20480 1E−8 226.1 / 14 22.3 164.5 / 21 66.1 1E−8 26 0.4 7.40E−6 5.38E−4

81920 1E−6 867.1 / 3 100.8 659.5 / 5 281.5 1E−10 46 3.3 2.73E−6 1.91E−4
81920 1E−7 1065.5 / 4 116.9 799.1 / 6 325.9 1E−10 46 3.4 1.85E−6 1.90E−4
81920 1E−8 1277.5 / 5 135.9 947.9 / 7 374.0 1E−8 35 2.4 1.99E−6 1.90E−4

1E−10 46 3.7 1.85E−6 1.90E−4

327680 1E−8 7084.3 / 2 1046.7 5296.9 / 3 2443.5 1E−10 62 32.5 4.63E−7 6.72E−5
327680 1E−9 8363.6 / 2 1051.3 6193.5 / 3 2583.9 1E−10 62 31.3 4.62E−7 6.72E−5

reached for larger grids, parameters that had a negligible influence on the solution
of the Dirichlet problem start to play a role. In particular, for the grids with 81920
and more elements, fully converged results are only obtained for a tightened solver
tolerance. With these adjustments, the simulations reproduce the convergence rates
predicted theoretically.

Let us now consider an example with a more complex geometry. Calculation of the
distribution of charge on the surface of an electric conductor held at a fixed poten-
tial v(x) requires the solution of the exterior Dirichlet problem for the Laplace equa-
tion. The latter can be transformed to the integral equation

V γext
1 u =

(

−1

2
I +K

)

γext
0 u, (30)

which involves the exterior Dirichlet and Neumann traces γext
0 u = g and γext

1 u. As
shown in elementary texts (see e.g. Griffiths [1998]), the surface charge density σ is
proportional to the Neumann trace of the electrostatic potential on the conductor sur-
face, γext

1 u. Figure 5 shows the map of σ on the surface of a bolt held at a constant
potential. Clearly visible is the concentration of surface charge in the vicinity of edges
and vertices. The calculation was done on a 154,076-element mesh derived from a
CAD model obtained from [OpenCASCADE 2012]. The unknown Neumann data were
expanded in piecewise constant basis functions. Regular Galerkin integrals were ap-
proximated using quadrature rules of order greater by 4 than default, and singular
integrals with quadrature rules of the default order of accuracy. In view of the elon-
gated shape of the object, to improve load balancing between processor cores, we lim-
ited the maximum H-matrix block size to 1

8 of the number of unknowns. With ACA
tolerance set to 1E−6 and GMRES tolerance set to 1E−8, the solution of this problem
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Fig. 5. Charge density (in nC/m2) on the surface of a 13-mm-long bolt held at the potential u = 1 V.

took 402 s. The script bolt.py, together with the mesh bolt.msh, is included in the
Supplementary Material.

Sobolev space norms. It is sometimes useful to calculate the H− 1

2 (Γ)- or H
1

2 (Γ)-norm
of the numerical solution or its error with respect to an analytical solution. One defini-

tion of the H− 1

2 (Γ)-norm, particularly convenient for computations, reads [Langer and
Steinbach 2007, p. 74]

‖u‖H−1/2(Γ) =
√

〈u, V u〉, (31)

where V is the single-layer potential boundary operator and 〈·, ·〉 denotes the standard
L2(Γ) inner product as defined in eq. (22). Using this definition, we can easily calculate

the H− 1

2 (Γ)-norm of a function u expressed as a GridFunction in BEM++. Let u =
∑N

n=1 φnun, where un are the expansion coefficients of u in the basis {φn}Nn=1 of a finite-

dimensional subspace Wh of H− 1

2 (Γ). Then

‖u‖H−1/2(Γ) =

√
∑

n

un〈φn, V u〉. (32)

The numbers
√

〈φn, V u〉 are the projections of V u on the basis of Wh. Thus, we can

calculate, for example, theH− 1

2 (Γ)-norm of the solution solFun of the Dirichlet problem
discussed earlier in this section using

H_norm = np.sqrt(np.dot(solFun.coefficients(),
(slpOp * solFun).projections(solFun.space())))

Here, the dot function from NumPy is called to calculate the inner product of two
algebraic vectors.

Calculation of the H− 1

2 (Γ)-norm of the error u − uexact, where u is a numerical and
uexact an analytical solution, is slightly more involved. To obtain an accurate result, it is
necessary to expand the solutions in a space Yh larger than Wh; otherwise one obtains
only the norm of the difference between u and the best approximation of uexact in Wh.
When Wh is a space of piecewise constants, a reasonable choice for Vh is the space of
discontinuous piecewise linears defined on the same grid. An example implementation
of this procedure looks as follows:

pdlins = createPiecewiseLinearDiscontinuousScalarSpace(context, grid)
subsamplingOp = createIdentityOperator(

context, pconsts, pdlins, pdlins)
subsampledSolFun = subsamplingOp * solFun

(in the above fragment we expand solFun, originally defined in pconsts, in the larger
space pdlins)
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subsampledExactSolFun = createGridFunction(
context, pdlins, pdlins, evalExactNeumannTrace,
surfaceNormalDependent=True)

subsampledErrorFun = subsampledSolFun - subsampledExactSolFun
pquads = createPiecewisePolynomialContinuousScalarSpace(

context, grid, 2)
subsampledSlpOp = createLaplace3dSingleLayerBoundaryOperator(

context, pdlins, pquads, pdlins, "sSLP")
H_norm = np.sqrt(np.dot(

subsampledErrorFun.coefficients(),
(subsampledSlpOp * subsampledErrorFun).projections(

subsampledErrorFun.space())))

The last column of table III lists the H− 1

2 -norms of the error obtained when solving
the Dirichlet problem with various discretisation parameters.

The H
1

2 -norm can be calculated in a very similar way, using the hypersingular
operator instead of the single-layer potential operator. The file interior laplace

neumann.py contains an implementation of this procedure, and table IV lists the H
1

2 -
norms of the solution errors obtained with various discretisation parameters.

Higher-order basis functions. Starting from version 1.9 BEM++ supports higher-
order polynomial basis functions (up to order 10). Although curvilinear elements are
not implemented yet, high-order basis functions can be used to speed up calculations
on piecewise flat surfaces. A Space object representing the function space spanned by
piecewise polynomial, continuous or discontinuous, basis function of order d can be
constructed by calling

createPiecewisePolynomialContinuousScalarSpace(context, grid, d )

or

createPiecewisePolynomialDiscontinuousScalarSpace(context, grid, d )

High-order basis functions are often used when results accurate to many significant
digits are desired. Such results can only be obtained with sufficiently accurate quadra-
ture rules. Use of a uniform high-order rule for all interelement distances is wasteful;
to reduce time consumption, it is advisable to employ lower-order quadrature rules
for distant elements. In the calculations whose results are presented in this section
we varied the order q of the quadrature rule used to approximate double integrals on
regular pairs of elements lying in the relative distance d in the following way:6

q = q0 +







10 if d ≤ 2.1

9 if 2.1 ≤ d < 4

6 if 4 ≤ d < 9

5 if 9 ≤ d < 13

4 otherwise,

(33)

where q0 is the default quadrature order ensuring exact integration of products of
any test and trial functions defined on the elements. This rule was constructed so as
to give relative integration error of less than ca. 1E−9 for the single-layer boundary
potential operator associated with the Laplace equation discretised with constant test
and trial functions defined on elements having the shape of isosceles triangles (but

6The relative distance of two elements is defined as the distance between their centres divided by their
longest edge.
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arbitrary relative orientation) – at least for elements lying in the relative distance
d >

√
3 from each other. The singular quadrature order was increased by 6 with respect

to the default value and the order of single-element quadrature, by 4. This choice of
quadrature orders was done with the following code:

accuracyOptions = createAccuracyOptionsEx()
accuracyOptions.setDoubleRegular(

[2.1, 4., 9., 13.], [10, 9, 6, 5, 4], True)
accuracyOptions.setDoubleSingular(6, True)
accuracyOptions.setSingleRegular(4, True)
quadStrategy = createNumericalQuadratureStrategy(

"float64", "float64", accuracyOptions)

Table V presents the results obtained by solving the Laplace equation outside a unit
cube with Dirichlet boundary conditions derived from the exact solution

uexact(x) =
1

4π|x− x0|
with x0 = (0.4, 0.4, 0.4). (34)

The (known) Dirichlet data were expanded in the space of globally continuous, piece-
wise polynomial functions of orders 1, 2 and 3, whereas the (unknown) Neumann data
were expanded in the space of piecewise polynomial functions of orders 0, 1 and 2
without imposition of global continuity. The ACA tolerance ǫ was set to 1E−7 and
the GMRES tolerance to 1E−10. The computational meshes were obtained by refining
repeatedly the simplest 12-element cubic triangular mesh. The complete script used
in the calculations, interior laplace dirichlet high order.py, can be found in the
Supplementary Material. The table indicates that as the mesh is refined, the conver-

gence rate of the H− 1

2 error approaches the theoretically predicted value of of O(hp+
3

2 ),
where p is the order of the polynomials used to expand the Neumann data [Sauter and
Schwab 2011, p. 201]. The convergence rate of the L2 error tends to O(hp+1). For the
most dense mesh and p = 2, however, it would be necessary to increase further the
singular quadrature rule order in order to get acceptably converged results. When
comparing the calculation times it must be borne in mind that for lower-order bases it
would be sufficient to use much less accurate quadrature rules, which would consider-
ably shorten the computations.

Opposite-order and mass-matrix preconditioning. An effective way to precondition
the Laplace single-layer potential boundary operator is via operator preconditioning
[Hiptmair 2006]. We consider again the Dirichlet problem (21) to find the Neumann
data t from

V t =

(
1

2
I +K

)

v, (35)

where v is the given Dirichlet boundary data. The operator V is a pseudodifferential
operator of order −1. The idea is now to multiply the above equation with a pseu-
dodifferential operator of order 1, such that the product is a bounded operator with
bounded inverse. A suitable operator is the hypersingular operator D. We obtain the
new problem

DV t = D

(
1

2
I +K

)

v. (36)

Here, the operator DV maps functions from H− 1

2 (Γ) into H− 1

2 (Γ). To implement this
product operator we could be tempted to proceed as previously, namely by defining the
spaces as
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Table V. Benchmarks of the solution of the Laplace equation with Dirichlet boundary conditions outside a unit cube for polyno-
mial basis functions of varying order.
Abbreviations: p = polynomial order of basis functions used to expand the unknown Neumann data; #Elem. = Number of ele-
ments; #Unkn. = Number of unknowns; op. = operator; M. = Memory; t = Time; #It. = Number of iterations; eoc = experimental
order of convergence. The memory use of ACA-compressed operators is listed in megabytes and in percent of the memory
use of equivalent dense operators.

DLP op. SLP op. Solver Relative Relative

#Elem. #Unkn. M. (MB / %) t (s) M. (MB / %) t (s) #It. t (s) L2 error / eoc H1/2 error / eoc

p = 0

48 48 0.0 / 100 0.2 0.0 / 101 0.0 12 0.0 3.44E−1 9.47E−2
192 192 0.1 / 100 0.6 0.3 / 100 0.1 25 0.0 1.86E−1 / 1.84 3.08E−2 / 3.07
768 768 2.3 / 100 2.3 4.3 / 96 0.5 34 0.1 8.66E−2 / 2.15 9.37E−3 / 3.29

3072 3072 20.6 / 57 10.2 37.6 / 52 2.5 44 0.3 4.19E−2 / 2.07 3.16E−3 / 2.97
12288 12288 125.9 / 22 37.4 222.2 / 19 10.6 56 1.2 2.07E−2 / 2.02 1.10E−3 / 2.88

p = 1

48 144 0.1 / 100 0.3 0.2 / 100 0.1 33 0.0 1.10E−1 2.02E−2
192 576 1.7 / 100 1.1 2.5 / 100 0.6 53 0.0 3.66E−2 / 3.01 4.81E−3 / 4.21
768 2304 16.4 / 61 4.3 21.7 / 53 2.5 68 0.2 1.09E−2 / 3.35 1.10E−3 / 4.37

3072 9216 93.8 / 22 17.2 134.7 / 21 11.3 85 1.2 3.11E−3 / 3.51 2.30E−4 / 4.79
12288 36864 440.2 / 6 64.2 720.9 / 7 47.5 105 7.8 8.21E−4 / 3.79 4.34E−5 / 5.29

p = 2

48 288 0.5 / 100 0.8 0.6 / 100 0.2 70 0.0 3.79E−2 5.84E−3
192 1152 6.5 / 86 2.8 9.6 / 94 1.2 106 0.3 7.37E−3 / 5.14 8.55E−4 / 6.83
768 4608 44.9 / 37 10.7 57.0 / 35 5.0 139 0.7 9.16E−4 / 8.04 6.98E−5 / 12.25

3072 18432 222.1 / 11 38.6 318.0 / 12 21.2 174 5.1 1.14E−4 / 8.04 5.98E−6 / 11.67
12288 73728 997.2 / 3 148.5 1617.5 / 4 86.3 216 35.3 2.01E−5 / 5.66 8.69E−7 / 6.88

pconsts = createPiecewiseConstantScalarSpace(context, grid)
plins = createPiecewiseLinearContinuousScalarSpace(context, grid)

and then the operators by

slpOp = createLaplace3dSingleLayerBoundaryOperator(
context, pconsts, plins, pconsts)

hypOp = createLaplace3dDoubleLayerBoundaryOperator(
context, plins, plins, pconsts)

lhsOp = hypOp * slpOp

BEM++ will automatically map the range space of the operator slpOp to the domain
space of the operator hypOp. However, this pairing between the space of piecewise con-

stant functions S
(0)
h (Γ) and the space of continuous piecewise linear functions S

(1)
h is

not stable [Hiptmair 2006; Steinbach 2002]. In order to achieve a stable pairing of
spaces we need to define the single-layer operator using piecewise constant functions
on the dual grid. These are implemented as a separate space class in BEM++. Hence,
we only need to redefine pconsts as

pconsts = createPiecewiseConstantDualGridScalarSpace(context, grid)

The right-hand side of (36) is written in Python as

rhs = hypOp * (0.5 * idOp + dlpOp) * dirichletTrace

The operators idOp and dlpOp are defined as in Section 4.1, but with the piecewise
constant functions now defined on the dual grid. We could now solve in the same way
as previously presented using the DefaultIterativeSolver class. However, in the fol-
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Table VI. Comparison of mass-matrix and opposite-order preconditioning for a sphere
mesh with 5120 elements.

Preconditioner #It. t (s) Rel. L2 error Rel. H−

1

2 error

None 44 3.0 9.7E−3 1.1E−3
Mass matrix 19 24.8 9.8E−3 1.6E−3
Opposite order 13 28.0 9.8E−3 1.7E−3
Opposite order + mass matrix 6 27.5 9.8E−3 1.6E−3

lowing we demonstrate how to further accelerate convergence by switching on mass

matrix preconditioning. The operator slpOp maps from the space S
(0)
h,d of piecewise con-

stant functions on the dual grid into the space [S
(0)
h,d]

′. For the convergence of iterative

solvers it is often of advantage to map back from the dual space into the original space.
Hence, if we have a Galerkin discretized system Ax = b, A : Xh → Y ′

h, we wish to multi-
ply both sides of the equation with the (pseudo)inverse M† of a mass matrix M which
maps Yh into Y ′

h. The new left-hand side operator M†A now maps from Xh into Yh
(see also Kirby [2010]). In order to enable automatic mass-matrix preconditioning in
BEM++ we can initialize the iterative solver as follows.

solver = createDefaultIterativeSolver(slpOp,"test_convergence_in_range")
solver.initializeSolver(defaultGmresParameterList(1e-8))

In Table VI we compare the mass-matrix and opposite-order preconditioners for a
sphere mesh with 5120 elements. As ACA tolerance we have chosen a value of 1E−5.
Furthermore, we have enabled the option

acaOps.mode = ’local_assembly’

Details and performance measures for the various assembly modes of BEM++ will be
reported elsewhere. Otherwise, the parameters are the same as in Table III. The first
row shows the case of no preconditioning. The errors have been computed on the primal
grid by reprojecting the grid functions from the space of piecewise constant functions
on the dual grid to the space of piecewise constant functions on the primal grid. The
timing results include the assembly and the solve phase.

The table indicates that calculations with mass-matrix or opposite-order precondi-
tioners are significantly slower than without preconditioning. The reason is that we
need to define the space of piecewise constant functions on the dual grid, which is re-
alized by a barycentric refinement of the original mesh, leading to about six times as
many elements. This is an unavoidable cost if we need to work with stable dual pair-
ings. Hence, opposite order preconditioning is more useful for fast multipole methods,
where the setup time is small, but each matrix-vector product is costly, or in situations
where we have no convergence in reasonable time at all without preconditioning.

Here we have shown opposite-order preconditioning for Laplace. But the same ideas
also carry over to Helmholtz and are supported by BEM++. Dual-grid-based precondi-
tioners for Maxwell [Andriulli et al. 2008] are in development and will be added in a
later release.

4.2. Acoustic wave scattering

Mathematical background. Let Ω with surface Γ be a bounded acoustical obstacle
made of material with density ρint and speed of sound cint embedded in an infinite
homogeneous medium with density ρext and speed of sound cext. The propagation of

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



Solving Boundary Integral Problems with BEM++ A:35

time-harmonic acoustic waves in this system is described by the equations

∆p(x) + k2intp(x) = 0 for x ∈ Ω, (37a)

∆p(x) + k2extp(x) = 0 for x ∈ R
3 \ Ω, (37b)

γint
0 p(x) = γext

0 p(x) for x ∈ Γ, (37c)

ρ−1
int γ

int
1 p(x) = ρ−1

ext γ
ext
1 p(x) for x ∈ Γ, (37d)

where the wave numbers kint and kext are defined as ω/cint and ω/cext, respectively,
with ω being the angular frequency, and p(x) denotes the pressure perturbation at
point x. We want to calculate the pressure generated by the incident wave pinc(x) ful-
filling the exterior Helmholtz equation (37b) in the whole three-dimensional space.
Thus, we decompose the total field in the exterior medium into a sum of the incident
and scattered field,

p(x) = pinc(x) + psc(x) for x ∈ R
3 \ Ω, (38)

with the scattered field fulfilling Sommerfeld’s radiation conditions at infinity,

lim
|x|→∞

|x|
[
∂

∂|x|psc(x)− ikextpsc(x)

]

= 0. (39)

There exist several integral-equation formulations of the scattering problem pre-
sented above. One that will be suitable for our presentation was given by Kleinman
and Martin [1988] and reads

[

Dext + α−1Dint Text + Tint

Kext +Kint −Vext − αVint

] [
γext
0 p
γext
1 p

]

=

[
γext
1 pinc

−γext
0 pinc

]

, (40)

where α := ρint/ρext and V , K, T and D are the single-layer potential, double-layer
potential, adjoint double-layer potential and hypersingular boundary operators for the
interior or exterior Helmholtz equation (depending on the subscript). This formula-
tion has the virtue of being free from the irregular frequency problem [Kleinman and
Martin 1988].

The overall structure of the code required to solve this system of equations is similar
to that presented in the previous section, so we will only discuss newly introduced fea-
tures. The full code is available in scattering.py script included in the Supplementary
Material.

Creation of operators. The first difference with respect to the code used to solve the
Laplace equation is that the operators we are dealing with are now complex-valued.
This needs to be indicated in the call to createNumericalQuadratureStrategy() by
setting its second argument to "complex128":

quadStrategy = createNumericalQuadratureStrategy(
"float64", "complex128", accuracyOptions)

The construction of the elementary operators proceeds very similarly to the Laplace
case, except that it becomes necessary to specify the wave number:

rhoExt = 1.; rhoInt = 2.; kExt = 4.; kInt = kExt / 5.

slpOpInt = createHelmholtz3dSingleLayerBoundaryOperator(
context, pconsts, plins, pconsts, kInt, "SLP_int")

slpOpExt = createHelmholtz3dSingleLayerBoundaryOperator(
context, pconsts, plins, pconsts, kExt, "SLP_ext")

dlpOpInt = createHelmholtz3dDoubleLayerBoundaryOperator(

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.
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context, plins, plins, pconsts, kInt, "DLP_int")
dlpOpExt = createHelmholtz3dDoubleLayerBoundaryOperator(

context, plins, plins, pconsts, kExt, "DLP_ext")

hypOpInt = createHelmholtz3dHypersingularBoundaryOperator(
context, plins, pconsts, plins, kInt, "Hyp_int")

hypOpExt = createHelmholtz3dHypersingularBoundaryOperator(
context, plins, pconsts, plins, kExt, "Hyp_ext")

As before, we use the space S1
h(Γ) of piecewise linears to expand γext

0 p and the space
S0
h(Γ) of piecewise constants to expand γext

1 p. These two spaces will also used to test
the first and second equation, respectively.

The composite operators to be placed in individual blocks are defined with

alpha = rhoInt / rhoExt
lhsOp00 = hypOpExt + (1./alpha) * hypOpInt
lhsOp10 = dlpOpExt + dlpOpInt
lhsOp01 = adjoint(lhsOp10)
lhsOp11 = -slpOpExt - alpha * slpOpInt

Note that it is not necessary to create elementary adjoint double-layer potential bound-
ary operators: the operator Text + Tint can be constructed by passing the object repre-
senting the sum Kext +Kint to the adjoint() function. The resulting adjoint operator
will reuse the discrete weak forms of the double-layer potential boundary operators,
as is the case for other composite operators, such as sums.

Since we are dealing with a system of two integral equations, we need to construct
a BlockedBoundaryOperator object, as indicated in section 3.3. This is very easy in
Python—the individual blocks are passed simply as members of a nested list:

lhsOp = createBlockedBoundaryOperator(
context, [[lhsOp00, lhsOp01], [lhsOp10, lhsOp11]])

Incident field. We choose the incident field to be a plane wave propagating in the
x direction. The grid functions representing its Dirichlet and Neumann traces on Γ are
defined in the familiar way:

def uIncDirichletTrace(point):
x, y, z = point
return np.exp(1j * kExt * x)

uInc = createGridFunction(context, plins, pconsts, uIncDirichletTrace)

def uIncNeumannTrace(point, normal):
x, y, z = point
nx, ny, nz = normal
return 1j * kExt * nx * np.exp(1j * kExt * x)

uIncDeriv = createGridFunction(context, pconsts, plins, uIncNeumannTrace,
surfaceNormalDependent=True)

Solution and preconditioning. The equations can now be solved by constructing the
solver in the way described in section 4.1—which we do not repeat here—and passing
the list of grid functions occupying the individual blocks of the right-hand side to the
solve() method:

solution = solver.solve([uIncDeriv, -uInc])

However, the convergence of the GMRES solver is slow: already for a 1280-element
spherical grid 270 iterations are required to reduce the residual norm below 1E−8,
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and the number of iterations grows rapidly with the size of the grid. We will therefore
apply a preconditioner to speed up the calculations. Owing to the structure of eq. (40),
a natural preconditioner is the approximate inverse of

[

Dext + α−1
Dint 0

0 −Vext − αVint

]

, (41)

where the sans-serif symbols denote discrete weak forms of the operators labelled with
the corresponding serif letters.

Remark 4.1. We note that the block diagonal preconditioner given in (41) is not
stable with respect to all wavenumbers. We have nevertheless chosen to present this
preconditioner as it is very simple to apply in BEM++, gives good performance for low
to moderate wavenumbers unless very close to a resonance, and demonstrates the ef-
fectiveness of purely algebraic preconditioning based on H-matrix LU decompositions.

Approximate inverses of H-matrices can be obtained readily by means of the ap-
proximate H-matrix LU decomposition algorithm [Bebendorf 2008, pp. 180–183]. To
construct the above preconditioner, we can use the following code:

precTol = 1e-2
invLhsOp00 = acaOperatorApproximateLuInverse(

lhsOp00.weakForm().asDiscreteAcaBoundaryOperator(), precTol)
invLhsOp11 = acaOperatorApproximateLuInverse(

lhsOp11.weakForm().asDiscreteAcaBoundaryOperator(), precTol)
prec = discreteBlockDiagonalPreconditioner([invLhsOp00, invLhsOp11])

This acaOperatorApproximateLuInverse() function takes two arguments: a Discrete-
AcaBoundaryOperator object, i.e. a discrete operator stored as an H-matrix, and a
number δ controlling the approximation accuracy. It returns a new discrete opera-
tor storing the approximate LU decomposition of the original operator and acting
as its approximate inverse. To obtain the required DiscreteAcaBoundaryOperators,
we proceed in two steps. First, we call weakForm() to retrieve references to the dis-
crete weak forms of the boundary operators that we want to invert. These operators
are in fact superpositions of pairs of elementary boundary operators, and hence, as
mentioned in section 4.1, their weak forms are little more than thin wrappers over
pointers to the weak forms of the individual operands. Therefore we need to call the
asDiscreteAcaBoundaryOperator() method, which uses the H-matrix arithmetics to
“compress” a DiscreteBoundaryOperator to a single H-matrix and returns the result-
ing DiscreteAcaBoundaryOperator object. In the above snippet, we call the method
without any arguments; however, it accepts two optional parameters than can be
used to control the accuracy of arithmetic operations used to generate the resulting
H-matrix (H-matrix arithmetic being intrinsically non-exact).

Currently, asDiscreteAcaBoundaryOperator() is not yet supported for all discrete
boundary operators; in particular, it cannot be used to convert to H-matrices products
of operators or operators stored in the dense form. However, the most common types of
composite operators, such as linear superpositions or (even) blocked operators, can be
transformed into single H-matrices.

The discreteBlockDiagonalPreconditioner() function produces a Preconditioner
object wrapping a block-diagonal operator, with the argument being a list of discrete
operators to be placed in the diagonal blocks. This function is provided for convenience,
block-diagonal operators being an important class of preconditioners. It is possible
to make a preconditioner out of any discrete operator; it suffices to pass it to the
discreteOperatorToPreconditioner() function.
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The newly created preconditioner needs now to be made available to the linear
solver. This can be done with the second (optional) parameter to the initialize-
Solver() method:

solver.initializeSolver(params, prec)

The application of this preconditioner reduces the number of iterations to 32 for the
1280-element grid, and this number stays roughly constant as the grid is refined (with
the wave number kept constant).

Off-surface field evaluation. The two components of the solution, the exterior Dirich-
let and Neumann traces of the total pressure field on Γ, can be retrieved with

uExt = solution.gridFunction(0)
uExtDeriv = solution.gridFunction(1)

The traces may be plotted in the same way as in the Laplace case, i.e. by calling
plotGridFunction() from the visualization module. In many cases one is interested,
however, not only in the values of the field on the computational surface, but also away
from it. These can be calculated using the Green’s representation formula, which reads

p(x) =

{
pinc(x)− (Vextγ

ext
1 psc)(x) + (Kextγ

ext
0 psc)(x) for x ∈ R

3 \ Ω,
(Vextγ

int
1 p)(x)− (Kextγ

int
0 p)(x) for x ∈ Ω \ Γ, (42)

where the calligraphic letters denote the single- and double-layer potential operators
(cf. section 3.6) associated with the fundamental solution of the Helmholtz equation
in the interior and exterior domain. Their representations in BEM++, instances of
subclasses of PotentialOperator, are created as follows:

slPotInt = createHelmholtz3dSingleLayerPotentialOperator(context, kInt)
dlPotInt = createHelmholtz3dDoubleLayerPotentialOperator(context, kInt)

etc. To evaluate a potential Af , where A is a potential operator and f a grid function, at
points {xi}ni=1, one should call the evaluateAtPoints() method of PotentialOperator.
It takes a GridFunction object representing the function f acted upon by the opera-
tor, a two-dimensional NumPy array whose columns should contain the coordinates of
the points {xi}ni=1, and an EvaluationOptions object that controls some aspects of the
evaluation procedure, such as the level of parallelisation. For instance, assuming that
the array points contains the coordinates of some points lying inside Ω, the snippet

evalOptions = createEvaluationOptions()
vals = ( slPotInt.evaluateAtPoints(uIntDeriv, points, evalOptions)

- dlPotInt.evaluateAtPoints(uInt, points, evalOptions))

will produce an array of values of the pressure field at these points. The file
scattering.py included in the Supplementary Material contains the complete code
needed to calculate and plot the pressure field sampled at a regular grid of 201 × 201
points lying in the xy plane, together with the surface of the scatterer represented as
a wireframe grid. The graph generated in this way is shown in figure 6.

Benchmarks. Table VII shows the results obtained by running the code presented
in this section on a series of spherical grids, with the ratio of exterior wavelength
λ := 2π/kext to element size h kept constant and approximately equal to 10. The ratio of
kext to kint was also fixed and equal to 5. In all calculations, the ACA tolerance ǫ was set
to 10E−4 and the solver tolerance to 10E−8. The maximum rank of H-matrix blocks
to be considered low-rank during ACA was set to 1500 to reduce peak memory con-
sumption in AHMED. Regular Galerkin integrals were approximated using quadra-
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Fig. 6. Cross-section of the pressure distribution generated by plane wave impinging on a permeable
sphere, as calculated with the code presented in section 4.2.

Table VII. H-matrix assembly and solution times of the problem of plane-wave scattering on a permeable unit sphere.
All times are given in seconds.

Compr. rate (%) No prec. Prec. (δ = 0.1) Prec. (δ = 0.01)

kext #Elem. tass Vext Kext Dext #It. tsol tHLU #It. tsol tHLU #It. tsol

1 80 0.4 100 100 100 47 0.03 0.0 17 0.0 0.0 15 0.0
2 320 0.9 92 93 100 100 0.19 0.0 23 0.0 0.1 19 0.0
4 1280 4.2 48 56 67 286 1.85 0.7 54 0.4 1.0 32 0.3
8 5120 24.9 20 22 31 786 35.2 3.4 50 2.7 7.1 40 2.4

16 20480 147.9 8 10 14 — — 23.2 231 62.1 49.7 190 60.3
32 81920 904.8 3 4 6 — — 169.5 1068 1667.3 445.6 250 495.6

ture rules of order greater by 2 than default7 and singular integrals with quadrature
rules of the default order of accuracy. The table shows the assembly times tass for the
block operator system, compression rates achieved in the storage of the three exterior
operators Vext, Kext and Dext

8, the times tHLU taken by the H-LU decompositions, and
the GMRES solver iteration counts #It. and solver times tsol. The table compares the
values obtained for no preconditioning with those for the block-diagonal preconditioner
defined in eq. (41), for two values of the H-LU decomposition accuracy δ. In table VIII
we present the associated errors measured against an accurate solution obtained by
series expansion.

Extraordinary acoustical transmission and screening. The laws of scalar acoustics
apply essentially in gaseous and liquid media; the propagation of sound in solids is
governed by the more complex theory of elasticity. However, the problem of scatter-

7This choice yields 3 quadrature points on elements supporting piecewise constant basis functions and
4 quadrature points on those supporting piecewise linear basis functions.
8The compression rate is defined as the ratio between the memory consumption of the H-matrix and the
equivalent dense matrix. The compression rates of the interior operators—not shown—are slightly better
because kint < kext.
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Table VIII. Errors for the problem of plane-wave scattering on a permeable unit sphere.

Dirichlet trace Neumann trace

kext #Elem. Rel. L2 error Rel. H
1

2 error Rel. L2 error Rel. H−

1

2 error

21 80 2.70E−2 4.34E−2 3.05E−1 1.10E−1
12 320 1.81E−2 3.73E−2 1.86E−1 5.46E−2
14 1280 1.08E−2 3.16E−2 1.37E−1 3.54E−2
88 5120 8.11E−3 2.88E−2 1.17E−1 2.73E−2

616 20480 6.79E−3 2.75E−2 1.08E−1 1.96E−2
632 81920 6.73E−3 2.71E−2 1.05E−1 2.15E−2

ing of sound on solid objects can often be simplified by treating them as sound-hard
obstacles, i.e. by imposing on their surface homogeneous Neumann boundary condi-
tions instead of the more rigorous transmission conditions. This leads to the exterior
Neumann problem for the Helmholtz equation. Its most popular stable (free from the
irregular frequency problem) integral formulation is due to Burton and Miller [1971]
and reads

(
1

2
I −K + αD

)

γext
0 p = γext

0 pinc + αγext
1 pinc, (43)

where I is the identity operator, K and D the double-layer potential and hypersingular
boundary operators for the exterior domain, and α is an imaginary coupling coefficient,
usually chosen, after Kress [1985], as i/kext.

After small modifications, the code developed in this section can be used to handle
this class of problems. As an illustraction, we will consider the application of BEM++
to the modelling of sound scattering by perforated metallic plates. In 1998, Ebbesen
et al. reported that metallic screens pierced by an array of subwavelength holes be-
came almost transparent to light at certain frequencies—letting through much more
energy than one would expect judging on the air filling fraction. This effect, dubbed
the extraordinary optical transmission, excited a lot of interest, and its physical mech-
anism, based on the interaction of long-range propagating surface waves and localised
cavity modes, was intensely studied in the last decade [Liu and Lalanne 2008; Garcı́a
de Abajo 2007]. More recently, an analogous effect was observed for acoustic waves
[Estrada et al. 2008], together with the phenomenon of extraordinary screening—very
low transmittance at specific frequencies. Here we present results of calculations per-
formed for one of the geometries studied experimentally and theoretically by Estrada
et al. [2008].

We consider a plane wave of wavelength λ propagating along the +z direction and
impinging perpendicularly on a finite aluminum plate of thickness t = 3 mm, perfo-
rated with an array of m × n circular holes with diameter d = 3 mm, arranged on
a square lattice with period a = 5 mm. The plate is treated as a sound-hard obsta-
cle. Its lateral dimensions are such that the centres of the outermost holes lie at the
distance a/2 from the plate’s edges.

Figure 7 shows the pressure distributions generated by plane waves of wavelengths
5.4 mm (top) and 8 mm (bottom). In each case, the field on the surface of the plate is
juxtaposed with the map of the field in the y = 0 plane. The figure obtained for the
shorter wavelength illustrates the effect of extraordinary screening—the amplitude of
the transmitted wave is low and strong interference fringes behind the plate testify
its high reflectivity—while at the longer wavelength most of the incoming energy is
transmitted through the obstacle. These results are in agreement with the findings of
Estrada et al. [2008].

The simulations were done by discretising eq. (43) on a 31,966-element mesh rep-
resenting the plate with 9 × 7 holes. The incident field and the sought total field were
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Fig. 7. Magnitude of the acoustic pressure generated by a plane wave with wavelength 5.4 mm (top) and
8 mm (bottom) impinging on a perforated sound-hard plate with dimensions specified in the text.

expanded in the space of continuous piecewise linear functions. This led to an alge-
braic system of equations with 15,859 unknowns. The quadrature orders were chosen
as in the section “Benchmarks” above. The GMRES tolerance was set to 1E−8. At an
ACA tolerance of 1E−5, the discrete weak forms of K and D were compressed to 20%
and 15% of the corresponding dense-matrix memory usage, respectively, at the shorter
wavelength of λ = 5.4 mm; at λ = 8 mm these figures were 18% and 14%. The total
solution time (excluding off-surface evaluation of the calculated field) at λ = 5.4 mm
was 403 s and at λ = 8 mm, 361 s. The script used in the simulations, holey plate.py,
together with the mesh holey plate.msh, is included in the Supplementary Material.

4.3. Laplace equation with mixed boundary conditions

We will discuss now how BEM++ can be used to solve problems with mixed boundary
conditions. Consider the Laplace equation imposed inside a domain Ω with boundary Γ,
with Dirichlet boundary conditions prescribed on a subset of the boundary, ΓD ⊂ Γ, and
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Neumann boundary conditions prescribed on the rest of the boundary, ΓN = Γ \ ΓD:

(∆u)(x) = 0 for x ∈ Ω, (44a)

γext
0 u(x) = gD(x) for x ∈ ΓD, (44b)

γext
1 u(x) = gN(x) for x ∈ ΓN. (44c)

A boundary integral formulation of this problem reads [Steinbach 2008, p. 179]

(V t̃)(x)− (Kũ)(x) =

(
1

2
I +K

)

g̃D(x)− (V g̃N)(x) for x ∈ ΓD, (45a)

(Dũ)(x)− (K ′t̃)(x) =

(
1

2
I −K ′

)

g̃N(x)− (Dg̃D)(x) for x ∈ ΓN, (45b)

where g̃D ∈ H
1

2 (Γ) and g̃N ∈ H− 1

2 (Γ) are suitable extensions of the prescribed boundary

data gD ∈ H
1

2 (ΓD) and gN ∈ H− 1

2 (ΓN) to the whole surface of the domain, whereas the
new unknowns ũ and t̃ are defined as

ũ := γint
0 u− g̃D, t̃ := γint

1 u− g̃N. (46)

These functions ara nonzero only on ΓN and ΓD, respectively.
The special difficulty of handling problems with mixed boundary conditions lies in

the need of introducing function spaces defined only on parts (segments) of grids.
Since version 2.0, BEM++ offers this possibility: each function constructing a Space ob-
ject (e.g. createPiecewiseConstantScalarSpace()) takes an optional argument of type
GridSegment, which describes the part of a grid to which the support of basis functions
of the newly constructed Space should be restricted. A GridSegment is effectively a list
of the indices of the elements, edges and vertices belonging to the chosen part of the
grid.

Suppose that a grid has been imported from the Gmsh file grid.msh by calling

grid = createGridFactory().importGmshGrid("triangular", "grid.msh")

A Gmsh file can contain indices of so-called physical entities associated with elements.
(In the BEM++ documentation we prefer to use the term domain indices to avoid con-
fusion with entities understood as elements of grids—faces, edges and vertices.) If the
elements belonging to ΓD have been assigned the physical entity index (domain index)
1 and those belonging to ΓN the index 2, then GridSegment objects representing the
two parts of the grid can be constructed as follows:

segmentD = GridSegment.closedDomain(grid, 1)
segmentN = segmentD.complement()

The closedDomain(grid, index ) static function creates a segment consisting of the
elements of the grid grid whose domain index is equal to index , together with all
their edges and vertices. The four standard set operations (union, difference, inter-
section and complement) are defined for GridSegment objects, which makes it possible
to construct more complicated segments. Above, segmentN is set to the complement
of segmentD; thus, it will contain all the elements belonging to ΓN and the edges and
vertices lying inside ΓN, excluding the edges and vertices lying on the boundary sepa-
rating ΓN from ΓD.

With the segmentD and segmentN objects available and after creating a Context ob-
ject, which is done as in the previous section, the spaces of piecewise constants and
(continuous) piecewise linears on ΓD and ΓN can be constructed as follows:

pwiseConstantsD = createPiecewiseConstantScalarSpace(
context, grid, segmentD)
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pwiseConstantsN = createPiecewiseConstantScalarSpace(
context, grid, segmentN)

pwiseLinearsD = createPiecewiseLinearContinuousScalarSpace(
context, grid, segmentD)

pwiseLinearsN = createPiecewiseLinearContinuousScalarSpace(
context, grid, segmentN)

The way a Space constructor uses the lists of indices from a GridSegment object is space-
dependent. For example, pwiseConstantsD will include only the piecewise constant ba-
sis functions defined on the elements belonging to segmentD, whereas pwiseLinearsD
will include only the continuous, piecewise linear (“hat”) basis functions associated
with the vertices belonging to segmentD. Note that, as a result, the support of some
basis functions of pwiseConstantsD, namely those associated with the vertices lying on
the boundary of ΓD, will extend outside ΓD. It is possible to clip all basis functions to
the elements belonging to ΓD by setting the optional parameter strictlyOnSegment to
True:

clippedPwiseLinearsD = createPiecewiseLinearContinuousScalarSpace(
context, grid, segmentD, strictlyOnSegment=True)

Note that functions belonging to a space constructed in this way will still be continuous
on the specified grid segment, but not on the whole grid.
BoundaryOperator objects representing the operators V , K etc. from eq. (45) are

constructed as usual, with pwiseConstantsD, pwiseLinearsD, pwiseConstantsN and
pwiseLinearsN passed as the domain, range and dual-to-range spaces, as appro-
priate. The construction of the GridFunction objects representing g̃D and g̃N re-
quires some extra care. Suppose that the Python functions evalDirichletTrace() and
evalNeumannTrace() return the values of gD and gN on ΓD and ΓN. To find the best ap-

proximation in pwiseLinearsD of an extension g̃D ∈ H
1

2 (Γ) of gD ∈ H
1

2 (ΓD), we cannot
simply write

dirichletTraceD = createGridFunction(
context, pwiseLinearsD, pwiseLinearsD, evalDirichletTrace)

Instead, we should choose as the dual space (the third argument) a space of functions
defined strictly on ΓD:

dirichletTraceD = createGridFunction(
context, pwiseLinearsD, clippedPwiseLinearsD, evalDirichletTrace)

In this way, the coefficients of dirichletTraceD in the basis of pwiseLinearsD
are determined solely from the values of g̃D on ΓD; the form of the basis func-
tions of pwiseLinearsD will then automatically ensure the global continuity of
dirichletTraceD and its linear decay to zero within one layer of elements adjacent
to ΓD.

Since the basis functions of pwiseConstantsN do not extend outside ΓN, the best
approximation of g̃N in pwiseConstantsN can be simply obtained with

neumannTraceN = createGridFunction(
context, pwiseConstantsN, pwiseConstantsN, evalNeumannTrace)

The construction of a BlockedBoundaryOperator and a vector of GridFunctions repre-
senting the left- and right-hand side of eq. (45), as well as the solution of the resulting
system, is done as in section 4.2. This yields the GridFunctions dirichletTraceN and
neumannTraceD approximating ũ : ΓN → R and t̃ : ΓD → R. Typically, one is interested
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Table IX. Error of the solution of the Laplace equation with mixed boundary condi-
tions on spherical meshes with varying number of elements. The total number of
unknowns is roughly equal to 75% of the number of elements.

Dirichlet trace Neumann trace

#Elem. Rel. L2 error Rel. H
1

2 error Rel. L2 error Rel. H−

1

2 error

320 5.87E−4 1.26E−2 3.96E−2 9.36E−3
1280 1.41E−4 4.36E−3 1.95E−2 3.15E−3
5120 3.48E−5 1.53E−3 9.67E−3 1.09E−3

20480 8.65E−6 5.39E−4 4.82E−3 3.82E−4
81920 2.14E−6 1.90E−4 2.41E−3 1.35E−4

in γint
0 u and γint

1 u rather than ũ and t̃. From eq. (46) γint
0 u = ũ + g̃D; however, it is not

possible to write

dirichletTrace = dirichletTraceD + dirichletTraceN

since the two GridFunctions on the right-hand side are expanded in different func-
tion spaces. The remedy is to create identity operators mapping pwiseLinearsD and
pwiseLinearsN into the space of continuous piecewise linears defined on the whole
grid, pwiseLinears:

pwiseLinears = createPiecewiseLinearContinuousScalarSpace(
context, grid)

scatterPwiseLinearsD = createIdentityOperator(
context, pwiseLinearsD, pwiseLinears, pwiseLinears)

scatterPwiseLinearsN = createIdentityOperator(
context, pwiseLinearsN, pwiseLinears, pwiseLinears)

and to use them to bring dirichletTraceD and dirichletTraceN into a common func-
tion space:

dirichletTrace = (scatterPwiseLinearsD * dirichletTraceD +
scatterPwiseLinearsN * dirichletTraceN)

The script interior laplace mixed.py included in the Supplementary Material is
a complete implementation of the ideas outlined in this section. The script solves the
Laplace equation inside the unit sphere with Dirichlet boundary conditions imposed on
the part of its boundary with x2 > x3/

√
3 and Neumann boundary conditions imposed

on the rest of the boundary; the functions gD(x) and gN(x) are derived from the exact

solution (27). Table IX lists the relative L2(Γ)- and H± 1

2 (Γ)-errors of the Dirichlet and
Neumann traces obtained using a selection of spherical grids. In all calculations, the
ACA tolerance ǫwas set to 10E−7 and the solver tolerance to 10E−8. Regular integrals
over pairs of elements were approximated using quadrature rules of order greater by 4
than default, integrals over single elements using quadrature rules of order greater
by 2 than default, and singular integrals with quadrature rules of the default order of
accuracy. The convergence rates of γint

0 u and γint
1 u match those observed and predicted

for pure Dirichlet and Neumann problems discussed in section 4.1.

4.4. Maxwell equations

Exterior Dirichlet problem. In the first example, we will solve the Maxwell equations
(12) in the exterior of a unit sphere Ω, on whose surface Γ we impose the Dirichlet
boundary conditions derived from the exact solution

Eexact(x) = eφh
(1)
1 (kr) for x ∈ R

3 \ Ω. (47)
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Above, h
(1)
1 (·) is the spherical Hankel function of the first kind and first order, (r, θ, φ)

are the spherical coordinates anchored at the point x0 with Cartesian coordinates
(0.1, 0.1, 0.1), the symbol eφ denotes the unit vector parallel to dx/dφ and k is the wave
number.

An integral formulation of this problem is given by eq. (18a). To solve it with BEM++,
we proceed similarly as in previous sections. We first create a space spanning the
lowest-order Raviart-Thomas basis function defined on the grid’s elements:

space = createRaviartThomas0VectorSpace(context, grid)

Afterwards, we construct the necessary operators:

slpOp = createMaxwell3dSingleLayerBoundaryOperator(
context, space, space, space, k, "SLP")

dlpOp = createMaxwell3dSingleLayerBoundaryOperator(
context, space, space, space, k, "SLP")

idOp = createMaxwell3dIdentityOperator(
context, space, space, space, "Id")

Note that we used the createMaxwell3dIdentityOperator() function instead of
createIdentityOperator(), as the latter function would create an operator with the
weak form defined with regard to the standard sesquilinear inner product rather than
the antisymmetric pseudo-inner product used in Buffa and Hiptmair’s [2003] formal-
ism.

We also need to create a GridFunction representing the Dirichlet data γDEexact :=
Eexact|Γ × n. To this end, we first define a Python function returning a three-element
array, whose elements will be interpreted by BEM++ as the components of the vector
γDEexact at a given point:

def evalDirichletTraceInc(point, normal):
x, y, z = point - 0.1
r = sqrt(x**2 + y**2 + z**2)
kr = k * r
h1kr = (-1j - kr) * exp(1j * kr) / (kr * kr)
field = h1kr * [-y / r, x / r, 0.]
return np.cross(field, normal)

Subsequently, we call createGridFunction, as usual:

dirichletTraceInc = createGridFunction(
context, space, space, evalDirichletTraceInc,
surfaceNormalDependent=True)

The rest of the program is fairly standard. The complete script, exterior maxwell
dirichlet.py, can be found in the Supplementary Material.

Table X shows the results obtained by running the above script on a series of spher-
ical grids, with the wavelength-to-element-size ratio λ/h kept constant and approx-
imately equal to 10. Numerical quadrature of regular integrals was done using a
quadrature rule of order greater by 2 than the library’s default; that of singular in-
tegrals, using the default rule. The ACA tolerance ǫ was fixed to 1E−4. We found that
increasing quadrature order or decreasing ACA tolerance had negligible effect on the
accuracy of the solution. We used an approximate H-LU decomposition of the opera-
tor S to precondition the GMRES iterative solver; the LU accuracy was set to 0.1 and
the GMRES solver tolerance to 1E−8. The solution error initially decreases quickly
with element size, and then becomes stable. The fast initial decay is an artifact caused
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Table X. Benchmarks for the solution of the Dirichlet problem for Maxwell equations outside a unit
sphere. The memory use of the operator S is listed in megabytes and in percent of the memory
use of an equivalent dense operator. The memory and time consumption of C is very similar and
has been omitted for brevity. The number of unknowns is roughly equal to 150% of the number of
elements.

S Preconditioner Solver Rel.

k #Elem. Mem. (MB / %) t (s) Mem. (MB) t (s) #It. t (s) L2 error

1 80 0.2 / 100 0.1 0.2 0.0 7 0.0 4.4E−1
2 320 3.5 / 99 0.5 1.5 0.2 19 0.0 1.1E−1
4 1280 36.3 / 65 2.7 10.1 1.5 37 0.2 4.0E−2
8 5120 243.5 / 27 12.1 70.6 10.8 42 1.7 2.5E−1

16 20480 1547.7 / 11 62.1 543.7 72.0 180 32.9 2.1E−1
32 81920 10355.2 / 4 441.4 4547.9 682.9 255 325.1 2.0E−1

by the fact that the influence of the field singularity at x0 on the field’s behaviour on Γ
becomes weaker as the wavelength decreases.

Scattering by a screen. The second, more practical example concerns the calculation
of the field radiated by a horn antenna, represented as an open (infinitesimally thin)
perfectly conducting screen. The geometry of the object is shown in fig. 8(a). The ex-
citation field Einc is generated by a z-oriented electric dipole located on the symmetry
axis of the feeding waveguide, 4.5 mm to the left from the input plane of the horn.
In the simulation the waveguide is taken to be short-circuited on its left end. As the
waveguide is single-moded and at the simulation frequency, corresponding to the wave-
length 3 mm, its most slowly evanescent mode has decay length of only 0.56 mm, the
excitation field is very close to that of the fundamental mode of the waveguide.

The problem can be reduced to solving the electric-field integral equation

SkU = γDEinc, (48)

where U is the jump of γN,extE across the screen. This equation can be derived by
subtracting eqs. (17a) and (18a) describing the interior and exterior Dirichlet problems
with γD,intE = γD,extE = −Einc on a perfectly conducting screen of finite thickness d
and taking the limit d ↓ 0. Physical considerations [Bouwkamp 1950] additionally
impose the edge condition: the edge-parallel component of E vanishes on all edges
of the screen. Numerically, this condition is imposed by setting the coefficients of all
Raviart-Thomas basis functions associated with the screen edges to zero. This is the
default behaviour of BEM++; if necessary, it can be changed by setting the optional
parameter putDofsOnBoundaries of createRaviartThomas0VectorSpace() to True.

The horn antenna.py script solving the above problem can be found in the Supple-
mentary Material. The antenna was discretised with 55,006 triangular elements with
typical size of h ≈ λ/10 (λ/15 on the feeding waveguide), which led to a linear system
of size 82,393. To improve load balancing, the maximum H-matrix block size was set
to 10,000. All remaining calculation parameters were chosen as in the previous sec-
tion. Assembly of the H-matrix representation of the discretisation of Sk took 160 s;
the compression rate was 4%. The H-LU preconditioner was generated in 198 s. The
GMRES solver converged in 105 iterations and 56 s. Figure 8(b) shows the magnitude
of the field on the horizontal symmetry plane of the antenna (z = 0), and fig. 8(c) the
radiation patterns (normalised to their maxima) on the planes horizontal and vertical
symmetry planes (z = 0 and x = 0, respectively).

An example of solving an electromagnetic transmission problem with BEM++ is
given in Betcke et al. [2013].
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Fig. 8. (a) Geometry of the horn antenna (not to scale). (b) Magnitude of the electric field on the horizontal
symmetry plane of the antenna. (c) Normalised radiation patterns generated by the antenna in horizontal
and vertical symmetry planes.

5. FUTURE DEVELOPMENTS

The core library is now stable and supports a variety of problems based on Laplace,
Helmholtz or Maxwell equations. Some smaller functionalities of the library have not
been described here, such as a growing Python module generating meshes of primitive
objects (for benchmarking) or the interface to PyTrilinos.

Work is ongoing on the implementation of additional preconditioners, such as al-
gebraic multigrid preconditioners for Laplace-type problems [Of 2008] and Calderon
preconditioners for the electric-field integral equation [Andriulli et al. 2008].

A big development focus at the moment is the integration of Fast Multipole Methods
for the various kernels. Initial developments are available in an experimental branch
and will be included in the main code in one of the upcoming major releases once they
are sufficiently optimised.

A significant area of interest is also fast boundary element methods on modern
many-core architectures. The current version of BEM++ uses Intel TBB [Intel 2012]
to parallelise operations on shared-memory systems. The current implementation per-
forms well on modern multicore systems with 12 to 16 CPU cores. However, paralleli-
sation on true many-core architectures, such as NVIDIA Tesla or Intel MIC requires
different strategies and will be a focus of development in the coming years.
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AND SANDER, O. 2008a. A generic grid interface for parallel and adaptive scientific computing. part II:
Implementation and tests in DUNE. Computing 82, 2–3, 121–138.

BASTIAN, P., BLATT, M., DEDNER, A., ENGWER, C., KLÖFKORN, R., OHLBERGER, M., AND SANDER, O.
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