
Solving Covering Problems Using LPR-Based Lower Bounds

Stan Liao (stanliao@synopsys.com) Srinivas Devadas (devadas@mit.edu)
Advanced Technology Group, Synopsys, Inc. Department of EECS, MIT

Abstract—Unate and binate covering problems are a special class of
general integer linear programming problems with which several prob-
lems in logic synthesis, such as two-level logic minimization and tech-
nology mapping, are formulated. Previous branch-and-bound methods
for exactly solving these problems use lower-bounding techniques based
on finding maximal independent sets. In this paper we examine lower-
bounding techniques based on linear programming relaxation (LPR) for
the binate covering problem. We show that a combination of traditional
reductions (essentiality and dominance) and incremental computation of
LPR-based lower bounds can exactly solve difficult covering problems
orders of magnitude faster than traditional methods.

Keywords—Covering problems, integer linear programming

I. INTRODUCTION

Covering problems (unate and binate) are important combinatorial
optimization problems with which several problems in logic synthesis
(such as two-level logic minimization [12], state minimization [6],
exact encoding), and in code generation and optimization (e.g., [7]),
are formulated. These problems are obviously NP-hard, and given
their wide applicability it is of great practical interest to obtain ap-
proximate solutions of good quality in a tolerable amount of time.
However, to evaluate the quality of heuristic solutions we will need to
either obtain tight lower bounds or solve the problems exactly. Since
covering problems are a special class of general integer linear pro-
gramming (ILP) problems, previous research has focused on solving
these problems using specialized techniques such as essentiality, row
dominance, column dominance, Gimpel’s reduction, and component
reduction. Yet it is precisely for this reason that techniques for solving
ILP have been largely ignored. In particular, the basic lower-bounding
procedure for ILP, namely the linear-programming relaxation (LPR),
has not been strategically applied to covering problems.

In this paper we show that LPR-based techniques yield lower
bounds of quality superior to those obtained by previous methods,
thereby allowing for termination of unsuccessful branches at earlier
stages of the search tree. Although computing the optimal solution
of linear programs corresponding to the covering problems is more
costly than independent-set based techniques, experimental results
demonstrate that the improved quality of lower bounds in fact makes
it possible to prove optimality more quickly in some cases or obtains
better solutions (when given a specific amount of time) in others.
Further, incremental computation of LPR-based bounds can result
in faster search. We also show that simply formulating a covering
problem as a general integer linear programming problem sometimes
cause difficulties for the ILP solver which may not discover covering-
problem-specific reductions (i.e., essentiality, dominance, etc.).

In Section II we review previous methods for solving these prob-
lems. We then introduce our LPR-based lower bound computation
in Section III, and present our solver BCU. In Section IV we present
our experimental results and compare them with results obtained by
previous methods as well as with results achieved by a commercial
ILP solver.

II. COVERING PROBLEMS

We refer the reader to [3] for the statement of the unate-covering
(also called set-covering) and binate-covering problems. We briefly
review previous work and summarize the contribution of this paper.

A. Previous Work
In VLSI-CAD research, approaches to solving covering problems

have largely followed the pioneering work of Quine and McCluskey on

Permission to make digital/hard copy of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 97, Anaheim, California c 1997 ACM 0-89791-920-3/97/06 ..$3.50

logic minimization [8] [10] [11]. The basic idea is to reduce the size of
the problem via essentiality, column dominance, and row dominance.
Gimpel devised another form of reduction which is applicable when
two columns have the same cost and the rows they cover show certain
properties [5]. Reductions are applied successively until no more are
possible, at which point a cyclic core is said to have resulted. The
problem is then solved exactly with a branch-and-boundprocedure, or
heuristically with a no-backtrack, limited-backtrack, or limited-time
version thereof. At each step, a column is selected (based on some
heuristic measure) that is likely to minimize the cost and maximize
the number of rows covered, and reductions are again applied. Ad-
ditional techniques such as partitioning the problem into independent
subproblems [12] can be readily incorporated. Recently, Coudert and
Madre have discovered a new pruning condition (reduction), which is
based on the limit lower-bound [4]. Refinement of their techniques
by caching the solutions of subproblems led to further improvements
[3]. It is noteworthy that, in this line of works, the lower-bounding
procedure in the branch-and-bound is primarily based on maximal in-
dependent set. Although he has presented a theoretically better lower
bound for unate problems, Coudert remarks that this lower bound
does not always yield desired results. In addition, the effective limit
lower-bound pruning make use of the independent set only, not the
theoretically better one.

The set-covering problem has also been of interest to the op-
erations research community. Beasley has presented a number of
heuristics as well as lower-bounding techniques [2]. His lower-
bounding techniques are based on solving the dual problem of the
linear-programming relaxation (LPR), using a dual ascent procedure
consisting of refining the dual solution while keeping it feasible,which,
by the weak duality theorem, always provides a lower bound for the
primal problem. However, his examples are apparently randomly gen-
erated with nonuniform cost functions, and his heuristics (dual ascent,
Lagrangian, and subgradient) are aimed at problems with nonuniform
costs. In practice, many problems in CAD have uniform or near-
uniform cost functions. As we will show in Section III, in the case of
uniform cost, the solution obtained by a dual ascent procedure is just
an independent set. In addition, the binate-covering problem is not
considered and reductions are not systematically applied.

Barth [1] solves a slightly more general problem than covering
using an implicit enumeration approach. In his work he showed that
his method equals or outperforms a commercial ILP solver for certain
classes of problems. However, upon closer examination, the compli-
cated mathematical treatment he has presented is simply an extension
of the well-known reductions based on essentiality and dominance,
and would provide no additional benefit for the covering problems we
consider. In fact, we experimented with his program, and for covering
problems it is actually much slower than Coudert’s.

B. Our Contribution
The contribution of this paper is as follows. We first show that

lower bounds obtained by linear-programming relaxation are in theory
equal or superior to those obtained with maximal independent set
(MIS). (Experimental results confirm, indeed, that the LPR-based
lower bounds are almost always better.) However, using LPR bounds
in a naı̈ve fashion such as the method employed in commercial ILP
solvers does not result in uniformly better performance than MIS-
based solvers. We have developed efficient ways of incorporating
LPR bounds into a binate covering framework, and we show that for
many difficult examples we are able to obtain exact solutions 10–100�
faster, or a solution of lower cost if we could not complete in the time
limit given.

III. LPR-BASED LOWER BOUNDS

A. Covering Problem as ILP
A covering problem may be readily translated into an ILP as fol-

lows. We treat each variable xj as an integer variable in the ILP, and

r1 1 1
r2 1 1
r3 1 1 1
r4 1 1 1

Fig. 1. Rows r2 and r4 form an independent set since they do not intersect. In
fact, they are the maximal independent set of this covering matrix.

substitute (1 � xj) for xj in each clause. Then, we write a clause yi as
yi � 1, and move the constants from the left hand side to the right.
For instance, the clause

x1 + x2 + x3 + x4

would become
x1 + x2 + (1 � x3) + (1 � x4) � 1,

which is further turned into
x1 + x2 � x3 � x4 � �1.

Note that the right hand side of the inequality is 1 minus the number
of negative literals in the row. Let cj be the cost of setting xj to 1. The
ILP is therefore:

min
mX

j=1

cj xj, subject to:
mX

j=1

aij xj � 1 � pi, i = 1, ..., n (1)

xj 2 f0, 1g, j = 1, ..., m (2)
where aij is 1 if xj appears in the true form in row i and�1 if it appears
in the complement form, and pi is the number of negative literals in
row i.

The linear-programming relaxation (LPR) of an ILP is the linear
program obtained by disregarding the integrality constraints. For the
above ILP, the LPR is derived by simply replacing the 0-1 constraints
(Constraint (2)) with xj � 0. The dual of the LPR thus obtained is:

max
nX

i=1

(1 � pi) yi (3)

subject to:
nX

i=1

yi aij � cj, j = 1, ..., m (4)

yi � 0, i = 1, ..., n. (5)
B. Lower Bounding

The traditional approach to solving an integer linear program is
to first solve its LPR. If the optimal solution of the LPR consists of
integers, then we have an optimal solution for the original ILP as well.
Otherwise, we pick a variable (using various selection heuristics) and
partition the original problem into two subproblems (the branching
step). Suppose xj is the selected variable, and x�j was the value of xj

in the optimal LPR solution. The two subproblems are derived from
the original LPR by adding the constraints xj � dx�j e and xj � bx�j c.
We then proceed to solve one of these problems following the same
steps, eventually reaching an integer solution (provided the problem
is integer-feasible). We also attempt to solve the other problem. If
at any point in the process we determine that the lower bound of a
subproblem exceeds the objective value of the best (integer) solution
found so far, then that subproblem can be pruned.

It is readily apparent that, for an integer linear program, the optimal
value of the objective function for the corresponding linear program
without the integrality constraints gives a lower bound for the ILP,
because any feasible solution for the ILP is also a feasible solution
for the LPR. This lower bound is typically used in ILP solvers. Var-
ious techniques have been proposed to compute lower bounds. One
approach is called dual ascent, a greedy algorithm based on the weak
duality theorem [9]: the objective function value of a dual feasible
solution is less than or equal to that of any primal feasible solution.
Dual ascent was used as the first step for solving unate problems in
[2].

We now show that, for uniform-cost unate problems, dual ascent
yields dual feasible solutions that are equivalent to independent sets.
Recall that an independentset of rows in a covering problem is a subset
of rows of which no two rows are covered by the same column. For
instance, in the covering matrix shown in Figure 1, rows r2 and r4 form
an independent set. A solution for a unate problem must cover at least
the rows in an independent set, of which each row must be covered
by at least a distinct column. Thus, for a unicost unate problem, the
cardinality of an independent set gives a lower bound.

r1 1 1 1 1 1
r2 1 1 1 1 1
r3 1 1 1 1 1
r4 1 1 1 1 1 1
r5 1 1 1 1 1
r6 1 1 1 1 1

Fig. 2. An ill-conditioned covering matrix (from [3]). Assuming uniform
cost, the maximal independent set and dual ascent give a lower bound of 1,
whereas LPR gives a lower bound of 3.

r1 1 1
r2 1 1
r3 1 1

Fig. 3. The optimal values of the LPR is 1.5, but we can round it up and use 2
as the lower bound.

Theorem 1: For a unicost unate covering problem, an integral so-
lution to the dual problem of the LPR corresponds to an independent
set.

Proof: Let yi be the the dual variables associated with the LPR
of the covering problem. Then each yi must satisfy, for every j:

nX

i=1

yi aij � 1. (6)

Thus, every dual variable yi must be less than or equal to 1. Since dual
ascentworks with integral values only, yi is either 1 or 0. Furthermore,
if there is a column j is such that aij and ai0j are both 1, then yi and yi0

must not be both set to 1; otherwise, Constraint (6) would be violated.
Therefore, the rows for which the corresponding dual variables are
set to 1 do not intersect and hence form an independent set. This
shows that the quality of lower-bound estimates obtained by a dual
ascent procedure is equivalent to that obtained by independent-set-
based procedures.

Since many problems in our application domain have uniform or
near-uniform cost functions, the dual ascent procedure is unlikely
to provide better lower bounds. For covering problems with a wide-
varying cost function, a dual ascentprocedure may yield a better lower
bound than independent set, because, in dual ascent, rows for which
the dual variables are strictly positive may intersect. In any case,
both independent set and dual ascent provide dual feasible solutions,
the values of which are by definition less than or equal to that of a
dual optimal solution. Thus, we propose that the linear-programming
relaxation be solved with an LP-solver. Experimental results demon-
strate that the optimal value of the LPR is almost always greater than
the independent-set-based lower bound. Even though solving the
LPR requires much more effort than the aforementioned heuristics for
lower-bound estimation, we have found that it yields sufficiently tight
estimates that the amount of time saved with the reduction of search
space outweighs that expended by the additional effort.

To illustrate the superiority of LPR-based lower bounds, consider
the example from [3], shown in Figure 2. Since every row intersects
with every other row, the maximal independent set consists of one row
only. Assuming every column has a uniform cost of 1, independent-
set gives a lower bound of 1, as does dual ascent. However, the LPR
of this covering problem has an optimal value of 3, which is clearly a
tighter bound. Indeed, the optimal solution of the covering problem
itself is 3.

C. Observations
We have observed the following which allow us to improve the

efficiency of lower-bound computation:
1. It is clear that the ceiling of the optimal solution value of an

LPR may be used as the lower-bound. A simple example is shown
in Figure 3. The optimal value of the LPR is 1.5, but 2 is a valid
lower bound for the integral solutions. However, it is necessary to
be somewhat conservative in taking the ceiling in order to tolerate
for rounding errors in floating-point computation. In our experiments
we have observed that in some cases the optimal value of an LPR is
integral, but due to rounding errors the LP solver gives a slightly larger
value (on the order of 10�8) than the true optimal value. Taking the
ceiling of this value would then result in an incorrect lower bound. A

r1 1 1
r2 1 1
r3 1 1
r4 1 1
r5 1 1
r6 1 1

Fig. 4. This matrix can be decomposed into two, one consisting of rows
r1–r3, the other r4–r6. The optimal value of the LPR for the entire matrix
is 3. However, if we solve the LPRs of the two submatrices separately, we
obtain 4 as the lower bound.

tolerance of � = 0.005 (i.e., using dz � �e instead of dze) is sufficient
for all our benchmark problems.

2. If a covering matrix can be decomposed into independent sub-
problems, then we may solve the LPR of each subproblem indepen-
dently, and add the ceilings (with numerical tolerance) of the optimal
values to obtain a lower bound, instead of adding the optimal val-
ues first and then taking the ceiling. Consider the covering matrix
in Figure 4, which consists of two independent submatrices. If we
solve the LPR of the entire matrix, we obtain the optimal value of 3.
However, if we solve the LPRs of the two submatrices separately, each
has an optimal value of 1.5. We may first round up each, and obtain
a better lower bound of d1.5e + d1.5e = 4. An additional benefit of
decomposition is that the smaller LPRs can be solved more quickly.

3. Some linear programs are solved more quickly with the primal
simplex procedure, while others are amenable to the dual simplex
procedure. For this reason, most commercial solvers provide both
methods. We have observed experimentally that if the LPR of the
initial covering problem can be more quickly solved with the primal
simplex procedure (respectively, dual), then it is likely to be more
beneficial to use the primal (respectively, dual) procedure throughout
the branch-and-bound process.

4. When solving the LPR using the dual simplex method, which
maintains a dual feasible solution, we may terminate the search for
the optimal solution to the LPR at any point and still obtain a valid
lower bound (by the weak duality theorem). Thus, if we can quickly
estimate an upper bound on the dual problem and decide that the
current dual solution is good enough, we need not carry out the dual
simplex procedure to completion.

One common case where this observation finds application is the
following. Suppose the best integral solution found so far in the
branch-and-bound process has a cost of b, which is an upper bound
for the dual problem. Then, as soon as the objective function value of
the dual solution reaches b�1 + �, we may terminate the dual simplex
procedure. If we do not have direct control over the LP solver, we
may change the optimization problem D into a feasibility problem D0.
That is, instead of optimizing for the dual objective (3), we check for
the feasibility of the following linear program D0:

max 0, subject to:
nX

i=1

yi aij � cj, j = 1, ..., m (7)

nX

i=1

(1 � pi) yi � b � 1 + � (8)

yi � 0, i = 1, ..., n. (9)

Note that the objective function of D has now become Constraint (8)
in D0, and the objective function of D0 is simply a constant since we
are interested in feasibility only. If D0 has a feasible solution, then the
optimal value of D must be greater than or equal to b � 1 + �. This
in turn means that the lower bound we set out to compute is at least
b, and since this lower bound equals or exceeds the cost of the current
best solution, we may terminate the present branch immediately. On
the other hand, if D0 does not have a feasible solution, then it is still
possible that the present branch contains a better solution; hence, the
search in this branch is continued. This method is particularly effective
when the last steps of the dual procedure would consist of very small
increments to the objective function value and these increments would
not cross integral boundaries.

5. Given the optimal solution of an LP problem X, a simplex-
based LP solver can very quickly find the optimal solution of another
problem that is incrementally different from X, provided the impact

of degeneracy is small. Thus in the branching step, when we select
or reject a column, we may set the corresponding variable to 1 or 0
and obtain a potentially better lower bound. However, if the selection
or rejection of a column results in a large reduction in the size of the
covering matrix, it is typically better to start the LPR afresh with the
reduced matrix. This is an important observation that significantly
affects the quality of results.

D. The Covering Procedure
Our solver, Binate Covering Ultra (BCU), consists of the following

steps:
[Initial] Initially, matrix reductions based on essentiality, dominance,
Gimpel’s technique, and decomposition into independent submatrices
are applied. The LPR of the covering matrix is generated, and both
the primal and dual procedures are applied and computation times
measured. The more efficient of the procedures chosen for lower-
bound estimation throughout the remainder of the branch-and-bound
process.
[Integral] If at any point the solution of the LPR is integral, then we
have a solution for the current branch; otherwise, continue with the
branching step (Branch below).
[Branch] Choose a column according to a heuristic measure derived
from the cost of the column, the number of rows it covers, and the
minimum cost of covering each of these rows. These criteria are
similar to [12]. Apply the reduction again. Estimate the lower bound
of the reduced matrix using LPR. This estimation of the lower bound
is done incrementally, unless the matrix has been reduced significantly
from the previous level of recursion. If the lower bound exceeds the
cost of the best solution found so far, prune this branch. Otherwise,
continue Branch.
[Other branch] Reject the column previously chosen and continue
the branch-and-bound process as in Branch. Pick the better solution
of the two branches.

IV. EXPERIMENTS AND RESULTS

We present two sets of results. The first set of results, summarized
in Table I, provides a comparison between the lower bounds obtained
using the maximal independentset (MIS) and LPR methods. The table
compares the first bound obtained by these methods, on the original
problem. As can be seen the LPR lower bounds are superior (larger) in
virtually every case. Note that even a slightly better bound can result
in exponentially better performance, due to the pruning of nodes in
the search tree. Of course, the bound has to be improved as variables
are set to particular values. We have found that, in general, if the LPR
bound is superior to the MIS bound (and it almost always is) for the
original problem, it remains superior through the branching search as
variables are set to particular values, up until the subproblems become
trivial.

We next provide comparisons between Scherzo [3], our solver
BCU, and a commercial LP/ILP solver widely recognized as being
one of the best (which we also used to compute our lower bounds).
These results are summarized in Table II. All three programs were
run on the same machine, on a 125MHz HyperSparc 20 with 128MB
of memory.

BCU significantly outperforms Scherzo on large examples such as
prom2, ex5 and apex7.b, as well as many others. BCU also outper-
forms the commercial solver in many cases, and significantly so in
some examples such as des.a, apex4.a, and apex7.b. For the example
alu4.b, which none of the three programs can prove optimality within
the allotted time, BCU discovers a better solution than either Scherzo
or the commercial solver.

In the cases where Scherzo is superior by a large factor, for ex-
ample, des.a and C880.b, the improved performance is not because
of better bounding, but because of two factors. Scherzo implements
caching strategies that “remember” previous subproblems and reuse
previously computed solutions, and different variable selection heuris-
tics can result in smaller branching trees. Caching strategies can be
implemented within the BCU framework as well, and are expected to
improve the efficiency of the solver.

The commercial solver performs better than Scherzo in many ex-
amples. The main reason why the commercial solver does better than
BCU in some of the examples is because the commercial solver has

access to core linear programming routines, which we do not currently
have. We elaborate on this in the next section.

V. SUMMARY AND FUTURE WORK

We have presentedan efficient approach to solving unate and binate
covering problems. Our approach is based on the estimation of lower
bounds using linear-programming relaxation. Although LPR has been
extensively used in solving integer linear programming problems, its
power has been largely overlooked in solving covering problems. Our
experimental results show that LPR indeed yields much better lower
bounds than previously widely used methods based on independent
sets. On the other hand, the traditional reduction techniques for cover-
ing problems are also necessary in order to exploit properties specific
to covering problems—instead of solving the covering problem as
just an ILP. Further, while LPR bounds can be expensive to compute,
they can be computed incrementally during the branching search to
increase efficiency. The combination of these techniques results in
many improvements: not only were we able to handle previously-
solved problems more efficiently, but also in some cases we were
able to finish on difficult problems that other solvers could not com-
plete, or to find a better solution in the same amount of time. We
conclude that, in light of the presented experimental results, future re-
search should focus on speeding up LPR-based lower bounding, and
use independent-set approaches only for pruning techniques such as
Coudert’s limit-lower bound [3].

In addition to lower bound computation,variable selection methods
have a significant impact on the efficiency of the solver. In BCU
we have used a single uniform variable selection heuristic for all
examples: nonintegralvariables were picked according to the criterion
described in the Branch step of Section III-D. Enhancing the variable
selection method may result in faster execution, and we are currently
investigating methods that incorporate information from the solution
of the LPR.

We have used a commercial LP solver as a “black box,” i.e., we
used it to solve the LPRs without taking advantage of information
available in intermediate steps. If we had access to information such
as degeneracy and a tight upper bound, and if we had control over the
progress of the solver, we might be able to speed up the lower-bound
estimation substantially. For instance, various pieces of information
gathered from intermediate steps may provide useful heuristic guid-
ance for determining when and how often to use LPR. We believe that
the tight integration of the branch-and-bound and the LPR procedure
is the key to further improvements.

ACKNOWLEDGEMENTS

The authors are grateful to Rick Rudell for providing his binate-
covering solver, in whose framework the algorithm described in this
paper was implemented; and to Olivier Coudert for providing the
benchmark results of his solver Scherzo. The authors also thank the
reviewers for their valuable suggestions. S. Devadas was supported
in part by NSF contract MIP-9612632.

REFERENCES

[1] P. Barth. A Davis-Putnam based enumeration algorithm for
linear pseudo-boolean optimization. Technical Report MPI-I-95-
2-003, Max-Planck-Institut für Informatik, January 1995. See
www.mpi-sb.mpg.de/guide/staff/barth/publications/reports.

[2] J. E. Beasley. An algorithm for set covering problem. European
Journal of Operational Research, 31:85–93, 1987.

[3] O. Coudert. On solving binate covering problems. In Proceed-
ings of ACM/IEEE Design Automation Conference, June 1996.

[4] O. Coudert and J.-C. Madre. New ideas for solving covering
problems. In Proceedings of ACM/IEEE Design Automation
Conference, pages 641–646, June 1995.

[5] J. F. Gimpel. A reduction technique for prime implicant tables.
IEEE Trans. on Elec. Comp., 14:535–541, June 1965.

[6] A. Grasselli and F. Luccio. A method for minimizing the num-
ber of internal states in incompletely specified machines. IEEE
Trans. on Elec. Comp., 14:350–359, June 1965.

[7] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. Instruction
selection using binate covering for code size minimization. In

Proceedings of 1996 International Conference on Computer-
Aided Design, pages 393–399, November 1996.

[8] E. L. McCluskey, Jr. Minimization of boolean functions. Bell
Sys. Tech. Journal, 35:1417–1444, April 1959.

[9] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial
Optimization. John Wiley & Sons, New York, 1988.

[10] W. V. O. Quine. A way to simplify truth functions. Am. Math.
Monthly, 62:627–631, 1955.

[11] W. V. O. Quine. On cores and prime implicants of truth functions.
Am. Math. Monthly, 66:755–760, 1959.

[12] R. L. Rudell. Logic Synthesis for VLSI Design. PhD thesis, UC
Berkeley, 1989. UCB/ERL M89/49.

Example Lower Bound
Name row � col sol MIS LPR
lin.rom 545 � 578 113 109 113
test1 271 � 481 110 90 94
foutL 152 � 427 364 333 364
m4L 392 � 621 1335 1260 1331
mlp4L 418 � 587 1316 1279 1314
max512L 419 � 514 1087 1039 1087
ocex1 328 � 567 69 62 68
ocex2 575 � 681 162 154 161
max1024 917 � 904 259 197 208
prom2 1525 � 1813 287 248 260
ex5 687 � 974 37 31 36
add4 883 � 858 31 27 31
5xp1.b 859 � 838 12 9 11
count.b 694 � 913 24 17 24
e64.a 461 � 492 80 65 80
sao2.b 779 � 695 25 24 25
jac3 1254 � 266 15 12 15
des.a 17920 � 12183 942 822 918
int13 2439 � 516 110 98 109
apex4.a 11912 � 8406 776 722 774
C880.b 1859 � 1460 63 54 62
int10 32362 � 1376 116 103 115
int14 3479 � 618 140 115 135
apex7.b 2353 � 2126 37 29 35
alu4.b 1838 � 1492 — 40 47

TABLE I
Characteristics of examples. The second column shows the sizes of examples.
The column sol gives the optimal solution of the covering problem, if known.
The columns MIS and LPR exhibit the first lower bound obtained by maximal

independent set and by linear programming relaxation, respectively.

Example Scherzo 96 BCU ILP solver
Name sol UB CPU UB CPU UB CPU
lin.rom 113 113 1.3 113 27.7 113 1.8
test1 110 110 4.4 110 2.9 110 0.8
foutL 364 364 44.8 364 2.4 364 0.2
m4L 1335 1335 16.7 1335 4.6 1335 1.5
mlp4L 1316 1316 10.3 1316 2.5 1316 0.9
max512L 1087 1087 94.2 1087 0.6 1087 0.8
ocex1 69 69 164.1 69 18.6 69 20.7
ocex2 162 162 117.0 162 31.4 162 3.9
max1024 259 259 8951.0 259 1886.7 259 2537.7
prom2 287 287 10211.1 287 918.0 287 138.0
ex5 65 65 14969.7 65 439.4 65 458.7
add4 31 31 6.1 31 1.9 31 1.7
5xp1.b 12 12 7.9 12 8.1 12 165.8
count.b 24 24 55.3 24 0.9 24 12.6
e64.a 80 80 0.5 80 0.7 80 0.3
sao2.b 25 25 1.0 25 94.1 25 33.1
jac3 15 15 5.9 15 4.6 15 5.0
des.a 942 942 125.2 942 1151.5 974 >20000
int13 110 110 126.0 110 3.3 110 2.2
apex4.a 776 776 127.4 776 23.3 793 >20000
C880.b 63 63 200.7 63 3347.8 63 2140.0
int10 116 116 433.7 116 262.9 116 35.1
int14 140 140 5627.6 140 61.9 140 15.4
apex7.b 37 38 >20000 37 1230.4 38 >20000
alu4.b — 51 >20000 50 >20000 51 >20000

TABLE II
Comparison of Scherzo 96 [3], our solver BCU, and a commercial ILP solver.

The columns UB give the best solutions found by each one of the solvers.
CPU times are measured in seconds, on a 125MHz HyperSparc 20.

