
Solving Constrained Nonlinear Optimization Problems
with Particle Swarm Optimization

Xiaohui Hu1, 2 and Russell Eberhart2

1 Department of Biomedical Engineering

Purdue University, West Lafayette, IN, USA
hux@ecn.purdue.edu

2 Department of Electrical and Computer Engineering

Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA
reberhar@iupui.edu

ABSTRACT

This paper presents a Particle Swarm Optimization (PSO)
algorithm for constrained nonlinear optimization
problems. In PSO, the potential solutions, called particles,
are "flown" through the problem space by learning from
the current optimal particle and its own memory. In this
paper, preserving feasibility strategy is employed to deal
with constraints. PSO is started with a group of feasible
solutions and a feasibility function is used to check if the
new explored solutions satisfy all the constraints. All
particles keep only those feasible solutions in their
memory. Eleven test cases were tested and showed that
PSO is an efficient and general solution to solve most
nonlinear optimization problems with nonlinear inequality
constraints.

Keywords: Particle swarm, optimization technique,
nonlinear programming , evolutionary computation,
nonlinear programming, constrained optimization

1. INTRODUCTION

Particle swarm optimization (PSO) is an evolutionary
computation technique developed by Kennedy and
Eberhart [1, 2]. It uses common evolutionary computation
techniques: 1. It is initialized with a population of random
solutions, 2. It searchs for the optimum by updating
generations, and 3. Population evolution is based on the
previous generations. In PSO, the potential solutions,
called particles, are "flown" through the problem space by
following the current optimal particles.

The update of the particles is accomplished by the
following equations. Eq. (1) calculates a new velocity for
each particle (potential solution) based on its previous
velocity (idV), the particle's location at which the best
fitness so far has been achieved (idp , or pBest), and the
population global (or local neighborhood, in the local

version of the algorithm) location (gdp , gBest for global

version or ldp , lBest for local version) at which the best
fitness so far has been achieved. Eq. (2) updates each
particle's position in the solution hyperspace. The two
random numbers 1c and 2c are independently generated.
The use of the inertia weight w has provided improved
performance in a number of applications [3].

)2(
)1()(())(() 21

ididid

idgdidididid

Vxx
xpRandcxprandcVwV

+=
−××+−××+×=

Particle swarm optimization has been proven to be very
effective for many optimization problems. Much work has
been done in this area [4]. However, constrained
optimization problems are still a new area for particle
swarm optimization.

General constrained nonlinear optimization problems
(CNOPs) can be defined as follows [5].

Optimize N
nxxxxxf ℜ∈=)...,(),(21

rr

Where pjforxg j ,...,10)(=≤
r

 and

mqjforxh j ,...,10)(+==
r

They are made up of three basic components: a set of
variables, a fitness function to be optimized (minimize or
maximize) and a set of constraints that specify the
feasible spaces of the variables. The goal is to find the
values of the variables that optimize the fitness function
while satisfying the constraints.

2. BACKGROUND

Over recent decades, significant research has been done
on CNOPs. Due to the complexity and unpredictability of
nonlinear optimization, a general deterministic solution is
impossible. This provides an opportunity for evolutionary
algorithms. In recent years, several evolutionary
algorithms have been proposed for nonlinear optimization

problems. Michalewicz [6] provided an overview of these
algorithms. In this paper, several evolutionary
computation approaches were surveyed and a set of
constrained numerical optimization test cases was
provided.

The key point in the constrained optimization process is
to deal with the constraints. Many methods were proposed
for handling constraints. Koziel et al. [5] grouped them
into four categories: methods based on preserving
feasibility of solutions; methods based on penalty
functions; methods that make a clear distinction between
feasible and infeasible solutions; and other hybrid
methods.

For CNOPs, the original PSO method needs to be
modified to deal with constraints. Some ideas from the
above constraint-handling methods can be adopted. The
most straightforward one is the method based on
preserving feasibility of solutions. In order to find the
optimum in feasible space, each particle searches the
whole space but only keeps tracking feasible solutions.
And to accelerate this process, all the particles are
initialized as feasible solutions. Following is the
algorithm.

Figure 1: the Modified PSO Algorithm

There are two modifications compared to the original
PSO.

1. During initialization, all the particles are
repeatedly initialized until they satisfy all the
constraints.

2. When calculating the pBest and gBest values,
only those positions in feasible space are counted.

The above algorithm is the global version. For the local
version, there is only one difference in the algorithm;
instead of finding the gBest, each particle finds a
neighborhood best (lBest) to update the new velocity.

3. EXPERIMENTAL DESIGN

Twelve constrained numerical optimization problems
were tested in the experiment. They were proposed by
Michalewicz and Schoenauer [6]. These test cases include
objective functions of various types with different types
of constraints [5, 6]. For detailed function information
please refer to the references.

Table 1: 12 constrained nonlinear optimization test cases
 (From Koziel, et al, [5])

Func Dim. Type Relative size of

feasible space
LI NE NI

G1 13 Quadratic 0.0111% 9 0 0
G2 K Nonlinear 99.8474% 0 0 2
G3 K Polynomial < 0.0001% 0 1 0
G4 5 Quadratic 52.1230% 0 0 6
G5 4 Cubic < 0.0001% 2 3 0
G6 2 Cubic 0.0066% 0 0 2
G7 10 Quadratic 0.0003% 3 0 5
G8 2 Nonlinear 0.8250% 0 0 2
G9 7 Polynomial 0.5121% 0 0 4
G10 8 Linear 0.0010% 3 0 3
G11 2 Quadratic < 0.0000% 0 1 0
G12 3 Quadratic - - - -
* LI: Linear inequalities, NE: Nonlinear equations, NI: Nonlinear

inequalities

In Table 1, there are three test cases that deal with
nonlinear equation constraints: G3, G5 and G11. In the
PSO method, all randomly initialized solutions need to be
located in the feasible space. So for those equation
constraints, it is almost impossible to randomly generate a
group of feasible solutions. There are several techniques
to eliminate these equation constraints. One is to use
direct replacement to remove the constraints, as follows:

• Test case G3a,

Maximize)1()1()(3
1

2
1

1 ∑∏ ==
+ −⋅⋅+= n

i i
n

i i
n xxnxG r

Subject to the following constraints
1

1
2 ≤∑ =

n

i ix

And bounds 11,10 +≤≤≤≤ niforxi
• Test case G11a,

Minimize 22
1

2
1)1()(11 −+= xxxG

r

Bounds 1,11 =≤≤− iforxi

Test case G12 is a special case with 125 disjointed
spheres of feasible space embedded in the search space.

In order to compare to others’ results, two types of
experiments were performed for each test case:
Experiments #1: 20 runs were executed. For each run the
maximum number of generations was set to T = 200.
Experiments #2: 20 runs were executed. For each run the
maximum number of generations was set to T = 500.

For each particle {
Do {

Initialize particle
} While particle is in the feasible space (i.e. it satisfies all the
constraints)

}

Do {

For each particle {
Calculate fitness value
If the fitness value is better than the best fitness value (pBest)
in history AND the particle is in the feasible space, set current
value as the new pBest

}
Choose the particle with the best fitness value of all the particles as
the gBest
For each particle {

Calculate particle velocity according equation (a)
Update particle position according equation (b)

}
} While maximum iterations or minimum error criteria is not attained

4. PARAMETER SELECTION

The population size of PSO is often between 10 and 40.
Carlisle [7] compared different population sizes, and
suggested 30 is a proper choice. Here, a population size
of 20 was used. The reason for a lower population size is
that it significantly lowers the computing time. This is
because during initilization, all the particles must be in the
feasible space. Randomly initialized particles are not
always in the feasible space. So initilization may take a
longer time if the population size is too large . However,
for some complex cases, a larger population size is
preferred.

In PSO, there are not many parameters that need to be
tuned. Only the following several parameters need to be
taken care of: maximum velocity MAXV , inertia weight w ,
cognition learning rate 1c and social learning rate 2c .
Parameters settings were used as before [8; 9]. The
inertia weight was [0.5 + (Rnd/2.0)]. The learning rates
were 1.49445. The maximum velocity MAXV was set to
the dynamic range of the particle.

5. RESULTS

The following tables summarize the results of eleven test
cases with nonlinear inequities constraints. All of the
problems are changed to minimum optimizations. Thus all
the optimum values showed here are minimum values.

First, it is important to note that PSO can successfully
find the optimum for all the cases, except for the test case
G5, which wasn’t solved due to the equation constraints.

Table 2: Summa ry of the PSO results on experiments #1
 (Global, Pop size 20, 200 iterations, 20 runs)
The test case G3 was run with k = 10 variables

Func. Optimum Worst Best Aver.

G1* -15 -14.9579 -14.9987 -14.9880
G3a -1.0 -0.99999 -1.0 -1.0
G4 -30665.5 -30665.4 -30665.5 -30665.5
G5 5126.4981 - - -
G6 -6961.8 -6821.1 -6943.5 -6899.5
G7** 24.306 31.9468 24.6269 26.6590
G8 -0.09583 -0.09583 -0.09583 -0.09583
G9 680.63 686.657 680.837 681.527
G10** 7049.33 8020.15 7219.25 7558.07
G11a 0.75 0.75000 0.75000 0.75000
G12 1.0 1.0 1.0 1.0

* Local PSO algorithm was used and population size was 50.
** Maximum iterations were changed to 2000.

Table 2 shows that for ten of the remaining eleven test
cases, including two modified cases, G3a and G11a, PSO
successfully found the optimum or near optimum in 200
iterations. Table 3 shows the results of the second
experiment. Compared to other results, this is much faster
than others have previously reported [5, 10].

Table 3: Summa ry of the PSO results on experiments #2

 (Global, Pop size 20, 500 iterations, 20 runs)
The test case G3 was run with k = 10 variables

Func. Optimum Worst Best Aver.
G1* -15 -15.0 -15.0 -15.0
G3a -1.0 -1.0 -1.0 -1.0
G4 -30665.5 -30665.5 -30665.5 -30665.5
G5 5126.4981 - - -
G6 -6961.8 -6956.8 -6961.7 -6960.7
G7** 24.306 31.1843 24.4420 26.7188
G8 -0.09583 -0.09583 -0.09583 -0.09583
G9 680.63 681.675 680.657 680.876
G10** 7049.33 8823.56 7131.01 7594.65
G11a 0.75 0.75000 0.75000 0.75000
G12 1.0 1.0 1.0 1.0

* Local PSO algorithm was used and population size was 50.
** Maximum iterations were changed to 5000.

Besides its speed, PSO also found better results than those
reported. Table 4 is a line-by-line comparison of the best
test results from 20 runs. It shows that PSO got better or
similar results with a much fewer iterations.

Table 4: Comparison of the best results achieved on ten test cases

Func. Optimum PSO 500* GA 20000**
G1 -15 -15.0 -14.7864
G3a -1.0 -1.0 -0.9997
G4 -30665.5 -30665.5 -30664.5
G5 5126.4981 - -
G6 -6961.8 -6961.7 -6952.1
G7 24.306 24.4420**** 24.620
G8 -0.095825 -0.0958250 -0.0958250
G9 680.63 680.657 680.91
G10 7049.33 7131.01**** 7147.9
G11a 0.75 0.75 0.75
G12 1.0 1.0 1.0***

* Results are from table 2, 500 iterations
** Results are from Koziel et al., [5], 20000 iterations is used.
*** For G12, GA uses 500 iterations.
**** Maximum iterations were changed to 5000.

The global PSO algorithm was used except for test case
G1. In the G1 case, the global PSO algorithm was
sometimes trapped into a local minimum. This problem
can be solved by using the local version of PSO algorithm.
The population size was also changed to 50. PSO then
found the global optimum without exception. For the test
cases G7 and G10, a higher maximum iteration number
was used. Maximum iterations were changed to 2000 and
5000 respectively. PSO also still got better results than
those reported, and in a shorter time [5].

Test case G2 is the only case for which PSO did not
locate the optimum area with the above settings. Different
population size and maximum iteration numbers and local
version of PSO algorithm were tried. The local PSO
algorithm with a larger population size successfully found
the global optimum. The results are shown in Table 5.

Table 5: Results under different settings for Test case G2
(Optimum value -0.8936)

Result Pop

size
Local/
global

Max
iterations Worst Best Aver

5000 -0.3586 -0.7130 -0.5486
10000 -0.3459 -0.7473 -0.5668

20

Global

 20000 -0.2904 -0.7292 -0.5430
10000 -0.3458 -0.7808 -0.5236 Global
20000 -0.4269 -0.7704 -0.5792
10000 -0.6316 -0.8033 -0.7521
20000 -0.6437 -0.8036 -0.7643

50

Local

 50000 -0.7778 -0.8036 -0.7957
5000 -0.7138 -0.8027 -0.7660
20000 -0.7935 -0.8036 -0.8023

200

Local

 50000 -0.8023 -0.8036 -0.8035
5000 -0.7550 -0.8028 -0.7871
20000 -0.8005 -0.8036 -0.8034

500

Local

 50000 -0.8036 -0.8036 -0.8036

6. DISCUSSION

It is known that different constraint-handling techniques
provide different quality results for different CNOP cases.
From the above results, we see that the PSO algorithm is
consistent in locating the area of the global optimum in all
CNOP cases. Due to the random origin of evolutionary
algorithms, it is difficult to deal with the equation
constraints. It is almost impossible to find a group of
initial solutions in the feasible space. This also applies to
those problems with extremely small feasible space.

Compared with other methods, PSO has the following
advantages:
1. The algorithm is simple, there are not many

parameters to be adjusted.
2. The algorithm is powerful, PSO is much faster for

above benchmark functions, and the above results
also show that it can deal with many kinds of
optimization problems with constraints.

3. There is no predefined limit to the objective and
constraints; it does not need to preprocess the
objective and the constraints.

Two versions of PSO can be used in real problems. The
local PSO algorithm is preferred for more accurate results
while the global version is little bit faster. Higher iteration
number and higher population size can be tried if the
result is not satisfactory.

This paper presented a particle swarm optimization
algorithm for constrained optimization. It demonstrated
that PSO is an efficient and general method to solve most
constrained parameter optimization problems. This paper
represents only the first step in the investigation of
solving constrained parameter optimization problems
using particle swarm optimization. To be useful in
practical applications, the ability of particle swarms to
solve more complex constrained optimization problems
will need to be proven.

REFERENCES

 [1] Eberhart, R. C. and Kennedy, J. "A new

optimizer using particle swarm theory",
Proceedings of the Sixth International
Symposium on Micro Machine and Human
Science. Nagoya, Japan, pp. 39-43, 1995.

 [2] Kennedy, J. and Eberhart, R. C. "Particle swarm
optimization", Proceedings of IEEE International
Conference on Neural Networks. Piscataway, NJ,
IEEE service center. pp. 1942-1948, 1995.

 [3] Shi, Y. and Eberhart, R. C. "A modified particle
swarm optimizer", Proceedings of the IEEE
International Conference on Evolutionary
Computation. , Piscataway, NJ, IEEE Press. pp.
69-73, 1998.

 [4] Kennedy, J., Eberhart, R. C., and Shi, Y., Swarm
intelligence, San Francisco: Morgan Kaufmann
Publishers, 2001.

 [5] Koziel, S. and Michalewicz, Z., "Evolutionary
Algorithms, Homomorphous Mappings, and
Constrained Parameter Optimization",
Evolutionary Computation, vol. 7, no. 1. pp. 19-
44, 1999.

 [6] Michalewicz, Z. and Schoenauer, M.,
"Evolutionary Algorithms for Constrained
Parameter Optimization Problems," Evolutionary
Computation, vol. 4, no. 1, pp. 1-32, 1996.

 [7] Carlisle, A. and Dozier, G. "An off-the-shelf
PSO", Proceedings of the workshop on particle
swarm optimization. Indianapolis, IN. Purdue
School of Engineering and Technology, 2001.

 [8] Hu, X. and Eberhart, R. C. "Tracking dynamic
systems with PSO: where's the cheese?",
Proceedings of the workshop on particle swarm
optimization. Indianapolis, IN. Purdue School of
Engineering and Technology, 2001.

 [9] Eberhart, R. C. and Shi, Y. "Tracking and
optimizing dynamic systems with particle
swarms," Proceedings of the IEEE International
Congress on Evolutionary Computation 2001.
Seoul, Korea. pp. 94-97. 2001.

 [10] Ray, T. and Liew, K. M. "A Swarm with an
Effective Information Sharing Mechanism for
Unconstrained and Constrained Single Objective
Optimization Problem", Proceedings of IEEE
International Congress on Evolutionary
Computation, Seoul, Korea. pp.75-80, 2001.

