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ABSTRACT 

 
This paper presents a Particle Swarm Optimization (PSO) 
algorithm for constrained nonlinear optimization 
problems. In PSO,  the potential solutions, called particles, 
are "flown" through the problem space by learning from 
the current optimal particle and its own memory. In this 
paper, preserving feasibility strategy is employed to deal 
with constraints. PSO is started with a group of feasible 
solutions and a feasibility function is used to check if the 
new explored solutions satisfy all the constraints. All 
particles keep only those feasible solutions in their 
memory. Eleven test cases were tested and showed that 
PSO is an efficient and general solution to solve most 
nonlinear optimization problems with nonlinear inequality 
constraints.  
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nonlinear programming ,  evolutionary computation,
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1. INTRODUCTION 
 
Particle swarm optimization (PSO) is an evolutionary 
computation technique developed by Kennedy and 
Eberhart [1, 2]. It uses common evolutionary computation 
techniques: 1. It is initialized with a population of random 
solutions, 2. It searchs for the optimum by updating 
generations, and 3. Population evolution is based on the 
previous generations. In PSO,  the potential solutions, 
called particles, are "flown" through the problem space by 
following the current optimal particles. 
 
The update of the particles is accomplished by the 
following equations. Eq. (1) calculates a new velocity for 
each particle (potential solution) based on its previous 
velocity ( idV ), the particle's location at which the best 
fitness so far has been achieved ( idp , or pBest), and the 
population global (or local neighborhood, in the local 

version of the algorithm) location ( gdp , gBest for global 

version or ldp , lBest for local version) at which the best 
fitness so far has been achieved.  Eq. (2) updates each 
particle's position in the solution hyperspace.  The two 
random numbers 1c  and 2c are independently generated. 
The use of the inertia weight w  has provided improved 
performance in a number of applications [3].  
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Particle swarm optimization has been proven to be very 
effective for many optimization problems. Much work has 
been done in this area [4]. However, constrained 
optimization problems are still a new area for particle 
swarm optimization.  
 
General constrained nonlinear optimization problems 
(CNOPs) can be defined as follows [5]. 
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They are made up of three basic components: a set of 
variables, a fitness function to be optimized (minimize or 
maximize) and a set of constraints that specify the 
feasible spaces of the variables. The goal is to find the 
values of the variables that optimize the  fitness function 
while satisfying the constraints. 
 

2. BACKGROUND 
 
Over recent decades, significant research has been done 
on CNOPs. Due to the complexity and unpredictability of 
nonlinear optimization, a general deterministic solution is 
impossible. This provides an opportunity for evolutionary 
algorithms. In recent years, several evolutionary 
algorithms have been proposed for nonlinear optimization 



problems. Michalewicz [6] provided an overview of these 
algorithms. In this paper, several evolutionary 
computation approaches were surveyed and a set of 
constrained numerical optimization test cases was 
provided.  
 
The key point in the constrained optimization process is 
to deal with the constraints. Many methods were proposed 
for handling constraints. Koziel et al. [5] grouped them 
into four categories: methods based on preserving 
feasibility of solutions; methods based on penalty 
functions; methods that make a clear distinction between 
feasible and infeasible solutions; and other hybrid 
methods.  
 
For CNOPs, the original PSO method needs to be 
modified to deal with constraints. Some ideas from the 
above constraint-handling methods can be adopted. The 
most straightforward one is the method based on 
preserving feasibility of solutions. In order to find the 
optimum in feasible space, each particle searches the 
whole space but only keeps tracking feasible solutions. 
And to accelerate this process, all the particles are 
initialized as feasible solutions. Following is the 
algorithm. 

 
Figure 1: the Modified PSO Algorithm 

  
There are two modifications compared to the original 
PSO. 

1. During initialization, all the particles are 
repeatedly initialized until they satisfy all the 
constraints.  

2. When calculating the pBest and gBest values, 
only those positions in feasible space are counted.  

 
The above algorithm is the global version. For the local 
version, there is only one difference in the algorithm; 
instead of finding the gBest, each particle finds a 
neighborhood best (lBest) to update the new velocity.  

 
3. EXPERIMENTAL DESIGN 

 
Twelve constrained numerical optimization problems 
were tested in the experiment. They were proposed by 
Michalewicz and Schoenauer [6]. These test cases include 
objective functions of various types with different types 
of constraints [5, 6].  For detailed function information 
please refer to the references.  
 

Table 1: 12 constrained nonlinear optimization test cases  
 (From Koziel, et al, [5]) 

 
Func Dim. Type Relative size of 

feasible space 
LI NE NI 

G1 13 Quadratic 0.0111% 9 0 0 
G2 K Nonlinear 99.8474% 0 0 2 
G3 K Polynomial < 0.0001% 0 1 0 
G4 5 Quadratic 52.1230% 0 0 6 
G5 4 Cubic < 0.0001% 2 3 0 
G6 2 Cubic 0.0066% 0 0 2 
G7 10 Quadratic 0.0003% 3 0 5 
G8 2 Nonlinear 0.8250% 0 0 2 
G9 7 Polynomial 0.5121% 0 0 4 
G10 8 Linear 0.0010% 3 0 3 
G11 2 Quadratic < 0.0000% 0 1 0 
G12 3 Quadratic - - - - 
* LI: Linear inequalities, NE: Nonlinear equations, NI: Nonlinear 

inequalities 
 
In Table 1, there are three test cases that deal with 
nonlinear equation constraints: G3, G5 and G11. In the 
PSO method, all randomly initialized solutions need to be 
located in the feasible space. So for those equation 
constraints, it is almost impossible to randomly generate a 
group of feasible solutions. There are several techniques 
to eliminate these equation constraints. One is to use 
direct replacement to remove the constraints, as follows:  
 
• Test case G3a,  
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Test case G12 is a special case with 125 disjointed 
spheres of feasible space embedded in the search space.  
 
In order to compare to others’ results, two types of 
experiments were performed for each test case: 
Experiments #1: 20 runs were executed. For each run the 
maximum number of generations was set to T = 200. 
Experiments #2: 20 runs were executed. For each run the 
maximum number of generations was set to T = 500. 
 

For each particle { 
Do { 

Initialize particle  
} While particle is in the feasible space (i.e. it satisfies all the 
constraints) 

} 
 
Do { 

For each particle { 
Calculate fitness value 
If the fitness value is better than the best fitness value (pBest) 
in history AND the particle is in the feasible space, set current 
value as the new pBest 

} 
Choose the particle with the best fitness value of all the particles as 
the gBest 
For each particle { 

Calculate particle velocity according equation (a) 
Update particle position according equation (b) 

} 
} While maximum iterations or minimum error criteria is not attained 



4. PARAMETER SELECTION 
 
The population size of PSO is often between 10 and 40.  
Carlisle [7] compared different population sizes, and 
suggested 30 is a proper choice. Here, a  population size 
of 20 was used. The reason for a lower population size is 
that it significantly lowers the computing time. This is 
because during initilization, all the particles must be in the 
feasible space. Randomly initialized particles are not 
always in the feasible space. So initilization may take a 
longer time if the population size is too large . However, 
for some complex cases, a larger population size is 
preferred.  
 
In PSO, there are not many parameters that need to be 
tuned. Only the following several parameters need to be 
taken care of: maximum velocity MAXV , inertia weight w , 
cognition learning rate 1c and social learning rate 2c . 
Parameters settings were used as before [8; 9].  The 
inertia weight was [0.5 + (Rnd/2.0)]. The learning rates 
were 1.49445. The maximum velocity MAXV  was set to 
the dynamic range of the particle.  
 

5. RESULTS 
 
The following tables summarize the results of eleven test 
cases with nonlinear inequities constraints. All of the 
problems are changed to minimum optimizations. Thus all 
the optimum values showed here are minimum values.  
 
First, it is important to note that PSO can successfully 
find the optimum for all the cases, except for the test case 
G5, which wasn’t solved due to the equation constraints.   
 

Table 2: Summa ry of  the PSO results on experiments #1 
 (Global, Pop size 20, 200 iterations, 20 runs) 
The test case G3 was run with k = 10 variables 

 
Func. Optimum Worst Best Aver. 

G1* -15 -14.9579 -14.9987 -14.9880 
G3a -1.0 -0.99999 -1.0 -1.0 
G4 -30665.5 -30665.4 -30665.5 -30665.5 
G5 5126.4981 - - - 
G6 -6961.8 -6821.1 -6943.5 -6899.5 
G7** 24.306 31.9468 24.6269 26.6590 
G8 -0.09583 -0.09583 -0.09583 -0.09583 
G9 680.63 686.657 680.837 681.527 
G10** 7049.33 8020.15 7219.25 7558.07 
G11a 0.75 0.75000 0.75000 0.75000 
G12 1.0 1.0 1.0 1.0 

*    Local PSO algorithm was used and population size was 50. 
** Maximum iterations were changed to 2000.  
 
Table 2 shows that for ten of the remaining eleven test 
cases, including two modified cases, G3a and G11a, PSO 
successfully found the optimum or near optimum in 200 
iterations. Table 3 shows the results of the second 
experiment. Compared to other results, this is much faster 
than others have previously reported [5, 10]. 

 
Table 3: Summa ry of the PSO results  on experiments #2 

 (Global, Pop size 20, 500 iterations, 20 runs) 
The test case G3 was run with k = 10 variables 

 
Func. Optimum Worst Best Aver. 
G1* -15 -15.0 -15.0 -15.0 
G3a -1.0 -1.0 -1.0 -1.0 
G4 -30665.5 -30665.5 -30665.5 -30665.5 
G5 5126.4981 - - - 
G6 -6961.8 -6956.8 -6961.7 -6960.7 
G7** 24.306 31.1843 24.4420 26.7188 
G8 -0.09583 -0.09583 -0.09583 -0.09583 
G9 680.63 681.675 680.657 680.876 
G10** 7049.33 8823.56 7131.01 7594.65 
G11a 0.75 0.75000 0.75000 0.75000 
G12 1.0 1.0 1.0 1.0 

*    Local PSO algorithm was used and population size was 50. 
** Maximum iterations were changed to 5000.  
  
Besides its speed, PSO also found better results than those 
reported. Table 4 is a line-by-line comparison of the best 
test results from 20 runs. It shows that PSO got better or 
similar results with a much fewer iterations.  
 

Table 4: Comparison of the best results achieved on ten test cases  
  

Func. Optimum PSO 500* GA 20000** 
G1 -15 -15.0 -14.7864 
G3a -1.0 -1.0 -0.9997 
G4 -30665.5 -30665.5 -30664.5 
G5 5126.4981 - - 
G6 -6961.8 -6961.7 -6952.1 
G7 24.306 24.4420**** 24.620 
G8 -0.095825 -0.0958250 -0.0958250 
G9 680.63 680.657 680.91 
G10 7049.33 7131.01**** 7147.9 
G11a 0.75 0.75 0.75 
G12 1.0 1.0 1.0*** 

*        Results are from table 2, 500 iterations  
**      Results are from Koziel et al., [5], 20000 iterations is used. 
***    For G12, GA uses  500 iterations. 
****  Maximum iterations were changed to 5000. 

 
The global PSO algorithm was used except for test case 
G1. In the G1 case, the global PSO algorithm was 
sometimes trapped into a local minimum. This problem 
can be solved by using the local version of PSO algorithm. 
The population size was also changed to 50.  PSO then 
found the global optimum without exception. For the test 
cases G7 and G10, a higher maximum iteration number 
was used. Maximum iterations were changed to 2000 and 
5000 respectively. PSO also still got better results than 
those reported, and in a shorter time [5].  
 
Test case G2 is the only case for which PSO did not 
locate the optimum area with the above settings. Different 
population size and maximum iteration numbers and local 
version of PSO algorithm were tried. The local PSO 
algorithm with a larger population size successfully found 
the global optimum. The results are shown in Table 5. 
 
 



Table 5: Results under different settings for Test case G2  
(Optimum value -0.8936) 

 
Result Pop 

size 
Local/ 
global 

Max 
iterations Worst Best Aver 

5000 -0.3586 -0.7130 -0.5486 
10000 -0.3459 -0.7473 -0.5668 

 
20 
 

 
Global 

 20000 -0.2904 -0.7292 -0.5430 
10000 -0.3458 -0.7808 -0.5236 Global 
20000 -0.4269 -0.7704 -0.5792 
10000 -0.6316 -0.8033 -0.7521 
20000 -0.6437 -0.8036 -0.7643 

 
 

50 
 
 

  
Local  

 50000 -0.7778 -0.8036 -0.7957 
5000 -0.7138 -0.8027 -0.7660 
20000 -0.7935 -0.8036 -0.8023 

 
200 

 

  
Local  

  50000 -0.8023 -0.8036 -0.8035 
5000 -0.7550 -0.8028 -0.7871 
20000 -0.8005 -0.8036 -0.8034 

 
500 

 

 
Local 

 50000 -0.8036 -0.8036 -0.8036 

 
6. DISCUSSION 

 
It is known that different constraint-handling techniques 
provide different quality results for different CNOP cases. 
From the above results, we see that the PSO algorithm is 
consistent in locating the area of the global optimum in all 
CNOP cases. Due to the random origin of evolutionary 
algorithms, it is difficult to deal with the equation 
constraints. It is almost impossible to find a group of 
initial solutions in the feasible space. This also applies to 
those problems with extremely small feasible space. 
 
Compared with other methods, PSO has the following 
advantages: 
1. The algorithm is simple, there are not many 

parameters to be adjusted.  
2. The algorithm is powerful, PSO is much faster for 

above benchmark functions, and the above results 
also show that it can deal with many kinds of 
optimization problems with constraints.  

3. There is no predefined limit to the objective and 
constraints; it does not need to preprocess the 
objective and the constraints.  

 
Two versions of PSO can be used in real problems. The 
local PSO algorithm is preferred for more accurate results 
while the global version is little bit faster. Higher iteration 
number and higher population size can be tried if the 
result is not satisfactory.  
 
This paper presented a particle swarm optimization 
algorithm for constrained optimization. It demonstrated 
that PSO is an efficient and general method to solve most 
constrained parameter optimization problems. This paper 
represents only the first step in the investigation of 
solving constrained parameter optimization problems 
using particle swarm optimization. To be useful in 
practical applications, the ability of particle swarms to 
solve more complex constrained optimization problems 
will need to be proven.   
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