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Abstract. PERMON makes use of theoretical results in quadratic programming algorithms
and domain decomposition methods. It is built on top of the PETSc framework for numerical
computations. This paper describes its fundamental packages and shows their applications.
We focus here on contact problems of mechanics decomposed by means of a FETI-type non-
overlapping domain decomposition method. These problems lead to inequality constrained
quadratic programming problems that can be solved by our PermonQP package.

1 Introduction

We shall present our new software called PERMON (Parallel, Efficient, Robust, Modular, Object-
oriented, Numerical) toolbox [17] and show its capabilities. PERMON extends PETSc [3] with
support for quadratic programming (QP) and non-overlapping domain decomposition methods
(DDM), namely of the FETI (Finite Element Tearing and Interconnecting) [13,12,5,24] type.

This paper presents the process of solving contact problems using PERMON (Section 3). We
consider three model problems: two scalar contact problems of two membranes (coercive and semi-
coercive) and a contact problem of a 3D linear elastic cube with an obstacle (Section 2). The
mesh is “teared” into subdomains and each of them is discretized separately and sequentially with
the FEM (Finite Element Method). This decomposition and discretization is implemented by the
PermonMembrane and PermonCube (Section 4) packages. The subdomain problems are then “inter-
connected” by means of FETI using PermonFLLOP (Section 5). Finally, the resulting QP problem
is solved by the PermonQP module (Section 6). It contains implementations of specific algorithms
for bound and equality constrained problems, particularly the SMALBE and MPRGP algorithms
(Sections 7 and 8).

2 Model contact problems

We consider three model problems depicted in Fig. 1. First two are scalar problems consisting of
two membranes in mutual contact at adjacent edges. The solution u(x, y) can be interpreted as
a vertical displacement of two membranes stretched by normalized horizontal forces and pressed
together by vertical forces with density f(x, y). The inequality constraints result from requiring
nonpenetration of the adjacent edges of the membranes, with the edge of the right membrane above
the edge of the left membrane and by pressing the left membrane down by the right one at the
contact points. The first problem, where the right membrane has its right edge fixed, is coercive
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Fig. 1: Model problems: coercive (1a, 1b) and semicoercive (1c, 1d) scalar contact problem of two
membranes, and elastic cube with a rigid obstacle (1e, 1f) – problem specification (left) and solution
(resulting displacements, right).



(Fig. 1a, 1b). The second problem is semicoercive since the right membrane is completely floating
(Fig. 1c, 1d).

As a model 3D linear elasticity contact problem, we consider an elastic cube with the bottom
face fixed, the top one loaded with a vertical surface force directed downwards, and the right one in
contact with a rigid obstacle (Fig. 1e, 1f). The loading force density is fz = 465 N/mm

2
, Young’s

modulus E = 2 · 105 MPa, Poisson’s ratio µ = 0.33.

3 Solution process

This paper presents the process of solving contact problems using the PERMON Toolbox (Fig. 2).
The body is decomposed in a non-overlapping way using the FETI methodology. FETI methods
represent non-overlapping DDMs. They can be divided into three parts: (1) meshing part, (2)
assembly part and (3) algebraic part.

Let us describe the first part. Mesh partitioning is performed first, then degrees of freedom
(DOFs) on submesh interfaces are uniquely numbered (we call the resulting numbering the “unde-
composed numbering”), DOFs on submesh interfaces are copied to each respective submesh, and
finally the DOFs are renumbered to restore global uniqueness (resulting in the “decomposed num-
bering”). The resulting submeshes are completely self-contained, i.e. there is no cell overlapping or
ghost-layer.

The second part, FEM assembly of algebraic objects, is performed completely separately for
each submesh using any existing (even sequential) FEM code. Stiffness matrix and load vector of
each submesh form a “local problem”

The third part is essentially a mathematical approach how to deal with the mesh decomposi-
tion described above so that a correct solution, continuous across submesh interfaces, is obtained.
Typically, only this final part is actually called a non-overlapping DDM. To “glue” the subdo-
mains together, the solver needs to know a mapping between the duplicated DOFs on neighbouring
submesh interfaces. This mapping results from the first part, and is simply a many-to-one map-
ping from the decomposed numbering to the undecomposed one provided the submesh interfaces
conform. This mapping is a minimal additional information needed in contrast to “parallel linear
system solvers” that just act on one distributed global stiffness matrix and load vector which come
from an “undecomposed” mesh.

The first and second parts can be covered by the PermonCube and PermonMembrane packages
(Section 4), while the third one is realized using the PermonFLLOP package (Section 5).

4 PermonMembrane and PermonCube

For rapid development and testing of our solvers, PermonMembrane and PermonCube packages [26]
were developed. They implement the first and second parts in a massively parallel way for simple
benchmarks generated in runtime. PermonCube is similar by focus to the software package Pamgen
[30,19]. Although it provides so far only a cubical mesh, the FEM part of the code does not rely
on this specific type of mesh, and works with that as if it were an unstructured mesh, simulating
decomposed FEM processing of real world problems. Extending the first part to real world meshes
is work in progress. Moreover, we strive to support widely available FEM libraries such as Elmer
[27].
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Fig. 2: PERMON life cycle.

The parallel mesh generation is controlled by two groups of parameters. In PermonCube, the
number of subdomains is managed by parameters X, Y , Z, and similarly the number of elements per
subdomain is given by x, y, z (both considered in the respective axis directions). In PermonMem-
brane, the situation is similar, only parameters Z and z are missing. The decomposition parameter
H and the discretization parameter h is given as H = L

X and h = H
x , respectively, where L denotes

the size of the whole domain.
Essential data, generated by PermonCube, PermonMembrane or any other FEM software, are

the subdomain stiffness matrices Ks and the subdomain right-hand side vectors fs, s = 1, . . . , NS

where NS denotes the total number of subdomains, NS = XY Z for PermonCube and NS = 2XY
for PermonMembrane. In the DDM context, an additional object, the previously described local-
to-global interface DOF mapping l2g, has to be created. These data are passed to PermonFLLOP,
described in the next section.

5 PermonFLLOP

Our PermonFLLOP package implements the algebraic part of non-overlapping DDMs of the FETI
type. We shall firstly briefly introduce the FETI-1 and Total-FETI (TFETI) methods.

FETI-1 [13,14,12,23] is a non-overlapping DDM [16]. Thus, it is based on decomposing the
original spatial domain into non-overlapping subdomains. They are “glued together” by Lagrange
multipliers which have to satisfy certain equality constraints, discussed later. The original FETI-
1 method assumes that the boundary subdomains inherit Dirichlet conditions from the original
problem where the conditions are embedded into the linear system arising from FEM. This means
physically that subdomains, whose interfaces intersect the Dirichlet boundary, are fixed while others
are kept floating; in the linear algebra speech, the corresponding subdomain stiffness matrices are
non-singular and singular, respectively.

The basic idea of the TFETI method [5,7,32] is to keep all the subdomains floating and enforce
the Dirichlet boundary conditions by means of a constraint matrix and Lagrange multipliers, sim-
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ilarly to the gluing conditions along subdomain interfaces. This simplifies the implementation of
the stiffness matrix pseudoinverse. The key point is that kernels of subdomain stiffness matrices are
known a priori, have the same dimension and can be formed without any computation from the
mesh data. Furthermore, each local stiffness matrix can be regularized cheaply, and the inverse of
the resulting nonsingular matrix is a pseudoinverse of the original singular one [6,4].

Let us consider a partitioning of the global domain Ω into NS subdomains Ωs, s = 1, . . . , NS .
To each subdomain Ωs there corresponds the subdomain stiffness matrix Ks, the subdomain nodal
load vector fs, the matrix Rs whose columns span the nullspace (kernel) of Ks, and the constraint
matrix Bs. The latter consists of the equality and inequality parts, (Bs)T = [ (Bs

E)T (Bs
I)

T ]. The
equality part is (Bs

E)T = [ (Bs
g)

T (Bs
d)

T ], where Bs
g is a signed Boolean matrix defining connectivity

of the subdomain Ωs with all its neighbouring subdomains, and Bd is a Boolean matrix describing
Dirichlet boundary conditions (empty if the TFETI approach is not used). The inequality part Bs

I

(possibly empty) describes linearized non-penetration conditions [7] of the subdomain Ωs on the
corresponding part of the contact zone. The global constraint right-hand side vector c and vector
of Lagrange multipliers λ possess analogous structure.

The local objects Ks, fs, Rs and Bs constitute global objects

K = diag(K1, . . . , KNS ), BE = [B1
E , . . . ,B

NS

E ], B = [B1, . . . ,BNS ] =
[
BE

BI

]
,

R = diag(R1, . . . , RNS ), BI = [B1
I , . . . ,B

NS

I ], f = [(f1)T , . . . , (fNS )T ]T ,

where diag means a block-diagonal matrix consisting of the diagonal blocks between parentheses.
Note that columns of R also span the kernel of K. The global discrete form of the contact problem
can be written as the primal QP

min
1

2
uTKu− uT f s.t. BEu = cE and BIu ≤ cI (1)

with cE and cI denoting prescribed gaps for equality and inequality constraints. Let us apply the
convex QP duality theory and establish the following notation

F = BK†BT , G = RTBT , d = BK†f , e = RT f ,

where K† denotes a pseudoinverse of K, satisfying KK†K = K. We obtain the dual QP

min
1

2
λTFλ− λTd s.t. Gλ = e and λI ≥ o. (2)

After several manipulations [7] we get the final QP, suitable for numerical solution,

min
1

2
λTPFPλ− λTPd s.t. Gλ = o and λI ≥ −λ̃, (3)

where
P = I−Q and Q = GT (GGT )−1G

denote the orthogonal projectors onto the kernel of G and image of GT , respectively, and λ̃ denotes
an arbitrary vector satisfying the equality constraints of (2).

Let us show how PermonFLLOP is implemented from the user’s perspective. First of all, it
takes from the FEM software the subdomain stiffness matrices Ks and the subdomain load vectors
fs as sequential data for each subdomain Ωs, s = 1, . . . , NS . Note that we assume here each
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processor core owns only one subdomain, PermonFLLOP has nevertheless an experimental feature
of allowing more than one subdomain per core, i.e. an array of Ks and fs is passed per subdomain.
PermonFLLOP enriches the independent subdomain data with the global context so that K and f
are effectively created from Ks and fs, respectively.

The “gluing” signed Boolean matrix Bg is created based on the local-to-global mapping l2g [31].
The FEM software can skip the processing of the Dirichlet conditions and rather hand it over to
PermonFLLOP, resulting in greater flexibility. PermonFLLOP allows to enforce Dirichlet boundary
conditions either by the constraint matrix Bd (TFETI approach), or by a classical technique of
embedding them directly into K and f (FETI-1 approach). It is also possible to mix these two
approaches.

Furthermore, PermonFLLOP assembles the nullspace matrix R using one of the following op-
tions. The first option is to use a numerical approach [16], and the second one is to generate R
as rigid body modes from the mesh nodal coordinates [22]. The latter is typical for TFETI and is
considered here.

Currently, PermonFLLOP requires BI and cI from the caller. We strive to overcome this limi-
tation in the future so that the non-penetration conditions will be specified in a way more natural
for engineers. Listing 1.1 shows how a FEM software (such as PermonCube) typically calls Permon-
FLLOP to solve a decomposed contact problem.

Mat Ks,BIs; Vec fs,cI,coords; IS l2g,dbcis; MPI_Comm comm; FLLOP fllop;

/* Generate the data. */

/* Create FLLOP living in communicator comm. */
FllopCreate(comm, &fllop);

/* Set the subdomain stiffness matrix and load vector. */
FllopSetStiffnessMatrix(fllop, Ks);
FllopSetLoadVector(fllop, fs);

/* Set the local-to-global mapping for gluing. */
FllopSetLocalToGlobalMapping(fllop, l2g);

/* Specify the Dirichlet conditions in the local numbering
and tell FLLOP to enforce them by means of the B matrix. */

FllopAddDirichlet(fllop, dbcis, FETI_LOCAL, FETI_DBC_B);

/* Set vertex coordinates for rigid body modes. */
FllopSetCoordinates(fllop, coords);

/* Set the non-penetration inequality constraints. */
FllopSetIneq(fllop, BIs, cI);

FllopSolve(fllop);

Listing 1.1: PermonCube calls PermonFLLOP

In the FllopSolve function, PermonFLLOP passes the global primal data K, f , B and R to
PermonQP (Section 6), calls a specific series of QP transforms provided by PermonQP, resulting

in the bound and equality constrained QP (3), i.e. (5) with A = PFP, b = Pd, C = G, ` = −λ̃I ,
and x = λ, which is then solved with the QPSSolve function. Listing 1.2 presents a sketch of the
FllopSolve function.

Open source DDM codes are relatively rare. Let us mention the Multilevel BDDC solver library
(BDDCML) by J. Š́ıstek et al. [28,29], PETSc BDDC preconditioner implementation by S. Zampini
[1], and the HPDDM code by P. Jolivet and F. Nataf [21,20].
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/* FllopSolve() function */

/* Subdomain data. */
Mat Ks,BIs,Bgs,Bds,Rs; Vec fs;
/* Global data. */
Mat K, BI, Bg, Bd, R ; Vec f, cI, cd;
/* QP problem, QP solver. */
QP qp; QPS qps;

/* Create a QP data structure. */
QPCreate(comm, &qp);

/* Globalise the data. */
MatCreateBlockDiag(Ks, &K);
MatCreateBlockDiag(Rs, &R);
MatMerge(Bgs, &Bg); MatMerge(Bds, &Bd);
MatMerge(BIs, &BI); VecMerge(fs, &f);

/* Set the QP data. */
QPSetOperator(qp, K);
QPSetOperatorNullspace(qp, R);
QPSetRHS( qp, f);
QPAddEq( qp, Bg, NULL); // NULL means zero vector
QPAddEq( qp, Bd, cd);
QPSetIneq(qp, BI, cI);

/* Basic sequence of QP transforms
giving (T)FETI method.
QPTFetiPrepare() can be used
instead for convenience.
QP chain is created in backend. */

QPTScale(qp);
QPTDualize(qp);
QPTScale(qp);
QPTHomogenizeEq(qp);
QPTEnforceEqByProjector(qp);

/* Create a PermonQP solver. */
QPSCreate(comm, &qps);

/* Set the QP to be solved. */
QPSSetQP(qps, qp);

/* Solve, i.e. hand over to PermonQP.
The last QP in the chain is solved.

*/
QPSSolve(qps);

Listing 1.2: PermonFLLOP calls PermonQP

6 PermonQP

PermonQP [18] allows solving QPs with an SPS Hessian and any combination of linear equal-
ity and inequality constraints including unconstrained QP. It provides a basic framework for QP
solution (data structures, transformations, and supporting functions), a wrapper of PETSc KSP
linear solvers for solving unconstrained and equality-constrained QP, a variant of the augmented
Lagrangian method called SMALBE discussed later in Section 8, and several concrete solvers for
bound constrained minimization (PermonIneq) – here we consider the MPRGP algorithm (Section
7). Its programming interface (API) is designed to be easy-to-use, and at the same time efficient and
suitable for HPC. PermonQP is under preparation for publishing under the BSD 2-Clause license.

A QP transform derives a new QP from the given QP, so that a doubly linked list is generated
where each node is a QP. The solution process is divided into the following sequence of actions:

1. QP problem specification;
2. a chain of QP transforms generating a chain of QP problems where the last one is passed to

the solver;
3. automatic or manual choice of an appropriate QP solver;
4. the QP solver is called to solve the last QP in the chain;
5. a chain of reconstructions in the reverse order of QP transforms in order to get a solution of

the original QP.

7 MPRGP

MPRGP (Modified Proportioning and Reduced Gradient Projection) [15,8] is an efficient algorithm
for solution of convex QP with simple bounds

min
1

2
xTAx− bTx s.t. xI ≥ `, (4)
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where I denotes the index set corresponding to the inequality constrained entries of vector x, and
xI denotes the subvector of x given by the index set I. This approach was introduced in [11]. The
proportioning algorithm is combined with the gradient projections, a test to decide when to leave
the active set, and three types of steps to generate a sequence of iterates xk approximating the
solution:

1. a proportioning step – removes indices from the active set,
2. a conjugate gradient (CG) step – generates the next approximation in the active set if the

current approximation is proportional (i.e. meeting a special criterion related to chopped, free
and reduced free gradients, see [8]),

3. an expansion step – defined by the free gradient projection with a fixed steplength ᾱ, expands
the active set.

Instead of verifying the Karush-Kuhn-Tucker optimality conditions directly, the algorithm evaluates
the projected gradient gP , given componentwise by

gP
i =

{
gi for xi > li or i 6∈ I,
min (gi, 0) for xi = li and i ∈ I,

where xi and li is the i-th component of x and `, respectively, and g = Ax − b is the gradient of
the objective function. The algorithm stops, when ||gP || is sufficiently small. MPRGP has a known
rate of convergence given in terms of the spectral condition number of the Hessian, and may be
comparable to the cost of solution of the corresponding unconstrained QP [8].

8 SMALBE

SMALBE (Semi-Monotonic Augmented Lagrangian with Bound and Equality) [8] is a variant of
the inexact augmented Lagrangian algorithm, and can be viewed as an extension of the augmented
Lagrangian method. It can be used to solve a box and equality constrained QP

min
1

2
xTAx− bTx s.t. xI ≥ ` and Cx = o. (5)

Particularly, such QPs arise from applying the FETI methodology to contact problems. The SMALBE
algorithm is based on the outer loop refining the Lagrange multipliers µ related to the equality con-
straints. In each outer iteration, the inner loop solving an auxiliary minimization problem

min
x

L(x,µ, ρ) s.t. xI ≥ ` (6)

is performed, where L is the augmented Lagrangian defined as

L(x,µ, ρ) =
1

2
xTAx− bTx + µTCx +

ρ

2
||Cx||2.

Using just a different bracketing, this inner problem is a QP with the penalized Hessian and updated
right-hand side

min
x

1

2
xT (A + ρCTC)x− (b−CTµ)Tx s.t. xI ≥ `, (7)
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solvable by any solver for bound constrained QP such as MPRGP (Section 7). Here µ is an approx-
imation of the equality constraint Lagrange multipliers. The inner loop is stopped if ||gP || < ε and
||Cx|| < ε (the outer QP is already solved), or as early as when ||gP || < min{M ||Cx||, η}, where
M > 0 and η > 0 are algorithmic parameters.

The outer also updates the M parameter (SMALBE-M) or the penalty ρ (SMALBE-ρ) based
on the increase of the augmented Lagrangian L with respect to the equality constraint Lagrange
multiplier µ. SMALBE-M is preferred as it uses a fixed ρ and hence the Hessian and its spectrum is
not altered. M is divided by the update constant β > 1 if the increase of the augmented Lagrangian
with respect to µ is not sufficient. Compared to the basic penalty method, the algorithm is able to
find an approximation of µ meeting the given precision with no need for a large penalty, avoiding
ill-conditioning. Compared to the basic augmented Lagrangian method, the introduced adaptivity
weakens the effect of the proper selection of the penalty sequence and eliminates necessity of exact
solution of the inner problems. Optimality results for SMALBE were presented in [10,9,8,7].

9 Numerical experiments

We illustrate the numerical scalability of TFETI for contact problems combined with SMALBE
and MPRGP and weak parallel scalability of their PERMON implementations on the three model
problems introduced in Section 2. The descriptions of the problems and their respective solutions
have been shown in Fig. 1.

Regarding the first two problems, the coercive and semicoercive membrane problems, each of two
membranes was first partitioned into subdomains with the sidelengths H ∈ {1/8, 1/11, 1/16, 1/24,
1/32}. The square subdomains were then discretized by the regular grids with the discretization
parameter h = H/128, so that the ratio H/h was kept constant. The third problem, the elastic
cube, was decomposed into subdomains with sidelengths H ∈ {1/5, 1/6, 1/8, 1/10, 1/13} and
discretized with h = 1/20 and again with constant H/h. In all cases, the splitting was chosen in
order to get the numbers of subdomains near the powers of two. The corresponding total numbers
of subdomains as well as the primal, dual and kernel dimensions can be found in Tables 1 and 2.
Let us remind that the dual dimension is the total number of gluing, Dirichlet and non-penetration
interface constraints, i.e. number of rows of the matrix B.

1/H # subdomains # DOFs dual dim – coercive dual dim – semicoercive kernel dim

8 128 2,130,048 32,160 31,142 128
11 242 4,027,122 61,377 59,978 242
16 512 8,520,192 130,872 128,838 512
24 1,152 19,170,432 296,144 293,094 1,152
32 2,048 34,080,768 527,976 523,910 2,048

Table 1: Dimension settings for coercive and semicoercive problem with h = H/128.

We used the following parameters setting for the SMALBE and MPRGP algorithms:

M0 = 100||PFP||, ρ = 2||PFP||, η = 0.1||Pd|| and β = 10,
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1/H # subdomains # DOFs dual dim kernel dim

5 125 3,472,875 469,392 750
6 216 6,001,128 832,194 1,296
8 512 14,224,896 2,035,950 3,072

10 1,000 27,783,000 4,051,602 6,000
13 2,197 61,039,251 9,055,080 13,182

Table 2: Dimension settings for cube in 3D with h = H/24.

where the matrix norms were approximated using the power method. These values are default in
PermonQP and they have been chosen based on many comparative numerical tests. Needless to
say, the optimal values for particular problems may slightly differ.

The stopping criterion was

||gP || ≤ ε||Pd|| ∧ ||Gλ|| ≤ ε||Pd||, ε = 10−4.

The stiffness matrix pseudoinverse K† was implemented using the Cholesky factorization from the
MUMPS library [2]. The approach from [6] was used where the original matrix K is regularized
and the inverse of the regularized matrix is a pseudoinverse of K. The coarse problem (action
of (GGT )−1) was solved by the LU factorization from the SuperLU DIST library [25] in sub-

communicators of size N
1/2
S and N

2/3
S for PermonMembrane and PermonCube, respectively, each

subcommunicator solving the same coarse problem redundantly.

The performance results are shown in Fig. 3. All the graphs illustrate the numerical and weak
parallel scalability up to more than 2000 cores. The numerical scalability of the used TFETI +
SMALBE + MPRGP approach has been theoretically proven in [8]. It says that keeping the ratio
H/h constant, the number of Hessian multiplications is bound by a constant for any problem size.
The numerical scalability graphs (with circle marks) reveal the PermonQP implementation fulfils
this fairly well. Parallel scalability graphs (with box marks) show the total solution times, i.e. time
spent in PermonFLLOP and PermonQP including necessary pre- and post-processing steps before
and after the iterative phase. Each parallel scalability graph follows the shape of the respective
numerical scalability graph up to ca. 1000 subdomains. Then some worse scalable parts of the
implementation start to spoil the parallel scalability. They include e.g. the implementation of the
B actions and the matrix-matrix product G ∗GT . Improving these parts is work-in-progress.

The results were obtained at the ARCHER, the latest UK National Supercomputing Service. It
is based around a Cray XC30 supercomputer with 4920 nodes, 118,080 cores and 1.56 Petaflops of
theoretical peak performance (4544 standard nodes with 64 GB memory (12 groups, 109,056 cores)
and 376 nodes with 128 GB memory (1 group, 9,024 cores)). All compute nodes are connected
together in the Dragonfly topology by the Aries interconnect. Each compute node contains two 2.7
GHz, 12-core E5-2697 v2 (Ivy Bridge) series processors. Within the node, the two processors are
connected by two QuickPath Interconnect (QPI) links. The memory is arranged in a non-uniform
access (NUMA) form: each 12-core processor is a single NUMA region with local memory of 32 GB
(or 64 GB for high-memory nodes).
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Fig. 3: Graphs of numerical and weak parallel scalability for the coercive (3a) and semicoercive (3b)
membrane problems, and the cube problem (3c) .



10 Conclusion

We have presented our new PERMON toolbox and its packages. PermonMembrane and Permon-
Cube were used to generate the model contact problems, PermonFLLOP generated extra data
related to FETI, and PermonQP solved the resulting QP problem. We have briefly reviewed the
TFETI method, and MPRGP and SMALBE QP algorithms. Finally, benchmarks of two membranes
and of the elastic cube were presented to demonstrate efficiency of the PERMON tools for solution
of variational inequalities.
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29. Soused́ık, B., Š́ıstek, J., Mandel, J.: Adaptive-multilevel bddc and its parallel implementation. Com-

puting 95(12), 1087–1119 (2013)
30. The Trilinos Project: PAMGEN web pages (2015), http://trilinos.org/packages/pamgen/

https://www.researchgate.net/publication/227701161_A_Method_of_Finite_Element_Tearing_and_Interconnecting_and_Its_Parallel_Solution_Algorithm?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/230649857_Domain_decomposition_methods_for_distributed_computing?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/227701161_A_Method_of_Finite_Element_Tearing_and_Interconnecting_and_Its_Parallel_Solution_Algorithm?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/262153427_Scalable_Domain_Decomposition_Preconditioners_for_Heterogeneous_Elliptic_Problems?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/226697431_Minimizing_Quadratic_Functions_Subject_to_Bound_Constraints_with_the_Rate_of_Convergence_and_Finite_Termination?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/285248084_Optimal_convergence_properties_of_the_FETI_domain_decomposition_method?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/29635866_Non-overlapping_domain_decomposition_methods_in_structural_dynamics?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/262153427_Scalable_Domain_Decomposition_Preconditioners_for_Heterogeneous_Elliptic_Problems?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/243775647_An_Unconventional_Domain_Decomposition_Method_for_an_Efficient_Parallel_Solution_of_Large-Scale_Finite_Element_Systems?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/220179944_Theoretically_Supported_Scalable_FETI_for_Numerical_Solution_of_Variational_Inequalities?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/255203044_Pamgen_a_library_for_parallel_generation_of_simple_finite_element_meshes?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/273313062_Massively_parallel_solution_of_elastoplasticity_problems_with_tens_of_millions_of_unknowns_using_PermonCube_and_FLLOP_packages?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
http://acts.nersc.gov/superlu/
https://www.researchgate.net/publication/2345834_A_New_Method_For_Large-Scale_Box_Constrained_Convex_Quadratic_Minimization_Problems?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/262153427_Scalable_Domain_Decomposition_Preconditioners_for_Heterogeneous_Elliptic_Problems?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/287258191_Total_FETI_domain_decomposition_method_and_its_massively_parallel_implementation?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/243775647_An_Unconventional_Domain_Decomposition_Method_for_an_Efficient_Parallel_Solution_of_Large-Scale_Finite_Element_Systems?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/223779792_FETI_based_algorithms_for_contact_problems_Scalability_large_displacements_and_3D_Coulomb_friction?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/287258191_Total_FETI_domain_decomposition_method_and_its_massively_parallel_implementation?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/243775647_An_Unconventional_Domain_Decomposition_Method_for_an_Efficient_Parallel_Solution_of_Large-Scale_Finite_Element_Systems?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/223779792_FETI_based_algorithms_for_contact_problems_Scalability_large_displacements_and_3D_Coulomb_friction?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
http://users.math.cas.cz/~sistek/software/bddcml.html
https://www.researchgate.net/publication/255203044_Pamgen_a_library_for_parallel_generation_of_simple_finite_element_meshes?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
http://www.csc.fi/english/pages/elmer/
http://industry.it4i.cz/en/products/permon/
http://trilinos.org/packages/pamgen/
https://www.researchgate.net/publication/273313062_Massively_parallel_solution_of_elastoplasticity_problems_with_tens_of_millions_of_unknowns_using_PermonCube_and_FLLOP_packages?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/273313062_Massively_parallel_solution_of_elastoplasticity_problems_with_tens_of_millions_of_unknowns_using_PermonCube_and_FLLOP_packages?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
http://industry.it4i.cz/en/products/permon/qp/
https://www.researchgate.net/publication/255203044_Pamgen_a_library_for_parallel_generation_of_simple_finite_element_meshes?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/29635866_Non-overlapping_domain_decomposition_methods_in_structural_dynamics?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
http://industry.it4i.cz/en/products/permon/qp/
https://www.researchgate.net/publication/226697431_Minimizing_Quadratic_Functions_Subject_to_Bound_Constraints_with_the_Rate_of_Convergence_and_Finite_Termination?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/230649857_Domain_decomposition_methods_for_distributed_computing?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/220179944_Theoretically_Supported_Scalable_FETI_for_Numerical_Solution_of_Variational_Inequalities?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/285248084_Optimal_convergence_properties_of_the_FETI_domain_decomposition_method?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/287258191_Total_FETI_domain_decomposition_method_and_its_massively_parallel_implementation?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/287258191_Total_FETI_domain_decomposition_method_and_its_massively_parallel_implementation?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
http://users.math.cas.cz/~sistek/software/bddcml.html
https://github.com/hpddm/hpddm
https://www.researchgate.net/publication/2345834_A_New_Method_For_Large-Scale_Box_Constrained_Convex_Quadratic_Minimization_Problems?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/262153427_Scalable_Domain_Decomposition_Preconditioners_for_Heterogeneous_Elliptic_Problems?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
https://www.researchgate.net/publication/223779792_FETI_based_algorithms_for_contact_problems_Scalability_large_displacements_and_3D_Coulomb_friction?el=1_x_8&enrichId=rgreq-f69e85e406083776acf9b0799f3946e6-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc2MTI4NjtBUzo0OTgyNzc2MTI4ODgwNjVAMTQ5NTgxMDA0ODI3Mw==
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