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Abstract. This paper describes a proposal to incorporate finite domain
constraints in a functional logic system. The proposal integrates func-
tions, higher-order patterns, partial applications, non-determinism, logi-
cal variables, currying, types, lazyness, domain variables, constraints and
finite domain propagators.
The paper also presents TOY(FD), an extension of the functional logic
language TOY that provides FD constraints, and shows, by examples,
that TOY(FD) combines the power of constraint logic programming
with the higher-order characteristics of functional logic programming.
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1 Introduction

Constraint logic programming (CLP) emerged recently to increase both the ex-
pressiveness and efficiency of logic programming (LP) [8]. The basic idea in CLP
consists of replacing the classical LP unification by constraint solving on a given
computation domain. Among the domains for CLP, the finite domain (FD) [11]
is one of the most and best studied since it is a suitable framework for solving
discrete constraint satisfaction problems.

Unfortunately, literature lacks proposals to integrate FD constraints in func-
tional programming (FP). This seems to be caused by the relational nature of FD
constraints that do not fit well in FP. To overcome this limitation we consider a
functional logic programming (FLP) setting [7] and integrate FD constraints in
the FLP language TOY [9] giving rise to CFLP(FD) (i.e., constraint functional
logic programming over finite domains).

This paper describes, to our knowledge, the first FLP system that com-
pletely incorporates FD constraints. The main contribution then is to show how
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to apply FD constraints to a functional logic language. We believe that our
proposal has many advantages and considerable potential since it benefits from
both the logical and functional settings and the constraint framework, by first
taking functions, higher-order patterns, partial applications, non-determinism,
logical variables, currying, function composition, types and lazy evaluation from
functional logic programming, and, second, domain variables, constraints and
efficient propagators from finite domain constraint programming.

The paper is structured as follows. Section 2 presents a formalization for
CFLP(FD). Section 3 describes briefly TOY(FD), an implementation of a
CFLP(FD) system, whereas Section 4 shows several examples of programming in
TOY(FD). Then, Section 5 discusses some related work and, Section 6 develops
a performance comparison with related systems. Finally, the paper ends with
some indications for further research and some conclusions.

2 CFLP(FD) Programs

This section presents, by following the formalization given in [6], the basics about
syntax, type discipline, and declarative semantics of CFLP(FD) programs.

2.1 CFLP(FD) Fundamental Concepts

Types and Signatures: We assume a countable set TVar of type variables
α, β, . . . and a countable ranked alphabet TC =

⋃
n∈N

TCn of type constructors
C ∈ TCn. Types τ ∈ Type have the syntax

τ ::= α | C τ1 . . . τn | τ → τ ′ | (τ1, . . . , τn)

By convention, C τn abbreviates C τ1 . . . τn, “→” associates to the right, τn → τ
abbreviates τ1 → · · · → τn → τ , and the set of type variables occurring in τ
is written tvar(τ). A type without any occurrence of “→” is called a datatype.
The type (τ1, . . . , τn) is intended to denote n-tuples. FD variables are integer
variables. A signature over TC is a triple Σ = 〈TC, DC, FS〉, where DC =⋃

n∈N
DCn and FS =

⋃
n∈N

FSn are ranked sets of data constructors resp.
defined function symbols. Each n-ary c ∈ DCn comes with a principal type
declaration c :: τn → C αk, where n, k ≥ 0, α1, . . . , αk are pairwise different,
τi are datatypes, and tvar(τi) ⊆ {α1, . . . , αk} for all 1 ≤ i ≤ n. Also, every
n-ary f ∈ FSn comes with a principal type declaration f :: τn → τ , where τi,
τ are arbitrary types. In practice, each CFLP(FD) program P has a signature
which corresponds to the type declarations occurring in P . For any signature
Σ, we write Σ⊥ for the result of extending Σ with a new data constructor
⊥ :: α, intended to represent an undefined value that belongs to every type. As
notational conventions, we use c ∈ DC, f, g ∈ FS and h ∈ DC ∪ FS.

FD constraints: A FD constraint is a primitive function declared with type
either
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Table 1. Datatypes for FD Constraints

data labelType = ff | ffc | leftmost | mini | maxi | step | enum | bisect | up
| down | all | toMinimize int | toMaximize int | assumptions int

data statistics = resumptions | entailments | prunings | backtracks | constraints
data reasoning = value | domains | range
data options = on reasoning | complete bool
data typeprecedence = d (int,int,int)
data newOptions = precedences [typeprecedence] | path consistency bool

| static sets bool | edge finder bool | decomposition bool

Table 2. Some FD Constraints in TOY(FD)

RELATIONAL ARITHMETICAL
(#>) :: int → int → bool (#∗) :: int → int → int
(#<) :: int → int → bool (#/) :: int → int → int
(#>=) :: int → int → bool (#+) :: int → int → int
(#<=) :: int → int → bool (#−) :: int → int → int
(# =) :: int → int → bool sum :: [int] → (int → int → bool) → int → bool
(#\=) :: int → int → bool scalar product :: [int] → [int]

→ (int → int → bool) → int → bool
COMBINATORIAL
assignment :: [int] → [int] → bool all different :: [int] → bool
circuit :: [int] → bool all different’ :: [int] → [options] → bool
circuit’ :: [int] → [int] → bool serialized :: [int] → [int] → bool
all distinct :: [int] → bool serialized’ :: [int] → [int] → [newOptions] → bool
all distinct’ :: [int]→[options]→bool cumulative :: [int] → [int] → [int] → int → bool
exactly :: int → [int] → int → bool cumulative’ :: [int] → [int] → [int] → int
element :: int → [int] → int → bool → [newOptions] → bool

count :: int → [int] → (int → int → bool)
→ int → bool

MEMBERSHIP
domain :: [int] → int → int → bool
ENUMERATION STATISTICS
labeling :: [labelType]→[int]→bool fd statistics :: statistics → int → bool
indomain :: int → bool fd statistics’ :: bool

– int → int → int to transform pairs of FD variables into FD variables, or
– τn → bool such that for all τi in τn, τi ∈ TypeFD and TypeFD ⊂ Type is

TypeFD =
{
int, [int], [labelType], statistics,

(int → int → bool), [options], [newOptions]
}
.

int is a predefined type for integers, and [τ ] is the type ‘list of τ ’. The
datatypes labelType, statistics, options and newOptions are prede-
fined types and their complete definitions are shown in Table 1.
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Some FD constraints supported in our language are shown in Table 2. Ex-
amples of the first sort of constraints are the arithmetic functions #+, #−, #∗
and #/. Examples of the second sort of constraints are the relations #<, and
#> as well as the functions all distinct’/2, and labeling/2.

In the rest of the section, FSFD ⊂ FSn denotes the set of FD constraints
that return a Boolean value.

In CFLP(FD), functions (e.g., constraints) are first-class citizens, which
means that a function can appear in any place where a data can. As a direct
consequence, a FD constraint may appear as an argument (or even as a result)
of another function or constraint. The functions managing other functions are
called higher-order (HO) functions. As examples of HO constraints, look at the
FD constraints sum/3, scalar product/4 and count/4 in Table 2. These con-
straints accept a FD constraint of type int → int → bool (e.g., #<, or #>)
as argument.

Expressions and Patterns: In the sequel, we always assume a given signature
Σ, often not made explicit in the notation. Assuming a countable set Var of
(data) variables X,Y, . . . disjoint from TVar and Σ, partial expressions e ∈ Exp⊥
have the syntax

e ::= ⊥ | X | h | e e′ | (e1, . . . , en)

where X ∈ Var, h ∈ DC ∪ FS. Expressions of the form e e′ stand for the
application of expression e (playing as a function) to expression e′ (playing as
an argument), while expressions (e1, . . . , en) represent tuples with n components.
As usual, we assume that application associates to the left and thus e0 e1 . . . en

abbreviates (. . . (e0 e1) . . . ) en. The set of data variables occurring in e is
written var(e).

An expression e is called linear iff every X ∈ var(e) has one single occurrence
in e. An expression e is in head normal form iff e is a variable X or has the form
c(en) for some data constructor c ∈ DCn (n ≥ 0) and some n-tuple of expressions
en = (e1, . . . , en) where ei is in head normal form.

Partial patterns t ∈ Pat⊥ ⊂ Exp⊥are built as

t ::=⊥ | X | c t1 . . . tm | f t1 . . . tm

where X ∈ Var, c ∈ DCk, 0 ≤ m ≤ k, f ∈ FSn, 0 ≤ m < n and ti ∈ Pat⊥
for all 1 ≤ i ≤ m. They represent approximations of the values of expressions.
Partial patterns of the form f t1 . . . tm with f ∈ FSn and m < n serve as a
convenient representation of functions as values [6]; therefore functions becom-
ing first-class citizens of the language. Expressions and patterns without any
occurrence of ⊥ are called total. The sets of total expressions and patterns are
denoted, respectively, by Exp and Pat . Actually, the symbol ⊥ never occurs in
a program’s text.

Substitutions: A substitution is a mapping θ : Var → Pat with a unique
extension θ̂ : Exp → Exp, which is also denoted as θ. As usual, θ = {X1 �→
t1, . . . , Xn �→ tn} stands for the substitution with domain {X1, . . . , Xn} which
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satisfies θ(Xi) = ti for all 1 ≤ i ≤ n. Subst denotes the set of all variable
substitutions.

Up to this point we have considered data substitutions. Type substitutions can
be defined similarly, as mappings θt : TVar → Type with a unique extension θ̂t :
Type → Type, also denoted θt. TSubst denotes the set of all type substitutions.

Finite Domains: A finite domain (FD) is a mapping δ : Var → ℘(Integer)
(as usual ℘(C) denotes the powerset of the set C), with a unique extension
δ̂ : Exp → Exp, which will be denoted also as δ, and Integer is the set of integers.
We use δ = {X1 ∈ d1, . . . , Xn ∈ dn}, which stands for the FD with domain
{X1, . . . , Xn} and satisfies δ(Xi) = di for all 1 ≤ i ≤ n, where di ⊆ Integer .

By convention, if δ is either a FD or a substitution we write eδ instead of
δ(e), and δσ for the composition of δ and σ s.t. e(δσ) = (eδ)σ for any e.

2.2 Well-Typedness

Inspired by Milner’s type system we now introduce the notion of well-typed
expression. We define a type environment as any set T of type assumptions
X :: τ for data variables s.t. T does not include two different assumptions for
the same variable. The domain dom(T ) of a type environment is the set of all
data variables that occur in T . For any variable X ∈ dom(T ), the unique type
τ s.t. (X :: τ) ∈ T is denoted as T (X). The notation (h :: τ) ∈var Σ is used
to indicate that Σ includes the type declaration h :: τ up to a renaming of
type variables. Type judgements (Σ,T ) �WT e :: τ are derived by means of the
following type inference rules:

VR (Σ,T ) �WT X :: τ , if T (X) = τ .
ID (Σ,T ) �WT h :: τσt, if (h :: τ) ∈var Σ⊥, σt ∈ TSubst .
AP (Σ,T ) �WT (e e1) :: τ , if (Σ,T ) �WT e :: (τ1 → τ), (Σ,T ) �WT e1 :: τ1,

for some τ1 ∈ Type.
TP (Σ,T ) �WT (e1, . . . , en) :: (τ1, . . . , τn), if ∀i∈{1, . . . , n} : (Σ,T ) �WT ei ::τi.

An expression e ∈ Exp⊥ is called well-typed iff there exist some type environ-
ment T and some type τ , s.t. the type judgement T �WT e :: τ can be derived.
Expressions that admit more than one type are called polymorphic. A well-typed
expression always admits a so-called principal type (PT) that is more general
than any other. A pattern whose PT determines the PTs of its subpatterns is
called transparent.

A well-typed CFLP(FD) program P is a set of well-typed defining rules for
the function symbols in its signature. Defining rules for f ∈ FSn with principal
type declaration f :: τn → τ have the form

(R) f t1 . . . tn︸ ︷︷ ︸
left hand side

= r︸︷︷︸
right hand side

⇐ C︸︷︷︸
Condition

and must satisfy the following requirements:
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1. t1 . . . tn is a linear sequence of transparent patterns and r is an expression.
2. The condition C is a sequence of conditions C1, . . . , Ck, where each Ci can be

either a joinability statement of the form e == e′, or a disequality statement
of the form e /= e′, with e, e′ ∈ Exp, or a Boolean function g of the form
g e1 . . . em, with ei ∈ Exp and g ∈ FSm (of course, perhaps g ∈ FSFD).

3. There exists some type environment T with domain var(R) which well-types
the defining rule in the following sense:
a) For all 1 ≤ i ≤ n: (Σ,T ) �WT ti :: τi.
b) (Σ,T ) �WT r :: τ .
c) For each (e == e′) ∈ C, ∃µ ∈ Type s.t. (Σ,T ) �WT e :: µ :: e′.
d) For each (e/= e′) ∈ C, ∃µ ∈ Type s.t. (Σ,T ) �WT e :: µ :: e′.
e) For each (g e1 . . . em) ∈ C, where g :: τ1 → . . . → τm → bool,

(Σ,T ) �WT ei :: τi, and τi ∈ Type, for all 1 ≤ i ≤ m.

Here, (Σ,T ) �WT a :: τ, (Σ,T ) �WT b :: τ denotes (Σ,T ) �WT a :: τ :: b.
Informally, the intended meaning of a program rule as (R) above is that a call

to a function f can be reduced to r whenever the actual parameters match the
patterns ti, and both the joinability conditions, the disequality conditions and
the Boolean functions (including the FD constraints) are satisfied. A condition
e == e′ is satisfied by evaluating e and e′ to some common total pattern.
Predicates are viewed as a particular kind of functions, with type p :: τn →
bool. As a syntactic facility, we can use clauses as a shorthand for defining
rules whose right-hand side is true. This allows to write Prolog-like predicate
definitions; each clause p t1 . . . tn : − C1, . . . , Ck abbreviates a defining
rule of the form p t1 . . . tn = true ⇐ C1, . . . , Ck.

A well-typed goal G has the same form as a well-typed expression and must
satisfy the admissibility requirements but regarding the empty set of variables.

In general, a CFLP(FD) system is expected to solve goals, returning a set of
4-tuples 〈E, σ,C, δ〉 as a computed answer where E ∈ Exp is a TOY expression,
σ ⊆ Subst is the set of variable substitutions, C is a set of disequality constraints,
and δ is the set of pruned finite domains.

3 TOY(FD) : A CFLP(FD) Implementation

This section describes briefly part of TOY(FD), our CFLP(FD) implementation
that extends the TOYsystem [9] to deal with FD constraints.

Table 2 shows some FD constraints provided by TOY(FD). Among others,
TOY(FD) supports equality and disequality constraints, well-known global con-
straints (e.g., all different/1), a membership constraint (i.e., domain/3) and
enumeration constraints (e.g., labeling/2) with a number of options to reacti-
vate the search process when no more constraint propagation is possible.

TOY(FD) also provides a set of constraints (not shown in Table 2), called
reflection constraints, that allow to recover information about constrained FD
variables and their associated domains during the solving of a goal (e.g., the re-
flection constraints fd min, fd max :: int → int applied to a FD variable return
respectively the minimum and maximum value of this FD variable in its current
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domain). For reasons of space, we do not describe all the constraints in detail and
encourage the interested reader to visit the link proposed in [4] for a more de-
tailed explanation (this link also shows several examples of TOY(FD) programs).

TOY(FD) is implemented on top of Sicstus Prolog 3.8.4 and uses the FD
constraint solver of SICStus [2]. FD constraints are integrated in TOY(FD) as
functions and evaluated internally by using mainly two predicates: hnf(E,H),
which specifies that H is one of the possible results of narrowing the expression E
into head normal form, and solve/1, which checks the satisfiability of constraints
(of rules and goals) previously to the evaluation of a given rule. This predicate
is, basically, defined as follows1:

(1) solve((ϕ,ϕ′)) :− solve(ϕ), solve(ϕ′).
(2) solve(L == R) :− hnf(L, L′), hnf(R, R′), equal(L′, R′).
(3) solve(L / = R) :− hnf(L, L′), hnf(R, R′), notequal(L′, R′).
(4) solve(L#♦ R) :− hnf(L, L′), hnf(R, R′), {L′#♦R′}.

where ♦ ∈ {<,<=, >,>=,=, \=}.
(5) solve(C A1 . . . An) :− hnf(A1, A′

1), . . . , hnf(An, A
′
n), {C(A′

1, . . . , A
′
n)}.

where C is any constraint returning a Boolean.

The interaction with SICStus FD constraint solver is reflected in the two
last clauses: every time a FD constraint appears, the solver is eventually in-
voked with a goal {G} where G is the translation of the FD constraint from
TOY(FD) to SICStus Prolog. The expressions have to be ‘simplified’ in order to
allow the solver to solve the constraint. By simplifying we mean computing the
head normal forms (hnf) of both expressions.

4 Programming in TOY(FD)

Any CLP(FD)-program can be straightforwardly translated into a CFLP(FD)-
program. As example, Section 4.1 shows the TOY (FD) code to solve the classical
arithmetic puzzle “send+more=money”. We do not insist more on this matter,
but prefer to concentrate on the extra capabilities of the language and illustrate
some of them by means of a more interesting example developed in Section 4.2.

4.1 An Introductory TOY(FD)Example

Below, a TOY(FD) program to solve the classical arithmetic puzzle “send more
money” is shown. TOY(FD) allows to use infix constraint operators such as #>
to build the expression X #> Y, which is understood as #> X Y. The signature
of the program can be easily inferred from the type declarations included in its
text. The intended meaning of the functions should be clear from their names,
definitions and Tables 1 and 2.
1 The code does not correspond exactly to the implementation, which is the result of

many transformations and optimizations.
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smm :: int -> int -> int -> int -> int -> int -> int -> int
-> [labelType] -> bool

smm S E N D M O R Y Label :- domain [S,E,N,D,M,O,R,Y] 0 9,
S #> 0, M #> 0,
all_different [S,E,N,D,M,O,R,Y],

1000#*S #+ 100#*E #+ 10#*N #+ D
#+ 1000#*M #+ 100#*O #+ 10#*R #+ E

#= 10000#*M #+ 1000#*O #+ 100#*N #+ 10#*E #+ Y,
labeling Label [S,E,N,D,M,O,R,Y]

4.2 A Hardware Design Problem

A more interesting example comes from the hardware area. In this setting, many
constrained optimization problems arise in the design of both sequential and
combinational circuits as well as the interconnection routing between compo-
nents. Constraint programming has been shown to effectively attack these prob-
lems. In particular, the interconnection routing problem (one of the major tasks
in the physical design of very large scale integration - VLSI - circuits) have been
solved with constraint logic programming [13].

For the sake of conciseness and clarity, we focus on a constraint combinational
hardware problem at the logical level but adding constraints about the physical
factors the circuit has to meet. This problem will show some of the nice features
of TOY for specifying issues such as behavior, topology and physical factors.

Our problem can be stated as follows. Given a set of gates and modules, a
switching function, and the problem parameters maximum circuit area, power
dissipation, cost, and delay (dynamic behavior), the problem consists of finding
possible topologies based on the given gates and modules so that a switching
function and constraint physical factors are met. In order to have a manageable
example, we restrict ourselves to the logical gates NOT, AND, and OR. We
also consider circuits with three inputs and one output, and the physical factors
aforementioned. We suppose also the following problem parameters:

Gate Area Power Cost Delay
NOT 1 1 1 1
AND 2 2 1 1
OR 2 2 2 2

In the sequel we will introduce the problem by first considering the features
TOYoffers for specifying logical circuits, what are its weaknesses, and how they
can effectively be solved with the integration of constraints in TOY(FD) .

Example 1. FLP Simple Circuits.With this example we show the FLP approach
that can be followed for specifying the problem stated above. We use patterns to
provide an intensional representation of functions. The alias behavior is used
for representing the type bool → bool → bool → bool. Functions of this type
are intended to represent simple circuits which receive three Boolean inputs and
return a Boolean output. Given the Boolean functions not, and, and or defined
elsewhere, we specify three-input, one-output simple circuits as follows.
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Fig. 1. Basic Modules.

i0,i1,i2 :: behavior notGate :: behavior -> behavior
i0 I2 I1 I0 = I0 notGate B I2 I1 I0 = not (B I2 I1 I0)
i1 I2 I1 I0 = I1
i2 I2 I1 I0 = I2

andGate, orGate :: behavior -> behavior -> behavior
andGate B1 B2 I2 I1 I0 = and (B1 I2 I1 I0) (B2 I2 I1 I0)
orGate B1 B2 I2 I1 I0 = or (B1 I2 I1 I0) (B2 I2 I1 I0)

Functions i0, i1, and i2 represent inputs to the circuits, that is, the minimal
circuit which just copies one of the inputs to the output. (In fact, this can be
thought as a fixed multiplexer - selector.) They are combinatorial modules as
depicted in Figure 1. The function notGate outputs a Boolean value which is
the result of applying the NOT gate to the output of a circuit of three inputs.
In turn, functions andGate and orGate output a Boolean value which is the
result of applying the AND and OR gates, respectively, to the outputs of three
inputs-circuits (see Figure 1).

These functions can be used in a higher-order fashion just to generate or
match topologies. In particular, the higher-order functions notGate, andGate
and orGate take behaviors as parameters and build new behaviors, correspond-
ing to the logical gates NOT, AND and OR. For instance, the multiplexer de-
picted in Figure 2 can be represented by the following pattern:

orGate (andGate i0 (notGate i2)) (andGate i1 i2).

This first-class citizen higher-order pattern can be used for many purposes.
For instance, it can be compared to another pattern or it can be applied to
actual values for its inputs in order to compute the circuit output. So, with the
previous pattern, the goal:

P == orGate (andGate i0 (notGate i2)) (andGate i1 i2),
P true false true == O
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Fig. 2. Two-Input Multiplexer Circuit.

is evaluated to true and produces the substitution O == false. The rules that
define the behavior can be used to generate circuits, which can be restricted to
satisfy some conditions. If we use the standard arithmetics, we could define the
following set of rules for computing or limiting the power dissipation.

power :: behavior -> int
power i0 = 0
power i1 = 0
power i2 = 0
power (notGate C) = notGatePower + (power C)
power (andGate C1 C2) = andGatePower + (power C1) + (power C2)
power (orGate C1 C2) = orGatePower + (power C1) + (power C2)

Then, we can submit the goal power B == P, P < maxPower (provided the
function maxPower acts as a problem parameter that returns just the maxi-
mum power allowed for the circuit) in which the function power is used as
a behavior generator2. As outcome, we get several solutions (〈i0, {P==0}, {},
{}〉, 〈i1, {P==0}, {}, {}〉, 〈i2, {P==0}, {}, {}〉, 〈not i0, {P==1}, {}, {}〉, . . . ,
〈not (not i0), {P==2}, {}, {}〉, . . . . Declaratively, it is fine; but our opera-
tional semantics requires a head normal form for the application of the arith-
metic operand +. This implies that we reach no more solutions beyond 〈 not (
. . . (not i0) . . . ), maxPower, {}, {}〉 because the application of the fourth rule
of power yields to an infinite computation. This drawback is solved by recursing
to Peano’s arithmetics, that is:

data nat = z | s nat plus :: nat -> nat -> nat
plus z Y = Y

power’ :: behavior -> nat plus (s X) Y = s (plus X Y)
power’ i0 = z
power’ i1 = z less :: nat -> nat -> bool
power’ i2 = z less z (s X) = true
power’ (notGate C) = less (s X) (s Y) = less X Y

plus notGatePower (power’ C)

2 Equivalently and more concisely, power B < maxPower could be submitted, but do-
ing so we make the power unobservable.
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power’ (andGate C1 C2) =
plus andGatePower (plus (power’ C1) (power’ C2))

power’ (orGate C1 C2) =
plus orGatePower (plus (power’ C1) (power’ C2))

So, we can submit the goal less (power’ P) (s (s (s z))), where we
have written down explicitly the maximum power (3 power units).

With the second approach we get a more awkward representation due to
the use of successor arithmetics. The first approach to express this problem is
indeed more declarative than the second one, but we get non-termination. FD
constraints can be profitably applied to the representation of this problem as we
show in the next example.

Example 2. CFLP(FD) Simple Circuits
As for any constraint problem, modelling can be started by identifying the FD
constraint variables. Recalling the problem specification, circuit limitations refer
to area, power dissipation, cost, and delay. Provided we can choose finite units
to represent these factors, we choose them as problem variables. A circuit can
therefore be represented by the 4-tuple state 〈area, power, cost, delay〉. The idea
to formulate the problem consists of attaching this state to an ongoing circuit so
that state variables reflect the current state of the circuit during its generation.
By contrast with the first example, we do not “generate” and then “test”, but
we “test” when “generating”, so that we can find failure in advance. A domain
variable has a domain attached indicating the set of possible assignments to the
variable. This domain can be reduced during the computation. Since domain
variables are constrained by limiting factors, during the generation of the circuit
a domain may become empty. This event prunes the search space avoiding to
explore a branch known to yield no solution. Let’s firstly focus on the area factor.
The following function generates a circuit characterized by its state variables.

type area, power, cost, delay = int
type state = (area, power, cost, delay)
type circuit = (behavior, state)
genCir :: state -> circuit
genCir (A, P, C, D) = (i0, (A, P, C, D))
genCir (A, P, C, D) = (i1, (A, P, C, D))
genCir (A, P, C, D) = (i2, (A, P, C, D))
genCir (A, P, C, D) = (notGate B, (A, P, C, D)) <==

domain [A] ((fd_min A) + notGateArea) (fd_max A),
genCir (A, P, C, D) == (B, (A, P, C, D))

genCir (A, P, C, D) = (andGate B1 B2, (A, P, C, D)) <==
domain [A] ((fd_min A) + andGateArea) (fd_max A),
genCir (A, P, C, D) == (B1, (A, P, C, D)),
genCir (A, P, C, D) == (B2, (A, P, C, D))

genCir (A, P, C, D) = (orGate B1 B2, (A, P, C, D)) <==
domain [A] ((fd_min A) + orGateArea) (fd_max A),
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genCir (A, P, C, D) == (B1, (A, P, C, D)),
genCir (A, P, C, D) == (B2, (A, P, C, D))

The function genCir has an argument to hold the circuit state and returns
a circuit characterized by a behavior and a state. (Note that we can avoid the
use of the state tuple as a parameter, since it is included in the result.) The
template of this function is like the previous example. The difference lies in
that we perform domain pruning during circuit generation with the membership
constraint domain, so that each time a rule is selected, the domain variable
representing area is reduced in the size of the gate selected by the operational
mechanism. For instance, the circuit area domain is reduced in a number of
notGateArea when the rule for notGate has been selected. For domain reduction
we use the reflection functions fd_min and fd_max. This approach allows us to
submit the following goal:

domain [Area] 0 maxArea,
genCir (Area, Power, Cost, Delay) == Circuit

which initially sets the possible range of area between 0 and the problem pa-
rameter area expressed by the function maxArea, and then generates a Circuit.
Recall that testing is performed during search space exploration, so that ter-
mination is ensured because the add operation is monotonic. The mechanism
which allows this “test” when “generating” is the set of propagators, which are
concurrent processes that are triggered whenever a domain variable is changed
(pruned). The state variable delay is more involved since one cannot simply add
the delay of each function at each generation step. The delay of a circuit is re-
lated to the maximum number of levels an input signal has to traverse until it
reaches the output. This is to say that we cannot use a single domain variable
for describing the delay. Therefore, considering a module with several inputs, we
must compute the delay at its output by computing the maximum delays from
its inputs and adding the module delay. So, we use new fresh variables for the
inputs of a module being generated and assign the maximum delay to the output
delay. This solution is depicted in the following function:

genCirDelay :: state -> delay -> circuit
genCirDelay (A, P, C, D) Dout = (i0, (A, P, C, D))
genCirDelay (A, P, C, D) Dout = (i1, (A, P, C, D))
genCirDelay (A, P, C, D) Dout = (i2, (A, P, C, D))
genCirDelay (A, P, C, D) Dout = (notGate B, (A, P, C, D)) <==
domain [Dout] ((fd_min Dout) + notGateDelay) (fd_max Dout),
genCirDelay (A, P, C, D) Dout == (B, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (andGate B1 B2, (A, P, C, D)) <==
domain [Din1, Din2] ((fd_min Dout) + andGateDelay)(fd_max Dout),
genCirDelay (A, P, C, D) Din1 == (B1, (A, P, C, D)),
genCirDelay (A, P, C, D) Din2 == (B2, (A, P, C, D)),
domain [Dout] (maximum (fd_min Din1)(fd_min Din2)) (fd_max Dout)

genCirDelay (A, P, C, D) Dout = (orGate B1 B2, (A, P, C, D)) <==
domain [Din1, Din2] ((fd_min Dout) + orGateDelay) (fd_max Dout),
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genCirDelay (A, P, C, D) Din1 == (B1, (A, P, C, D)),
genCirDelay (A, P, C, D) Din2 == (B2, (A, P, C, D)),
domain [Dout] (maximum (fd_min Din1)(fd_min Din2)) (fd_max Dout)

Observing the rules for the AND and OR gates, we can see two new fresh
domain variables for representing the delay in their inputs. These new variables
are constrained to have the domain of the delay in the output but pruned with
the delay of the corresponding gate. After the circuits connected to the inputs
had been generated, the domain of the output delay is pruned with the maximum
of the input module delays. Note that although the maximum is computed after
the input modules had been generated, the information in the given output
delay has been propagated to the input delay domains so that whenever an
input delay domain becomes empty, the search branch is no longer searched and
another alternative is tried. Putting together the constraints about area, power
dissipation, cost, and delay is straightforward, since they are orthogonal factors
that can be handled in the same way. In addition to the constraints shown, we
can further constrain the circuit generation with other factors as fan-in, fan-out,
and switching function enforcement, to name a few. Then, we could submit the
following goal:

domain [A] 0 maxArea, domain [P] 0 maxPower,
domain [C] 0 maxCost, domain [D] 0 maxDelay,
genCir (A,P,C,D) == (B, S), switchF B == sw

where switchF can be defined as the switching function that returns the result
of a behavior B for all its input combinations, and sw is the function that returns
the intended result (sw is referred as a problem parameter, as well as maxArea,
maxPower, maxCost, and maxDelay).

data functionality = [bool]
switchF :: behavior -> functionality
switchF Behavior = [Out1,Out2,Out3,Out4,Out5,Out6,Out7,Out8] <==

(Behavior false false false) == Out1,
(Behavior false false true) == Out2,
(Behavior false true false) == Out3,
(Behavior false true true) == Out4,
(Behavior true false false) == Out5,
(Behavior true false true) == Out6,
(Behavior true true false) == Out7,
(Behavior true true true) == Out8

Then, to generate a NOR circuit with maxArea, maxPower, maxCost and
maxDelay equal 6, we could submit the following goal:

domain [A, P, C, D] 0 6, genCir (A,P,C,D) == (B, S),
switchF B == [true,false,false,false,false,false,false,false]

This goal has 24 possible answers, 4 of them are:
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(1) 〈true,{B == (notGate (orGate i0 (orGate i1 i2))), S == ( A,
B,

C, D)}, { },{ A ∈ 5..6, B ∈ 5..6, C ∈ 5..6, D ∈ 5..6}〉.
(2) 〈true,{B == (notGate (orGate (orGate i2 i1) i0)), S == ( A,
B,

C, D)}, { }, { A ∈ 5..6, B ∈ 5..6, C ∈ 5..6, D ∈ 5..6}〉.
(3) 〈true,{B == (andGate (notGate i0) (notGate (orGate i1 i2))),

S == (6, 6, A, B)}, { }, { A ∈ 5..6, B ∈ 4..6}〉.
(4) 〈true,{B == (andGate (notGate (orGate i2 i1)) (notGate i0)),

S == (6, 6, A, B)}, { }, { A ∈ 5..6, B ∈ 4..6}〉.

5 Related Work

[1] described an implementation of the FLP language Curry to enable the use
of existing constraint solvers. As far as we know, our implementation is the first
complete FLP system that includes truly solving on FD constraints although,
recently, we have known about the existence of an (unpublished) implementation
(called PAKCS) of the Curry language that supports (a small set of) FD con-
straints [3]. Specifically, PAKCS provides the following constraints: a set of arith-
metic operations { #∗,#+, . . . , }, a membership constraint, an all different/1
constraint and an enumeration constraint that just provides näıve labeling.

Also, it is well-known that CLP(FD) is a successful declarative instance of
CP and thus is strongly-related to our work. In fact, CLP(FD) is an instance of
CFLP(FD) as any CLP(FD)-program can be straightforwardly translated into
a CFLP(FD)-program. Observe that CFLP(FD) provides the main characteris-
tics of CLP(FD), i.e., FD constraint solving, non-determinism, logical variables
and relational form. Of course this determines initially a wide range of appli-
cations for our language. But CFLP(FD) is more than CLP(FD). Throughout
the paper we have highlighted, by example, some CFLP(FD) features not exist-
ing in CLP(FD) . Particularly, Example 2 shows that CFLP(FD) provides func-
tions, higher-order patterns, partial applications, combination of relational and
functional notation, and types. This leads to an alternative way of expressing
problems to that provided by CLP(FD) . Moreover, there are additional features
existing in CFLP(FD) and not presented in CLP(FD) that have not been dis-
cussed so far as it is not the issue here and will be discussed in a further paper
(currently under preparation). As an example we can cite the lazy evaluation of
goals in which the arguments may be partially evaluated or evaluated just when
they are necessary. Lazy evaluation opens new possibilities for FD constraint
solving. For instance, CFLP(FD) enables the management of infinite lists of FD
constraints.

Example 3. Consider the following function that generates an infinite list of FD
variables constrained in the interval [0,N-1] for some integer N.

generateFD :: int -> [int]
generateFD N = [X | generateFD N] <== domain [X] 0 (N-1)
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Consider also the polymorphic predefined function take:: int -> [A] -> [A]
such that take N L returns a list containing the first N elements of the list L.
Then the goal

take 3 (generateFD 10) == List

does not terminate with classical constraint solving as it tries to evaluate first the
second argument yielding to an infinite list; however, a lazy evaluation generates
just the first 3 elements of the list returning thus a correct answer.

In addition, our proposal can be considered in the context of multi-paradigm
constraint programming, i.e., to combine CP with several paradigms in one set-
ting. In this line, one decade ago, [10] presented an idea to combine character-
istics of CLP, functional and concurrent languages and it was implemented in
the language Oz. Despite Oz generalizes the CLP(FD) and concurrent constraint
programming paradigms, it is very different to TOY(FD) as functional program-
ming and constraints are not integrated. Moreover, instead of the typical LP
approach of left-right first-depth, search strategies in Oz are encoded in search
procedures to explore the search space.

There are also other declarative CP systems such as the algebraic CP lan-
guages (OPL [12], AMPL [5]). However, we think that our approach is far more
declarative mainly since, first, those systems are not general-purpose program-
ming languages, and, second, they do not benefit neither from complex terms
and patterns nor from non-determinism.

6 Comparative Work

In this section we compare the performance of TOY(FD)with respect to related
systems. One is PAKCS (cited in Section 5) that claims to be an efficient im-
plementation. In the comparison we used the Curry2Prolog compiler, which is
the most efficient implementation of Curry inside PAKCS. In addition, we also
compared the performance of TOY(FD)with the FD constraint library of the
efficient and well-known system SICStus Prolog (version 3.8.4).

Labeling. FD constraint solving can be seen as a combination of constraint prop-
agation and labeling. Here, we consider two labelings, the näıve labeling (i.e.,
choose the leftmost variable of a list and then select the smallest value in its
domain) and the first fail labeling (i.e., choose the variable with the smallest
domain). The näıve labeling assures that both variable and value ordering are
the same for all the systems and hence in many ways, although less efficient, is
better for comparing the different systems when only one solution is required.

The Benchmarks. We have used a set of five classical benchmarks [11]: send-
more (a cryptoarithmethic problem with 8 variables ranging over {0, . . . , 9}),
one linear equation and 36 disequations; equation 10 and equation 20 (sys-
tems of 10 and 20 linear equations respectively with 7 variables ranging over
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Table 3. Performance Results for First Solution Search and Näıve Labeling.

Benchmark SICStus TOY(FD) PAKCS T OY(FD)
SICStus

PAKCS
SICStus

PAKCS
T OY(FD)

sendmore 10 10 40 1.00 4.00 4.00
equation10 20 70 80 3.50 4.00 1.14
equation20 30 130 160 4.33 5.33 1.23
queens (8) 10 20 30 2.00 3.00 1.50
queens (16) 1180 1220 4430 1.03 3.75 3.63
queens (20) 26430 31390 129510 1.18 4.90 4.12
queens (24) 57100 64770 326090 1.13 5.71 5.03
queens (30) ?? ?? ?? (?) (?) (?)
magic (64) 790 890 N 1.12 ∞ ∞
magic (100) 2270 2300 N 1.01 ∞ ∞
magic (150) 5840 5990 N 1.02 ∞ ∞
magic (200) 11450 11920 N 1.04 ∞ ∞
magic (300) 31280 34200 N 1.09 ∞ ∞

Table 4. Performance Results for First Solution Search and First Fail Labeling.

Benchmark SICStus TOY(FD) T OY(FD)
SICStus

SICStus(n)
SICStus(f)

T OY(FD)(n)
T OY(FD)(f)

sendmore 5 5 1.00 2.00 2.00
equation10 10 50 5.00 2.00 1.40
equation20 20 110 5.50 1.50 1.18
queens (8) 10 15 1.50 1.00 1.33
queens (16) 40 50 1.25 29.50 24.40
queens (20) 80 160 2.00 330.37 196.18
queens (24) 70 90 1.28 815.71 719.66
queens (30) 130 660 5.07 ∞ ∞
magic (64) 320 330 1.03 2.46 2.69
magic (100) 640 690 1.07 3.54 3.33
magic (150) 1500 1510 1.00 3.89 3.96
magic (200) 2510 2620 1.04 4.56 4.54
magic (300) 6090 6180 1.01 5.13 5.53

{0, . . . , 10}); queens (N) (place N queens on a N × N chessboard such that
no queen attacks each other) and magic sequences (N) (calculate a sequence
of N numbers such that each of them is the number of occurrences in the series
of its position in the sequence).

Results. All the benchmarks were tested on the same SPARCstation under
SunOs 5.8. Due to space limitations we only provide the results for first so-
lution search. Table 3 shows the results using näıve labeling. The meaning for
the columns is as follows. The first column gives the name of the benchmark
used in the comparison. The next three columns show the running (elapsed)
time (measured in milliseconds) to find the first answer for each system. The
fourth and fifth columns indicate the slow-down of TOY(FD) and PACKS with
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respect to SICStus. The last column shows the slow-down of the PAKCS with
respect to our implementation.

Table 4 shows similar results but using first fail labeling. Observe that PAKCS
is not included as it only provides näıve labeling (which is not very useful in
practice as it is well-known). The meaning for the columns is as follows. The
three first columns are as in Table 3. The fourth column indicates the slow-down
of TOY(FD)with respect to SICStus. The last two columns show the slow-down
of the solution using näıve labeling (n) with respect to the solution using first
fail labeling (f).

In these tables, all numbers represent the average of a number of runs. The
symbol ?? means that a solution was not received in a reasonable time and (?)
indicates a non-determined value. The symbol N in the PAKCS column means
that we could not formulate that benchmark because of insufficient provision for
constraints. Particularly, the classical formulation of the magic sequence problem
requires to use reified constraints in the form X = Y ⇔ B with B being a
(Boolean) FD variable. In these cases, when a problem cannot be expressed in
PAKCS, the symbol ∞ is used in the average columns. All the benchmarks are
available in [4].

7 Conclusions

We have presented CFLP(FD), a functional logic programming approach to FD
constraint solving, which may be profitably applied to solve real-life problems.
FD constraints are defined as functions and thus integrated naturally on FLP
languages. Due to its functional component, CFLP(FD) provides better tools,
when compared to CLP(FD), for a productive declarative programming. Due
to the use of constraints, the expressivity and capabilities of this approach are
clearly superior to those of both the functional and purely CP approaches.

We have described a formal language for CFLP(FD) and shown, by example,
the benefits of integrating FLP and FD. For the execution mechanism of the
language, we have seamlessly integrated constraint solving into a sophisticated,
state-of-the-art execution mechanism for lazy narrowing. Our implementation,
TOY(FD), translates CFLP(FD)-programs into Prolog-programs in a system
equipped with a constraint solver. TOY(FD) provides a reasonably-complete set
of FD constraints (including an acceptable number of practical options for la-
beling) and is fairly efficient as, in general, it is around two and five times faster
than another CFLP(FD) implementation to come and also behaves closely to
that of SICStus that means that the wrapping of SICStus by TOYdoes not
increase significantly the computation time. The exception is in the solving of
linear equations on which it is about three and five times slower. The reason
seems to be in the process previous to the FD solver invocation that trans-
forms the expressions in head normal form. This process produces an overhead
when expressions (such as those for linear equations) involve a high number of
arguments and sub-expressions.
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We have also discussed briefly the advantages of CFLP(FD)wrt. CLP(FD).
One of them is that CFLP(FD) enables to solve all the CLP(FD) applications
as well as another problems closer to the functional setting. Moreover, the inte-
gration of FD constraints into the FLP paradigm provides extra advantages not
existing in CLP(FD) such as types, higher-order computations, partial applica-
tions on constraints, functional notation and lazy evaluation among others.

In addition, we claim that our approach can be extended to other kind of
interesting constraint systems, such as non-linear real constraints, constraints
over sets, or Boolean constraints, to name a few.
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