
Solving Circuit Optimisation Problems in

Cryptography and Cryptanalysis∗

Nicolas T. Courtois1,2, Daniel Hulme1,2, and Theodosis Mourouzis1

1 University College London, UK,
2 NP-Complete Ltd, London, UK

Abstract. One of the hardest problems in computer science is the prob-
lem of gate-efficient implementation. Such optimizations are particularly
important in industrial hardware implementations of standard crypto-
graphic algorithms [13, 17, 7, 22]. In this paper we focus on optimizing
some small circuits such as S-boxes in cryptographic algorithms. We con-
sider the notion of Multiplicative Complexity, a new important notion
of complexity studied in 2008 by Boyar and Peralta and applied to find
interesting optimizations for the S-box of the AES cipher [19, 22, 21]. We
applied this methodology to produce a compact implementation of sev-
eral ciphers. In this short paper we report our results on PRESENT and
GOST, two block ciphers known for their exceptionally low hardware
cost. This kind of representation seems to be very promising in imple-
mentations aiming at preventing side channel attacks on cryptographic
chips such as DPA. More importantly, we postulate that this kind of
minimality is also an important and interesting tool in cryptanalysis.

Key Words: Block ciphers, PRESENT, GOST, non-linearity, algebraic
attacks, circuit complexity, logic-level optimization, multiplicative complexity,
algebraic cryptanalysis, block cipher implementation, bitslice implementation,
side-channel attacks, DPA.

∗ This research was supported by the European Commission under the FP7
project number 242497 ”Resilient Infrastructure and Building Security (RIBS)”
and by the UK Technology Strategy Board under project 9626-58525.

Note: A short and early version of this paper was included in the electronic
proceedings of 2nd IMA Conference Mathematics in Defence 2011, 20 October
2011, Defence Academy of the United Kingdom, Swindon, UK.

1 Introduction

The problems of circuit complexity is one of the hardest and yet very important
problems in computer science and complexity theory. For the great majority
of concrete circuits, it is not known what will be the lowest bound on their
complexity, neither how to compute very good circuits efficiently. Not everybody
in the industry cares about improving their gate count by a small factor, but
such optimizations are particularly important in hardware implementation of
standard cryptographic algorithms [13, 17, 7, 22], which in many security chips
such as smart cards and RFID, will be one of the most costly components. Here
even a small gain can produce measurable savings.

Many heuristic algorithms for this problem have been invented, and with a
lot of computing power one can find very decent optimizations [13], but these
optimizations are frequently subject to further substantial improvement. In this
paper we particularly focus on optimizing the S-boxes for industrial block ci-
phers.

Much less known and very surprising is that this is also an important topic in
cryptanalysis. As shown in [7, 10, 8] such optimizations are also very important
in order to speed up so called algebraic attacks on symmetric ciphers, and in the
space of attacks which require very small quantities of data, these methods lead
to currently best known attacks on a few ciphers (with more data, typically faster
attacks will exist). In this paper we focus mostly on 4x4 S-boxes in ciphers such
as PRESENT and GOST. These ciphers are known for their exceptionally low
hardware implementation cost [17]. But this is also what makes them vulnerable
to algebraic cryptanalysis.

Sometimes the very existence of an attack on the cipher which would be
faster than brute force will depend on a concrete circuit optimization problem,
precisely because the time complexity must be fast enough to beat the brute force
attacks. Our work on cryptanalysis makes extensive use of SAT solver software,
both at the optimization stage, when a “compact algebraic description” of a
cipher is produced, and a later solving stage, where the equations are solved to
in order to compute the secret key.

2 S-box Optimization

In 2008 Boyar and Peralta introduced a new heuristic methodology to mini-
mize the complexity of digital circuits [19, 22, 21]. It is based on the notion of
Multiplicative Complexity (MC).

Multiplicative Complexity (MC) is a well-known and very deep notion of
arithmetic complexity invariant w.r.t. affine transformations, which minimizes
the number of non-linear elementary transformations, see [25, 18, 19]. Their main
heuristics is that a two step-process based on MC appears to be able to produce
very good gate efficient implementation of several famous circuits such as the
AES S-box, and some other circuits related to finite fields and algebra, Several
such results can be found in [22, 21]. In this paper we apply this methodol-
ogy to some cryptographically significant functions GF (2)4 → GF (2)4 (i.e. 4x4
S-boxes). We developed software which allows us to compute optimal represen-
tations of these S-boxes w.r.t to this methodology.

2.1 Motivations For Achieving Low-MC and Low Gate Count

There are several good mains reasons why we want to determine and improve the
complexity of various circuits, whether we consider Multiplicative Complexity
(MC), or other complexity measures.

1. Lower the implementation cost in silicon.
2. Prevent Side Channel attacks such as DPA. this is due to the fact the XORs

are believed easy to protect against DPA through linear secret charing tech-
niques. Then minimizing the number of AND gates is expected to lower

the cost of general-purpose protections against side channel attacks which
are developed to securely implement arbitrary digital circuits, such as for
example developed in [16].

3. Algebraic Cryptanalysis of a symmetric cipher can be greatly improved if we
use gate-efficient and compact representations, as demonstrated in [7, 8, 10].
This usually works only for cipher with a limited number of rounds. Then
additional non-trivial higher-level “tricks” are needed to be able to really
break a full cipher with many more rounds, see [8, 10, 11].

4. In symbolic computing and numerical algebra, this kind of optimizations can
be applied recursively to produce asymptotically fast algorithms to solve very
famous and important practical problems such as Gaussian reduction and
matrix multiplication, see [5].

2.2 Bitslice Gate Complexity and Multiplicative Complexity

In this section we define two particular models for gate complexity of digital
circuits.

Definition 2.2.1 (Bitslice Gate Complexity (BGC)).
Given a function GF (2)n → GF (2)m we define its Bitslice Gate Complexity
(BGC) as the minimum number of 2-input gates of types XOR,OR,AND,OR
needed.

Note: we do NOT allow gates of type NOR and NAND. This is a very
simple model, in which the cost of all these gates is considered to be the same,
and which is relevant for example in so called Bit-slice implementations of block
ciphers, such as for example in [1]. However it is not an optimal model for silicon
implementations, where certain gates are more costly to implement, while NOR
and NAND gates are actually less costly.

Now we recall the definition of MC [25, 18, 19, 22]:

Definition 2.2.2 (Multiplicative Complexity (MC)).
Given a function GF (2)n → GF (2)m we define its Multiplicative Complexity
(MC) as the minimum number of AND gates which need to be used to implement
this function, with an unlimited number of NOT and XOR gates.

This model considers that linear operations come “for free” and ask to min-
imize just the number of AND gates. The problem with Bitslice Gate Complex-
ity (BGC) is that we are not in general able to determine its value, algorithms
which find such optimizations are typically random stochastic explorations of
large trees of solutions [13] and we are not sure if the optimizations are final or
if they can still be improved. However, as we will see in this paper, at least for
small circuits, the Multiplicative Complexity (MC) can be computed exactly
by our methods which use SAT solver software.

We have also the following fact which results directly from the definition:

Fact 1. The Multiplicative Complexity is invariant w.r.t. to multivariate affine
transformations at the input and at the output. As a consequence, for a 4x4 bit
S-box, its Multiplicative Complexity is the same for the whole affine equivalence
class, which classes are studied in [15, 23].

2.3 Multiplicative Complexity As A Tool For Gate Complexity

Boyar and Peralta have a developed a heuristic methodology, where they opti-
mise for of Multiplicative Complexity (MC) in order to produce also gate-efficient
implementations:

1. (Step 1) First compute the multiplicative complexity.
2. (Step 2) Then optimise the number of XORs separately, see [20, 12].
3. Optional Step 3: At the end do additional optimizations to decrease the

circuit depth, an possibly additional software optimizations, see [19, 22],

This methodology was then used to produce new worldwide records in gate
efficient implementation of several famous circuits such as the AES S-box, and
many other circuits related to finite fields and algebra, [22, 21, 21].

2.4 Our Method to Compute the Multiplicative Complexity

In this paper we focus on optimisation of functions GF (2)4 → GF (2)4 which are
immensely popular in cryptography [23]. We have implemented fully and with
our own optimisation methods, both Steps 1. and 2. above.

The crucial feature of our implementation is that BOTH our Steps 1. and
2. are OPTIMAL, i.e. they produce the best possible optimizations which can
be obtained by following these two steps. Optimality was achieved due to SAT
solver software, we convert our problem to SAT and it either outputs SAT, and
a solution, which we convert to a concrete circuit optimization, or it outputs
UNSAT, and we are certain that there is no solution. There is third possibility,
that the SAT solver software runs for a very long time and we do not have
enough computing power to decide whether the result is SAT or UNSAT, but
this have never happened for 4x4 S-boxes. Accordingly, we were able to produce
optimal optimizations or this type for every 4x4 S-box we have ever tried. This
is very rare in complexity: to be able to completely determine the best possible
result.

We must say that these methods are at prototyping stage and they are so
far slower than other known methods [13]. Likewise, we do not claim that we
can optimise the linear parts as quickly as by recent methods described in [19,
20], but only that we can optimize to the strictest minimum possible, which
probably can also be achieved in [12] by similar methods and SAT solvers. This
is for linear circuits. However it seems that we are the first to apply SAT solvers
also to optimize non-linear circuits.

We have also obtained some very good results on bi-linear circuits, see [5].

2.5 Provable Aspects of Our Method

Our solutions are optimal and thus proven to be impossible to improve (auto-
mated software proof with UNSAT). This is they would be provably optimal, if
we had a proof of correctness of the SAT solver software.

It will also be correct, but not proven correct, if there is no bug in the SAT
solver software. Such a bug, where a problem which is SAT is claimed to be
UNSAT by another solver, will quickly and easily be found, because we have a

portfolio of many different SAT solver software, and regularly check these results
by at least a few SAT solvers. Even if we assume the presence of bugs in this
software, one can consider that our proofs are “probabilistic proofs”, but still
the probability of error can be easily made as small as desired.

Thus we achieve a proof of impossibility when our program outputs UNSAT
for smaller sizes. We also claim that what we do could be extended to produce
fully verifiable mathematical proofs written in a formal language, which prove
these optimality results. Some SAT solvers already have the ability to output
such proofs. However what is missing is also a proof that all our conversions are
correct and preserve correctness. This can be done in future research. Such proofs
would not be published in scientific papers, but rather as lengthy computer files,
which should come together with a formal system able to efficiently check the
correctness of such proofs. This is a major topic for further research which would
require one to develop a whole new formal language and software to manipulate
it.

2.6 An Alternative Method to Compute the Multiplicative
Complexity

We can note that for Step 1, and only for 4x4 S-boxes, there is a simple and
alternative method to compute the of Multiplicative Complexity (MC), in step
1, following the work on classification and equivalence of 4x4 S-boxes [15, 23]. It
is as follows:

1. Determine another S-box for which our S-box is an affine equivalent of an-
other S-box, for which the MC was already computed.

2. The affine equivalence can be determined by methods of [2] which are ac-
tually essentially the same methods which have been proposed at the same
conference 10 years earlier [4] in a slightly different context.

3 Optimizing the PRESENT S-box

The PRESENT S-box is defined as {12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2}.
We will number the least significant bits starting from 1.

Theorem 3.0.1. The Multiplicative Complexity of the PRESENT S-box is ex-
actly 4.

Proof: For 3 AND gates our thoroughly designed and tested system outputs UN-
SAT. This could be converted to a formal proof that the Multiplicative Com-
plexity is at least 3. We have obtained an automated proof of this fact which
takes a few seconds on a PC and can reproduced and checked. For 4 AND gates,
our system outputs SAT and a solution. Further optimisation of the linear part,
which is also optimal as we also obtained UNSAT for lower numbers, allowed
us to minimize the number of XORs to the strict minimum possible (prove by
additional UNSAT results). As a result, for example we have obtained an im-
plementation of the PRESENT S-box with 25 gates, 4 AND, 20 XOR, 1 NOT

which is optimal w.r.t our Boyar-Peralta 2-step methodology but not optimal in
overall gate complexity. 25 gates are still not very satisfactory.

A better result in terms of gate complexity can be achieved by the following
method: we observe that AND gates and OR gates are affine equivalents, and
it is likely that if we implement certain AND gate with OR gates, we might be
able to further reduce the overall complexity of the linear parts. We may try all
possible 24 cases where some AND gates are implemented with OR gates. Even
better results can be obtained if we consider also NOR and NAND gates. By
this method, starting with the right optimization with MC=4, as several such
optimizations may exist, we can obtain the following new implementation of the
PRESENT S-box which requires only 14 gates total (!):

T1=X2^X1; T2=X1&T1; T3=X0^T2; Y3=X3^T3; T2=T1&T3; T1^=Y3; T2^=X1;

T4=X3|T2; Y2=T1^T4; T2^=~X3; Y0=Y2^T2; T2|=T1; Y1=T3^T2;

Applications. This implementation is used in our recent bit-slice implemen-
tation of PRESENT, see [1]. In addition we postulate that this implementation
of the PRESENT S-box is in certain sense optimal for DPA-protected hardware
implementations with linear masking, as it minimizes the number of non-linear
gates (there are only 4 such gates).

Discussion. Our best optimisation of the PRESENT S-box does not con-
tradict the Boyar-Peralta heuristic to the effect that some of the best possible
gate-efficient implementations are very closely related to the notion of multiplica-
tive complexity. However the most recent implementations of the AES S-box, in
the second paper by Boyar and Peralta, show that further improvements, and
also circuit depth improvements, can be achieved also by relaxing the number of
ANDs used as in the latest optimization of the 4-bit inverse in GF (24) for AES
given on Fig 1. in [22].

4 The GOST S-boxes

We consider the main standard and most widely known version of the GOST
block cipher, known as ”GostR3411 94 TestParamSet” in [14]. and also known
as the one used by the Central Bank of the Russian Federation [17]. By running
the same method and programs we obtained the following result:

Theorem 4.0.2. The Multiplicative Complexity of the eight GOST S-boxes
S1,S2,S3,S4,S5,S6,S7,S8 is exactly equal to respectively 4,5,5,5,5,5,4,5.

Related Work: We can compare this to the results in Table on page 226 of
[17] where we see that these 8 S-boxes are also on average more expensive than
the PRESENT S-box in the sense of Gate Equivalent (GE) cost, (the GOST
S-boxes cost 23.5 GE on average per S-box while the PRESENT S-box appears
to require about 27 GE). In Table 3 in [17] we see that PRESENT S-box is bet-
ter against linear and differential cryptanalysis. However in our Multiplicative
Complexity (MC) metric, in our Bitslice Gate Multiplicative Complexity (BGC)

metric, and also in the strict GE cost metric in [17], it is clear that the com-
plexity of the PRESENT S-box is always lower and therefore we conjecture that
PRESENT S-box will be weaker than the GOST S-boxes, against many types of
algebraic cryptanalysis such as attacks described in [10, 11]. Thus it is probably
a bad idea to use the GOST cipher with PRESENT S-boxes as proposed in [17].

4.1 Additional Standard GOST S-boxes

Remark: In the future works we will publish much more results for all the 64
known GOST S-boxes and their inverses, and also other optimizations of these
S-boxes, and also the exact application of these results in cryptanalysis. The
table below contains some preliminary results.

Table 1. Multiplicative Complexity for all known GOST S-Boxes

S-box Set Name S1 S2 S3 S4 S5 S6 S7 S8

GostR3411 94 TestParamSet 4 5 5 5 5 5 4 5

GostR3411 94 CryptoProParamSet 4 5 5 4 5 5 4 5

Gost28147 TestParamSet 4 4 4 4 4 5 5 5

Gost28147 CryptoProParamSetA 5 4 5 4 4 4 5 5

Gost28147 CryptoProParamSetB 5 5 5 5 5 5 5 5

Gost28147 CryptoProParamSetC 5 5 5 5 5 5 5 5

Gost28147 CryptoProParamSetD 5 5 5 5 5 5 5 5

GostR3411 94 SberbankHashParamset 4 4 4 5 5 4 4 4

We believe that this table gives some first and early indications which ver-
sions of GOST will be more secure against algebraic cryptanalysis, this however
requires much more extra work.

4.2 Affine Equivalence and Quality of GOST S-boxes

The S-boxes of many ciphers have been carefully chosen to be very good with
respect to linear and differential cryptanalysis. Researchers who have studied
4-bit S-boxes [15, 23] have found that there only 16 ’optimal’ S-boxes w.r.t.
differential and linear attacks, plus their affine/linear equivalents. Many other
well-known S-boxes such as the PRESENT S-box studied here, all the 8 S-boxes
in Serpent cipher and all their 8 inverses, and many other, are affine equivalents
of one of these 16 optimal S-boxes, see [15, 23].

In contrast, very few of the known GOST S-boxes are affine equivalents of
these 16 optimal S-boxes. In the following table we give for each GOST S-box
and each inverse S-box its affine equivalence class.

The equivalence class is either

1. It can be of the type Gi with i = 0..16 for equivalents of so called ’optimal’
S-boxes from [15],

2. We denote by Lu1 the second Lucifer S-box S1, see [23].

Table 2. Affine equivalence of known GOST S-Boxes and their inverses

S-box Set Name S1 S2 S3 S4 S5 S6 S7 S8

GostR3411 94 TestParamSet 36 02 03 04 06 35 08

- their inverses 02 03 04 06 08

GostR3411 94 CryptoProParamSet Lu1 14 G10 G8

- their inverses Lu1 14 G10 G8

Gost28147 TestParamSet 21 21 25 28

- their inverses 21 21 25 28

Gost28147 CryptoProParamSetA 31 32 33 G8 35 36 37 38

- their inverses 31 32 33 G8 37 38

Gost28147 CryptoProParamSetB G13 G13 G13 G11 G7 G7 G11 G6

- their inverses G13 G13 G13 G11 G7 G7 G11 G6

Gost28147 CryptoProParamSetC G7 G4 G6 G13 G13 G6 G11 G13

- their inverses G7 G4 G6 G13 G13 G6 G11 G13

Gost28147 CryptoProParamSetD G13 G13 G13 G4 G12 G4 G13 G7

- their inverses G13 G13 G13 G4 G12 G4 G13 G7

GostR3411 94 SberbankHashParamset 74 75 76 78

- their inverses 74 75 78 76

3. or it is an arbitrary string of integers, where we use the same string only
where we want to signify that we have an equivalent S-box elsewhere in the
same table (these string so of integers are purely conventional and have no
meaning outside this table).
We observe that many GOST S-boxes, especially the first set, which is the

oldest set of GOST S-boxes known, are equivalent to their own inverses.
This table also shows very clearly that there was a historical evolution of

GOST S-boxes towards boxes of type Gi which are optimal against linear and
differential cryptanalysis [15]. Most of more recent S-boxes which appear in
OpenSSL [14] are one of the Gi. Following [15] 12 out of these ’optimal’ S-boxes
are self-equivalent. Only 8 of these 12, namely G4, G6, G7, G8, G10, G11, G12, G13,
occur in our table for GOST.

5 Multiplicative Complexity of Whole Ciphers

It appears that, from here we are able to provably minimize the number of
non-linear gates in a whole given cipher, to a proven lower bound.

In order to do this we need to look at any other existing non-linear compo-
nents of the cipher, and also compute their Multiplicative Complexity (MC).

Then we also need to prove that the Multiplicative Complexity is not reduced
by the combination.

Such a reduction is not always very likely, but if it occurs, it could be con-
sidered as a potential structural flaw in the cipher. It could be seen as a sign
that somewhat the designers have maybe ”wasted” the computational resources
in hardware, for a given security level. Alternatively, it could also be a source of
potential shortcuts to implement the cipher more efficiently.

6 Multiplicative Complexity of Whole GOST Cipher

We would like to minimize the number of non-linear gates in the whole given
cipher. We sketch how this can be done for the GOST block cipher. We basically
need to compute the Multiplicative Complexity (MC) for each component and
add them.

6.1 Modular Addition

In addition to S-boxes, the GOST cipher uses addition modulo 232. The inter-
esting question is what is the multiplicative complexity of this operation.

In order to optimize this addition modulo 232 we follow the first method
described in [9]. Let us consider three n-bit words (xn−1, . . . , x0), (yn−1, . . . , y0)
and (zn−1, . . . , z0) with z0 being the low-order bit. The modular addition

(x, y) 7→ z = x ⊞ y mod 2n

can be described the following way by (∗) and (∗′), using new variables that are
carry bits, represented by the (n − 1)-bit word c = (cn−1, . . . , c1):

(∗)

z0 = x0 + y0

z1 = x1 + y1 + c1

z2 = x2 + y2 + c2

...
zi = xi + yi + ci

...
zn−1 = xn−1 + yn−1 + cn−1,

(∗′)

c1 = x0y0

c2 = x1y1 + (x1 + y1)c1

...
ci = xi−1yi−1 + (xi−1 + yi−1)ci−1

...
cn−1 = xn−2yn−2 + (xn−2 + yn−2)cn−2

We claim that:

Theorem 6.1.1. The Multiplicative Complexity (MC) of the addition modulo
2n is exactly n − 1.

Proof: This is is not obvious at the first sight, it may seem that it is 2(n − 1).
However in characteristic 2 we have:

xy + (x + y)c = (x + c)(y + c) + c

which allows to reduce the number of multiplications to 1 in each line: we obtain
(xi−1 + ci−1)(yi−1 + ci−1) + ci−1. Thus we have established it is at most n − 1.

To prove it is at least n − 1 we observe that the algebraic degree of the
ANF of the last output bit zn−1 as a function of the xi and the yi is always
n−1. This is easy to see from the formulas because each new carry ci contains a
multiplication of the previous carry ci−1 by new independent variables. Therefore
the ANF degree of zn−1 is n − 1 and at least n − 1 multiplications are needed
to compute it, and therefore at least n − 1 multiplications are needed overall.

6.2 Application to Cryptanalysis of GOST

It appears that we are able to provably minimize the number of non-linear
gates in a whole given cipher such as GOST, to a proven lower bound. In future
works we will show how this type of optimization is used to break the full-round
block cipher GOST, see [10, 11].

Currently no theory is able to give recommendations about how to produce
the fastest algebraic attack on a given cipher, and there are many competing
techniques, see [7]. We conjecture that the possibility to reduce the Multiplicative
Complexity (MC) of the whole cipher to the lowest possible number, and also
other metrics of circuit complexity, will play an important role in finding the
best possible attacks in algebraic cryptanalysis.

7 Conclusion

In this paper we explore some ideas recently proposed by Boyar and Peralta to
optimize the AES S-box [19, 22] in order to see if they can be applied to other
cryptographic S-boxes. They central notion is that of Multiplicative Complexity
(MC) which minimizes the number of elementary non-linear operations (AND
gates) at the cost of linear operations, which can be optimized separately, as a
second step. We have implemented both these steps in an innovative way, where
each problem is converted to a satisfiability problem and solved by SAT solver
software. This type of methodology was previously applied to optimize linear
circuits [12] and bi-linear circuits [5] but it appears it is for the first time it is
used to optimise circuits of arbitrary algebraic degree. The key interesting point
is that many SAT solvers will be able to detect when the problem is not solvable,
leading to results which are proven to be optimal, a rare thing in complexity.

Thus we are able to compute Multiplicative Complexity (MC) exactly, for
all sufficiently small circuits, and also to optimize the linear parts exactly. Our
method is practical though rather slow, so far we have been able to optimize
every 4x4 S-box we tried, but not many larger S-boxes. Yet it is a unique and
very powerful method, because all the results are optimal and one could produce
and publish a formal mathematical proof (automatically found by the software)
that they cannot be improved.

Furthermore we have applied this notion to derive efficient implementations
of the S-boxes in two ciphers, PRESENT and GOST. In the case of PRESENT it
happens that the Boyar-Peralta heuristics [19, 22] works extremely well, and the
best possible gate-efficient optimization we could find also contains the (optimal)
lowest possible number of non-linear gates(!). However GOST S-boxes have on
average higher Multiplicative Complexity (MC) and yet lower implementation
cost, so this heuristics is unlikely to be always the best method to optimise a
circuit. Clearly better optimizations are likely to use a few more non-linear gates,
as also seen for AES, cf. Fig 1 in [22].

Interestingly, from here we are able to provably minimize the number of
non-linear gates in a whole given cipher such as PRESENT or GOST, to a rather
unexpectedly low number such as 5 per S-box. This has two sorts of applications
in cryptography. First, such optimizations are important in synthesis of imple-
mentations of circuits secure against side-channel attacks, which is an important
and hot research topic, see for example [16].

Moreover, in future works we will show how S-box optimizations greatly help
to break the full-round block cipher GOST and its many variants [14, 17]. It is
extremely rare to see a real-life block cipher which can be broken faster than
brute force. This however requires a lot of additional work, see [10, 11].

In particular, we have seen that PRESENT S-box has, and this on multiple
accounts, a lower complexity than many of the GOST S-boxes. Thus we expect
that future research will show, that against many types of algebraic cryptanalysis
such as in [10, 11], the PRESENT S-box is strictly weaker than majority of
GOST S-boxes. Therefore it is probably a bad idea to use the GOST cipher
with PRESENT S-boxes as proposed in [17].

References

1. Martin Albrecht, Nicolas T. Courtois, Daniel Hulme, Guangyan Song: Bit-Slice
Implementation of PRESENT in pure standard C, v1.5, 26/08/2011, open-
source code available at https://bitbucket.org/malb/algebraic_attacks/src/

tip/present_bitslice.c

2. A. Biryukov, C. De Cannière, A. Braeken, and B. Preneel: A toolbox for crypt-
analysis: Linear and affine equivalence algorithms. In Eurocrypt 2003, LNCS 2656,
pp. 3350, Springer, 2003.

3. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw,
Y. Seurin, and C. Vikkelsoe: PRESENT: An Ultra-Lightweight Block Cipher, In
CHES 2007, LNCS 4727, pp. 450466, Springer, 2007.

4. Jacques Patarin, Nicolas Courtois, Louis Goubin: Improved Algorithms for Iso-
morphism of Polynomials; Eurocrypt’98, LNCS 1403, Springer, pp.184-200,

5. Nicolas T. Courtois, Gregory V. Bard and Daniel Hulme: A New General-
Purpose Method to Multiply 3x3 Matrices Using Only 23 Multiplications, At
http://arxiv.org/abs/1108.2830.

6. Nicolas Courtois: General Principles of Algebraic Attacks and New Design Criteria
for Components of Symmetric Ciphers, in AES 4, LNCS 3373, pp. 67-83, Springer,
2005.

7. Nicolas Courtois, Gregory V. Bard: Algebraic Cryptanalysis of the Data Encryp-
tion Standard, In Cryptography and Coding, 11-th IMA Conference, pp. 152-169,
LNCS 4887, Springer, 2007. Preprint available at eprint.iacr.org/2006/402/.

8. Nicolas Courtois, Gregory V. Bard, David Wagner: Algebraic and Slide Attacks on
KeeLoq, In FSE 2008, pp. 97-115, LNCS 5086, Springer, 2008.

9. Nicolas Courtois and Blandine Debraize: Algebraic Description and Simultaneous
Linear Approximations of Addition in Snow 2.0., In ICICS 2008, 10th International
Conference on Information and Communications Security, 20 - 22 October, 2008,
Birmingham, UK. In LNCS 5308, pp. 328-344, Springer, 2008.

10. Nicolas Courtois: Algebraic Complexity Reduction and Cryptanalysis of GOST,
Preprint available at http://www.nicolascourtois.com/papers/gostac11.pdf.

11. Nicolas Courtois: Security Evaluation of GOST 28147-89 In View Of International
Standardisation, document officially submitted to ISO in May 2011, At http:

//eprint.iacr.org/2011/211/.
12. Carsten Fuhs and Peter Schneider-Kamp: Synthesizing Shortest Linear Straight-

Line Programs over GF(2) Using SAT, In SAT 2010, Theory and Applications of
Satisfiability Testing, Springer LNCS 6175, pp. 71-84, 2010.

13. B. R. Gladman, software for efficient boolean function decompositions for the eight
Serpent S boxes and their inverses, available at http://gladman.plushost.co.uk/
oldsite/cryptography_technology/serpent/index.php.

14. A Russian reference implementation of GOST implementing Russian algorithms
as an extension of TLS v1.0. is available as a part of OpenSSL library. The file
gost89.c contains eight different sets of S-boxes and is found in OpenSSL 0.9.8 and
later: http://www.openssl.org/source/

15. Gregor Leander, Axel Poschmann: On the Classification of 4 Bit S-Boxes, In Pro-
ceedings of WAIFI’07, 1st international workshop on Arithmetic of Finite Fields.

16. Svetla Nikova, Vincent Rijmen, Martin Schläffer: Secure Hardware Implementation
of Nonlinear Functions in the Presence of Glitches, Special Issue on Hardware and
Security of Journal of Cryptology, 27 pages, 2011. http://homes.esat.kuleuven.
be/~snikova/JOC_2011.pdf

17. Axel Poschmann, San Ling, and Huaxiong Wang: 256 Bit Standardized Crypto for
650 GE GOST Revisited, In CHES 2010, LNCS 6225, pp. 219-233, 2010.

18. Joan Boyar, René Peralta, Denis Pochuev: On the multiplicative complexity of
Boolean functions over the basis (AND, XOR, 1), In Theor. Comput. Sci. 235(1):
43-57 (2000).

19. Joan Boyar, René Peralta: A New Combinational Logic Minimization Technique
with Applications to Cryptology. In SEA 2010: 178-189.
An early version was published in 2009 at http://eprint.iacr.org/2009/191. It
was revised 13 Mar 2010.

20. Joan Boyar, Philip Matthews, René Peralta: On the Shortest Linear Straight-Line
Program for Computing Linear Forms, In MFCS 2008: 168-179.

21. Web page with all circuit minimialisation results obtained at Yale University, http:
//cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html.

22. Joan Boyar and Rene Peralta; A depth-16 circuit for the AES S-box, http://

eprint.iacr.org/2011/332

23. Markku-Juhani O. Saarinen: Cryptographic Analysis of All 4 x 4 - Bit S-Boxes, In
SAC 2011, August 2011 Toronto, Canada, Springer LNCS. A version is available
at eprint.iacr.org/2011/218/.

24. I. Schaumuller-Bichl: Cryptanalysis of the Data Encryption Standard by the
Method of Formal Coding, In Cryptography, Proc. Burg Feuerstein 1982, LNCS
149, T. Beth editor, Springer-Verlag, 1983.

25. Claus-Peter Schnorr: The Multiplicative Complexity of Boolean Functions, In
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-6,
LNCS 357, pp. 45-58, 1988.

