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We study how boundary conditions affect the multiple-scale analysis of

hyperbolic conservation laws with rapid spatial fluctuations. The most

significant difficulty occurs when one has insufficient boundary conditions to

solve consistency conditions. We show how to overcome this missing boundary

condition difficulty for both linear and nonlinear problems through the recovery

of boundary information. We introduce two methods for this recovery (multiple-

scale analysis with a reduced set of scales, and a combination of Laplace

transforms and multiple scales) and show that they are roughly equivalent. We

also show that the recovered boundary information is likely to contain secular

terms if the initial conditions are nonzero. However, for the linear problem, we

demonstrate how to avoid these secular terms to construct a solution that is valid

for all time. For nonlinear problems, we argue that physically relevant problems

do not exhibit the missing boundary condition difficulty.

1. Introduction

In this article, we study one-dimensional, hyperbolic conservation laws with

rapidly fluctuating coefficients over the semi-infinite domain. We are primarily
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interested in the role that boundary conditions play in the multiple-scale

analysis of these problems, developed by Kevorkian and Bosley in [1] to study

initial-value problems on the infinite domain.

Hyperbolic conservation laws, which typically arise from such physical

principles as the conservation of mass, momentum, or energy, govern the

propagation of information at finite speeds through somemedium. The governing

equations for shallow water waves and acoustics are canonical examples.

When properties of the medium being modeled have rapid spatial variations,

the governing hyperbolic conservation laws typically exhibit these variations in

their coefficients. For example, wave propagation in a bubbly liquid [2, 3], and

gravity waves in a channel with a rough bottom [4] are modeled using

hyperbolic conservation laws with rapid spatial fluctuations. If these

fluctuations are large (for example, the amplitude of fluctuations being

comparable to its average value), regular perturbation techniques cannot be

used. In such situations, the exact solution to the conservation laws cannot be

derived analytically. Instead, we seek to determine the qualitative effects of

these rapid spatial fluctuations or to find ‘‘effective’’ equations that describe the

homogenized (averaged) behavior of the system.

The literature in the area of homogenization is vast and encompasses many

disciplines of mathematics. Systematic treatment of the theory of homogeniza-

tion began with the work of Bensoussan, Lions, and Papanicolaou in 1978,

although the application of multiple scales to the theory of homogenization was

anticipated by J. B. Keller [5]. Another standard reference in this field is

Bakhvalov and Panasenko [6]. For a list of specific applications of

homogenization techniques, see Kevorkian and Bosley [1].

1.1. Missing boundary condition difficulty

Almost all physically relevant problems involve boundaries of some sort and,

therefore, necessitate the enforcement of boundary conditions. For a given

system of conservation laws, we can specify only a certain number of boundary

conditions for a well-posed problem. However, the equations that describe the

homogenized behavior of the system are typically of higher order than the

original problem, and therefore, require more boundary conditions than can be

specified without ill-posedness. In [7], Santosa and Symes encounter this

‘‘missing boundary condition difficulty,’’ in the context of using Bloch wave

expansions to derive an effective equation for wave propagation in a periodic

composite material. They note that ‘‘in the presence of boundaries, none of

what is discussed up to now is valid, some other approach will be necessary.’’

1.2. Proposed work

In Section 2, we recount how to write a general system of hyperbolic

conservation laws in a standard form. We also discuss how initial conditions
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must be carefully chosen to avoid solutions that depend on the fast temporal

scale t* = t/�. We then present two methods for analyzing systems of

hyperbolic conservation laws with rapid spatial fluctuations. The first is the

usual multiple-scale method (Section 3), and the second is a combination of

Laplace transforms and multiple-scale analysis (Section 4). Using both

methods, we highlight the missing boundary condition difficulty and show

how to overcome it through the recovery of boundary information.

2. Problem description

In this section, we describe a standard form for analyzing systems of

conservation laws with rapidly fluctuating quantities and discuss how initial

conditions must be carefully chosen to avoid solutions that depend on t* = t/�.

2.1. Problem set-up

In this article, we consider partial differential equations of the form

ut þ Aðx*Þux þ Bðx*Þu ¼ �½Cðu; x*Þuþ Dðu; x*Þux� þ Oð�2Þ; ð1Þ

where the vector of unknown functions is u, and A, B, C, D are all matrices with

C and D depending linearly in u. In [1], Kevorkian and Bosley show that this is

the most general form of partial differential equations that arises when we

perturb a general, one-dimensional, quasilinear system of conservation laws

about a known steady-state solution. Furthermore, the original conservation

laws may depend explicitly on the fast spatial variable x* = x/�. (See [1] for

many examples and for the precise definitions of A, B, C, D in terms of the

original conservation laws.)

We use the standard form (1) repeatedly throughout this article, because it

gives us a unified way of analyzing systems of hyperbolic conservation laws. In

particular, we only consider pairs of conservation laws, so all of the matrix

coefficients in (1) are 2 � 2 matrices. We do not consider systems of three or

more conservation laws to avoid the possibility of resonant interactions between

the dependent variables for certain periodic initial conditions [8].

Furthermore, all of our examples will involve periodic x*-fluctuations in (1).

There is nothing that prevents us from assuming any other type of

fluctuations—the only requirement is that the fluctuating functions are well

behaved so that the averaging operators defined in Appendix A can be applied

to them. Although choosing periodic fluctuations makes the algebra a little

simpler, it allows for the possibility of resonant interactions between waves

traveling through the medium and the medium itself. This phenomenon was

first observed in [1] and discussed in more detail in [9].
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Because the nonlinear terms in (1) are premultiplied by �, it is the linear

problem

ut þ Aðx*Þux þ Bðx*Þu ¼ 0 ð2Þ
that governs the basic behavior of its solutions. That is why it is important to

first look carefully at (2) before studying the general nonlinear problem.

The eigenvalues of A(x*) are the speeds at which information propagates

through the system, so for (2) to describe a hyperbolic systemof partial differential

equations, the matrix A(x*) must have real and distinct eigenvalues for all x*.

Let us also assume that one of the eigenvalues is always positive and one is

always negative. The effect of this assumption is to turn a boundary such as x = 0

into a space-like arc, a contour in the x-t plane that only has one characteristic

emanating from it in positive time. Therefore, a well-posed boundary-value

problem can only have one condition on one linear combination of the dependent

variables at x = 0. In contrast, the solution boundary t = 0 is a time-like arc,

because it has two characteristics emanating from it in positive time. The reason

for making this assumption about the eigenvalues will become clearer when we

highlight the missing boundary condition difficulty in Section 3.

2.2. Choosing the initial conditions for a t*-independent solution

In preparation for the analysis in the next section, we now show how to choose

initial conditions for (1) so that the solution is independent of t* = t/�.
Why is it important to have solutions that are independent of t*? If the

functions represented by A, B, C, and D in (1) depend on x, the natural spatial

scale of the problem, a closed-form solution to (1) would be out of reach. It is

the assumption that these functions depend on x* that allows us to make some

progress through multiple-scale analysis. Likewise, if the solution to (1)

depends on t*, then it is possible to use a simple change of variables to rescale

the problem so that the natural fluctuations are on the same scale as the

fluctuations of the coefficient matrices. Therefore, it is important to ensure that

solutions to (1) are independent of the fast temporal scale t* = t/�.
In [7], Santosa and Symes tacitly assume that their solution is independent of

the fast temporal scale, although not in the context of multiple-scale analysis.

Their analysis of the linear wave equation

�ðx*Þwtt � ½kðx*Þwx�x ¼ 0; ð3Þ

where w(x,t;�) is the displacement, �(x*) the density, and k(x*) the bulk

modulus of the medium, involves a Bloch wave expansion—essentially a

spectral decomposition of the partial differential operator for (3) that recasts the

initial-value problem as an eigenvalue problem. They express their solution as

wðx; t; �Þ ¼
Z
jkj
2�

gðkÞexp½ikx� i!ðkÞt�dk þ Oð�Þ;
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where !(k) are the eigenvalues associated with each Bloch wave. The

important assumption here is that k, a scaled wavenumber, is restricted by the

integration limits. This assumption that the solution is band limited is

equivalent to assuming that the solution is independent of the fast temporal

scale t*.

So how do we ensure that the solution is independent of t*? According to

Kevorkian and Bosley, only problems with special initial conditions to higher

orders lead to solutions without high-frequency temporal oscillations [1].

Determining the necessary x*-dependence is easy—from the calculated

multiple-scale solution, we set t = 0 to see what initial conditions are necessary

to support that solution. As expected, the leading-order initial conditions must

be independent of x* for us to make any progress on the solution to (1). The

x*-dependencies of all higher-order terms in the initial conditions cannot be

arbitrarily chosen. [For example, refer to Equation (31).] Practically speaking,

this means that any solution that we obtain using multiple scales is actually the

solution to a nearby problem: the smaller � gets, the better our approximation

becomes.

Finally, we also cite the finding that discontinuous initial data lead to

solutions that are x*- and t*-dependent in the region of influence of the

discontinuity [1]. This finding means we should also ensure that our initial and

boundary data are continuous functions and that they match up correctly at any

places in the solution domain where they meet. Furthermore, problems whose

solutions exhibit shocks require the use of x* and t* after the time of shock

formation.

3. Multiple-scale analysis

In this section, we apply multiple-scale analysis to problems in the standard

form (1). We begin by analyzing the linear wave equation to demonstrate the

multiple-scale method, the difficulty of the missing boundary conditions, and

how to overcome it. The ideas from this linear problem are then applied to more

general nonlinear systems of conservation laws.

3.1. The linear wave equation

Before we analyze the general nonlinear problem, we begin by studying the

linear wave equation, written as a second-order partial differential equation,

�ðx*Þwtt � ½kðx*Þwx�x ¼ 0: ð4Þ
Here, w(x,t;�) is the displacement, and we allow the density �(x*) and bulk

modulus of the medium k(x*) to vary rapidly on the x* = x/� scale. The

description of linear (small amplitude) acoustic waves in a stationary gas is one

of many applications of the linear wave equation. In that context, u1 and u2
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stand for the velocity and pressure, respectively, and the speed of sound is

cðx*Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðx*Þ=�ðx*Þ

p
.

Changing variables using u1 = wt and u2 = �kwx puts (4) in the form

ut þ Aðx*Þux ¼ 0; ð5Þ

with

Aðx*Þ ¼
0 1=�ðx*Þ

kðx*Þ 0

� �
: ð6Þ

The functions k(x*) and �(x*) are always positive, so the eigenvalues of A(x*)

are real and distinct, and the problem is hyperbolic.

Although we focus specifically on the linear wave equation throughout

Section 3.1, our analysis is general enough to encompass (5) with any A(x*),

which corresponds to the linear part of (1) with B(x*) = 0.

Our solution procedure consists of

1. expanding u into an asymptotic series containing all of the spatial and

temporal scales that we use throughout the problem;

2. using averaging operators to separate terms that depend on x* from the terms

that do not;

3. removing potentially secular terms from the x*-homogenized (averaged)

equations to produce long-term evolution equations (consistency condi-

tions); and

4. solving the long-term evolution equations, using recovered boundary

information, if necessary.

This analysis results in a qualitative understanding of the long-term behavior

and explicit expressions for the averaged (homogenized) solution.

This method differs slightly from that outlined by Kevorkian and Bosley [1],

in which their asymptotic expansion for u only incorporates x*, x, and t. The

resulting homogenized equations tell us the cumulative effects of the fluctuations

in A(x*), but to solve the homogenized equations actually, we must further

expand the solution with the desired slow temporal and stretched spatial scales.

Here, we incorporate both expansions from the beginning.

Choosing the correct scales to include in our multiple-scale analysis is the

key to the whole problem. Because the goal of homogenization theory is to

characterize the macroscopic behavior of media with microscopic structure,

we anticipate that the cumulative effects of the fluctuations of the media on the

x* = x/� scale will have long-term effects on the solution. If we want to capture

these effects, we must include some combination of slow temporal scales and

stretched spatial scales into our multiple-scale analysis.

Precisely how slow or stretched our scales should be is largely determined by

the type of behavior we want to capture. The long-term evolution equation
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arises from the removal of potentially secular terms, and it tells us how the

solution depends on the slow or stretched scales. Therefore, including different

slow and stretched scales leads to different long-term evolution equations. In

general, using �nx or �nt enables us to obtain a long-term evolution equation

from the Oð�nÞ system of x*-homogenized equations. In this problem, we want

to take into account the cumulative dispersive effects of the fluctuations in

A(x*), so we use the asymptotic expansion

uðx; t; �Þ ¼ uð0Þðx*; x; t; tÞ þ �uð1Þðx*; x; t; tÞ þ . . .:

We do not include any stretched spatial scales, because they are not necessary in

a linear problem such as (5). With this choice of scales, derivatives with respect

to x and t become

@

@x
!��1 @

@x*
þ @

@x

@

@t
! @

@t
þ �2

@

@ t̂:

(This change of variables is actually an abuse of notation—to eliminate

confusion, we should really use x to stand for the original spatial scale, and

some other variable such as y = x to stand for the same scale after the other

spatial scales are introduced.) We plug

ut!u
ð0Þ
t þ �u

ð1Þ
t þ �2ðuð0Þ

t̂
þ u

ð2Þ
t Þ þ . . .

and

ux!��1u
ð0Þ
x*

þ ðuð0Þx þ u
ð1Þ
x*
Þ þ �ðuð1Þx þ u

ð2Þ
x*
Þ þ �2ðuð2Þx þ u

ð3Þ
x*
Þ þ . . .

into the original Equation (5) and separate terms according to their associated

power of �.

3.1.1. O (��1) System. When we collect all terms that are proportional to

��1, we obtain A(x*) ux*
(0) = 0. Because the eigenvalues of A(x*) are never

zero, A(x*) may be inverted to obtain ux*
(0) = 0. In other words, the leading-

order behavior of the solution does not depend on the fast spatial scale. We

follow the convention that all quantities independent of the fast spatial scale

are underlined. For example, we denote u(0) = u(0)(x,t,t̂ ).

3.1.2. O(1) System. The O(1) system of equations,

u
ð1Þ
x*

¼ �A�1u
ð0Þ
t � uð0Þx ; ð7Þ

may be easily integrated with respect to x*, but before we do this, we need to

separate the terms that depend on the fast spatial scale from the terms that do

ˆˆ
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not. When x*-independent terms are integrated with respect to x*, terms

proportional to x* arise. Such terms, examples of so-called secular terms, are

not allowed, because they cause the asymptotic expansion to become

nonuniform for large x*. In other words, as x* increases, the terms in the

asymptotic expansion outgrow their assigned orders of magnitude.

To separate the x*-dependent terms from the x*-independent terms, we

use the averaging operators defined in Appendix A. Setting the average

(x*-independent) part of the right-hand side of (7) to zero, we get the

x*-homogenized equation

u
ð0Þ
t þ hA�1i�1

uð0Þx ¼ 0: ð8Þ

The multiple-scale analysis shows that the correct description of the average

behavior of our system is obtained by replacing the fluctuating A(x*) with the

constant matrix hA�1i�1; the naive approach of replacing A(x*) with hA(x*)i is
incorrect. In the context of the linear wave equation,

hA�1i�1 ¼
0 1=h p x*ð Þi

h1=k x*ð Þi
�1

0

2
64

3
75:

It is interesting that although the density is replaced by its average value, the

bulk modulus must be replaced by its harmonic average to produce the correct

averaged behavior.

The remaining (fluctuating) part of the Oð1Þ system is

u
ð1Þ
x*

¼ � A�1ðx*Þ
� 


u
ð0Þ
t ;

which, when integrated, becomes

uð1Þ ¼ �[A�1ðx*Þ]uð0Þ þ uð1Þðx; t; t Þ; ð9Þ

where u(1)(x,t,t ) is the constant of integration.

3.1.3. Oð�Þ System. The governing equations for u(1) are

u
ð1Þ
t þ Aðx*Þ uð1Þx þ u

ð2Þ
x*

� �
¼ 0:

We plug in (9) and rearrange to get

u
ð2Þ
x*

¼ �A�1u
ð1Þ
t �uð1Þx þ [A�1]uð0Þtx þ A�1[A�1]uð0Þtt :

The removal of secular terms produces the equation

u
ð1Þ
t þ hA�1i�1

uð1Þx ¼ hA�1i�1hA�1[A�1]iuð0Þtt : ð10Þ

ˆ

ˆ
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The remaining (fluctuating) part of the Oð�Þ system is

u
ð2Þ
x* ¼ � A�1

� 

u
ð1Þ
t þ [A�1]uð0Þtx þ A�1[A�1]

� 

u
ð0Þ
tt ;

which, when integrated, becomes

uð2Þ ¼ �[A�1]uð1Þt þ [[A�1]]uð0Þtx þ [A�1[A�1]]uð0Þtt þ uð2Þðx; t;t Þ; ð11Þ

where u(2)(x,t,t ) is the constant of integration.

3.1.4. Oð�2Þ System. For brevity, we only show here the homogenized

equation governing u(2),

u
ð0Þ
t̂

þ u
ð2Þ
t þ hA�1i�1

uð2Þx ¼ hA�1i�1hA�1[A�1]iuð1Þtt

� hA�1i�1hA�1[[A�1]]iuð0Þttx

� hA�1i�1hA�1[A�1[A�1]]iuð0Þttt ; ð12Þ

which is obtained by removing secular terms from the Oð�2Þ system of

equations.

This process of removing terms independent of x* before integrating can be

repeated to as high as degree of � as desired. However, we soon see that, with

our current choice of scales (in particular, t̂ = �2t), it is not necessary to proceed

any further.

3.1.5. Solving the homogenized equations for an initial-value problem. All of

the analysis done up to this point is applicable to problems with and without

boundary conditions. Before we tackle the difficulties that boundaries add to

this problem, we first demonstrate that our solution procedure works for the

initial-value problem. We are most concerned about whether we can generate

homogenized equations that accurately describe the long-term evolution of

Equation (5).

These long-term evolution equations arise while solving the x*-homogenized

equations from each order of �. It is only now that we begin to see how different

A(x*) lead to different types of long-term evolution equations and necessitate

different choices of slow temporal or stretched spatial scales.

To solve the x*-homogenized equation governing u(0), (8), we diagonalize

hA�1i�1 = P�P�1 so that

� ¼
	1 0

0 	2

� �
:

Without loss of generality, we choose 	1 to be the positive eigenvalue, and

	2 to be the negative one.

ˆ

ˆ
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Making the substitution u(i) = Pw(i) (the w(i) variables are called the

characteristic dependent variables) and multiplying on the left by P�1, we get

w
ð0Þ
t þ �wð0Þ

x ¼ 0;

which can be written out as

w
ð0Þ
1t þ 	1w

ð0Þ
1x ¼ 0;

w
ð0Þ
2t þ 	2w

ð0Þ
2x ¼ 0:

These equations imply that w1
(0) = w1

(0)(
, t), and w2
(0) = w2

(0)(�, t), where 
 =
x � 	1t and � = x � 	2t are called the characteristic independent variables. The

dependence of w(0) on the slow time scale t̂ cannot be determined until we

consider the equations arising at higher orders.

We rewrite the Oð�Þ system of x*-homogenized equations (10) in terms of

the characteristic dependent variables to get

w
ð1Þ
t þ �wð1Þ

x ¼ N w
ð0Þ
tt ;

where N ¼ P�1hA�1i�1hA�1[A�1]iP. Recalling that w1
(0) does not depend on

� and w2
(0) does not depend on 
, and using the facts @x! @
 + @� and

@t ! �	1@
 � 	2@�, we can rewrite the equation above using characteristic

independent variables:

ð	1 � 	2Þwð1Þ
1�

ð	2 � 	1Þwð1Þ
2


2
4

3
5 ¼ N

	2
1w

ð0Þ
1



	2
2w

ð0Þ
2��

2
4

3
5: ð13Þ

Before we integrate to solve for w(1), we must remove terms independent of �
in the first component of (13), terms independent of 
 in the second component

of (13). These terms are premultiplied by the diagonal entries of N .

For the linear wave equation,

N ¼
0 hk�1i�1=2h�i�1=2hk�1[�]i

hk�1i�1=2h�i�1=2h�[k�1]i 0

" #

(in this calculation, we have used the fact that h�[k�1]i = � hk�1 [�]i, which is
proved in Appendix A). Because there is no need to remove any potentially

secular terms, we can integrate (13) to obtain

w
ð1Þ
1 ¼ n12

	1 � 	2

	2
2w

ð0Þ
2� þ v

ð1Þ
1 ð
; t Þ; ð14aÞ

w
ð1Þ
2 ¼ n21

	2 � 	1

	2
1w

ð0Þ
1
 þ v

ð1Þ
2 ð�;t̂Þ; ð14bÞ

where v1
(1) and v2

(1) are integration constants.

ˆ
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If the diagonal entries of N were nonzero, we would need to eliminate

some terms from (13) by introducing either t̃ = �t or x̃ = �x into our asymptotic

expansion. This added degree of freedom would give us the ability to eliminate

those potential secular terms by forcing w1
(0) and w2

(0) to satisfy two constant-

coefficient diffusion equations. So now we see that N having zero diagonal

entries means that t̃ = �t is absent from our asymptotic expansion and that the

long-term behavior of the solution does not exhibit diffusion.

Finally, we rewrite equation (12), the x*-homogenized equation from the

Oð�2Þ system, using characteristic dependent variables to obtain

w
ð0Þ
t þ w

ð2Þ
t þ �wð2Þ

x ¼ N w
ð1Þ
tt �Rw

ð0Þ
ttt �S w

ð0Þ
ttx ;

where

R ¼ P�1hA�1i�1hA�1[A�1[A�1]]iP;

and

S ¼ P�1hA�1i�1hA�1[[A�1]]iP:
Using (14), and rewriting in terms of characteristic independent variables, we

arrive at

ð	1 � 	2Þwð2Þ
1�

ð	2 � 	1Þwð2Þ
2


2
4

3
5 ¼ N

n12
	1 � 	2

	4
2w

ð0Þ
2��� þ 	2

1v
ð1Þ
1



n21
	2 � 	1

	4
1w

ð0Þ
1


 þ 	2

2v
ð1Þ
2��

2
4

3
5

þ R
	3
1w

ð0Þ
1




	3
2w

ð0Þ
2���

2
4

3
5� S

	2
1w

ð0Þ
1




	2
2w

ð0Þ
2���

2
4

3
5: ð15Þ

Before we integrate to obtain w(2), we need to remove all terms independent of

� from the first component of (15) and all terms independent of 
 from the

second component, because these will lead to secular terms. This removal

produces the consistency conditions

w
ð0Þ
1t̂

¼ n12n21

	2 � 	1

	4
1 þ r11	

3
1 � s11	

2
1

� �
w
ð0Þ
1




w
ð0Þ
2t̂

¼ n12n21

	1 � 	2

	4
2 þ r22	

3
2 � s22	

2
2

� �
w
ð0Þ
2���:

To solve these consistency conditions, it is most convenient to revert to physical

independent variables. We define y(0)(x,t) = w(0)(
,�,t̂ ) and obtain

yð0Þ
1t

þ 	1y
ð0Þ
1x

¼ �2
n12n21

	2 � 	1

	4
1 þ r11	

3
1 � s11	

2
1

� �
yð0Þ
1xxx

ð16aÞ
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yð0Þ
2t

þ 	2y
ð0Þ
2x

¼ �2
n12n21

	1 � 	2

	4
2 þ r22	

3
2 � s22	

2
2

� �
yð0Þ
2xxx

: ð16bÞ

(To obtain (16a), we consider t̂ and 
 as the two independent variables that are

being replaced by x and t; for the second equation, t̂ and � are the two

independent variables.)

Notice that these two equations are linearized Korteweg–de Vries (KdV)

equations with constant coefficients. The terms with three x derivatives indicate

the dispersive nature of these equations, and the �2 premultiplying these terms

shows the relative strength of the dispersive effects to the advection represented

on the left-hand sides.

Given the initial conditions

P yð0Þðx; 0Þ ¼ uð0Þðx; 0; 0Þ ¼ hð0ÞðxÞ ¼
sinð�xÞ

0

� �
; ð17Þ

we use the dispersion relations of (16) to find the solution

yð0Þ
1
ðx; tÞ ¼ 1

2
sin �ðx � 	1tÞ � �2�3 n12n21

	2 � 	1

	4
1 þ r11	

3
1 � s11	

2
1

� �
t

� �

yð0Þ
2
ðx; tÞ ¼ � 1

2
sin �ðx � 	2tÞ � �2�3 n12n21

	1 � 	2

	4
2 þ r22	

3
2 � s22	

2
2

� �
t

� �
:

Notice that when � and t are small, the solution represents the initial conditions

being advected at the speeds 	1 and 	2. Only when t > Oð��2Þ do we see the

dispersion having a significant effect on the wave speeds.

Using a spectral numerical technique (see Appendix B), we calculated the

solution to the original Equation (5) for these initial conditions. (We did not

include corrections to the initial conditions (17) discussed in Section 2.2 for the

numerical solution. These corrections would only improve the correspondence

between the analytic and numeric solutions.) To verify that Equations (16)

describe the correct long-term behavior, we compare its solutions to the

numerical solution. We also compare the numeric solution with the solution to

(16) without the dispersive terms. This ‘‘nondispersive’’ solution is the same

solution that would be obtained if we solved (5) without any slow temporal or

stretched spatial scales.

Figure 1 makes these comparisons for the linear wave equation, with

�ðx*Þ ¼ 1þ 0:5cosð�x*Þ � 0:3sinð�x*Þ

and

kðx*Þ ¼ 1

1 � 0:1cosð�x*Þ þ 0:25sinð�x*Þ ;
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and � = 0.1. Because the period of the medium is 0.2, and the period of the initial

conditions is 2, the solution is itself periodic with period 2. Therefore, the

solutions are only displayed between �1 < x < 1. (This periodicity also enables

us to use spectral numerical techniques, which aremore accurate than comparable

finite difference methods.) At t = 150, we see the analytic solution without

dispersion begins to deviate from the numeric solution. By t = 500, the solution is

almost completely out of phase with the numeric solution. The analytic solution

to (16), taking into account the dispersive term, looks very good even at t = 500.

Because the wave speed in this problem is approximately one, by t = 500 almost

250 complete waves have passed through the computation domain.

To summarize, we have seen that the dispersive effect of the fluctuations in

A(x*) is real, and that the multiple-scale analysis accurately describes this

behavior through long-term evolution equations (consistency conditions). If we

continue our analysis to higher orders of �, we can determine more accurate

long-term evolution equations.

3.1.6. Solving the homogenized equations for an initial-boundary value

problem. Now, we turn our attention to the initial-boundary value problem for

(5) to demonstrate the difficulty of the missing boundary conditions. Suppose

that our solution domain is the quarter space x > 0 and t > 0. Because one

eigenvalue of A(x*) is always positive, and the other is always negative, we

can only specify one boundary condition at x = 0 (because it is a space-like

arc):

u1ð0; t; �Þ ¼ gðt; �Þ ¼ gð0ÞðtÞ þ Oð�Þ for t > 0: ð18Þ

Figure 1. Numerical solution versus two analytic solutions for the linear wave equation.
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Also, let us prescribe the initial conditions

uðx; 0Þ ¼ hð0ÞðxÞ þ �hð1Þðx; x*Þ þ . . . for x > 0: ð19Þ

Now, we try to solve the consistency conditions (16) to demonstrate the

difficulty of missing boundary conditions. What sorts of initial and boundary

conditions are needed to solve these equations, and how many conditions do

we have?

One way to figure out what conditions are needed to solve (16) is to use a

Laplace transform in t to turn these partial differential equations into a pair of

third-order, constant coefficient, linear ordinary differential equations (ODEs).

We can write these two ODEs in the generic form

sY � f ðxÞ þ 	Yx ¼ 
Yxxx;

where Y(x; s) is the Laplace transform of either y1
(0) or y2

(0), and s is the

transformed variable, which must range from � � i1 to � + i1. (Choose � so

that the integration contour is to the right of all singularities in the complex

plane.) Because there is one derivative in time, we need one initial condition for

each yi
(0). The characteristic equation for this ordinary differential equation has

three roots. If we require that the solution remains bounded as x ! 1, then we

need as many boundary conditions at x = 0 as the number of roots with

nonpositive real part for the given range of s. We eliminate the possibility of all

three roots having positive real part, because this would lead to the trivial

solution. The two partial differential equations (16) may require different

numbers of boundary conditions at x = 0, but each requires at least one.

Now, let us examine what conditions are available to solve (16). First, the

initial condition (19) provides us with

yð0Þðx; 0Þ ¼ P�1uð0Þðx; 0Þ ¼ P�1hð0ÞðxÞ

for x > 0, which is precisely what we need. Next, the boundary condition (18)

gives

u
ð0Þ
1 ð0; tÞ ¼ p11y

ð0Þ
1
ð0; tÞ þ p12y

ð0Þ
2
ð0; tÞ ¼ gð0ÞðtÞ

for t > 0. Armed with only a linear combination of the boundary conditions

along x = 0, we do not have enough information to determine a unique solution

to (16). Notice that this difficulty does not occur for the initial-value problem on

the infinite domain � 1 < x < 1, because there is not a boundary at x = 0, and

hence, no boundary conditions to satisfy.

3.1.7. Reduced multiple-scales solution. To get around the missing boundary

condition difficulty, let us revisit our assumption of which scales are present in

the expansion of u(x,t;�). Practically speaking, we use slow temporal or

stretched spatial scales to avoid secular terms in our asymptotic expansion,

because secular terms limit the region of validity of our solution. Adding these
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slow scales gives us the freedom to eliminate potentially secular terms by

enforcing consistency conditions. However, at the moment, we are unable to

solve these consistency conditions because of a lack of boundary information.

Without slow temporal or stretched spatial scales, we cannot avoid secular

terms, but at least a solution valid in the near field can be found. From this near-

field solution we can extract the ‘‘missing’’ boundary conditions that we need to

solve the consistency conditions.

Let us illustrate this procedure for (5). We re-expand the state variables using

the reduced set of scales, x*, x, and t:

uðx; t; �Þ ¼ rð0Þðx; tÞ þ �rð1Þðx; x*; tÞ þ . . .:

We use r(i) instead of u(i) to avoid confusion with the previous multiple-scale

expansion of u(x,t;�). It is unnecessary to repeat the work of obtaining the

equations for each order of �, because the only change is that there are no

derivatives with respect to any slow temporal scales. Notice that by writing

r(0)(x,t) instead of r(0)(x,x*,t) in our new expansion, we have skipped the step of

using the Oð��1Þ system to eliminate the x*-dependence of the leading-order

solution.

Following the steps outlined in Section 3.1.2, we define the characteristic

independent variables 
 = x � 	1t and � = x � 	2t, along with the

characteristic dependent variables r(0)(x, t) = Ps(0)(
, �). As in Section 3.1.5,

the governing equations for s(0) are s1�
(0) = 0 and s2


(0) = 0, which imply that

sð0Þð
; �Þ ¼ s
ð0Þ
1 ð
Þ
s
ð0Þ
2 ð�Þ

" #
:

In contrast to the analysis of the previous section, s(0) can be completely
determined at this stage, because we do not allow it to depend on t̂. Using
the Oð1Þ initial conditions from (19),

sð0Þðx; xÞ ¼ s
ð0Þ
1 ðxÞ
s
ð0Þ
2 ðxÞ

" #
¼ P�1rð0Þðx; 0Þ ¼ P�1hð0ÞðxÞ for x > 0:

Therefore,

s
ð0Þ
1 ð
Þ ¼ 1

detP
p22h

ð0Þ
1 ð
Þ � p12h

ð0Þ
2 ð
Þ

h i
for 
 > 0

s
ð0Þ
2 ð�Þ ¼ � 1

detP
p21h

ð0Þ
1 ð�Þ � p11h

ð0Þ
2 ð�Þ

h i
for � > 0:

We need not worry about the determinant of P being zero, because P is

nonsingular.
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Because � = x � 	2t and 	2 < 0, the second state variable s2
(0)(�) propagates

information to the ‘‘left’’ in the x-t plane. Furthermore, � is always positive

in the solution domain so s2
(0)(�) is completely determined. On the other hand,


 = x � 	1t and 	1 > 0, so 
 can take on positive and negative values in the

solution domain. The first state variable s1
(0)(
) propagates information to the

‘‘right’’ so the initial conditions only determine s1
(0)(
) for 
 > 0. We still have to

define s1
(0)(
) for 
 < 0 using the Oð1Þ boundary condition (18). Applying

equation (18) gives g(0)(t) = r1
(0)(0, t) = p11s1

(0)(�	1t) + p12s2
(0)(�	2t) for t > 0.

Therefore,

s
ð0Þ
1 ð
Þ ¼ 1

p11
gð0Þð�
=	1Þ þ

p12

p11 detP
p21h

ð0Þ
1 ð
	2=	1Þ � p11h

ð0Þ
2 ð
	2=	1Þ

� �
for 
 < 0:

We are now able to recover the ‘‘missing’’ boundary condition,

r
ð0Þ
2 ð0; tÞ ¼ p21

p11
gð0ÞðtÞ � h

ð0Þ
1 ð�	2tÞ

h i
þ h

ð0Þ
2 ð�	2tÞ:

If necessary, we can even calculate quantities such as r2x
(0)(0, t) by taking a

derivative of r(0) with respect to x, then setting x = 0.

The only potential difficulty in the analysis above is if p11 vanishes. We

digress briefly to show why p11 cannot be zero. We can show that if p11 = 0,

then �12 = 0 as well, where �ij is the i-j entry of hA�1i�1. Furthermore, by our

choice of 	1 > 0 and 	2 < 0, we can also infer that �11 = 	2 < 0. These facts

imply that

r
ð0Þ
1t þ �11r

ð0Þ
1x ¼ 0;

or that the first component of the leading-order homogenized solution advects

information to the left in the x-t plane with speed |	2|. That means that we

cannot specify a boundary condition on the first component, u1(0,t;�).
Therefore, we must assume p11 6¼ 0 to avoid this nonsensical result.

The procedure outlined above for recovering boundary conditions can be

repeated for the equations that arise at higher orders of �. Solving the Oð�Þ
system of equations using the reduced set of scales x*, x, and t, enables us to

find the missing boundary condition r2
(1)(0,0,t). This process will not be

demonstrated here, because the algebra grows exponentially with each order of

�. We have developed Mathematica notebooks that are capable of performing

this tedious task to any order of �.
For example, suppose that for the linear wave Equation (4), with the specific

functions

�ðx*Þ ¼ 1þ 0:5cosð�x*Þ � 0:3sinð�x*Þ
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and

kðx*Þ ¼ 1

1 � 0:1cosð�x*Þ þ 0:25sinð�x*Þ ;

we impose the boundary condition

u1ð0; t; �Þ ¼ gð0ÞðtÞ ¼ 1 � cos t:

In addition, suppose that the initial conditions are

hðx; �Þ ¼
sin�x

0

� �
� �

cosð�xÞ½0:1sinð�x*Þ þ 0:25cosð�x*Þ�
0

� �
þ Oð�2Þ;

where the fluctuating parts are chosen so that the solution does not depend on

t* = t/� (see Section 2.2). Using Mathematica, we calculate the missing

boundary condition to be

u2ð0; t; �Þ ¼ 1 � cosðtÞ � sinð�tÞ þ �
cosð�tÞ

4
� 201sin t

400�

� �

þ �2
52; 639�t cos ð�tÞ

320; 000
þ 399; 361cos t þ 209; 161�2sinð�tÞ

320; 000�2

� �

þ Oð�3Þ: ð20Þ

Notice that the Oð�2Þ contribution to this recovered boundary information

contains a secular term proportional to t. The presence of this secular term

makes the expansion valid only for t roughly less than ��1. As we will see, the

region of validity is, in practice, usually larger.

Because we do not have an exact solution to the original linear wave

equation, we must verify (20) numerically. Using CLAWPACK, we generate

a numerical approximation to the solution of the original linear wave

equation (5) with A(x*) defined in (6), and extract the values of u2(0,t) to

compare with (20). (See Appendix B for more discussion about CLAW-

PACK.) Because there is no computer large enough to represent the semi-

infinite solution domain x > 0 using finite volumes, we limit ourselves to a

finite computation domain of 0 < x < L. The upper limit L is chosen so that a

wave entering the computation domain from the right boundary does not

interfere with the part of the solution that we desire. We choose L = 110,

because we are interested in calculating u2(0,t) up to t = 100 and in this

problem, the wave speeds are ±1. At x = 0, we specify u1(0,t) using the given

boundary condition, and simulate a free condition on u2(0,t) using zero-order

extrapolation. We also use zero-order extrapolation for both u1 and u2 at

x = L.
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For � = 0.1, we find that the leading-order term of (20) matches the numerically

calculated u2(0, t) very well for t < 10. As t gets larger, we must take into account

the higher-order corrections in (20) to get a better correspondence. Figure 2

compares the analytically recovered boundary information against the numeric

solution for 75 < t < 100. In pane (a), we compare the numeric solution with the

Oð1Þ and Oð�Þ terms of (20) only; in pane (b), we include all terms displayed in

(20). Notice that without the Oð�2Þ contribution, the analytic boundary

information does not quite match the numeric solution. The contribution is,

therefore, useful for t < 100, although it introduces a secular term.

A convincing way to verify that an expansion is asymptotically correct is to

plot the absolute error of the expansion against � using logarithmic scales [10].

The slope of the resulting line indicates the rate of convergence of the

asymptotic solution to the numeric solution as � ! 0. Figure 3 shows the

absolute error of the analytically recovered boundary information (20), with

different terms of the asymptotic expansion included. The absolute error is

measured using the discretized version of the integral

error ¼
Z T

0

u
ðnÞ
2 ð0; tÞ � u

ðaÞ
2 ð0; tÞ

��� ���dt;

Figure 2. Numeric verification of the recovered boundary information for an initial boundary

value problem for the linear wave equation.
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where u(n) is the numeric solution, and u(a) is the analytic expression that we are

observing. Ideally, we would compare the asymptotic expansion against the

exact solution, but because an exact solution is not available, we must make do

with a numerically calculated solution. Again, we use CLAWPACK for our

numeric solution, but this time with a spatial domain of 0 < x < 60 and a spatial

step size of 0.002. We, then, sample the boundary information, u2(0,t), in the

range 0 < t < 50 using 2,000 points.

Figure 3 shows a surprising result. Keeping only the leading order term in

(20), we would normally expect the truncated error to be Oð�Þ as � ! 0.

However, we see that the absolute error of the leading-order term is much smaller

and actually behaves more like �2 as � ! 0. This finding does not invalidate the

asymptotic correctness of (20); on the contrary, it just means that the leading-

order term is more accurate than expected. Similarly, we see that the asymptotic

expansion including the Oð�2Þ contribution converges to the true solution

slightly faster than �3 as �! 0, which we would normally expect. The asymptotic

expansion including up to the Oð�Þ contribution only and the expansion with

contributions up to Oð�3Þ (not shown) converge close to their expected rates.

Now, let us also recover the missing boundary conditions for a case in which

the initial conditions are zero (a signaling problem). We impose the same

boundary condition

u1ð0; t; �Þ ¼ gð0ÞðtÞ ¼ 1 � cos t;

Figure 3. Rate of convergence of analytic recovered boundary information for an initial

boundary value problem for the linear wave equation.
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but instead, specify that u(x,0;�) = 0. Under these conditions, we calculate the

missing boundary condition to be

u2ð0; t; �Þ ¼ 1 � cost � �
201sint

400�
þ �2

399; 361cost

320; 000�2
þ Oð�3Þ: ð21Þ

When we compare (21) to the recovered boundary information with nonzero

initial conditions (20), we see that there are no secular terms in the recovered

boundary information for the signaling problem.

Figure 4a shows the analytically recovered boundary information in (21)

against its numeric counterpart, calculated solution using � = 0.2 and a spatial

step size of 0.0005 for 0 < t < 20. (We used 0 < x < 25 as our computational

domain.) Displayed in this manner, the numeric and analytic u2(0,t) are

indistinguishable. Figure 4b shows that the Oð�2Þ contribution to the recovered

boundary condition does, indeed, increase its accuracy.

Once again, we compare the recovered boundary information (21) against

the numeric solution for various � and plot the absolute error versus � using a

logarithmic scale. Figure 5 shows that the leading-order term of (21) by itself

converges to the true boundary information like � as � ! 0, as expected.

Figure 4. Numeric verification of the recovered boundary information for a signaling problem

for the linear wave equation.
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Adding the Oð�Þ contribution in (21) accelerates this convergence to �2 as �! 0.

We were unable to verify this latter result for the same range of �, because the
numeric calculation reached its limit of accuracy for our chosen spatial step

size. As a result, we were also unable to verify that including higher-order

terms in (21) improved the agreement between the analytic and numeric

solutions. Reducing the spatial step size would enable us to verify these claims

(because it would increase the over-all accuracy of the numerical method and

better resolve the fluctuations of the A(x*) matrix), but it would also increase

computation time.

Now that we have seen how to use a reduced set of multiple scales to

recover boundary information that is asymptotically correct, we turn to the

most striking feature of (20): the presence of secular terms proportional to t.

What is the mechanism that causes these secular terms to appear in the

recovered boundary information? By neglecting slow temporal and stretched

spatial scales, secular terms (proportional to x and t) will arise in the solution.

Therefore, it is not surprising that secular terms proportional to t may remain

after we substitute x = 0.

What is more interesting is why the secular terms go away when the

initial conditions are zero. Using Mathematica, we have calculated the

recovered boundary information to high orders of �. For the linear wave

equation (4), there is only one way for the boundary information to be free

Figure 5. Rate of convergence of analytic recovered boundary information for a signaling

problem for the linear wave equation.
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of secular terms. For convenience, let us normalize �(x*) and k(x*) so that

h�i = h1/ki = 1, so the wave speeds are 	1,2 = ±1. In this case, only if

h1
(0)(x) = h2

(0)(x) for all x > 0 will the recovered boundary information be

free of secular terms.

If we return to the reduced multiple-scale analysis introduced in this section,

we see that the leading-order behavior of the solution is r(0)(x, t) = Ps(0)(
,�),
where s1

(0) = s1
(0)(
), and s2

(0) = s2
(0)(�) are the characteristic dependent variables,

and 
 = x � t and � = x + t are the characteristic independent variables. Because

of our choice of variables, s1
(0) represents a wave traveling to the ‘‘right’’ in

the x- t plane, and s2
(0) represents a wave traveling to the ‘‘left.’’ With � and k

normalized, s2
(0)(�) = h2

(0)(�) � h1
(0)(�) for all � > 0, so if h1

(0)(x) = h2
(0)(x) then

s2
(0) = 0. Therefore, we see that the recovered boundary information is free of

secular terms only when the wave traveling to the left in the x-t plane is

identically zero.

Why would the recovered boundary information be free of secular terms when

the initial conditions are such that the left-going wave vanishes? The reason is

that without the slow and stretched scales, the multiple-scale analysis produces a

solution that models advection only. This purely advected solution is only

accurate for small t, because the true long-term behavior of the solution includes

dispersion and other higher-order effects. The recovered boundary information is

the result of the interaction between the partial differential equation, the given

boundary condition, and the left-going wave hitting the boundary. If the left-

going wave is nonzero, the recovered boundary information will become

inaccurate for large t. Therefore, the presence of secular terms is merely a sign

that the recovered boundary information cannot be trusted for large t. Neglecting

these secular terms not only makes the recovered boundary information less

accurate (as in the example initial-boundary value problem in this section), it

also gives the false impression that the recovered boundary information can be

used for large t. However, the reader should keep in mind that for the signaling

problem (initial conditions equal to zero), the left-going wave is zero, and the

recovered boundary information will have no secular terms. We take advantage

of this fact in the next section.

3.1.8. Multiple-scales solution revisited. Now armed with the recovered

boundary information, we can return to solving the consistency conditions (16).

A general solution to these equations would be very complicated, so we

demonstrate the solution procedure for the linear wave equation with

�ðx*Þ ¼ 1þ 0:5cosð�x*Þ � 0:3sinð�x*Þ

and

kðx*Þ ¼ 1

1 � 0:1cosð�x*Þ þ 0:25sinð�x*Þ ;
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the initial conditions

uðx; 0; �Þ ¼ P�1hð0Þ þ Oð�Þ ¼
1
2

sinð�xÞ
� 1

2
sinð�xÞ

" #
þ Oð�Þ;

and the boundary information

u1ð0; t; �Þ ¼ gðt; �Þ ¼ 1 � cos t þ Oð�Þ:

Because the original partial differential equation (5) is linear, we can use

superposition to partition the initial-boundary value problem into two problems:

an initial-value problem, and a signaling problem. Let u(x,t;�) = u(A)(x,t;�) +
u(B)(x,t;�), where u(A) and u(B) satisfy the same partial differential equation (5),

but u(A) satisfies the initial-value problem in the infinite domain, and u(B)

satisfies the signaling problem in the semi-infinite domain. Specifically,

u(A)(x,0;�) = h(x;�) on �1 < x < 1, while u1
(B)(0,t;�) = g(t;�) � u1

(A)(0,t;�)
for t > 0 and u(B)(x,0;�) = 0 for x > 0. It does not matter how the initial

conditions h(x;�) are extended for negative x, because once the solution to

the initial-value problem is obtained, u1
(A)(0,t;�) is subtracted from the

boundary information, u1
(B)(0,t;�). The sum of u(A) and u(B) will satisfy all

of the original initial and boundary conditions.

There are two reasons we want to consider a signaling problem instead of

a problem with nontrivial initial and boundary conditions. The first is that

we have seen that the recovered boundary conditions contain secular terms

when the initial conditions are nontrivial. To maximize the region of validity

of our asymptotic expansion, we should use the recovered boundary

conditions for the signaling problem instead. The second reason is that

solving the long-term evolution equations is much simpler with zero initial

conditions.

The initial-value problem for u(A) has already been solved in Section 3.1.5. If

we extend the initial conditions in the natural way for negative x, the solution

for our particular choice of � = 0.1, �(x*) and k(x*) is

uðAÞðx; t; �Þ ¼ 1

2

sin
31;947;361t
32;000;000 þ �x

� �
� sin

31;947;361�t
32;000;000 � �x

� �
�sin

31;947;361t
32;000;000 þ �x

� �
� sin

31;947;361�t
32;000;000 � �x

� �
2
64

3
75þ Oð�Þ:

Now we are ready to solve the signaling problem for u(B). Let u(B)(x, t; �) =
Py(B)(x, t) + Oð�Þ, and y(B) satisfy the long-term evolution equations (16). The

boundary conditions for y(B)(0,t) come from the recovered boundary conditions
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for the signaling problem (21) and u(A)(0,t;�):

yðBÞð0; tÞ ¼ P�1uðBÞð0; t; 0Þ ¼ P�1
gð0ÞðtÞ � uA1 ð0; t; 0Þ

1 � 399;361
32;000;000�2 � 1

� �
cos t� 201

4;000� sin t

2
4

3
5

¼
1þ 399;361

64;000;000�2 � 1
� �

cos t � 201
8000�sin t

399;361cos t � 1;608;000sin t
64;000;000�2

2
4

3
5:

To solve for y(B), we use a Laplace transform in t to turn the partial differential

equations (16) into third-order ordinary differential equations:

� 52; 639

32; 000; 000�2

d3Y
ðBÞ
1

dx3
� dY

ðBÞ
1

dx
� sY

ðBÞ
1 ¼ 0 ð22aÞ

52; 639

32; 000; 000�2

d3Y
ðBÞ
2

dx3
þ dY

ðBÞ
2

dx
� sY

ðBÞ
1 ¼ 0 ð22bÞ

where

Y
ðBÞ
i ðx; sÞ ¼ L yðBÞ

i
ðx; tÞ

h i
¼

Z 1

0

e�styðBÞ
i

ðx; tÞdt:

Using Mathematica, we have verified that only one of the three roots of the

characteristic equation for Y1
(B) has nonpositive real part, and two of the roots

of the characteristic equation for Y2
(B) have nonpositive real part. Let these

roots be �1
(1) and �1

(2), �2
(2), respectively; we do not display these roots here

for brevity. We do not use the homogeneous solutions based on the roots

with positive real parts, because we want the solution to remain bounded as

x ! 1. The fact that there are two roots with nonpositive real part for Y2
(B)

means that we need two boundary conditions to find a unique solution for

Y2
(B). In the previous section, we explained how to obtain the extra

information that we need, y2x
(B)(0,t). We do not display this recovered

boundary information to save space.

Once we have recovered all the necessary boundary conditions, the solutions

to the ordinary differential equations (22a) and (22b) are

Y
ðBÞ
1 ðx; tÞ ¼ L yðBÞ

1
ð0; tÞ

h i
exp �

ð1Þ
1 x

� �

D. H. Yong and J. Kevorkian282



Y
ðBÞ
2 ðx; tÞ ¼ L yðBÞ

2
ð0; tÞ

h i �ð2Þ
1 exp �

ð2Þ
2 x

� �
� �

ð2Þ
2 exp �

ð2Þ
1 x

� �
�
ð2Þ
1 ��

ð2Þ
2

þ L yðBÞ
2x

ð0; tÞ
h i exp �

ð2Þ
1 x

� �
� exp �

ð2Þ
2 x

� �
�
ð2Þ
1 � �

ð2Þ
2

:

The difficult part is now the inversion of these expressions. Because the roots

�1
(1), �1

(2), and �2
(2) involve cube and square roots of s, the calculation of the

Laplace inverse involves branch cuts. As a result, the inversion integrals cannot

be expressed in closed form and must be approximated either analytically or

numerically.

One way to make progress with an analytic approximation is to use residue

calculus and Watson’s lemma (see Section 2.1 and Chapter 4 of [11]). In

particular, we use the result that if F(s) has a branch point at s0 and can be

expressed there as

FðsÞ ¼ ðs� s0Þ�
X1
n¼0

anðs� s0Þn

with a0 6¼ 0 and � > �1, then

L �1½FðsÞ� ¼ 1

2�i

Z �þi1

��i1
FðsÞetsds � � ets0 sinð��Þ

�t�þ1

X1
n¼0

anð�1Þnt�n

� Gð� þ nþ 1Þ
as t ! 1. In many cases, the dominant term of this asymptotic expansion is

sufficient for large t.

We locate and expand about the branch points of Y1
(B) and Y2

(B). Residue

calculus and the dominant term of the branch point expansion give

yðBÞ
1

ðx; tÞ � 1 � 0:999368cosðt � 1:00017xÞ � :00799754sinð1 � 1:00017xÞ

þ xt�3=2½6:81765 � 10�5cosð29:8139t � 44:7209xÞ

� 2:01145 � 10�5sinð29:8193t � 44:7209xÞ� ð23Þ

Note that the first two terms of (23) are the most significant and that they model

the advection of the boundary information, y1
(B)(0,t), with a small amount of

dispersion. We do not show y2
(B), because it is too long. The coefficients in the

expansions of Y1
(B) and Y2

(B) about its branch points involve increasing powers

of x, because we are essentially seeking expansions of exp(�x). If x is large, and
the real part of � is negative, the power series expansion of exp(�x) requires
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many terms before the series begins to converge. This means that the

approximation given above is only valid for large t and small x.

3.1.9. Summary and discussion. We have seen that the cumulative (long-

term) effects of the x*-scale fluctuations in the linear wave equation only appear

on the t̂ = �2t scale. This fact is a direct consequence of the diagonal entries of

N being zero, and it implies that the long-term evolution of the solution does

not include diffusion.

We believe that it is more than coincidence that diffusion should be absent for

solutions to remain bounded. The reader should keep in mind that the dependent

variables u come from a perturbation to a steady-state solution for an arbitrary

conservation law. Therefore, if u grows in time, its corresponding steady-state

solution is unstable. We believe that for all physically realistic situations in

which the steady-state solution is stable (implying that u remains bounded), the

homogenized solution should not diffuse on the t̃ or x̃ scales.

As we see in the next section, the presence of diffusion depends solely on

the matrix A(x*). With some algebra, we can compute that diffusion will be

absent if

h�12[�21]ih�11 � �22i þ hð�11 � �22Þ[�12]ih�21i

þ ha21[�11 � �22]ih�12i ¼ 0; ð24Þ

where �ij(x*) is the i-j entry of A�1(x*). Note that this condition is easily

satisfied if either �11 = �22 or �12 = �21. (The latter fact and the computation of

this condition require the fact that ha[b]i = �hb[a]i, which is proved in

Appendix A.) In all of the physical examples we have seen, (24) is satisfied. (In

[9], we show that a nonphysical problem devised by Kevorkian and Bosley in

[1] violates (24) at the expense of having exponentially growing solutions,

suggesting that (24) may be useful for determining the stability of steady-state

solutions used to produce problems of the form (1).)

Assuming that diffusion is absent from the consistency conditions, the next

observable long-term phenomenon is dispersion. Problems that exhibit

dispersion and not diffusion have a pair of decoupled, linear KdV equations

as their long-term evolution equations (consistency conditions). For the solution

domain x > 0 and t > 0, these PDEs require one or two boundary conditions

along x = 0 and one initial condition along t = 0 for each dependent variable.

Because our original hyperbolic problem only allows us to specify a linear

combination of both state variables along the boundary x = 0, we cannot solve

the long-term evolution equations armed with only the information necessary

for a well-posed configuration of the original problem (5).

In Section 3.1.7, we showed that this problem can be circumvented by

temporarily ignoring the dependence of the solution on any slow temporal
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scales during the multiple-scale analysis. Without these scales, we avoid those

problematic consistency conditions at the expense of a solution that is

asymptotically valid in a smaller region of the solution domain. Once this

near-field solution has been obtained, we can extract the ‘‘missing’’ boundary

conditions and return to the original multiple-scale homogenization technique.

We have also seen that the recovered boundary information will contain

secular terms proportional to t when the initial conditions are nontrivial. The

presence of these secular terms restricts the region of validity of the calculated

solution. Fortunately, the signaling problem is one situation in which the

recovered boundary information does not contain secular terms. In Section

3.1.8, we employed this fact to our advantage by using superposition to

partition the problem into two pieces, an initial-value problem on the semi-

infinite domain, and a signaling problem with zero initial conditions. The

initial-value problem is solved using multiple scales, including slow temporal

scales. The consistency conditions for the signaling problem are solved using

the recovered boundary information from a multiple-scale analysis with a

reduced set of scales. In this manner, we are able to construct a solution that is

asymptotically valid for a long time.

3.2. The general case

We now turn our attention to the general nonlinear problem represented by

ut þ Aðx*Þux þ Bðx*Þu ¼ �½Cðu; x*Þuþ Dðu; x*Þux� þ Oð�2Þ; ð25Þ

which we introduced in Section 2.1. Recall that (25) arises when we linearize a

general system of conservation laws about its steady-state solution. In this

section, we discuss the solution of (25) when u is a vector of two unknown

functions and when both initial and boundary conditions are present.

Suppose the initial conditions for (25) are

uðx; 0; �Þ ¼ hð0ÞðxÞ þ �hð1Þðx; x*Þ þ Oð�2Þ; ð26Þ

where the fluctuating parts of higher-order terms cannot be specified arbitrarily

if we want to ensure a solution that is independent of the fast time variable,

t* = t/� (see Section 2.2).

Equation (25) is a system of first-order partial differential equations, and its

leading order behavior is governed by the linear terms on the left-hand side.

Following the discussion in Section 2.1, we require A(x*) to be invertible and

further assume that one eigenvalue is always positive and the other always

negative. This assumption allows us to specify only one boundary condition at

x = 0. The most general way of writing this boundary condition is to specify a

linear combination of the state variables,

�u1ð0; t; �Þ þ �u2ð0; t; �Þ ¼ gðt; �Þ ¼ gð0ÞðtÞ þ Oð�Þ; ð27Þ

Boundary-Value Problems for Systems of Hyperbolic Conservation Laws 285



for t > 0. However, we do not lose any generality by assuming that � = 1 and

� = 0. In other words, we may assume that the first dependent variable is

specified at the boundary x = 0, and the second dependent variable is left

unspecified. The reason we can do this is that for any constant 2 � 2,

nonsingular matrix Z, the substitution u = Zv does not fundamentally change

the form of our problem. This substitution changes (25) to

vt þ Z�1Aðx*ÞZvx þ Z�1Bðx*ÞZv ¼ �½Z�1CðZv; x*ÞZv

þZ�1DðZv; x*ÞZvx� þ Oð�2Þ;
that is still of the form represented by (25). However, the substitution changes

the boundary condition (27) to

½� ��Zvð0; tÞ ¼ gð0ÞðtÞ þ �gð1ÞðtÞ þ . . .;

so we can use it to alter the linear combination of u1(0,t;�) and u2(0,t;�).
Suppose the solution to (25) has the asymptotic expansion

uðx; t; �Þ ¼ uð0Þðx; x*; x̃; t; t̃Þ þ �uð1Þðx; x*; x̃; t; t̃Þ þ Oð�2Þ:

We include the slow and stretched scales x̃ = �x and t̃ = �t, because we only

intend to carry out the analysis to the Oð�Þ system of equations—if we want to

continue the analysis to Oð�2Þ, we must also include the Oð�2Þ contribution in

(25). However, the solution method does not change significantly by including

more spatial or temporal scales.

As before, the multiple-scale analysis proceeds by plugging into (25) the

expressions

ut ! u
ð0Þ
t þ �ðuð1Þt þ u

ð0Þ
t Þ þ . . .

and

ux ! ��1u
ð0Þ
x*

þ ðuð0Þx þ u
ð1Þ
x*
Þ þ �ðuð0Þx̃ þ uð1Þx þ u

ð2Þ
x*
Þ þ . . .

and collecting terms according to their powers of �.

3.2.1. Oð��1Þ System. When we collect all terms that are proportional

to ��1, we find that A(x*) ux*
(0) = 0. Because the eigenvalues of A(x*) are

never zero, A(x*) may be inverted to obtain ux*
(0) = 0. In other words, the

leading-order behavior of the solution does not depend on the fast spatial

scale: u(0) = u(0)(x,x̃,t). (As before, we use the convention that all quantities

independent of the fast spatial scale are underlined.)

3.2.2. Oð1Þ System. The Oð1Þ system is

u
ð1Þ
x*

¼ �A�1u
ð0Þ
t � A�1Buð0Þ � uð0Þx : ð28Þ

˜
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Before we integrate, we remove terms that are independent of x* using the

averaging operators (see Appendix A). We obtain the x*-homogenized equation

u
ð0Þ
t þ hA�1i�1

uð0Þx þ hA�1i�1hA�1Biuð0Þ ¼ 0: ð29Þ

When we integrate the remaining part of (28) with respect to x*, we obtain

uð1Þ ¼ �[A�1]uð0Þ � [A�1B]uð0Þ þ uð1Þðx; x̃; t; t̃Þ; ð30Þ
where u(1) is the constant of integration. Incidentally, Equation (30) also implies

that the Oð�Þ initial conditions must be

hð1Þðx; x*Þ ¼ [A�1]hA�1i�1 dhð0Þ

dx
þ hA�1Bihð0ÞðxÞ

� �
� [A�1B]hð0Þ

þ hð1ÞðxÞ; ð31Þ

where h(1)(x) can be specified arbitrarily, but the fluctuating part of h(1)(x, x*)

cannot. (See Section 2.2.)

3.2.3. Oð�Þ System. The Oð�Þ system is

u
ð2Þ
x*

¼ �uð1Þx � u
ð0Þ
x̃ � A�1u

ð1Þ
t � A�1u

ð0Þ
t̃

� A�1Buð1Þ

þA�1Cðuð0Þ; x*Þuð0Þ þ A�1Dðuð0Þ; x*Þuð0Þx : ð32Þ
We plug in (30) and remove x*-independent terms to obtain

u
ð1Þ
t þ hA�1i�1

uð1Þx þ hA�1i�1hA�1Biuð1Þ ¼ �hA�1i�1
u
ð0Þ
x̃ �u

ð0Þ
t̃

þhA�1i�1hA�1[A�1]iuð0Þtt þ hA�1i�1hA�1[A�1B]iuð0Þt

þhA�1i�1hA�1B[A�1]iuð0Þt þ hA�1i�1hA�1B[A�1B]iuð0Þ

þhA�1i�1hA�1Cðuð0Þ; x*Þiuð0Þ þ hA�1i�1hA�1Dðuð0Þ; x*Þiuð0Þx : ð33Þ

When we integrate the remaining part of (32) with respect to x*, we obtain

uð2Þ ¼ [[A�1]]uð0Þtx þ [[A�1B]]uð0Þx þ [A�1[A�1]]uð0Þtt þ [A�1[A�1B]]uð0Þt

þ [A�1B[A�1]]uð0Þt þ [A�1B[A�1B]]uð0Þ þ [A�1Cðuð0Þ; x*Þ]uð0Þ

þ [A�1Dðuð0Þ; x*Þ]uð0Þx �[A�1]uð1Þt � [A�1B]uð1Þ þ uð2Þðx; x̃; t;t̃ Þ; ð34Þ

where u(2) is the constant of integration. By substituting x = 0 into (34), we can

obtain the specific form of the Oð�2Þ initial conditions that allows for a

t*-independent solution. We do not display it for brevity.
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3.2.4. Solving the homogenized equations. We now turn our attention to

the homogenized systems of equations obtained from the previous analysis.

To solve (29), we diagonalize hA�1i�1 by defining hA�1i�1 = P�P�1, where

� = diag[	1, 	2]. We choose 	1 > 0 and 	2 < 0 without any loss of generality,

and define the characteristic independent variables 
 = x � 	1t and � = x � 	2t
along with the characteristic dependent variables w(i) = P�1u(i). We change

derivatives using the formulas @t = �	1@
 � 	2@� and @x = @
 + @�. All of these
substitutions result in

L ðhÞ½wð0Þ� ¼def ð	1 � 	2Þwð0Þ
1�

ð	2 � 	1Þwð0Þ
2


2
4

3
5þ P�1hA�1i�1hA�1BiPwð0Þ ¼ 0:

ð35Þ
The differential operator L ðhÞ governs the x*-homogenized equations at every

order of �. We do not find out how u(0) depends on the slower scales x̃ or t̃ until

we consider the set of equations at the next order of �.
Now the reason why we examined B(x*) = 0 case in Section 3.1 becomes

apparent—unless one of the off-diagonal terms of P�1hA�1i�1hA�1BiP
vanishes, the equations in (35) are essentially coupled, and their general

solution can only be written in terms of integrals of Bessel functions (see

Section 3.7.1 of [12]).

The Oð�Þ system of x*-homogenized equations (33), written using the

characteristic dependent variables, is

L ðhÞ½wð1Þ� ¼ �w
ð0Þ
x̃ �w

ð0Þ
t̃

þ P�1hA�1i�1hA�1[A�1]iPwð0Þ
tt

þ P�1hA�1i�1hA�1[A�1B]iPwð0Þ
t

þ P�1hA�1i�1hA�1B[A�1]iPwð0Þ
t

þ P�1hA�1i�1hA�1B[A�1B]iPwð0Þ

þP�1hA�1i�1hA�1CðPwð0Þ; x*ÞiPwð0Þ

þ P�1hA�1i�1hA�1DðPwð0Þ; x*ÞiPwð0Þ
x : ð36Þ

Note that (36) is essentially the same as (35), except with source terms. At this

stage, we must remove terms from the right-hand side that could potentially

lead to secular terms when solving for w(1). In the linear problem of

Section 3.1, this task was easy because solving the x*-homogenized operator

only involved integrating the first component with respect to � and the second

with respect to 
. For the general case, we must remove all terms from the right-

hand side of (36) that are homogeneous solutions of the homogenized operator

L ðhÞ. It is easy to see that w(0), w x̃
(0) and w t̃

(0)
are in the null space of L ðhÞ,

but it is difficult to see which of the remaining terms needs to be removed.
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The perturbation analysis for this class of problems has not been worked out

yet.

Let us look at the different possibilities of consistency conditions that can

arise. In the most degenerate case when all the matrices on the right-hand side

of (36) are zero, the consistency conditions will indicate that x̃ and t̃ should be

replaced with x̂ = �2x and t̂ = �2t, and that the analysis must be carried out to

Oð�2Þ to see any long-term effects.

The other extreme occurs when every term on the right-hand side of (36)

contributes to the consistency condition. In this scenario, the consistency

conditions will be a pair of coupled, constant-coefficient, Burgers’ equations. The

presence of two derivatives with respect to t indicates that diffusion is involved,

and that we will not have enough boundary conditions to solve the consistency

conditions. (When the consistency conditions are written in physical variables,

the terms with two t derivatives become spatial or temporal derivatives depending

on whether x̃ or t̃ is involved.) We would have to recover the boundary

information using a reduced set of multiple scales (see Section 3.1.7 or Section 4).

However, notice that in (36) the matrix A(x*) is solely responsible for the

presence of terms with two t derivatives. In Section 3.1.9, we determined the

condition for the diagonal entries of P�1hA�1i�1hA�1[A�1]iP to vanish. We do

not know of any physical problems in which this condition is violated.

This observation leads us to believe that the most likely possibility is the one

between these two extremes, in which the consistency conditions become a pair

of coupled, constant-coefficient, quasilinear, first-order partial differential

equations. In this situation, the fact that the consistency condition and the

original PDE have the order of derivatives in x and t suggests that missing

boundary conditions are not a difficulty. Unfortunately, the absence of terms with

two derivatives in tmeans that there is no diffusion to regulate the onset of shocks.

As we discussed in Section 2.2, the moment a shock forms we must include

t* = t/� in our asymptotic expansion and a general solution will be out of reach.

Let us illustrate these ideas with an example. The governing equations for

elastic waves in a one-dimensional solid are

@

@t
ð�ðx*ÞV Þ � @

@x
ðSðFÞÞ ¼ 0

@F

@t
� @V

@x
¼ 0;

where V(x,t;�) is the velocity, F(x,t;�) is the displacement gradient, S(F) is the

stress, and �(x*) is the density, which is allowed to vary on the fast scale, x* = x/�.
(See [13] or [1] for a thorough discussion of elastic waves.) We perturb about

the trivial resting state F = V = 0 by introducing V = �u1 and F = �u2. We also

suppose that the relationship between the stress and the displacement gradient is

S(F) = F + 1
2
F2. (We just pick some numbers for simplicity, instead of the more
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general S(F) = �F + �F2.) The resulting equations for u can be written in the

form of (25) with B(x*) = C(u, x*) = 0,

Aðx*Þ ¼
0 �1= p x*ð Þ

�1 0

2
64

3
75; and Dðu; x*Þ ¼

0 u2= p x*ð Þ

0 0

2
64

3
75:

The fact that B(x*) = 0 simplifies the analysis of the homogenized equations.

Let us solve an initial-boundary value problem in the domain x > 0 and t > 0.

We will use x̃ but not t̃ in our asymptotic expansion. It is not hard to show that

the long-term evolution equations that arise from removing potentially secular

terms in (36) are

w
ð0Þ
1 x̃ þ

1

2
h�i�1=2 � 1

� �
w
ð0Þ
1
 w

ð0Þ
1 ¼ 0 ð37aÞ

w
ð0Þ
2 x̃ � 1

2
h�i�1=2 þ 1

� �
w
ð0Þ
2� w

ð0Þ
2 ¼ 0: ð37bÞ

This pair of decoupled, quasilinear, first-order partial differential equations can

be solved without requiring any additional initial and boundary information. To

see this, we need to examine the solution domains for both equations. The left

half of Figure 6 shows the solution domain for w1
(0) in the 
-x̃ plane and the right

half shows the solution domain for w2
(0) in the � -x̃ plane.

Initial conditions for w1
(0) and w2

(0) are specified along the rays x̃ = �
 and

x̃ = ��, respectively; the boundary condition is specified as a linear combination

of w1
(0) and w2

(0) along the rays marked ‘‘BC’’ in Figure 6. As long as there are

characteristics filling the solution domain for w2
(0), we should be able to

calculate w2
(0) using the method of characteristics. We can then use the

boundary information at � = x̃ = 0 to obtain a complete solution for w1
(0).

What are the ways this method could fail? Because the consistency

conditions (37) are homogeneous, every characteristic is a straight line whose

slope is determined solely by the value of wi
(0) at the point from which the

characteristic emanates. Momentarily putting aside the case of shocks, let us

Figure 6. Solution domains for the consistency conditions for elastic waves.
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consider the possibility that there are regions of the solution domains that are

not covered by characteristics. If we disallow discontinuous initial and

boundary data, the only way for the characteristics not to fill the solution

domains is if the characteristics have slopes between 0 and �. An example of a

‘‘bad’’ characteristic is shown in Figure 7.

Calculating the slopes of the characteristics, we obtain the following

restriction on the initial conditions for the characteristics to fill the solution

domain properly:

1

2
h�i�1=2 � 1

� �
w
ð0Þ
1 t¼0 <

1

�

���� ð38aÞ

and

1

2
h�i�1=2 þ 1

� �
w
ð0Þ
2 t¼0 > � 1

�
:

���� ð38bÞ

The initial values of w(0) are obtained from u(0) by w(0) = P�1u(0), where

P ¼ h�i�1=2 h�i�1=2

�1 1

" #
:

Note that these two inequalities are implicitly satisfied, because we perturbed

about the steady-state V = F = 0 to obtain this problem. The initial conditions,

therefore, cannot not be on the order of ��1.

The only difficulty remaining is that of shocks. Recall from our discussion

in Section 2.2 that the formation of shocks necessitates the introduction of

t* = t/� into our asymptotic expansion, putting an analytic solution out of

reach. To avoid shocks forming from the outset of the problem, we must

choose initial conditions that are continuous and that match the boundary

Figure 7. Example of a ‘‘bad’’ characteristic for the second consistency condition for elastic

waves.
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condition at x = t = 0 so that there is a single characteristic emanating from

the origin in the 
-x̃ plane.

As an illustration, let us calculate the solution to this problem with the initial

conditions

uðx; 0; �Þ ¼ hð0ÞðxÞ þ Oð�Þ ¼
x=ðxþ 1Þ

0

� �
þ Oð�Þ

for x > 0, and the boundary condition

u1ð0; t; �Þ ¼
t þ 1

2
sin t

t þ 3
þ Oð�Þ

for t > 0. We choose � = 0.1 and �(x*) = 1 + 1
2
sin x* so h�i = 1. The initial

conditions satisfy (38) and match the boundary condition at x = t = 0. The

characteristic emanating from the origin is the line x = h�i�1/2t. Figure 8 shows

the analytic solution at two different times. The nonlinear effects, though

difficult to observe from these graphs, cause slight wave-steepening in the

solution. The reason that the solutions for u1 and u2 appear symmetric is

because h2
(0)(x) = 0.

3.2.5. Summary and discussion. We have seen that all of the basic concepts

from the linear problem with B(x*) = 0 apply equally well to the general

nonlinear problem (25). These concepts include the relationship between slow

and stretched scales and observable long-term phenomena, the construction of

consistency conditions, the reason for the missing boundary difficulty, and the

recovery of missing boundary information using a reduced set of multiple

scales. Generalizing to (25), however, does alter the analysis in a few ways.

First, if B(x*) is nonzero, the operator L ðhÞ that governs the x*-homogenized

equations to every order of � is likely to represent an essentially coupled system

of equations. (More precisely, this happens when P�1hA�1i�1hA�1 Bi P has

Figure 8. Analytic solution to the long-term evolution equations (consistency conditions) for

elastic waves at two different times.
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nonzero off-diagonal terms.) The result of this coupling is that the general

solution of the homogenized equations involves integrals of Bessel functions,

and more importantly, the construction of the consistency conditions from (36)

is obscured. The consistency conditions have the potential to form a pair of

coupled Burgers’ equations, whose solution necessitates the recovery of

boundary information at x = 0. In Section 4, we show how to recover the

boundary information for a linear problem with nontrivial B(x*)—this is

sufficient to recover the leading-order boundary information for the general

nonlinear problem.

Second, the fact that (25) is nonlinear means that we cannot use

superposition to partition an initial-boundary value problem into an initial-

value problem and a signaling problem. Although it is not any more difficult to

recover boundary information for a problem with nontrivial rather than trivial

initial conditions, we have seen in Section 3.1.7 that nontrivial initial conditions

lead to secular terms in the recovered boundary information. These secular

terms limit the region of validity of the computed solution.

Finally, the presence of nonlinearities can actually alleviate the missing

boundary difficulty. Whether diffusion is present in the consistency condition

(36) depends only on the matrix A(x*), and we have not come across any

physically relevant problems that exhibit diffusion. From our analysis of the

linear problem with B(x*) = 0, we learned that after diffusion, the next

possible type of long-term behavior is dispersion, which appears in the

Oð�2Þ system of homogenized equations. However, the most significant

long-term effects for nonlinear problems already manifest themselves at the

Oð�Þ system of x*-homogenized equations. Because these nonlinearities

occur one order of � earlier, and only involve one spatial derivative of the

dependent variables, we predict that the consistency conditions to leading

order for all physically relevant problems will be first-order partial

differential equations. Because the order of these consistency conditions

matches the original partial differential equation, no additional boundary

conditions are needed to solve the consistency conditions. The initial-

boundary value problem of elastic waves in a one-dimensional solid is a

perfect example of such a situation.

4. The Laplace-multiple-scales method

In this section, we present an alternative method for handling linear hyperbolic

systems with rapid spatial fluctuations using a combination of Laplace

transforms and multiple-scales (the Laplace-MS method). In the interest of

space, we only outline the method and point out its usefulness. Full details can

be found in [9].
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The main idea is to use a Laplace transform in time to turn PDEs into ODEs,

then apply the multiple-scales method to the resulting ODEs. We only apply

these methods to problems fitting equation (2), because the Laplace transform is

only suited for linear problems. Applying multiple-scales to the resulting ODEs

is rather straightforward. The unknown functions are expanded with the same

set of spatial scales used for the usual multiple-scale procedure without Laplace

transforms.

In [9], we show that this Laplace-MS method is essentially the same as

the usual multiple-scale method. The missing boundary condition difficulty

manifests itself in the Laplace-MS method through noninvertible terms like

exp(sn), where n is the order of the consistency condition that causes the

difficulty in the usual multiple-scale method. Furthermore, the Laplace-MS

method can be used to recover missing boundary information by solving

the problem with a reduced set of scales. All of the results of the previous

section have been verified using the Laplace-MS method: the missing

boundary conditions for the linear wave equation (with trivial and

nontrivial initial conditions), and the observation that secular terms appear

in the recovered boundary information if the initial conditions are

nontrivial.

However, the reason we bring up this Laplace-MS method is that it

requires much less algebra to recover missing boundary information,

especially when working with PDEs of the form (2) with B 6¼ 0. We end

this section by demonstrating the recovery of boundary information for such

a problem.

Consider Maxwell’s equations specialized for plane polarized waves,

propagating in a one-dimensional medium. If the current density is linearly

related to the electric field, the governing equations may be expressed in the

form of (2), where

Aðx*Þ ¼ 0 "ðx*Þ�1


ðx*Þ�1
0

" #
and Bðx*Þ ¼

�ðx*Þ 0

0 0

� �
:

Here, "(x*) (different from �), 
(x*), and �(x*) are the dielectric constant,

permeability, and conductivity, respectively. The first dependent variable,

u1(x,t;�), is the electric field, and the second is the magnetic field. All

variables have been appropriately nondimensionalized. (These equations are

derived in [1] for a nonlinear medium.)

Suppose we have a signaling problem in which u1(0, t; �) = g(t; �) = g(0)(t) +

Oð�Þ and u(0)(x, 0) = 0. The matrix Z = A�1(sI + B) has the average value

hZi ¼
0 h
is

h"isþ h"�i 0

� �
:

D. H. Yong and J. Kevorkian294



Using the Laplace-MS method for recovering boundary conditions, we find that

the recovered boundary information is

u
ð0Þ
2 ð0; tÞ ¼ �

ffiffiffiffiffiffiffiffi
h"i
h
i

s Z t

0

e��� ½I 0ð��Þ þ I 1ð��Þ�gð0Þðt � �Þd�;

where I nðxÞ is the modified Bessel’s function of the first kind, and � =

2h"�i/h"i. Performing this calculation using the usual multiple-scale method

requires much more algebra.

5. Summary and conclusion

We began this article by asking what role boundary conditions play in the

multiple-scale analysis of hyperbolic conservation laws with rapidly fluctuating

coefficients. The answer is that boundary conditions introduce a serious

mathematical difficulty (the missing boundary condition difficulty), which

arises because the homogenized equations are typically of higher order than the

original problem. We have overcome this difficulty through the recovery of

missing boundary information. Using either the usual multiple-scale method or

the Laplace-MS method, the recovery procedure is the same.

1. Use a reduced set of scales to solve the original problem, thereby

eliminating the need to solve long-term evolution equations (consistency

conditions).

2. Generate a near-field solution, ignoring the fact that it has a relatively small

region of validity.

3. Extract the necessary boundary information to solve the long-term evolution

equations.

We applied this procedure to both linear and nonlinear problems in Section 3,

using the usual multiple-scale method.

The Laplace-MS method is essentially the same as the usual multiple-scale

method except that it only applies to linear problems, and it can recover

boundary information with much less algebra for problems in which B(x*) 6¼ 0.

The fact that the Laplace-MS method gives the same results as the usual

multiple-scale method is expected because we can usually interchange

derivatives and integrals with respect to x and t.

We have seen that the recovered boundary information will contain secular

terms in t when the initial conditions are nontrivial. These secular terms limit

the region of validity of the recovered boundary information. Fortunately, for

linear problems, we can overcome this difficulty with the aid of superposition.

By partitioning an initial-boundary value problem into the sum of an initial-

value problem and a signaling problem, we can use the recovered boundary
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information for a signaling problem, which will not contain secular terms, to

solve the long-term evolution equations.

The multiple-scale analysis for problem (1) is no more conceptually difficult,

although there are a few procedural complications. First, the linear operator that

governs the x*-homogenized equations at every order of � is likely to represent

a pair of essentially coupled equations, when B(x*) is nonzero. This coupling

causes the general solution to involve Bessel functions, and it obscures the

construction of consistency conditions. Although the asymptotic solution of the

x*-homogenized equation is generally out of reach for B 6¼ 0, these equations

provide a useful description of how the x*-averaged solution behaves, and may

be solved numerically with a much coarser grid than as the x*-dependent terms

are absent.

Second, the presence of nonlinear terms in (1) means that an initial-

boundary value problem cannot be decomposed into an initial-value problem

and a signaling problem using superposition. The recovered boundary

information for a problem with nontrivial initial conditions is likely to

contain secular terms proportional to t, which limit the region of validity of

the asymptotic expansion. However, because the appearance of diffusion is

governed solely by the linear part of the problem, and to this date, we have

not encountered a physically relevant problem that includes diffusion, we

conjecture that the consistency conditions (long-term evolution equations) for

physically relevant nonlinear problems will not include diffusion. Instead,

they will form a pair of first-order, quasilinear PDEs. Because the order of

these consistency conditions matches the original partial differential equation,

no additional boundary conditions are needed to solve the consistency

conditions.

Appendix A. Averaging operators

To handle functions that vary on the fast spatial scale x* = x/�, we introduce the
following operators.

haðx*Þi ¼def
lim
s!1

1

2s

Z s

�s

aðsÞds aðx*Þf g ¼def
aðx*Þ � haðx*Þi

[aðx*Þ] ¼def
Z x*

s

fað
Þgd
 where s is chosen such that faðx*Þgh i ¼ 0:

The averaging operator h�i gives the average value of a function over the entire

x*-domain. It is a linear operator that produces constants or functions that are
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independent of x*. For a function b(x*) with period 2P, the averaging operator

is more conveniently defined as

hbðx*Þi ¼def 1

2P

Z P

�P

bðsÞds:

The {�} operator generates the fluctuating part of a function: the part of the

function that has a zero average. Finally, the [�] operator gives the integral of the
fluctuating part of a function, where the constant of integration is chosen such that

the average of the integral of the fluctuating part is zero. (Keep in mind that

{a(x*)} is still a function of x*, whereas ha(x*)i is not.) When any of these

operators is applied to a matrix, it is understood that the operation is performed

element-wise.

We now present some interesting and useful properties of these averaging

operators. In the following discussion, it is understood that a = a(x*) and

b = b(x*) are integrable, although not necessarily periodic or differentiable with

respect to x*.

Property A.1.

d

dx*
[a] ¼ fag:

This proposition is a direct consequence of the fact that [�] is an integral

operator. The function a(x*) does not have to be differentiable, only integrable.

Property A.2.

[ d

dx*
aðx*Þ] ¼ d

dx*
[aðx*Þ] for all differentiable aðx*Þ:

To prove this property, we use the definition of the [�] operator:

[ d

dx*
aðx*Þ] ¼

Z x*

s

a0ð
Þd
 ¼ aðx*Þ � aðsÞ;

where s is chosen such that

[ d

dx*
aðx*Þ]

* +
¼ haðx*Þ � aðsÞi ¼ haðx*Þi � aðsÞ ¼ 0:

Substituting a(s) = ha(x*)i,

[ d

dx*
aðx*Þ] ¼ aðx*Þ � haðx*Þi ¼ aðx*Þf g ¼ d

dx*
[a]:
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In effect, this property allows us to interchange differentiation and integration. It

is the only property listed here that requires a(x*) to be differentiable.

Property A.3.

[a][b] ¼ [[a]fbg þ fag[b]]þ h[a][b]i:
Proof:

[a][b] ¼ f[a][b]g þ h[a][b]i

f[a][b]g ¼ d

dx*
[[a][b]] Use Property A:1:

Use Property A:2: ¼[ d

dx*ð[a][b]Þ]
Use Property A:1: ¼ [[a]fbg þ fag[b]]:

Note: Although this property makes use of Property A.2, it does not require

a(x*) or b(x*) to be differential, because if these functions are integrable, then

[a] [b] is differentiable.

Property A.4.

h[a]ai ¼ 0 for all integrable; scalar functions aðx*Þ:

Proof:

h[a]ai ¼ h[a]ðhai þ fagÞi ¼ haih[a]i þ h[a]fagi ¼ h[a]fagi

Use Property A:1: ¼ 1

2

d

dx*
[a]2

� �� �

Use Property A:3: ¼ 1

2

d

dx*
2[[a]fag]þ [a]2

D E� �� �

¼ hf[a]faggi ¼ 0

Property A.5.

ha[b]i ¼ �h[a]bi
We prove this statement by applying Property A.4 to the equality

h[aþ b]ðaþ bÞi ¼ h[a]ai þ h[a]bi þ h[b]ai þ h[b]bi:
Because the averaging operator involves an integral, this property is really a

manifestation of integration by parts. However, we can define the averaging
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operator without mention of integrals, and the result will still be true. (Simply

define h�i as a linear operator such that a(x*) = hai + {a} and h�i = � for all

constants �.)
It is very important to remember that Property A.4 does not hold for

matrices, because its proof relies on the commutative property of scalar

multiplication. The expression hA[A]i appears many times throughout this

article, and this expression is not zero if A(x*) is a matrix. The most that we can

say about hA[A]i is that if A(x*) is a square, integrable matrix, then the trace of

hA[A]i is zero. (We can prove this quickly using some linear algebra and

Properties A.4 and A.5.)

However, Property A.5 does hold for matrices. For any square matrices A(x*)

and B(x*) of the same size,

A[B]
�  

¼ � [A]B
�  

:

In particular, if A = B, we see that

A[A]
�  

¼ � [A]A
�  

:

Property A.6.

ha[[b]]i ¼ �h[a][b]i ¼ h[[a]]bi for all integrable aðx*Þ and bðx*Þ:
This final result is proved through repeated applications of Property A.5.

Appendix B. Numerical methods

In this appendix, we give further details about the two numerical methods used

throughout this article: a spectral solver and a finite volume method.

B.1. CLAWPACK

CLAWPACK (Conservation LAWs PACKage), written by Randall J. LeVeque,

is a package of Fortran routines that numerically solves hyperbolic systems of

conservation laws. (See [14] and [15].) Because it is a finite volume method, it

can be used to calculate solutions that truly conserve the appropriate quantities.

The fundamental unit of CLAWPACK is a user-supplied routine that solves a

Riemann problem—an initial-value problem with piecewise constant data.

CLAWPACK handles everything else: time-stepping, flux corrections using

flux limiters, even adaptive mesh refinement (with AMRCLAW). It is available

on the web at http://www.amath.washington.edu/˜rjl/clawpack.html.
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B.2. Spectral Solver

The other numerical method that we have used in this article is loosely based on

the ideas behind spectral methods. Essentially, we solve the system of ordinary

differential equations that results when we assume the solution is a truncated

Fourier series.

Consider the system of equations

ut þ Aðx=�Þux ¼ 0; ðB:1Þ

with periodic A(x/�) on the domain �1 < x < 1 with periodic boundary

conditions. If the initial conditions u(x, 0) are periodic, then the solution will

also be periodic for all t > 0.We can, therefore, write a Fourier series expansion for

the solution:

uðx; tÞ ¼
X1
n¼�1

vðnÞðtÞ cosðn�xÞ þ w ðnÞðtÞ sinðn�xÞ: ðB:2Þ

Plugging (B.2) into (B.1), we see that the amplitudes v(n)(t) and w(n)(t) are

governed by an infinite system of ordinary differential equations.

Equation (B.2) suggests a simple approximation to u: truncate the Fourier

expansion by defining

ũðx; tÞ ¼
XM
n¼m

vðnÞðtÞ cosðn�xÞ þ wðnÞðtÞ sinðn�xÞ: ðB:3Þ

Now, instead of an infinite system of ordinary differential equations, we obtain

a system of 2(M � m + 1) differential equations governing the amplitudes. The

initial conditions for these ODEs come from a similar truncated Fourier

expansion of the initial conditions to the PDE. The system of ODEs is linear

and has constant coefficients, so it can be easily solved.

We implemented this numerical method using Mathematica. Although

Mathematica can perform symbolic calculations, in this case, the required

matrix exponentiation is too computationally intensive for large systems of

ODEs. Instead, we have used Mathematica’s arbitrary precision arithmetic to

calculate solutions for large t.

We expect that, as more terms are incorporated into the truncated Fourier

expansion, the approximation becomes more accurate. However, how many

Fourier modes should we include? As an illustration, we solved (B.1) with

A�1
testðx*Þ ¼

1þ 0:5 sinð�x*Þ 2

2 1þ 0:25 sinð�x*Þ

� �

with the initial condition

uðx; 0Þ ¼
sinð�xÞ

0

� �
;
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using m = �200 and M = 200 in the truncated Fourier series (B.3). We used

64-digit arithmetic. Figure B.1 shows the amplitudes of each mode on a

logarithmic scale, when t = 500. There are four dots for each wavenumber,

because we plot the amplitudes of the cosine and sine for both ũ1(x,t)

and ũ2(x,t). The appearance of bands in the graph is a result of our

monochromatic initial condition and A(x/�)—with � = 0.1, the initial wave

with wavenumber � excites only the waves with wavenumbers . . ., �19�,
�9�, �, 11�, 21�,. . ..

The most important feature of Figure B.1 is that the amplitudes decay

exponentially with increasing wavenumber. If we continue the trend, we see

that the magnitude of the first neglected Fourier mode is approximately 10�10.

If we are satisfied with a solution accurate to 10�5, we only need to set m = �50

and M = 50 in our truncated Fourier series.

We have also used this numeric method to solve the linear wave equation. In

general, spectral numeric techniques are typically much more accurate than

their finite difference counterparts. However, they are limited to problems with

periodic boundary conditions.
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L. RÅDE and B. WESTERGREN, eds., Beta Mathematics Handbook, 2nd ed., CRC, Boca Raton,

FL, 1990.

E. SANCHEZ-PALENCIA, Nonhomogenous Media and Vibration Theory, Springer, New York,

1980.

P. R. WEISSMAN, The solar system and its place in the galaxy, in Encyclopedia of the Solar

System, ch. 1 (P. R. Weissman and T. Johnson, Eds.), Academic Press, San Diego, 1998.

G. B. WHITHAM, Linear and Nonlinear Waves, Wiley, New York, 1974.

HARVEY MUDD COLLEGE

UNIVERSITY OF WASHINGTON

(Received November 30, 2000)

Boundary-Value Problems for Systems of Hyperbolic Conservation Laws 303


