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�e present review examines decision-making methods developed for dealing with uncertainties and applied to solve problems of
civil engineering. Several methodological di�culties emerging from uncertainty quanti	cation in decision-making are identi	ed.
�e review is focused on formal methods of multiple criteria decision-making (MCDM). Handling of uncertainty by means of
fuzzy logic and probabilistic modelling is analysed in light of MCDM. A sensitivity analysis of MCDMproblems with uncertainties
is discussed. An application of stochastic MCDM methods to a design of safety critical objects of civil engineering is considered.
Prospects of using MCDM under uncertainty in developing areas of civil engineering are discussed in brief. �ese areas are design
of sustainable and energy e�cient buildings, building informationmodelling, and assurance of security and safety of built property.
It is stated that before long the decision-making in civil engineeringmay face severalmethodological problems: the need to combine
fuzzy and probabilistic representations of uncertainties in one decision-making matrix, the necessity to extend a global sensitivity
analysis to all input elements of a MCDM problem with uncertainties, and an application of MCDMmethods in the areas of civil
engineering where decision-making under uncertainty is presently not common.

1. Introduction

Decision-making is applied in di
erent areas of human
activities. In the case of existence of at least two possible
options, a person (i.e., a decision-maker) has to make a
decision and to select the one which is best suited for his
demands. Complex problems in science, engineering, tech-
nology, ormanagement are characterised bymultiple criteria.
Usually they are hardly measurable, con�icting or interacting
with each other. Decision-making (DM) problems based on
multiple criteria are objects of MCDM.

MCDM is a discipline concerned with the theory and
methodology for handling problems common in everyday
life. �ey arise in such areas as business, engineering, social

organisation, and so forth [1]. MCDM has grown as a part of
operation research pertaining to the design of computational
and mathematical tools for supporting the subjective evalua-
tion of performance criteria by decision-makers [2].

As it is mentioned in a review paper [3], the origins
of MCDM methods can be dated over 270 years ago. As
an individual scienti	c discipline, MCDM has been widely
spreading since the middle of the previous century. Numer-
ous works onMCDM are summarized in a number of review
papers [4]. �ree main types of review papers related to
MCDM can be distinguished: reviews of developments and
extensions of a particular method (e.g., [5]) as well as its
applications (e.g., [6, 7]); reviews of di
erent approaches to
modern MCDM methods (e.g., DM under uncertain and
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Figure 1: �e main types of criteria used to construct the decision-making matrix of MCDM.

incomplete information andDM for groups of persons [2, 8]);
reviews of applications of di
erent MCDM methods for a
particular problem [9–11].

Most, if not all, decisions in engineering are made under
uncertainty. Accordingly, classical crisp methods, involving
deterministic conditions under certain decision environ-
ments, are losing their relevance and new extensions for
handling various types of uncertainties in MCDM problems
appear. In most cases, uncertain elements of MCDM prob-
lems express subjective expert opinions and less o�en they
represent stochastic nature of input data. Understanding the
signi	cance and impact of di
erent types of uncertainties in
input information and its relation to reality can increase the
quality of DM process.

�e present review strives to examine the current state
of uncertainty modelling in MCDM and to identify several
problems which decision-makers may face in the immediate
future. �e review is organized as follows. Section 2 presents
the scope of the review and identi	es several problems
related to MCDM under uncertainty. Section 3 presents
the latest references on applications of MCDM approaches
in uncertain decision environments of civil engineering.
Section 4 summarizes the applications of sensitivity analysis
(SA) in fuzzy and stochastic MCDM techniques. Section 5
analyses published work on introducing measures of risk
and reliability in the MCDM related to civil engineering.
Section 6 attempts to identify the need for future research.
�is section presents a brief discussion on potential appli-
cations of MCDM under uncertainty in the areas which
currently receive much attention in research and practice.
Finally, conclusions and prospective research trends are
presented in Section 7.

2. The Scope of the Review

Generally, a MCDM problem is de	ned as follows. Let a =
(�1, �2, . . . , ��, . . . , ��)T be a vector of decision alternatives
and c = (�1, �2, . . . , ��, . . . , ��) a set of criteria, according
to which suitability of alternatives �� is to be judged. �e
problem is stated as a�×�decision-makingmatrixCwith the
elements ���. �e value ��� expresses an impact of the criterion
�� on the alternative ��. Values of c related to the alternatives ��

are the row vectors c� = (��1, ��2, . . . , ���, . . . , ���) and, with these
vectors, the matrix C is formulated as [c1, c2, . . . , c�, . . . , c�]T.
In manyMCDMmethods, the importance of the criteria �� is
expressed by the weights �� which sum up to unity and are
usually grouped into the vector w = (�1, �2, . . . , ��, . . . , ��).
�e purpose of DM is to determine the most preferable
alternative among �� with respect to all criteria or to rank the
alternatives.�e result of ranking is expressed by a preference
sequence, for example, �: �� ≻ �� ≻ �� ≻ ⋅ ⋅ ⋅ .

A large variety of MCDM methods have been developed
to date. A universal and comprehensive classi	cation of these
methods does not exist. For the purposes of the present
review, MCDM methods will be classi	ed according to the
nature of the criteria grouped into the decision-making
matrix C (Figure 1). In the previous 	ve decades, a devel-
opment of MCDM was focused mainly on solving MCDM
problems with crisp elements of C. In parallel with this
process, fuzzy MCDM methods have been developed since
1970s [12]. �ese methods allow solving MCDM problems

with a decision-making matrix
←→
C , the elements of which

are modelled by fuzzy sets. Development and application of
fuzzyMCDMmethods signi	cantly increased during the last
two-three decades. One of the possible representations of ���
by fuzzy sets is grey numbers based on interval arithmetic.
Several recent publications devoted to a use of grey numbers
for decision-making in engineering can be cited here [13–
15]. Finally, in the recent time, several MCDM methods
were created and applied to a solution of decision-making
problems, in which elements of C are modelled by means of
probability distributions. Such amatrix will be denoted by the

symbol C̃.
�e fact that until now uncertainties inMCDMproblems

were expressed in several di
erent ways generates a problem
of choosing among these possibilities. Further problems
related to handling uncertainties in decision-making are
illustrated in Figure 2. A decision-maker having to rank the
alternatives �� in the presence of uncertainties may face the
following problems:

(1) �e problem of choice among di
erent representa-
tions of uncertainty related to criteria values ��� and
weights ��.
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Figure 2: Four problems related to handling uncertainties in MCDM.

(2) Speci	cation of the weights �� in the case where they
are uncertain quantities.

(3) �eproblemof choice among availableMCDMmeth-
ods for solving a problem with the decision-making

matrices
←→
C or C̃.

(4) Analysis of sensitivity of MCDM results to the
changes in all elements of input data given by the

matrices
←→
C or C̃ and the vectors w,←→w , or w̃. Input

uncertainties can cause possible permutations in the
sequences of preferences, �	, obtained by means of a
speci	c MCDMmethod .

�e 	rst problem has its origin “outside” the domain of
MCDM. Discussions of the type “fuzzy versus probabilistic”
or “nonprobabilistic versus probabilistic” last many years and
do not seem to be 	nished until now (e.g., [16]). In most
applications of MCDM under uncertainty, authors do not
trouble themselves to explain why a particular method of
uncertainty quanti	cation was preferred over others. �e
fuzzy logic prevails over probabilistic modelling by the num-
ber of MCDM methods developed to date and the number
of MCDM applications to practical problems. Currently, one
can state the obvious that probability distributions can be
speci	ed in Fisherian format for ��� in the presence of su�-
cient amount of statistical data on ���. A representation of ��� by
fuzzy sets is better suited for ��� expressing subjective expert
opinions. However, it is important to remember that the
Bayesian approach to probabilistic modelling has excellent
means of quantifying and updating subjective judgments
(e.g., [17]). �is approach does not break down when data
on ��� is sparse or absent. MCDM problems can be solved
when uncertainties in ��� are represented in any of the
aforementioned formats. A true problem will arise when the
decision-making matrix will be a “mixture” of the elements
��� expressed by di
erent means of uncertainty quanti	cation,
probabilistic and nonprobabilistic.

�e second problem of specifying elements of the vector
of weights, w, is obviously an “internal” problem of MCDM.
�ere is a body of literature devoted to specifying values of
��. Methods used to determine criteria weights are classi	ed

into subjective, objective, and hybrid or integrated ones [18–
20]. However, the task of assigning speci	c values to the
components �� will always be subjective or at least partly
subjective, no matter what is the degree of mathematical
sophistication behind this assignment. A really intriguing
question is how�� can be interpreted as uncertain quantities.
�e experts who usually specify the values of �� can be
uncertain (vague) regarding their opinions on ��. Should
weights be modelled by a fuzzy vector←→w or a vector w̃ with
components expressed by probability distributions?

�e third problem re�ects the well-known decision-
making paradox which was 	rst identi	ed by Triantaphyllou
and Mann in 1989 [21]. �e paradox was exhibited by many
MCDM methods developed to deal with the crisp decision-

making matrix C. Switching to uncertain matrices
←→
C or C̃

will not resolve this paradox. It will be likely to persist also in
the 	eld of decision-making under uncertainty. �e present
review will not address this tricky issue.

�e fourth problem arises naturally, because a MCDM
method is in essence amathematical model relating the input
information expressed by C and w to the output information
given by the preference sequence �. A sensitivity of � to
changes in elements of C and w can be estimated (analysed)
by standard mathematical means of general use. However, a
sensitivity analysis (SA) of a MCDM problem with uncertain

matrices
←→
C or C̃ and/or uncertain vectors ←→w or w̃ is a

nontrivial task.

�e four problems of MCDM under uncertainty listed
and brie�y discussed above are of methodological nature.
�is kind of DM can face also problems of di
erent nature,
namely, an application in such areas of civil engineering as
development of sustainable and energy e�cient buildings,
building information modelling, assurance of security, and
safety of built property. Solving MCDM problems in these
areas will face the necessity to model uncertainties related
to long-term predictions, vague information available in
the process of building design, and possibility of rare but
extremely damaging events. A particular need for modelling
uncertainties in MCDM problems arises at a design of
safety critical objects of civil engineering. Failures of such
objects or damage to them can cause severe consequences to
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society and environment. Many of safety critical objects are
assessed (designed) by applying methods of reliability theory
or probabilistic risk assessment. Measures of reliability and
components of risk estimates can be uncertain quantities. An
application of MCDM to the design of safety critical objects
requires including these quantities into the decision-making
matrix C. In most cases, uncertainties related to reliably
and risk are modelled by means of probability distributions.
�erefore, the decision-making matrix will be formulated as

the matrix C̃. A combination of SA and MCDM applied to
the design of the safety critical objects will allow revealing the
most important MCDM criteria related to safety.

�e following sections of this review will consider the
problems raised above in greater detail. �e attention will be
focused on both results achieved until now and problematic
issues which may require attention in the future.

3. MCDM Techniques under Uncertainty in
Civil Engineering

Decision-making in the 	eld of civil engineering is increas-
ingly complex and is associated with situations where robust
decisions are required to be taken. �ese decisions are made
in di
erent stages of civil engineering projects. For example,
decision-making takes place during feasibility study stage
prior to design, procurement, and construction stages in
order to determine the viability of project undertaken by an
investor. Also it o�en faces the need to deal with hazardous
phenomena, including industrial accidents able to damage
built property, structural failures, extreme natural phenom-
ena, and human acts a
ecting security. Proper decisions
made by architects and civil engineers may reduce the risk
posed by the aforementioned phenomena.

Decision-making in this 	eld can be facilitated by an
application of formal methods, such as methods of multiple
criteria decision-making. Factors relevant to decisions can
be identi	ed using the methods of uncertainty and SA of
mathematical model outputs.

�e result of the evaluation of an alternative according
to a given criteria is a single value (e.g., number or verbal
expressions) for unambiguous deterministic information.
For ambiguous information, the result of the evaluation of
variants according to a given criteria is a random variable
if the information is stochastic in nature or a fuzzy variable
if the information is nonstochastic in nature. �e stochastic
nature of a phenomenon is associated with the unlimited
repeatability of the phenomenon. Unrepeatable phenomena
or phenomena with uncertain knowledge signi	cance are
nonstochastic in nature.

3.1. Fuzzy MCDM. �e fuzzy framework is the most com-
mon approach to describe and handle uncertainty inMCDM.
Considering the imprecisions and uncertainties, that is,
fuzziness of the available data and the decision-making
procedures, fuzzy set theory can be applied [22]. In a fuzzy
MCDM, the elements ��� of C are characterised by fuzzy sets.
In what follows, such elements will be denoted by the symbol
←→��� and a decision-making matrix containing fuzzy elements

will be
←→
C . �e fuzzy set theory can be used for a MCDM,

whenever probability distributions of ��� are unknown due to
lack of statistical data or there is no wish to express subjective
judgments about values of ��� in a probabilistic way. �e

weights �� can also be modelled as fuzzy variables ←→�� and
so the vector w can be a fuzzy one,←→w .

In MCDM problems, three types of fuzziness can be
observed: the ratings of each alternative with respect to each
criterion are uncertain or imprecise and weights are crisp

numbers (←→��� , ��); the ratings of alternatives are crisp num-
bers while fuzzy numbers are used to assess the weights of all

criteria (���, ←→��); both the ratings and the weights are fuzzy

(←→��� ,←→��). Each type of uncertainty has its own characteristics
and is appropriate for special cases.

A lot of fuzzy extensions of MCDM methods have been
proposed and applied in engineering, technology, or man-
agement. Fuzzy extensions of MCDM involve application
of basic fuzzy logic, using triangular fuzzy numbers and
arithmetic operations, also trapezoidal fuzzy numbers, as well
as intuitionistic fuzzy relations, interval-valued intuitionistic
fuzzy relations, type-2 fuzzy sets, and hesitant fuzzy sets
concepts. Nonfuzzy uncertain decision methods include reli-
ability theory and probabilistic and grey-valued formulations
for handling incomplete or imprecise information. �e most
widely applied fuzzy extensions of MCDM methods are
fuzzy AHP (analytic hierarchy process), with the origins
dated to 1983 [23] and various numerous extensions of fuzzy
TOPSIS (technique for order preference by similarity to ideal
solution) [2, 24]. Several latest extensions of more recently
developed methods are worth to be mentioned: extension of
weighted aggregated sum product assessment in an interval-
valued intuitionistic fuzzy environment (WASPAS-IVIF)
[25], a complex proportional assessment method extended
with interval-valued intuitionistic fuzzy numbers (COPRAS-
IVIF), and suitable for group decision-making [26].�emost
recent extended versions of MULTIMOORA (multiobjective
optimization by ratio analysis plus full multiplicative form)

utilize the basic fuzzy logic [27, 28] or are based on the
interval 2-tuple linguistic variables [29], intuitionistic fuzzy
numbers [30], or hesitant fuzzy numbers [31]. ARAS under
fuzzy environment was also presented [32] and further
applied [33, 34].

Numerous researches utilize not a single fuzzy MCDM
(FMCDM)method but combine several of the methods. Two
groups of researches can be distinguished: either integrating
two or more available techniques and proposing so-called
hybrid methods or employing several methods for a solution
of a problem and comparing ranking results. �e study [2]
reviews papers on development and applications of MCDM
during the last two decades by various aspects. �e analysis
covers 1081 papers related to MCDM and fuzzy MCDM.
While a detailed survey is made on 403 papers published in
peer review journals and entirely devoted to fuzzy decisions,
involving 217 papers in a 	eld of engineering, it is obvious
that engineering applications cover over 50 percent of overall
applications. Accordingly, it can be stated that fuzzy MCDM
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Figure 3: Increase of FMCDM applications in engineering.

is useful and applicable technique for complex decision-
making in civil engineering under uncertainty.

�e increasing importance of the methods can be based
on the 	ndings that the number of developments and appli-
cations is increasing every year. On the basis of collected
data [2], annual distribution of papers in engineering 	eld
is explored. �e period is divided into several stages. �e
	rst stage covers 1994–2005, when a number of papers are
small or even absent in certain years.�e later period starting
from 2006, when a number of researches began increasing, is
grouped in three years. A chart (Figure 3) shows increase of
FMCDM applications in engineering, measured by a number
of publications included in the review paper [2] on FMCDM
techniques and applications during two decades.

�e last period from the above four covers 46 percent of
publications issued during 20 years. �e largest number of
researches on the whole is observed in 2014.

�e latest FMCDMapproaches are applied in various sub-
	elds of civil engineering 	eld. Sub	elds which are the most
numerously supported by considered approaches are related
to sustainability and building lifecycle assessment, supply
chain management in construction, technology and inven-
tory selection in construction industries, location selection
and infrastructure modelling, and knowledge management.

Environmental, social and economic aspects of sustain-
able building were incorporated when evaluating mining
projects and their impact on environment [35], assessing
building energy performance [36] or performance of pave-
ments with emphasis on sustainability [37].

Supply chain management is handled through proper
supplier selection considering multiple criteria simultane-
ously. Various approaches are applied for supplier evaluation
and selection, starting from the most common fuzzy AHP
and hybridmethods integrating AHP and TOPSIS [38], AHP
and PROMETHEE [39], and so forth. Also novel extensions
based on interval type-2 fuzzy sets [40] or intuitionistic fuzzy
information [41] are utilized.

Selection of technologies, inventory, or materials in con-
struction is also widely supported by FMCDM. Examples
of the most recent applications are for selecting material
handling equipment [42, 43], inventory classi	cation [44],
and selection of robots for automated technology operations
[45].

Fuzzy decision-makingmethods are extremely important
for handling vagueness in special-purpose building projects
and their location. Fuzzy multiple criteria approaches suc-
cessfully applied for nuclear power plant site selection [46],
deep-water see port selection [47], and health monitoring of
tunnels [48].

Regarding DMmethodology in civil engineering applica-
tions, it can be concluded that the most common approach is
observed to be fuzzy AHP-TOPSIS hybrid technique [38, 49],
also combining fuzzy AHP with other classical methods as
PROMETHEE [50] and DEMATEL [51, 52].

Another group of researches applies several FMCDM
methods simultaneously and compares ranking results. An
example can be provided of material selection applying a
number of hybrid approaches, namely, FAHP-VIKOR, FAHP-
PROMETHEE, FAHP-TOPSIS, and FAHP-ELECTRE [53],
technology selection applying FAHP, TOPSIS-F, VIKOR-F,
and COPRAS-G [45], and so forth.

3.2. Stochastic MCDM. �e probabilistic framework is the
second approach to describe and handle uncertainty in
MCDM. In this framework, the elements ��� of the decision-
making matrix C are modelled by random variables �̃��
expressing uncertainty in possible values of ���. �e uncer-
tainty is quanti	ed by means of probability distributions
which can be speci	ed in the format Fisherian or Bayesian

statistics. Presence of �̃�� in C generates amatrix C̃, all or some
elements of which are random. Stochastic MCDM methods
are used to solve the decision problems with the matrix C̃.

MCDM solved with an emphasis on stochastic uncer-
tainty (SMCDM) is focused on decision problems of the
selection of alternatives from several criteria that are math-
ematically described neither as crisp numbers nor as fuzzy
numbers or linguistic variables but as random variables [54].
Stochastic methods for the determination of weights from
various types of information on the character of the signi	-
cance of criteria are e
ectively implemented especially in the
AHP method. �e classical AHP method lacks probability
values for the distinction of adjacent alternatives in the 	nal
ranking [55]. Vargas [56] considered the case wheremembers
of the pairwise comparison matrix were random variables.

It should be noted that although random variables are
considered, purely stochastic uncertainty of input data and
decision-making procedures is rare. �e occurrence of a
random phenomenon is almost always accompanied by a
certain degree of personal belief; therefore, the term sub-
jective probability is sometimes used. �e reason for the
implementation of randomvariables inMCDM is the attempt
to usemethods of the theory of probability andmathematical
statistics for the analysis of uncertainty of the results of the
decision-making process. Advanced methods of stochastic
SA, the equivalent of which is unknown in fuzzy MCDM, are
available for stochastic MCDM [57].

�ere are numerous SMCDM methods and applications
in real world situations [58, 59]. �e classical Monte Carlo
(MC) method or its improved variants can be used to tackle
most SMCDM problems [60, 61]. �e theoretical application
of the Monte Carlo method is very extensive; however,
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the results of stochastic analysis are very sensitive to the
laws of probability density functions and type of dependen-
cies between input variables resulting in fuzzy (epistemic)
uncertainty in decision-making tasks. Analysis of forecast
uncertainty based on fuzzy stochastic approaches and its
application to a number of problems in civil engineering and
related 	elds is described in detail, for example, in the book
[62]. However, the complexity of mathematical approaches
and the interpretation of results limit the scienti	c ingenuity
of the application of fuzzy stochastic SA methods.

4. Sensitivity Analysis Applied to MCDM

Two types of SA are most o�en mentioned in the liter-
ature: local SA and global SA (e.g., [63, 64]). Local SA
determines a contribution of a given input parameter of a
mathematical model to its output. Local methods do not
attempt to fully explore the input parameter space. �ey
examine small perturbations, usually one parameter at a time.
Global SA examines a mathematical model in the presence of
uncertain input parameters. SA of this type apportions output
uncertainty to di
erent sources of uncertainty in the input.
Input and output uncertainties are expressed by probability
distributions. Global SA applies perturbations of the entire
space of input parameters. It is also argued that global SA
should be used “in tandem” with uncertainty analysis and the
latter should precede the former in practical applications [65,
66]. �e aim of uncertainty analysis is to estimate variation
in model output and SA apportions this variation to input
parameters.

Local SA was applied in the recent past for better
understanding of MCDM methods. Global SA was used for
improving models which are related MCDM but do not 	t
strictly into its scheme. MCDM constitutes a special class of
mathematical models. An application of SA to MCDM rises
speci	c problems.However, anymethodological speci	city of
performing SA for applications of MCDM in civil engineer-
ing is not known to us. In addition, combined applications
of MCDM and SA to problems of civil engineering are
few in number and deal mainly with selecting locations of
buildings [67, 68]. A certain relation to civil engineering
has applications of combined MCDM and SA to geographic
information systems (see Malczewski and Rinner [69] and
references cited therein). �erefore, the remainder of this
section will be a general discussion on SA applications to a
better understanding of MCDMmethods.

4.1. Applications of SA in Deterministic MCDM and MCDM
under Uncertainty. In the light of the aforementioned SA
de	nitions, a deterministic (crisp) MCDM method can be
interpreted as follows: elements of the matrix C and com-
ponents of the vector w represent input parameters, the
preference sequence � is model output, and the procedure
relating� toC andw is amathematicalmodel. A sensitivity of
� versus C and w is called ranking sensitivity or sensitivity to
ranking stability (e.g., [70, 71]). With the deterministic input
C and w, a sensitivity of � versus C and w can be determined
by means of local SA methods.

Triantaphyllou and Sánchez applied local SA to deter-
mine the criterion �� and the decision matrix element ���
which is most critical to the ranking expressed by � [72,
73]. �ey applied sensitivity measures based on minimum
changes in theweights�� andmatrix elements ��� which cause
changes between ranks of the alternatives ��. Bevilacqua and
Braglia used a simple wide-range variation of the weights ��
to explore shi�s in the ranking � obtained by means of a
deterministic AHP [74]. Any numerical sensitivity measure
or graphical representation of SA results was not suggested
in this study. Chang et al. and Wu et al. carried out SA of
AHP results based on increasing values of �� up to 35%
[67, 75].�ey expressed SA results graphically.�is approach
was applied to SA of results obtained with fuzzy decision-

making matrix
←→
C [71]. �e results were produced by means

of fuzzy TOPSIS and fuzzy AHP methods.

Another kind of perturbations used to reveal sensitivity of
� versus �� is exchanging positions of the weights within the
vector w. Choudhary and Shankar used such perturbations
for results obtained with a combined fuzzy AHP and TOPSIS
method [76]. A total of �
 perturbations produces a set
of preference sequences �
 (� = 1, 2, . . . , �
) which are
treated as SA result and expressed graphically. In a series
of methodologically similar articles, Awasthi et al. suggested
using the sequences �
 for a 	nal ranking of the alternatives
�� [68, 77–79].�e sequences �
 were obtained for a problem
with fuzzy weights←→w and fuzzy matrix

←→
C . �e alternatives

�� were ranked by counting scores for each �� according to its
position in �
. �ese authors also tried to use this scoring for
a qualitative assessment of ranking sensitivity. However, any
quantitative sensitivity measure was not suggested.

A quantitative measure of ranking sensitivity used in
several studies is known as an average shi� in ranks (ASR).
Some of these studies 	t into the scheme of MCDM and
some have common elements with this 	eld. In line with
the notations used herein, ASR is expressed as the mean

�−1∑��=1 |��� − �
ref
� |, where ��� is the rank of the alternative

�� related to a perturbation � and �ref� is the rank of �� in
a reference (base) ranking. Saisana et al. used ASR as a
model output for a global SA [80]. ASR was computed on

the basis of a composite indicator. �e reference ranks �ref�
were obtained from one speci	c application of the indicator.
Ben-Arieh used ASR in the format of MCDM for sort of
a local SA [81]. ASR was applied to pairwise comparisons
of alternative rankings obtained with di
erent linguistic
quanti	ers (probabilities). �ey were used for calculating the

weights��. �e ranks ��� and �
ref
� were obtained using pairs of

di
erent linguistic quanti	ers. Later on, the same approach
was used by other authors for assessing ranking sensitivity to
fuzzy linguistic quanti	ers [82–84]. ASR was applied also to
a global SA related to MCDM. Ligman-Zielinska suggested
using ASR as a scalar representation of output ranking and
computing a sensitivity index based on variance of ASR [65].
Unfortunately, values of ASR depend on the choice of the

reference ranks �ref� and this introduces certain arbitrariness
in the process of SA. Apart from ASR, an alternative and
well-elaborated scalar measure expressing a sensitivity of
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permutations within � to input of MCDM models is not
known to us.

4.2. Sensitivity to Model Selection. One of the key problems
of MCDM is a selection of method (model) relating input
information expressed by C and w to the output ranking
sequence �. If the MCDMmethod requires normalisation of
the initial matrix C, the analyst will also face the problem of
choosing among several normalisation rules (formulas) (e.g.,
[85]). Using di
erent normalisation rulesmay also contribute
to the variability of ranks within the sequence �.

An application of fuzzy numbers as elements of thematrix
←→
C and components of the vector←→w will introduce an addi-
tional problem of model selection. Membership functions of
fuzzy numbers, �←→�� (��) and �←→��� (���), may not necessarily be

triangular as in the most fuzzy MCDM applications (Links 1
and 2, Figure 4). �e choice of the type of fuzzy numbers in
←→
C and components of the vector←→w is a subjective exercise
and introduces arbitrariness into MCDM process. Similar
statements can be made about the use of random variables in
C̃ and w̃. A speci	cation of MCDMmodel input will require
selecting speci	c types of probability densities �̃���(��� | ���, ���)
and ��̃�(�� | ��, ��) for decision matrix elements �̃�� and
criteria weights �̃� (Links 3 and 4, Figure 4). In case of �̃�,
the selection of distribution type and then speci	cation of its
parameters �� and �� will be purely subjective task. However,
in some cases, statistical data on the random components �̃��
of C̃ can be available. In such cases, distribution type of �̃�� will
be dictated by this data. Consequently, we can speak about
three SA problems:

(1) Sensitivity of the ranking sequence � to the selection
of MCDMmethod.

(2) Sensitivity of � to the choice of normalisation rule.

(3) Sensitivity of � to the selection of membership func-
tion type in case of fuzzy MCDM and probability
density type in case of stochastic MCDM.

�e 	rst two problems will be present in both determinis-
ticMCDMandMCDMunder uncertainty.�e third problem
will arise with the need to introduce uncertainties in MCDM
process. To the best of our knowledge, a systematic, in-depth
solution of these three problems is not available in theMCDM
literature to date.

Apart from model selection problem, the use of the
membership functions �←→�� (��) and �←→��� (���) and the density

functions �̃���(��� | ���, ���) and ��̃�(�� | ��, ��) will give rise
to a problem of assessing sensitivity of the ranking sequence
� to parameters of these functions (Links 5 to 8, Figure 4).
An association of all or some �� and ��� with two or more
parameters of membership function or density function may
substantially increase the dimensionality of input space. �is
can encumber SA process, especially in case of global SA.
It will be necessary to assign additional distributions to this
parameter in order to carry out Monte Carlo analysis of a
MCDMmodel under study.

5. Measures of Risk and Reliability in
the MCDM Related to Civil Engineering

Civil engineering systems can be damaged by deliberate
assaults, actions induced during industrial accidents and
extremes of nature. Damage to components of civil engineer-
ing systems induces mechanical and thermal actions called
o�en abnormal or accidental ones. Incidents with abnormal
actions are relatively rare, short-lasting, and usually unex-
pected events. �ey can cause serious harm and sometimes
catastrophic consequences [86]. In terms of civil engineering,
such incidents are called “abnormal situations” or “accidental
situations.” �e latter term is used in the widely known
standards ISO 2394 and ENV 1991-1. An adequate design of
civil engineering systems for abnormal situations will result
in resilient buildings and infrastructure able to avoid or
absorb damage without undergoing a complete failure [87–
89].

5.1. MCDM and Safety in Civil Engineering. �e design of
components of safety critical civil engineering systems for
abnormal situations requires, among other things, comparing
alternative design solutions of these components. In terms
of MCDM, they can be called alternative designs or simply
alternatives �� (� = 1, 2, . . . , �). Interalternative comparisons
of �� must include criteria ��� expressing safety of �� or,
alternatively, risk posed by ��. �e row vector of criteria,
c� = (��1, ��2, . . . , ���, . . . , ���), will include also elements which
are not necessarily related to safety, for instance, economic,
functional, and aesthetic criteria.

�e adequacy of the design of critical objects of civil
engineering for abnormal situations is assured by applying
methods of reliability theory and probabilistic risk assess-
ment (PRA) [90]. �ese two 	elds of engineering are closely
related and the criteria ��� can be speci	ed by applying
methods developed in each of them.

Values of ��� can be probabilities of failure or quantitative
estimates of risk related to the designs �� [91]. Practical
applications of MCDM to the design for abnormal situa-
tions will face the problem of uncertainty related to failure
probabilities and risk estimates. Quantitativemeasures of this
uncertainty can be introduced intoMCDMproblems. Awell-
established platform of uncertainty modelling in PRA is the
Bayesian statistical theory or, in brief, the Bayesian approach
[92]. In line with this approach, the uncertainty in potential
safety-related criteria ��� is divided into two kinds: stochastic
(aleatory) and state-of-knowledge (epistemic) uncertainty
[93–96]. Uncertainties of either kind can be accommodated
in MCDM problems.

5.2. An Integration of Reliability Measures and Related Quan-
tities into MCDM. A failure probability �f � characterising
a particular alternative design �� can be used as a MCDM
criterion ��� [85, 91]. A value of the failure probability �f �
assigned to the alternative �� accounts for the possibility of its
potential failures. �e probability �f � can be “mechanically”
included into aMCDM problem as one of components of the
vector c�. However, in many cases the probabilities �f � will
be uncertain in the epistemic sense. �e uncertainty in �f �
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Figure 4: Possible SA links related to the input space of a MCDM problem and a speci	c MCDMmethod.

may stem primarily from sparse information on accidental
actions. Quantitatively this uncertainty can be expressed by
modelling the probabilities �f � as epistemic random variables
�̃f � [97]. If the uncertain failure probability �̃f � of �� is taken
as a MCDM criterion, the vectors c� will contain at least
one random component and can be replaced by the stochas-
tic vectors c̃� given by (�̃f �1, �̃f �2, . . . , �̃f �	� , �	�+1, �	�+2, . . . , ���),
where � is the number of failure modes of ��. Some or all
criteria in the vector just mentioned can be uncertain in the
stochastic (aleatory) sense. For instance, such criteria can
be time of construction or cost of ��. Uncertainty related
to the stochastic components of c̃� can be expressed by the
random variables �̃��. With the random vectors c̃�, a MCDM
problemwill have to be solved by applying a decision-making

matrix C̃ some or all elements of which are random variables.
Stochastic MCDMmethods must be applied to deal with the

matrix C̃.
Vaidogas andZavadskas suggested introducing the failure

probabilities �f �� (1 ≤ � ≤ �) into a MCDM problem
indirectly, through comparison of the total (life-cycle) util-
ities �tot,� related to the alternatives �� [91]. �e utility �tot,�
is expressed as a di
erence between expected bene	t from
�� and a total cost of ��. �e failure probabilities �f �� are
incorporated into the total cost of �� through the cost of

failures expressed by the sum ∑	��=1 �f ���f �, where �f � is the
anticipated cost of failure according to the failure mode �.

Vaidogas et al. applied reliability-oriented MCDM for
a selection among alternative construction projects of a
building [85]. Reliability of the alternative projects �� was

expressed as a probability that a speci	ed construction time
will not be exceeded. A further application of MCDM was a
ranking of designs of a reinforced concrete slab with di
erent
�oorings. Probabilities of two failure modes of the slab were
used as the criteria ���: probability of collapse and probability
of excessive de�ection.

5.3. An Integration of Risk Estimates into MCDM. �e alter-
natives �� can represent hazardous industrial objects which
pose risk to people and environment in the form of industrial
accidents. �e magnitude of consequences of such accidents
can range between minor and catastrophic consequences
[98]. In the European Union, most of hazardous objects
are regulated by Seveso Directives (currently Seveso III
Directive) [99]. Such objects are assessed by means of formal
methods developed in the 	eld of PRA [93, 100].

A risk related to the design �� is a very informative
characteristic suitable for inclusion into a MCDM problem

[98]. In line with PRA, the risk related to �� is expressed
by the set {(���, ���,m��), � = 1, 2, . . . , ���}, in which ���
and ��� are likelihood-consequence pairs, m�� are the vectors
of magnitudes (severities) of ���, and ��� is the number of
accident scenarios related to ��. �e vector m�� is given by
a certain number �� of magnitudes ���� (� = 1, 2, . . . , ��).
Zavadskas and Vaidogas suggested expressing the criteria ���
in the form of expected magnitudes��� [97].�e component
��� of the decision-making matrix C represented by ��� is
computed as the sum ∑����=1 �������.
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As in the case of uncertain failure probabilities �̃f �,
the likelihoods ��� can be uncertain quantities modelled

by epistemic random variables �̃��. In most instances, the

variables �̃�� will represent uncertain annual frequencies of
the consequences ���. �e presence of the random likelihood

�̃�� will stochastise the expected severities ��� and they will

turn into random variables, for example, �̃��. Consequently,
a MCDM problem will turn into a stochastic one with a

random decision-making matrix C̃. �e row c̃� of C̃ will be

expressed as (�̃�1, �̃�2, . . . , �̃��� , ��,��+1, ��,��+2, . . . , ���) with � −�� ≥ 1, where the components denoted by the letter “�” can
be either deterministic or stochastically uncertain quantities.
With the vectors c̃� including the risk-related components

�̃��, the matrix C̃ can be expressed as a two-block matrix

[C̃1 | C2]. �e � × �� matrix C̃1 re�ects risk estimates
of the alternatives ��, whereas the � × (� − ��) matrix C2

includes criteria which are not directly related to the risk.
Stochastic MCDM methods will be necessary to solve the

MCDM problem with the matrix [C̃1 | C2].
Vaidogas and Šakėnaitė applied the risk-basedMCDM to

a choice among alternative sprinkler systems [101]. Zhou et al.
used a safety-oriented MCDM for solving decision-making
problems of hydropower construction project management
[102]. Catrinu and Nordgård applied PRA and MCDM to a
management of electricity distribution system asset [103].

In recent years, a fairly large number of publications con-
sidered an application ofMCDMmethods for handlingman-
agerial risk related to construction projects and running built
facilities. Although risk of this type di
ers by nature from
the “pure” risk posed by (to) physical objects, assessments of
managerial and “pure” risk are related through a need to deal
with uncertainties in risky objects or processes. Nieto-Morote
and Ruz-Vila used fuzzy AHP method for assessing building
projects and selection of contractors [104, 105]. Xiang et al.
applied fuzzy AHP for assessing risk arising at a construction
of submerged �oating tunnels [106]. Wang et al. used AHP in
combination with other decision-making methods to assess
risk posed by exploitation of bridges [107]. El-Abbasy et al.
applied AHP method together with Monte Carlo simulation
for selecting contractors of a highway project [108]. �e
studies just listed involve elements of a nonprobabilistic
uncertainty quanti	cation based on fuzzy sets. As the “pure”
risk is always a part of managerial risk, uncertain criteria
�̃�� speci	ed by means of probabilistic methods of PRA
can be included into the decision matrix C alongside with

“fuzzy” criteria←→��� . However, MCDM methods which allow
a simultaneous juggling of “probabilistic” and “fuzzy” criteria

�̃�� and←→��� do not exist at present, to the best of our knowledge.

5.4. MCDM and Fire Protection of Civil Engineering Objects.
Fire is a prevailing hazard in most objects of civil engi-
neering. Fire accidents o�en occur on construction sites
[109, 110]. As regards 	re protection, MCDM methods were
used until now mainly for ranking attributes expressing 	re
safety of completed buildings. AHP method was applied
for developing weights of 	re safety attributes in the so-
called Edinburgh study [111]. A stochastic AHP was used

by Zhao et al. to rank attributes of building 	re safety
[112]. Wong et al. used attributes of 	re detection and alarm
systems among a fairly large number of characteristics of an
intelligent building.�ey applied twoMCDMmethods, AHP
and ANP, to rank these characteristics [113, 114]. Vaidogas

and Šakėnaitė formulated a number of MCDM problems,
in which building 	re safety is considered with respect
to economics of 	re protection: selection among existing
buildings, building projects, and constructionmaterials [115].
Vaidogas and Linkutė considered also problems of decision-
making in the design of structures used for protection of built
property against accidental explosions [116].

6. MCDM in Innovative Areas of Civil
Engineering: A Look at Decision-Making
under Uncertainty

6.1. Developing Sustainable and Energy E
cient Building.
Sustainability is a natural subject of MCDM, because it
automatically includes three subsets of criteria, involving
economics, environmental, and social aspects. When solving
problems of sustainable building, the fourth subset of crite-
ria, involving engineering-technological dimensions, is also
necessary. One of the innovative themes in sustainable con-
struction is related to usingmaterials of low embodied energy
and energy e�cient applications. However, such things as
future and real building cost, environmental impact, and
future social status of a constructed facility are very uncertain
if considered in a long sight. For instance, large built areas
in Hamburg (Germany) lost a lot of image due to a social
downgrade of inhabitants. Also a lot of industrial and farming
buildings having perfect infrastructure were le� abandoned
due to political and respective economic changes in post-
Soviet states in Eastern Europe [117]. �ese buildings and
territories make a great potential for further redevelopment
as the recent trends in construction emphasize rehabilitation
instead of occupyingnew territories, wasting buildingmateri-
als, and so forth. Building rehabilitation should be performed
in accordance with principles of sustainable development,
thus combining a number of usually con�icting and hardly
measurable aspects.

�e usefulness and even necessity of application of
decision-making methods under uncertainty for aforemen-
tioned problems are summarized below. It is worth men-
tioning that DM under uncertainty is more characteristic
to rehabilitation than to new construction. New construc-
tion is more regulated by technical norms, standards, and
comprehensive planning. However, aspiration to redevelop
a building in the most proper way is certainly a multiple
criteria DM problem. Problem related to upgrading aban-
doned or depreciated buildings as well as physically and
morally deteriorated built environment can generate several
potential alternatives as demolishing depreciated building
and building new structures (technically sound approach
but contradicting to principles of sustainability), dismantling,
reusing, or recycling of building materials (partly meeting
principles of sustainability), renewal according to up-to-date
requirements and using a building for previous purposes,
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or upgrading a building with intention to use for other
purpose (e.g., conversion of industrial buildings to commer-
cial or apartments). When searching for the best alternative
solution from several potential decision alternatives ��, a set
of criteria �� should be de	ned and the matrix C can be
formulated.�emain challenge is in setting criteria values ���
related to the alternatives �� and criteria relative signi	cances
expressed by the weights ��.

�e four problems related to uncertainty measures could
be identi	ed. �e 	rst group of criteria has to assess features
of building or surrounding environment, regional peculiar-
ities using hardly measurable, vague, or incomplete data.
Examples of criteria associated with vague, incomplete, or
hardly measurable information, having no 	xed values or
expressed by linguistic scale, are architectural or historical
value of a building (in terms of importance of preserving a
building or its elements in a time of redevelopment), aesthetic
appearance of a building and harmony with the environment
a�er implementing a speci	c upgrading alternative, re�ection
of period norms, technologies, and so forth (in a case of
upgrading vernacular buildings to contemporary building
norms [14]). Examples of criteria associated with varying
information, either related to a speci	c terms of a particular
project or based on periodical or territorial measures, and
expressed as interval data are building redevelopment costs
(depending on particular material costs, labour costs in a
locality, tax rates, etc.), energy savings (embodied energy,
di
erent technologies, and varying costs of energy), material
and foreign investments in the area, changes in level of
unemployment of local population or population activity
index, and characterising social-economic value of a civil
engineering project. �e aforementioned uncertainty could
be determined as fuzziness and managed with the help of
fuzzy sets. �en, the elements ��� of C are characterised by

fuzzy sets and denoted as←→��� . In that case, a decision-making

matrix containing fuzzy elements
←→
C could be composed.

Another group of criteria should assess development pos-
sibilities and should be able to re�ect probable changes over
the time, involving long-termprediction. Examples of criteria
could be risk related to political and respective economic
changes, technology innovations in civil engineering and
related areas, state/region business foresights, cash �ow and
net present value of a potential civil engineering project,
life quality parameters and a real value of a building, state
income from business, and property taxes, and so forth. In
the current case, risk factors should be taken into account and
probabilistic modelling should be applied when the elements
��� of the decision-making matrix C are modelled by random
variables �̃�� expressing uncertainty in criteria values, usually

in Fisherian or Bayesian format. A matrix C̃ is subject to
stochastic DM.

�e third problem is based on combination of rather
di
erent criteria into a single solution. Combination of
criteria is analysed in two senses. At 	rst, a problem is in
establishing relative signi	cances of criteria in a particular
task, based on decision-makers’ preferences and peculiarities
of the analysed problem. It is usually rather subjective and
uncertain process. How could you compare signi	cance of

a local (e.g., cost of thermal insulation material) and a
global criterion (e.g., energy savings, CO2 emissions, and
their impact on global warming) for di
erent stakeholders?
How could you express uncertain or linguistic decision-
makers’ preferences in a numerical format? What could be
better speci	cation of the weights �� in the case they are of

uncertain quantities:←→w or w̃?

�e next issue as the fourth problem is combining fuzzy
and stochastic uncertainties in a single task. Based on the

above assumptions on criteria ←→��� and �̃�� as well as relative
signi	cances of criteria (←→w or w̃), there is the need to
combine fuzzy and probabilistic representation of uncer-
tainties in one initial decision-making matrix. Next comes
the problem of choice among available MCDM methods or
their extensions to be able to deal with fuzzy and stochas-
tic data simultaneously. �us, development of sustainable
construction can be solved adequately by combining fuzzy
and probabilistic representation of uncertainties, applying
MCDMmethods able to deal with fuzzy and stochastic input
data, and including SA, that is, analysing e
ect related to the
input data on the optimal solution of a MCDM problem.

6.2. Possibilities to Apply MCDM Methods within BIM Pro-
cess. Building information modelling (BIM) goes through a
series of levels of development (LODs) which represent an
increasing level of detailing [118, 119]. �e “fuzzy” detailing
in such levels as LOD100 or LOD200 naturally introduces
uncertainties in a DM process. �ey must be taken into
account as long asMCDM is applied in this early design stage.

In the context of building design organised as a successive
passing of LODs, a comparison of the alternatives �� will
make sense if �� will represent the same LOD. In principle,
branching of the design process into the alternatives �� is
possible on the conceptual level LOD100, as long as it is
possible to characterise the vague information expressed by
conceptual designs by somequalitative or quantitative criteria
��. Most of them will express subjective opinions of architect
and client, because very little can be measured quantitatively
and objectively at this stage. �is may require to express the
opinions by fuzzy numbers or probability distributions and

to solve a MCDM problem with respective matrices
←→
C and

C̃.

Higher levels of detail represented by LODs from 200
to 400 give better opportunity to formulate and solve a
MCDM problem. Branching of the design process into the
alternatives �� can be done on each of these levels. However,
uncertainties may still be present because the designs will not
be fully 	nished. Some characteristics of �� will be uncertain
independently of available LOD. For instance, the 	nal and
precise construction cost and duration related to �� will be
known only a�er completion of construction process.

A development of a large number of the alternatives ��
and characteriation of each of them by the criteria �� can
encumber the design process. In essence, a solution of a
MCDM problem will require to prepare � di
erent designs
of building related to the LOD reached in the design process.
�us, one can say that there is a “mega-uncertainty” related to
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the number of LODs at which an application of MCDM will
be most e�cient.

6.3. Deciding on Security and Safety of Buildings. Security and
safety are things and activities which are done in order to
keep people and organisation safe from attack, harm, and
damage.�ree primary areas of security are physical security,
information security, and personnel security [120]. Safety is
achieved by protecting objects of civil engineering against
	re, lightning, earthquakes, extreme winds, and contamina-
tion events which can negatively a
ect indoor air quality.

Measures and procedures of physical security are used
to improve protection of an organisation against threats and
vulnerabilities. Physical security of built property includes
elements related to civil engineering: access control, bar-
riers, doors, fencing, perimeter security, vaults, walls, and
windows. Physical security is also interrelated with safety of
built property. Malicious acts of people committed outside or
inside perimeters of built objects may not only induce struc-
tural damage but also cause severe harm to their occupants.
Examples of such acts are bombings, shootings, deliberate
vehicular impacts, and arsons.�e saddest events of this kind
are September 11 attacks on the world trade centre in New
York.

A higher investment in security systems may reduce
damaging potential of malicious acts. If such acts will happen
in spite of all security measures, damage caused by them
can be limited by a better design for safety. Such design
involves architectural and structural solutions enhancing
safety and provision of better safety systems (alarms, 	re
and evacuation control systems, monitors of indoor air, etc.).
E
ectiveness of security and safety can be characterised by at
least twoMCDMcriteria (one for security and one for safety).
Further criteria related to them may be costs of security and
safety systems. We can add criteria which measure impact of
architectural and structural solutions on security and safety.
Presence of a number of criteria makes out a case for an
application of MCDM to design of buildings with respect to
security and safety.

In a MCDM oriented towards security and safety, the
alternatives ��may represent di
erent con	gurations of phys-
ical security systems and di
erent solutions of safety systems.
�e alternatives �� can also represent di
erent architectural
and structural solutions in�uencing security and safety.
New structural solutions of tall buildings suggested since
September 11 can serve as an example [121]. �e architectural
and structural solutions may seriously in�uence security
and safety. For instance, a low-rise building provides better
opportunities for escape from 	re and 	re	ghting than a
tall one. However, a low-rise building will have much longer
external perimeter to be guarded than a tall building with the
same �oor area. On the other hand, a tall building is a better
target for shooting or an attack by a plane.

A simultaneous consideration of security and safety as
well as architectural and structural aspects in the same
MCDM problem may pose also several problems at gener-
ating the set of ��. �e number of �� can be large due to
a wide variety of security and safety systems available on
the market. �is number can be also increased by a large

number of architectural and design solutions of the same
building. A generation of the alternatives �� can be in�uenced
by legal and regulatory restrictions which must be regarded
simultaneously at a formulation of the designs represented by
��.

�e criteria �� used for evaluating the alternative triplets
security-safety-architecture can be simple: amount and cost
security equipment, number of security personnel, number
of escape roots, minimum distance from a guarded object at
which unauthorised persons must be stopped, and so forth.
Such criteria are obvious and their values can be speci	ed
with relative ease. However, they do not re�ect in-depth
e
ectiveness of security and safety systems.

�e e
ectiveness of safety systems can be expressed
by applying methods of PRA as discussed in Section 5.2.
Safety related criteria �� can be either likelihood or expected
severities of accident scenarios. �ese accidents can be
initiated by security breaches. For instance, an arsonist, a�er
an unauthorised access to secured areas of a building, can
initiate 	res in di
erent places. �ey will lead to di
erent
	re scenarios. �e higher is an estimated level of safety and
robustness of the building represented by ��, and the smaller
should be likelihood and consequences of potential accidents.
�e possibility of di
erent accident scenarios does not allow
to measure the level of safety by a single MCDM criterion.

�e e
ectiveness of a physical security system can also be
expressed by several criteria �� re�ecting di
erent identi	able
scenarios of security breach. Examples of such scenarios are
unauthorised access to secured areas, armed attack from
outside of object perimeter, an attempt to hit a protected
object with a vehicle, external disruption of power supply, and
gas attack from outside the building. As in the case of PRA,
likelihood measures can be estimated and consequences of
security breaches assessed. �e likelihood and consequence
severities can be used asMCDMcriteria ��.�e higher is level
of physical security, and the smaller must be values of such
criteria.

Attacks and adverse physical events impairing security
and safety of built property are inmost cases rare events. Data
on such events is generally sparse. �erefore, estimating the
likelihood of security and safety events will almost inevitably
face the problem of quantifying epistemic uncertainties in
the manner of PRA. �is will lead to an inclusion of
uncertain criteria into MCDM which are uncertain in the
epistemic sense. In other words, problems of MCDM, in
which security and safety of built property are regarded, can
be solved adequately by composing the random decision-

making matrix C̃.

7. Conclusions

In this review, methods developed for making decisions
under uncertainty in civil engineering were examined. Along
with this examination, several problems arising from dealing
with uncertainties in decision-making were identi	ed. �e
decision-making based on formal methods of MCDM was
in the focus of the review. �e prevailing two types of
uncertainty quanti	cation in MCDM rest on fuzzy logic and
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probabilistic modelling. �e need to introduce uncertainty
modelling into MCDM exists in many areas of civil engi-
neering. A proper handling of such uncertainties will require
solving several methodological problems: speci	cation of
fuzzy and random decision-making matrices, analysis of
sensitivity of MCDM results to changes in all elements of an
initial MCDM problem, and the need to combine fuzzy and
random criteria in the same decision-making task. MCDM
under uncertainty is quite �exible methodology. It can be
applied in areas of civil engineeringwhich are currently under
development and receive much attention in research.

A certain challenge to MCDM is sensitivity analysis.
Various techniques of local sensitivity analysis were applied
until now to explore MCDM methods applied in various
	elds. �ese applications deal mainly with sensitivity of
MCDM output versus values of weights. Applications of
global sensitivity analysis to MCDM are not numerous,
despite the fact that analysis of this type is very popular
in general science. �ese applications deal mainly with
geographic information systems.

A partially unresolved issue in applications of sensitiv-
ity analysis to MCDM is how to represent sequences of
alternative rankings by scalar variables. Currently, the only
suggestion is to use for this purpose a quantity known as
average shi� in ranks. MCDM raises a sensitivity analysis
problem characteristic to this methodology, namely, sensi-
tivity to model selection. Ranking of alternatives could vary
at choosing di
erent MCDM methods and normalisation
formulas. An additional model selection problem will arise
at choosing the type of fuzzy numbers and probability
distributions used for modelling input variables of a MCDM
problem. At present, a clear and comprehensive answer to
the issue of sensitivity to model selection in MCDM does not
exist.

�e need for modelling uncertainties can be particu-
larly high in applications of MCDM to a design of safety
critical objects. Damage to such objects may cause severe
consequences. Safety critical objects can be assessed by
means of reliability theory and probabilistic risk analysis.
Measures of reliability and risk estimates are usually uncer-
tain quantities. In terms of risk analysis, this uncertainty is
called epistemic (state-of-knowledge) uncertainty. Epistemic
uncertainties related to reliability and risk are modelled by
means of probability distributions. An application of MCDM
to the design of safety critical objects will require including
epistemic random variables into a decision-making matrix
of a MCDM problem. Probabilistic risk estimates can be
elements of a broader class of risk known as business or
managerial risk. A decision-making with respect to this kind
of risk may require formulating and solving MCDM prob-
lems involving two types of uncertainties. Decision-making
matrices of such problems will involve elements modelled by
both fuzzy sets and probability distributions.�erefore, there
is a need to develop MCDM methods allowing dealing with
two di
erent types of uncertainty in one decision-making
problem.

MCDMunder uncertainty has prospects to be intensively
applied in such areas as development of sustainable and

energy e�cient buildings, building information manage-
ment, and assurance of security and safety of built property.
Decision-making in these areas faces large uncertainties
related to long-termpredictions, vague information on build-
ings under design, and rare and unexpected extreme events.
Methods of fuzzy and stochasticMCDMcan facilitatemaking
decisions in the areas just mentioned.
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