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Une solution au probl�eme de consensusfond�ee sur les quorumsR�esum�e : Cet article traite du probl�eme de consensus dans les syst�emes r�epartis (n �etant le nombrede processus et f le nombre maximum de d�efaillances possibles) munis de suspecteurs de d�efaillancesde Chandra et Toueg. Il propose un même protocole pour deux classes de suspecteurs de d�efaillances :la classe S (dans ce cas f � n� 1) et la classe 3S (dans ce cas f < n=2).La simplicit�e du protocole alli�ee �a sa dimension g�en�erique permet de mieux comprendre les fonde-ments algorithmiques des protocoles de consensus utilisant des suspecteurs de d�efaillances.Mots cl�es : Consensus, quorum, propri�et�e d'exactitude perp�etuelle/in�eluctable, suspecteur ded�efaillances, syst�eme r�eparti asynchrone.



A Quorum-Based Approach to Solve Consensus 31 IntroductionThe Consensus problem is now recognized as being one of the most important problems to solvewhen one has to design or to implement reliable applications on top of an unreliable asynchronousdistributed system. Informally, the Consensus problem is de�ned in the following way. Each processproposes a value, and all non-crashed processes have to agree on a common value which has to be oneof the proposed values. The Consensus problem is actually a fundamental problem. This is becausethe most important practical agreement problems (e.g., Atomic Broadcast, Atomic Multicast, WeakAtomic Commitment) can be reduced to it (see, for example, [2], [5] and [6] for each of the previousproblems, respectively). The Consensus problem can be seen as their \greatest common denominator".Solving the Consensus problem in an asynchronous distributed system where processes can crashis far from being a trivial task. More precisely, it has been shown by Fischer, Lynch and Paterson [4]that there is no deterministic solution to the Consensus problem in those systems as soon as processes(even only one) may crash. The intuition that underlies this impossibility result lies in the inherentdi�culty of safely distinguishing a crashed process from a \slow" process, or from a process with whichcommunications are \very slow". This result has challenged and motivated researchers to �nd a set ofminimal properties that, when satis�ed by the runs of a distributed system, allows to solve Consensusdespite process crashes.The major advance to circumvent the previous impossibility result is due to Chandra and Touegwho have introduced [2] (and studied with Hadzilacos [3]) the Unreliable Failure Detector concept.A failure detector can be seen as a set of modules, each associated with a process. The failure de-tector module attached to a process provides it with a list of processes it suspects to have crashed.A failure detector module can make mistakes by not suspecting a crashed process or by erroneouslysuspecting a correct process. In their seminal paper [2] Chandra and Toueg have introduced severalclasses of failure detectors. A class is de�ned by a Completeness property and an Accuracy property.A completeness property is on the actual detection of crashes. The aim of an accuracy property is torestrict erroneous suspicions. Moreover an accuracy property is Perpetual if it has to be permanentlysatis�ed. It is Eventual if it is allowed to be permanently satis�ed only after some time.In this paper, we are interested in solving the Consensus problem in asynchronous distributedsystems equipped with a failure detector of the class S or with a failure detector of the class 3S.Both classes are characterized by the same completeness property, namely, \Eventually, every crashedprocess is suspected by every correct process". They are also characterized by the same basic accuracyproperty, namely, \There is a correct process that is never suspected". But these two classes di�erin the way (modality) their failure detectors satisfy this basic accuracy property. More precisely, thefailure detectors of S perpetually satisfy the basic accuracy property, while the failure detectors of 3Sare allowed to satisfy it only eventually.Several Consensus protocols based on such failure detectors have been designed. Chandra andToueg have proposed a Consensus protocol that works with any failure detector of the class S [2].This protocol tolerates any number of process crashes. Several authors have proposed Consensusprotocols based on failure detectors of the class 3S: Chandra and Toueg [2], Schiper [9] and Hur�nand Raynal [8]. All these 3S-based Consensus protocols require a majority of correct processes. Ithas been shown that this requirement is necessary [2]. So, these protocols are optimal with respect tothe number of crashes they tolerate. Moreover, when we consider the classes of failure detectors thatallow to solve the Consensus problem, it has ben shown that 3S is the weakest one [3].S-based Consensus protocols and 3S-based Consensus protocols are usually considered as de�ningtwo distinct families of failure detector-based Consensus protocols. This is motivated by (1) the factthat one family assumes perpetual accuracy while the other assumes only eventual accuracy, and (2)the fact that the protocols of each family (and even protocols of a same family) are based on di�erentPI n�1254



4 A. Mostefaoui & M. Raynalalgorithmic principles. In this paper, we present a generic failure detector-based Consensus proto-col which has several interesting characteristics. The most important one is of course its \generic"dimension: it works with any failure detector of the class S (provided f < n) or with any failuredetector of the class 3S (provided f < n=2) (where n and f denote the total number of processes andthe maximum number of processes that may crash, respectively). This protocol is based on a singlealgorithmic principle, whatever is the class of the underlying failure detector. Such a generic approachfor solving the Consensus problem is new (to our knowledge). It has several advantages. It favors abetter understanding of the basic algorithmic structures and principles that are needed to solve theConsensus problem with the help of a failure detector. It also provides a better insight into the \perpe-tual/eventual" attribute of the accuracy property, when using unreliable failure detectors to solve theConsensus problem. (So, it allows to provide a single proof, where the use of this attribute is perfectlyidenti�ed.) Moreover, the algorithmic unity of the protocol is not obtained to the detriment of its e�-ciency. Last but not least, the design simplicity of the protocol is also one of its noteworthy properties.The paper is composed of seven sections. Section 2 presents the distributed system model and thefailure detector concept. Section 3 de�nes the Consensus problem. The next two sections are devotedto the generic protocol: it is presented in Section 4 and proved in Section 5. Section 6 discusses theprotocol and compares it with previous failure detector-based Consensus protocols. Finally Section 7concludes the paper.2 Asynchronous Distributed System ModelThe system model is patterned after the one described in [2, 4]. A formal introduction to failuredetectors is provided in [2, 3].2.1 Asynchronous Distributed System with Process Crash FailuresWe consider a system consisting of a �nite set � of n > 1 processes, namely, � = fp1; p2; : : : ; png.A process can fail by crashing, i.e., by prematurely halting. It behaves correctly (i.e., according toits speci�cation) until it (possibly) crashes. By de�nition, a correct process is a process that doesnot crash. Let f denote the maximum number of processes that can crash (f � n � 1). Processescommunicate and synchronize by sending and receiving messages through channels. Every pair ofprocesses is connected by a channel. Channels are not required to be fifo, they may also duplicatemessages. They are only assumed to be reliable in the following sense: they do not create, alter orlose messages. This means that a message sent by a process pi to a process pj is assumed to beeventually received by pj , if pj is correct1. The multiplicity of processes and the message-passingcommunication make the system distributed. There is no assumption about the relative speed ofprocesses or the message transfer delays. This absence of timing assumptions makes the distributedsystem asynchronous.2.2 Unreliable Failure DetectorsInformally, a failure detector consists of a set of modules, each one attached to a process: the moduleattached to pi maintains a set (named suspectedi) of processes it currently suspects to have crashed.Any failure detector module is inherently unreliable: it can make mistakes by not suspecting a crashedprocess or by erroneously suspecting a correct one. Moreover, suspicions are not necessarily stable: aprocess pj can be added to or removed from a set suspectedi according to whether pi's failure detector1The \no message loss" assumption is required to ensure the Termination property of the protocol. The \no creationand no alteration" assumptions are required to ensure its Validity and Agreement properties (see Sections 3 and 4).Irisa



A Quorum-Based Approach to Solve Consensus 5module currently suspects pj or not. As in papers devoted to failure detectors, we say \process pisuspects process pj" at some time, if at that time we have pj 2 suspectedi.As indicated in the introduction, a failure detector class is formally de�ned by two abstract pro-perties, namely a Completeness property and an Accuracy property. In this paper, we consider thefollowing completeness property [2]:� Strong Completeness: Eventually, every process that crashes is permanently suspected by everycorrect process.Among the accuracy properties de�ned by Chandra and Toueg [2] we consider here the two follo-wing ones:� Perpetual Weak Accuracy: Some correct process is never suspected.� Eventual Weak Accuracy: There is a time after which some correct process is never suspected bycorrect processes.Combined with the completeness property, these accuracy properties de�ne the following twoclasses of failure detectors [2]:� S: The class of Strong failure detectors. This class contains all the failure detectors that satisfythe strong completeness property and the perpetual weak accuracy property.� 3S: The class of Eventually Strong failure detectors. This class contains all the failure detectorsthat satisfy the strong completeness property and the eventual weak accuracy property.Clearly, S � 3S. Moreover, it is important to note that any failure detector that belongs to S or to3S can make an arbitrary number of mistakes.3 The Consensus Problem3.1 De�nitionIn the Consensus problem, every correct process pi proposes a value vi and all correct processes haveto decide on some value v, in relation to the set of proposed values. More precisely, the Consensusproblem is de�ned by the following three properties [2, 4]:� Termination: Every correct process eventually decides on some value.� Validity: If a process decides v, then v was proposed by some process.� Agreement: No two correct processes decide di�erently.The agreement property applies only to correct processes. So, it is possible that a process decides ona distinct value just before crashing. Uniform Consensus prevents such a possibility. It has the sameTermination and Validity properties plus the following agreement property:� Uniform Agreement: No two processes (correct or not) decide di�erently.In the following we are interested in the Uniform Consensus problem.
PI n�1254



6 A. Mostefaoui & M. Raynal3.2 Solving Consensus with Unreliable Failure DetectorsThe following important results are associated with the Consensus problem when one has to solve itin an asynchronous distributed system, prone to process crash failures, equipped with an unreliablefailure detector.� In any distributed system equipped with a failure detector of the class S, the Consensus problemcan be solved whatever the number of crashes is [2].� In any distributed system equipped with a failure detector of the class 3S, at least a majorityof processes has to be correct (i.e., f < n=2) for the Consensus problem to be solvable [2].� When we consider the classes of failure detectors that allow to solve the Consensus problem, 3Sis the weakest one [3]. This means that, as far as failure detection is concerned, the propertiesde�ned by 3S constitute the borderline beyond which the Consensus problem can not be solved2.� Any protocol solving the Consensus problem using an unreliable failure detector of the class Sor 3S, solves also the Uniform Consensus problem [6].4 The General Consensus Protocol4.1 Underlying PrinciplesThe algorithmic principles that underly the protocol are relatively simple. The protocol shares someof them with other Consensus protocols [2, 8, 9]. Each process pi manages a local variable esti whichcontains its current estimate of the decision value. Initially, esti is set to vi, the value proposed bypi. Processes proceed in consecutive asynchronous rounds. Each round r (initially, for each processpi, ri = 0) is managed by a predetermined process pc (e.g., c can be de�ned according to the roundrobin order). So, the protocol uses the well-known rotating coordinator paradigm3.Description of a round A round (r) is basically made of two phases (communication steps).First phase of a round. The current round coordinator pc sends its current estimate (estc) to allprocesses. This phase terminates, for each process pi, when pi has received an estimate from pc orwhen it suspects pc. In addition to esti, pi manages a local variable est from ci that contains eitherthe value it has received from pc, or the default value ?. So, est from ci = ? means that pi hassuspected pc, and est from ci 6= ? means that est from ci = estc. If we assumed that all non-crashed processes or none of them have received pc's estimate and they all have the same perceptionof crashes, then they would get the same value in their est from ci local variables. Consequently,they could all \synchronously" either decide (when est from ci 6= ?) or proceed to the next round(when est from ci = ?).Second phase of a round. Unfortunately, due to asynchrony and erroneous failure suspicions, someprocesses pj can have est from cj = estc, while other processes pk can have est from ck = ? at theend of the �rst phase. Actually, the aim of the �rst phase was to ensure that 8 pi: est from ci = estcor ?. The aim of the second phase is to ensure that the Agreement property will never be violated.This prevention is done in the following way: if a process pi decides v = estc during r and if a processpj progresses to r + 1, then pj does it with estj = v. This is implemented by the second phase that2The \weakest class" proof is actually on the class 3W of failure detectors [3]. But, it has been shown that 3W and3S, that di�er in the statement of their completeness property, are actually equivalent: the protocol that transformsany failure detector of the class 3W in a failure detector of the class 3S is based on a simple gossiping mechanism [2].3Due to the completeness property of the underlying failure detector, this paradigm can be used without compromisingthe protocol termination. More precisely, the completeness property can be exploited by a process to not inde�nitelywait for a message from a crashed coordinator. Irisa



A Quorum-Based Approach to Solve Consensus 7requires each process pi to broadcast the value of its est from ci local variable. A process pi �nishesthe second phase when it has received est from c values from \enough" processes. The meaning of\enough" is captured by a set Qi, dynamically de�ned during each round. Let reci be the set ofest from c values received by pi from the processes of Qi. We have: reci = f?g or fvg or fv;?g(where v is the estimate of the current coordinator). Let pj be another process (with its Qj and recj).If Qi \Qj 6= ;, then there is a process px 2 Qi \Qj that has broadcast est from cx and both pi andpj have received it. It follows that reci and recj are related in the following way:reci = fvg ) (8 pj : (recj = fvg) _ (recj = fv;?g))reci = f?g ) (8 pj : (recj = f?g) _ (recj = fv;?g))reci = fv;?g ) (8 pj : (recj = fvg) _ (recj = f?g) _ (recj = fv;?g))The behavior of pi is then determined by the content of reci:� When reci = fvg, pi knows that all non-crashed processes also know v. So, pi is allowed todecide on v provided that all processes that do not decide consider v as their current estimate.� When reci = f?g, pi knows that any set recj includes ?. In that case, no process pj is allowedto decide and pi proceeds to the next round.� When reci = fv;?g, according to the previous items, pi updates its current estimate (esti) tov to achieve the Agreement property. Note that if a process pj decides during this round, anyprocess pi that proceeds to the next round, does it with esti = v.De�nition of the Qi set As indicated previously, the de�nition of the Qi sets has to ensure thatthe predicate Qi \Qj 6= ; holds for every pair (pi; pj). The way this condition is realized depends onthe class to which the underlying failure detector belongs.Let us �rst consider the case where the failure detector belongs to the class S. In that case, thereis a correct process that is never suspected. Let px be this process. If Qi contains px, then pi willobtain the value of est from cx. If follows that if (8 pi) Qi is such that � = Qi [ suspectedi, then,8 (pi; pj), we have px 2 Qi \Qj .Let us now consider the case where the failure detector belongs to the class 3S. In that case,f < n=2 and there is a time after which some correct process is no longer suspected. As we do notknow the time from which a correct process is no longer suspected, we can only rely on the majority ofcorrect processes assumption. So, by taking (8 pi) Qi equal to a majority set, it follows that, 8 (pi; pj),9px such that, px 2 Qi \Qj.Note that in both cases, Qi is not statically de�ned. In each round, its actual value depends onmessage receptions and additionally, in the case of S, on process suspicions.On the quorum-based approach The previous principles actually de�ne a quorum-based ap-proach. As usual, (1) each quorum must be live: it must include only non-crashed processes (thisensures processes will not block forever during a round). Furthermore, (2) each quorum must be safe:it must have a non-empty intersection with any other quorum (this ensures the agreement propertycannot be violated). As indicated in the previous paragraph, the quorum safety requirement is gua-ranteed by the \perpetual" modality of the accuracy property (for S), and by the majority of correctprocesses assumption (for 3S).Other combinations of eventual weak accuracy (to guarantee eventual termination) and live andsafe (possibly non-majority) quorums would work4. Bringing a quorum-based formulation to the fore4As an example, let us consider quorums de�ned from a pn � pn grid (with n = q2). This would allow the protocolto progress despite n� (2 � pn� 1) crashes or erroneous suspicions in the most favorable case. Of course, in the worstcase, the use of such quorums could block the protocol in presence of only pn crashes or erroneous suspicions. Detailson quorum de�nition can be found in [1].PI n�1254



8 A. Mostefaoui & M. Raynalis conceptually interesting. Indeed, the protocol presented in the next section works for any failuredetector satisfying strong completeness, eventual weak accuracy and the \quorum" conditions.4.2 The ProtocolThe protocol is described in Figure 1. A process pi starts a Consensus execution by invokingConsensus(vi). It terminates it when it executes the statement return which provides it with thedecided value (lines 12 and 16).It is possible that distinct processes do not decide during the same round. To prevent a processfrom blocking forever (i.e., waiting for a value from a process that has already decided), a processthat decides, uses a reliable broadcast [7] to disseminate its decision value (similarly as protocolsdescribed in [2, 8, 9]). To this end the Consensus function is made of two tasks, namely, T1 and T2.T1 implements the previous discussion. Line 12 and T2 implement the reliable broadcast.Function Consensus(vi)cobegin(1) task T1: ri  0; esti  vi; % vi 6= ? %(2) while true do(3) c (ri mod n) + 1; est from ci  ?; ri  ri + 1; % round r = ri %(4) case (i = c) then est from ci  esti(5) (i 6= c) then wait ((est(ri; v) is received from pc)_(c 2 suspectedi));(6) if (est(ri; v) has been received) then est from ci  v(7) endcase; % est from ci = estc or ? %(8) 8j do send est(ri; est from ci) to pj enddo;(9) wait until (8pj 2 Qi: est(ri; est from c) has been received from pj);% Qi has to be a live and safe quorum %% For S: Qi is such that Qi [ suspectedi = � %% For 3S: Qi is such that jQij = d(n+ 1)=2e %(10) let reci = fest from c j est(ri; est from c) is received at line 5 or 9g;% est from c = ? or v with v = estc %% reci = f?g or fvg or fv;?g %(11) case (reci = f?g) then skip(12) (reci = fvg) then 8j 6= i do send decide(v) to pj enddo; return(v)(13) (reci = fv;?g) then esti  v(14) endcase(15) enddo(16) task T2: upon reception of decide(v):8j 6= i do send decide(v) to pj enddo; return(v)coend Figure 1: The Consensus Protocol
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A Quorum-Based Approach to Solve Consensus 95 Correctness Proof5.1 ValidityLemma 1 Let us consider a round r and a process pi. The round r is coordinated by pc. We have:(1) If pc participates in round r, then estc is equal to an initial value proposed by a process.(2) If pi computes reci during round r, then: reci = f?g or reci = fvg or reci = fv;?g, where v isequal to estc. Moreover, if v 2 reci, pc has participated in round r.(3) If pi starts round r + 1, it does it with an estimate (esti) whose value is equal to an initial value.Proof The proof is by induction on the round number.� Base case. Let us consider the round r = 1. It is coordinated by pc = p1, and estc is equalto vc (pc's proposal, line 1). The local variable est from cj of any process pj that (during thisround) executes line 8, is equal either to estc (if pj has received an estimate from pc -line 4- orif pj = pc -line 6-) or to ? (if pj has suspected pc, line 5). So, if pj executes line 8, it broadcastseither the value of estc (= vc) or ?. It follows that any pi that computes reci during the �rstround, can only receive vc or ? at line 9. Consequently, we have: reci = f?g or reci = fvcg orreci = fvc;?g.Now, let us �rst note that, initially, esti = vi (line 1). Due to lines 11-13, if pi starts r + 1, itdoes it either with the value of esti left unchanged (line 11) or with esti = vc (line 13). So, thelemma is true for r = 1.� Assume the lemma is true until r, r � 1. This means that if pc (the round r + 1 coordinator)participates in r + 1, then we had (at the end of r) recc = f?g or recc = fvg or recc = fv;?g,where v is an initial value. Due to the induction assumption and to the case statement (lines11-14) executed by pc at the end of r, it follows that pc starts r+ 1 with estc equal to an initialvalue proposed by a process. Now, the situation is similar to the one of the base case, andconsequently, the same argument applies to the round r + 1 case, which proves the lemma.2Lemma 1Theorem 1 If a process pi decides v, then v was proposed by some process.Proof If a process decides at line 16, it decides the value decided by another process at line 12. Sowe only consider the case where a value that has been decided at line 12. When a process pi decides vat line 12, it decides on the value (6= ?) of the reci singleton. Due to the items (1) and (2) of Lemma1, v is an initial value of a process. 2Theorem 15.2 TerminationLemma 2 If no process decides during r0 � r, then all correct processes start r + 1.Proof The proof is by contradiction. Suppose that no process has decided during a round r0 � r,where r is the smallest round number in which a correct process pi blocks forever. So, pi is blockedat line 4 or at line 9.Let us �rst examine the case where pi blocks at line 4. Let pc be the round r coordinator. Ifpi = pc, it cannot block at line 4, as it does not execute this line. Moreover, in that case, it executesthe broadcast at line 8 or crashes. If pi 6= pc, then:- Either pi suspects pc. This is due to an erroneous suspicion or to the strong completeness propertyof the failure detector.PI n�1254



10 A. Mostefaoui & M. Raynal- Or pi never suspects pc. Due to the strong completeness property, this means that pc is correct. Fromthe previous observation, pc has broadcast its current estimate at line 8, and pi eventually receives it.It follows that pi cannot remain blocked at line 4.Let us now consider the case where pi blocks at line 9. For this line there are two cases to consider,according to the class of the underlying failure detector.� The failure detector belongs to S and f � n � 1. In that case, the set Qi of processes fromwhich pi is waiting for messages is such that Qi [ suspectedi = �. As, no correct process blocksforever at line 4, each of them executes a broadcast at line 8. It follows from these broadcastsand from the strong completeness property that, 8 pj , pi will receive a round r estimate from pjor will suspect it. Consequently, pi cannot block at line 9.� The failure detector belongs to the class 3S and f < n=2. In that case Qi is de�ned as the �rstmajority set of processes pj from which pi has received a est(r; est from c) message. As thereis a majority of correct processes, and as (due to the previous observation) they do not blockforever at line 4, they broadcast a round r estimate message (line 8). It follows that any correctprocess receives a message from a majority set of processes. Consequently, pi cannot block atline 9.Finally, let us note that, due to the item (2) of Lemma 1, a correct process pi terminates correctlythe execution of the case statement (lines 11-14). It follows that if pi does not decide, it proceeds tothe next round. A contradiction. 2Lemma 2Theorem 2 If a process pi is correct, then it decides.Proof If a (correct or not) process decides, then, due to the sending of decide messages at line 12or at line 14, any correct process will receive such a message and decide accordingly (line 14).So, suppose that no process decides. The proof is by contradiction. Due to the accuracy propertyof the underlying failure detector, there is a time t after which there is a correct process that is neversuspected. Note that t = 0 if the failure detector belongs to S, and t � 0 if it belongs to 3S (assumingthe protocol starts executing at time t = 0).Let px be the correct process that is never suspected after t. Moreover, let r be the �rst roundthat starts after t and that is coordinated by px. As by assumption no process decides, due to Lemma2, all the correct processes eventually start round r.The process px starts round r by broadcasting its current estimate value (estx), which, due toLemma 1, is equal to an initial value. Moreover, during r, px is not suspected. Consequently, allprocesses pi that participate in round r (this set includes the correct processes) receive estx at line 4,and adopt it as their est from ci value. If follows that no value di�erent from estx can be broadcastat line 8; consequently, estx is the only value that can be received at line 9. Hence, for any correctprocess pi, we have reci = festxg at line 10. It follows that any correct process executes line 12 anddecides accordingly. 2Theorem 2The following corollary follows from the proof of the previous theorem.Corollary 1 If the underlying failure detector belongs to the class S, the maximum number of roundsis n. Moreover, there is no bound on the round number when the underlying failure detector belongsto the class 3S. Irisa



A Quorum-Based Approach to Solve Consensus 115.3 Uniform AgreementLemma 3 If two processes pi and pj decide at line 12 during the same round, they decide the samevalue.Proof If both pi and pj decide during the same round r, at line 12, we had reci = fvg and recj = fv0gat line 10. Moreover, from item (2) of Lemma 1, we have v = v0 = estc (where estc is the valuebroadcast during r by its coordinator). 2Lemma 3Theorem 3 No two processes decide di�erently.Proof Let r be the �rst round during which a process pi decides. It decides at line 12. Let v be thevalue decided by pi. Let us assume another process decides v0 during a round r0 � r. If r0 = r, thendue to Lemma 3, we have v = v0. So, let us consider the situation where r0 > r. We show that theestimate values (estj) of all the processes pj that progress to r+1 are equal to v. This means that noother value can be decided in a future round5.Let us consider any process pk that terminates the round r. Let us �rst note that there is a processpx such that px 2 Qi \Qk. This follows from the following observation:- If the failure detector belongs to S, then by considering px, the correct process that is never suspected,we have px 2 Qi \Qk.- If the failure detector belongs to the class 3S, as Qi and Qk are majority sets, we have Qi\Qk 6= ;,and there is a px such that px 2 Qi \Qk.As pi has decided v at line 12 during r, we had during this round reci = fvg. This means that pihas received v from all the processes of Qi, and so from px. Thus, pk has also received v from px, andconsequently, reck = fvg or reck = fv;?g. It follows that if pk proceeds to the next round, it executesline 13. Consequently, for all processes pj that progress to r + 1, we have estj = v. This means that,from round r + 1, all estimate values are equal to v. As no value di�erent from v is present in thesystem, the only value that can be decided in a round > r is v. 2Theorem 36 Discussion6.1 Cost of the ProtocolTime complexity of a round As indicated in Corollary 1, the number of rounds of the protocolis bounded by n, when used with a failure detector of the class S. There is no upper bound when itis used with a failure detector of the class 3S. So, to analyze the time complexity of the protocol, weconsider the length of the sequence of messages (number of communication steps) exchanged duringa round. Moreover, as on one side we do not master the quality of service o�ered by failure detectors,but as on the other side, in practice failure detectors can be tuned to very seldom make mistakes, we dothis analysis considering the underlying failure detector behaves reliably. In such a context, the timecomplexity of a round is characterized by a pair of integers. Considering the most favorable scenariothat allows to decide during the current round, the �rst integer measures its number of communicationsteps. The second integer considers the case where a decision can not be obtained during the currentround and measures the minimal number of communication steps required to progress to the nextround. Let us consider these scenarios.5When we consider the terminology used in 3S-based protocols, this means the value v is locked. This proof showsthat the \value locking" principle is not bound to the particular use of 3S. With S, a value is locked as soon as it hasbeen forwarded by the (�rst) correct process that is never suspected. With 3S, a value is locked as soon as it has beenforwarded by a majority of processes.PI n�1254



12 A. Mostefaoui & M. Raynal� The �rst scenario is when the current round coordinator is correct and is not suspected. Inthat case, 2 communication steps are required to decide. During the �rst step, the currentcoordinator broadcasts its value (line 8). During the second step, each process forwards thatvalue (line 8), waits for \enough" messages (line 9), and then decides (line 12). So, in the mostfavorable scenario that allows to decide during the current round, the round is made of twocommunication steps.� The second scenario is when the current round coordinator has crashed and is suspected by allprocesses. In that case, as processes correctly suspect the coordinator (line 5), they actuallyskip the �rst communication step. They directly exchange the ? value (line 8) and proceed tothe next round (line 11). So, in the most favorable scenario to proceed to the next round, theround is made of a single communication step.So, when the underlying failure detector behaves reliably, according to the previous discussion, thetime complexity of a round is characterized by the pair (2; 1) of communication steps.Message complexity of a round During each round, each process sends a message to each process(including itself). Hence, the message complexity of a round is upper bounded by n2.Message type and size There are two types of message: est and decide. A decide messagecarries only a proposed value. An est message carries a proposed value (or the default value ?) plusa round number. The size of the round number is bounded by log2(n) when the underlying failuredetector belongs to S (Corollary 1). It is not bounded in the other case.6.2 Related WorkSeveral failure detector-based Consensus protocols have been proposed in the literature. We comparehere the proposed protocol (in short MR) with the following protocols:- The S-based Consensus protocol proposed in [2] (in short, CTS).- The 3S-based Consensus protocol proposed in [2] (in short, CT3S).- The 3S-based Consensus protocol proposed in [9] (in short, SC3S).- The 3S-based Consensus protocol proposed in [8] (in short, HR3S).As MR, all these protocols proceed in consecutive asynchronous rounds. Moreover, all, but CTS ,are based on the rotating coordinator paradigm. It is important to note that each of these protocolshas been speci�cally designed for a special class of failure detectors (either S or 3S). Di�erently fromMR, none of them has a generic dimension. Let us also note that only MR and both CT protocolscope naturally with message duplications (i.e., they do not require additional statements to discardduplicate messages).Let V=f initial values proposed by processes g [ f?g. Table 1 compares CTS and MR (whenused with S). Both protocols use n2 messages during each round. A round is made of one or twocommunication steps in MR, and of a single communication step in CTS . The �rst column indicatesthe total number (k) of communication steps needed to reach a decision. For MR, this number dependson the parameter f . As indicated, CTS does not allow early decision, while MR does. The secondcolumn indicates the size of messages used by each protocol. As the current round number is carriedby messages of both protocols, it is not indicated.Table 2 compares MR (when used with 3S) with CT3S , SC3S and HR3S. In all cases, there is nobound on the round number and all protocols allow early decision. So, the �rst column compares thetime complexity of a round, according to the previous discussion (Section 6.1). The second column isdevoted to the message size. As each protocol uses messages of di�erent size, we only consider theirIrisa



A Quorum-Based Approach to Solve Consensus 13# communication steps Message sizeCTS k = n An array of n values 2 VMR with S 2 � k � 2(f + 1) A single value 2 VTable 1: Comparing MR with CTSbiggest messages. Moreover, as in all protocols, each of those messages carries its identity (sender id,round number) and an estimate value, the second column indicates only their additional �elds. Letus additionally note that, di�erently from SC3S and HR3S , MR does not require special statementsto prevent deadlock situations. Time complexity of a round Message sizeCT3S (3; 0) An integer timestampSC3S (2; 2) A boolean and a process idHR3S (2; 1) A booleanMR with 3S (2; 1) No additional valueTable 2: Comparing MR with CT3S, SC3S and HR3SFinally, let us note that MR provides a (factorized) proof, that is shorter and simpler to understandthan the proofs designed for the other protocols.7 ConclusionThis paper has presented a generic Consensus protocol that works with any failure detector belongingto the class S (provided that f � n� 1) or to the class 3S (provided that f < n=2).The proposed protocol is conceptually simple, allows early decision and uses messages shorter thanprevious solutions. It has been compared to other Consensus protocols designed for speci�c classes ofunreliable failure detectors. Among its advantages, the design simplicity of the proposed protocol hasallowed the design of a simple (and generic) proof. The most noteworthy of its properties lie in itsquorum-based approach and in its generic dimension.It is important to note that a Consensus protocol initially designed to work with a failure detectorof the class S will not work when S is replaced by 3S. Moreover, a Consensus protocol initiallydesigned to work with a failure detector of 3S requires f < n=2; if 3S is replaced by S, the protocolwill continue to work, but will still require f < n=2 which is not a necessary requirement in thatcontext. Actually, modifying a 3S-based Consensus protocol to work with S and f < n� 1 amountsto design a new protocol. The generic dimension of the proposed protocol prevents this drawback.In that sense, the proposed protocol is the �rst failure detector-based Consensus protocol that is notbound to a particular class of failure detectors.Last but not least, the design of this generic protocol is a result of our e�ort to understand therelation linking S on one side, and 3S plus the majority requirement on the other side, when solvingthe Consensus problem with unreliable failure detectors.AcknowledgmentsThe authors are grateful to Jean-Michel H�elary who made insightful comments on a �rst draft of thispaper.PI n�1254
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