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Abstract A novel method for solving ordinary and partial differential equations, based

on grammatical evolution is presented. The method forms generations of trial solutions

expressed in an analytical closed form. Several examples are worked out and in most cases

the exact solution is recovered. When the solution cannot be expressed in a closed analytical

form then our method produces an approximation with a controlled level of accuracy. We

report results on several problems to illustrate the potential of this approach.
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Evolutionary modeling

1. Introduction

A lot of problems in the fields of physics, chemistry, economics etc. can be expressed in

terms of ordinary differential equations (ODE’s) and partial differential equations (PDE’s).

Weather forecasting, quantum mechanics, wave propagation and stock market dynamics

are some examples. For that reason many methods have been proposed for solving ODE’s

and PDE’s such as Runge Kutta, Predictor–Corrector [1], radial basis functions [4] and

feedforward neural networks [5]. Recently, methods based on genetic programming have

also been proposed [6], as well as methods that induce the underlying differential equation

from experimental data [7, 8]. The technique of genetic programming [2], is an optimization

process based on the evolution of a large number of candidate solutions through genetic

operations such as replication, crossover and mutation [14]. In this article we propose a novel

method based on genetic programming. Our method attempts to solve ODE’s and PDE’s by

generating solutions in a closed analytical form. Offering closed form analytical solutions is

very helpful and highly desirable. Methods that offer such type of solutions have appeared in

the past. We mention the Galerkin type of methods, methods based on neural networks [5],
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etc. These methods choose a basis set of functions with adjustable parameters and proceed

approximating the solution by varying these parameters. Our method offers closed form

solutions, however the variety of the basis functions involved is not a priori determined, rather

is constructed dynamically as the solution procedure proceeds and can be of high complexity

if required. This last feature is the one that distinguishes our method from others. We have not

dealt with the problem of differential equation induction from data. The generation is achieved

with the help of grammatical evolution. We used grammatical evolution instead the “classic”

tree based genetic programming, because grammatical evolution can produce programs in an

arbitrary language, the genetic operations such as crossover and mutation are faster and also

because it is far more convenient to symbolically differentiate mathematical expressions. The

code production is performed using a mapping process governed by a grammar expressed in

Backus Naur Form. Grammatical evolution has been applied successfully to problems such

as symbolic regression [11], discovery of trigonometric identities [12], robot control [15],

caching algorithms [16], financial prediction [17] etc. The rest of this article is organized

as follows: in Section 2 we give a brief presentation of grammatical evolution, in Section 3

we describe in detail the new algorithm, in Section 4 we present several experiments and in

Section 5 we present our conclusions and ideas for further work.

2. Grammatical evolution

Grammatical evolution is an evolutionary algorithm that can produce code in any program-

ming language. The algorithm requires as inputs the BNF grammar definition of the target

language and the appropriate fitness function. Chromosomes in grammatical evolution, in

contrast to classical genetic programming [2], are not expressed as parse trees, but as vectors

of integers. Each integer denotes a production rule from the BNF grammar. The algorithm

starts from the start symbol of the grammar and gradually creates the program string, by

replacing non terminal symbols with the right hand of the selected production rule. The

selection is performed in two steps:

� We read an element from the chromosome (with value V).
� We select the rule according to the scheme

Rule = V mod NR (1)

where NR is the number of rules for the specific non-terminal symbol. The process of

replacing non terminal symbols with the right hand of production rules is continued until

either a full program has been generated or the end of chromosome has been reached. In the

latter case we can reject the entire chromosome or we can start over (wrapping event) from

the first element of the chromosome. In our approach we allow at most two wrapping events

to occur.

In our method we used a small part of the C programming language grammar as we can

see in Fig. 1. The numbers in parentheses denote the sequence number of the corresponding

production rule to be used in the selection procedure described above.

The symbol S in the grammar denotes the start symbol of the grammar. For example,

suppose we have the chromosome x = [16, 3, 7, 4, 10, 28, 24, 1, 2, 4]. In Table 1 we show

how a valid function is produced from x. The resulting function in the above example is

f (x) = log(x2). Further details about grammatical evolution can be found in [9, 10, 11, 13].
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Fig. 1 The grammar of the

proposed method

Table 1 Example of program construction

String Chromosome Operation

<expr> 16, 3, 7, 4, 10, 28, 24, 1,2,4 16 mod 7 = 2

<func>(<expr>) 3, 7, 4, 10, 28, 24, 1, 2, 4 3 mod 4 = 3

log(<expr>) 7, 4, 10, 28, 24, 1, 2, 4 7 mod 7 = 0

log(<expr><op><expr>) 4, 10, 28, 24, 1, 2, 4 4 mod 7 = 4

log(x<op><expr>) 10, 28, 24, 1, 2, 4 10 mod 4 = 2

log(x∗<expr>) 28, 24, 1, 2, 4 28 mod 7 = 0

log(x∗<expr><op><expr>) 24, 1, 2, 4 24 mod 7 = 3

log(x∗<digit><op><expr>) 1, 2, 4 1 mod 10 = 1

log(x∗1<op><expr>) 2, 4 2 mod 4 = 2

log(x∗1∗<expr>) 4 4 mod 7 = 4

log(x∗1∗x)

3. Description of the algorithm

To solve a given differential equation the proper boundary/initial conditions must be stated.

The algorithm has the following phases:

1. Initialization.

2. Fitness evaluation.

3. Genetic operations.

4. Termination control.
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3.1. Initialization

In the initialization phase the values for mutation rate and replication rate are set. The

replication rate denotes the fraction of the number of chromosomes that will go through

unchanged to the next generation (replication). That means that the probability for crossover

is set to 1-replication rate. The mutation rate controls the average number of changes inside

a chromosome.

3.2. Fitness evaluation

3.2.1. ODE case

We express the ODE’s in the following form:

f
(

x, y, y(1), ..., y(n−1), y(n)
)

= 0, x ∈ [a, b] (2)

where y(n) denotes the n-order derivative of y. Let the boundary or initial conditions be given

by:

gi

(

x, y, y(1), . . . , y(n−1)
)

∣

∣

x=ti

= 0, i = 1, . . . , n

where ti is one of the two endpoints a or bThe steps for the fitness evaluation of the population

are the following:

1. Choose N equidistant points (x0, x1, . . . , xN−1) in the relevant range.

2. For every chromosome i

(a) Construct the corresponding model Mi(x), expressed in the grammar described earlier.

(b) Calculate the quantity

E(Mi ) =
N−1
∑

j=0

(

f
(

x j , M0
i (x j ), . . . , M

(n)
i (x j )

))2

(3)

(c) Calculate an associated penalty P(Mi) as shown below.

(d) Calculate the fitness value of the chromosome as:

vi = E(Mi ) + P(Mi )

(4)

The penalty function P depends on the boundary conditions and it has the form:

P(Mi ) = λ

n
∑

k=1

g2
k

(

x, Mi , M
(1)
i , . . . , M

(n−1)
i

)

∣

∣

x=tk

(5)

where λ is a positive number.
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3.2.2. SODE case

The proposed method can solve systems of ordinary differential equations that are expressed

in the form:















f1

(

x, y1, y
(1)
1 , y2, y

(1)
2 , . . . , yk, y

(1)
k

)

= 0

f2

(

x, y1, y
(1)
1 , y2, y

(1)
2 , . . . , yk, y

(1)
k

)

= 0

...
...

...

fk

(

x, y1, y
(1)
1 , y2, y

(1)
2 , . . . , yk, y

(1)
k

)

= 0















, x ∈ [a, b] (6)

with initial conditions:











y1(a) = y1a

y2(a) = y2a

...
...

...

yk(a) = yka











(7)

The steps for the fitness evaluation are the following:

1. Choose N equidistant points (x0, x1, ..., xN−1) in the relevant range.

2. For every chromosome i

(a) Split the chromosome uniformly in k parts, where k is the number of equations in the

system.

(b) Construct the k models Mij, j = 1,. . ., k

(c) Calculate the quantities

E(Mi j ) =
N−1
∑

l=0

(

f j (xl , Mi1(xl )), M
(1)
i1 (xl ), Mi2(xl ), M

(1)
i2 (xl ), . . . , Mik(xl ), M

(1)
ik (xl )

)2

,

∀ j = 1, . . . , k

(d) Calculate the quantity

E(Mi ) =
k

∑

j=1

(

E(Mi j )
)

(8)

(e) Calculate the associated penalties

P(Mi j ) = λ
(

Mi j (a) − y ja

)2
, ∀ j = 1, . . . , k (9)

where λ is a positive number.

(f) Calculate the total penalty value

P(Mi ) =
k

∑

j=1

(P(Mi j )) (10)
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(g) Finally, the fitness of the chromosome i is given by:

ui = E(Mi ) + P(Mi ) (11)

3.2.3. PDE case

We only consider here elliptic PDE’s in two and three variables with Dirichlet boundary

conditions. The generalization of the process to other types of boundary conditions and

higher dimensions is straightforward. The PDE is expressed in the form:

f

(

x, y, �(x, y),
∂

∂x
�(x, y),

∂

∂y
�(x, y),

∂2

∂x2
�(x, y),

∂2

∂y2
�(x, y)

)

= 0 (12)

with x ∈ [x0, x1] and y ∈ [y0, y1]. The associated Dirichlet boundary conditions are ex-

pressed as: �(x0, y) = f0(y), �(x1, y) = f1(y), �(x, y0) = g0(x), �(x, y1) = g1(x).

The steps for the fitness evaluation of the population are given below:

1. Choose N2 equidistant points in the box [x0,x1] × [y0,y1], Nx equidistant points on the

boundary at x = x0 and at x = x1, Ny equidistant points on the boundary at y = y0 and

at y = y1.

2. For every chromosome i

� Construct a trial solution Mi(x, y) expressed in the grammar described earlier.
� Calculate the quantity

E(Mi )

=
N 2
∑

j=1

f

(

x j , y j , Mi (x j , y j ),
∂

∂x
Mi (x j , y j ),

∂

∂y
Mi (x j , y j ),

∂2

∂x2
Mi (x j , y j ),

∂2

∂y2
Mi (x j , y j )

)2

� Calculate the quantities

P1(Mi ) =
Nx
∑

j=1

(

Mi (x0, y j ) − f0(y j )
)2

P2(Mi ) =
Nx
∑

j=1

(

Mi (x1, y j ) − f1(y j )
)2

P3(Mi ) =
Ny
∑

j=1

(

Mi (x j , y0) − g0(x j )
)2

P4(Mi ) =
Ny
∑

j=1

(

Mi (x j , y1) − g1(x j )
)2

� Calculate the fitness of the chromosome as:

vi = E(Mi ) + λ(P1(Mi ) + P2(Mi ) + P3(Mi ) + P4(Mi )) (13)
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3.2.4. A complete illustrative example

Consider the ODE

y′′ + 100y = 0, x ∈ [0, 1]

with the boundary conditions y(0) = 0 and y′(0) = 10. We take in the range [0, 1]

N = 10 equidistant points x0,. . ., x9. Suppose that we have chromosomes with length 10

and one chromosome is the array: g = [7, 2, 10, 4, 4, 2, 11, 20, 30, 5]. The function which

corresponds to the chromosome g is Mg(x) = exp(x) + sin(x). The first order derivative is

M (1)(x)
g = exp(x) + cos(x) and the second order derivative is M (2)(x)

g = exp(x) − sin(x). The

symbolic computation of the above quantities is described in detail in the Section 2. Using

the Eq. (3) we have:

E(Mg) =
9

∑

i=0

(

M (2)
g (xi ) + 100Mg(xi )

)2

=
9

∑

i=0

(101 exp(xi ) + 99 sin(xi ))
2

= 4849332.4

The penalty function P(Mg) is calculated following the Eq. (5) as:

P(Mg) = λ
(

(Mg(0) − y(0))2 +
(

M (1)
g (0) −

)2)

= λ((exp(0) + sin(0) − 0)2 + (exp(0) − sin(0) − 10)2)

= λ((1 + 0 − 0)2 + (1 − 0 − 10)2)

= 82λ

So, the fitness value ug of the chromosome is given by:

ug = E(Mg) + P(Mg)

= 4849332.4 + 82λ

We perform the above procedure to all chromosomes in the population and we sort them

in ascending order according to their fitness value. In consequence, we apply the genetic

operators, the new population is created and the process is repeated until the termination

criteria are met.

3.3. Evaluation of derivatives

Derivatives are evaluated together with the corresponding functions using an additional

stack and the following differentiation elementary rules, adopted by the various Automatic

Differentiation Methods [21] and used in corresponding tools [18–20]:

1. ( f (x) + g(x))′ = f ′(x) + g′(x)
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2. ( f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x)

3.
(

f (x)

g(x)

)′
= f ′(x)g(x)−g′(x) f (x)

g2(x)

4. f (g(x))′ = g′(x) f ′(g(x))

To find the first derivative of a function we use two different stacks, the first is used for

the function value and the second for the derivative value. For instance consider that we

want to estimate the derivative of the function f (x) = sin(x) + log(x + 1). Suppose that S0

is the stack for the function’s value and S1 is the stack for the derivative. The function f(x)

in postfix order is written as “x sin x 1 + log + ”. We begin to read from left to right,

until we reach the end of the string. The following calculations are performed in the stacks

S0 and S1. We denote with (a0,a1, · · ·, an) the elements in a stack, an being the element at

the top.

1. S0 = (x), S1 = (1)

2. S0 = (sin(x)), S1 = (1 cos(x))

3. S0 = (sin(x), x), S1 = (1 cos(x), 1)

4. S0 = (sin(x), x, 1), S1 = (1 cos(x), 1, 0)

5. S0 = (sin(x), x + 1), S1 = (1 cos(x), 1 + 0)

6. S0 = (sin(x), log(x + 1)), S1 = (1 cos(x), 1+0
x+1

)

7. S0 = (sin(x) + log(x + 1)), S1 = (1 cos(x) + 1+0
x+1

)

The S1 stack contains the first derivative of f(x). To extend the above calculations for the

second order derivative, a third stack must be employed.

3.4. Genetic operations

3.4.1. Genetic operators

The genetic operators that are applied to the genetic population are the initialization, the

crossover and the mutation.

The initialization is applied only once on the first generation. For every element of each

chromosome a random integer in the range [0..255] is selected.

The crossover is applied every generation in order to create new chromosomes from the

old ones, that will replace the worst individuals in the population. In that operation for each

couple of new chromosomes two parents are selected, we cut these parent-chromosomes at

a randomly chosen point and we exchange the right-hand-side sub-chromosomes, as shown

in Fig. 2.

Fig. 2 One-point crossover
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The parents are selected via tournament selection, i.e.:

� First, we create a group of K ≥ 2 randomly selected individuals from the current popula-

tion.
� The individual with the best fitness in the group is selected, the others are discarded.

The final genetic operator used is the mutation, where for every element in a chromosome

a random number in the range [0,1] is chosen. If this number is less than or equal to the

mutation rate the corresponding element is changed randomly, otherwise it remains intact.

3.4.2. Application of genetic operators

In every generation the following steps are performed:

1. The chromosomes are sorted with respect to their fitness value, in a way that the best

chromosome is placed at the beginning of the population and the worst at the end.

2. c = (1 − s)∗ g new chromosomes are produced by the crossover operation, where s is the

replication rate of the model and g is the total number of individuals in the population. The

new individuals will replace the worst ones in the population at the end of the crossover.

3. The mutation operation is applied to every chromosome excluding those which have been

selected for replication in the next generation.

3.5. Termination control

The genetic operators are applied to the population creating new generations, until a maxi-

mum number of generations is reached or the best chromosome in the population has fitness

better than a preset threshold.

4. Experimental results

We describe several experiments performed on linear and non linear first and second order

ODE’s and systems and PDE’s in two and three dimensions. In addition we applied our

method to ODE’s that do not posses an analytical closed form solution and hence can not be

represented exactly by the grammar. For the case of systems of ODE’s, each chromosome

is split uniformly in M parts, where M is the number of equations in the system. Each part

of the chromosome represents the solution of the corresponding ODE. We used 10% for the

replication rate (hence the crossover probability is set to 90%) and 5% for the mutation rate.

We investigated the importance of these two parameters by performing experiments using

sets of different values. Each experiment was performed 30 times and we plot the average

number of generations for the ODE7 problem in Fig. 3. As one can see the performance

is somewhat dependent on these parameters, but not critically. The population size was set

to 1000 and the length of each chromosome to 50. The size of the population is a critical

parameter. Too small a size weakens the method’s effectiveness. Too big a size renders the

method slow. Hence since there is no first principals estimation for the the population size,

we resorded to an experimental approach to obtain a realistic determination of its range. It

turns out that values in the interval [200, 1000] are proper. We used fixed-length chromo-

somes instead of variable-length to avoid creation of unnecessary large chromosomes which

will render the method inefficient. The length of the chromosomes is usually depended on

the problem to be solved. For the case of simple ODE’s a length between 20 and 50 is

usually sufficient, while for the case of SODE’s and PDE’s where the chromosome must be
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Fig. 3 Average number of generations versus the replication rate for two values of the mutation rate (problem

ODE7)

split into parts, the length must be increased accordingly. The experiments were performed

on an AMD ATHLON 2400 + running Slackware Linux 9.1 The penalty parameter λ in

the penalty function was set to 100 in all runs, except for PDE cases where the value λ

= 1 was sufficient. The maximum number of generations allowed was set to 2000 and the

preset fitness target for the termination criteria was 10−7. From the conducted experiments,

we have observed that the maximum number of generations allowed must be greater for

difficult problems such as SODE’s and PDE’s than for simpler problems of ODE’s. The

value of N for ODE’s was between 10 and 20 depending on the problem. For PDE’s N

was set to 5 (i.e. 52 = 25 points) and Nx = Ny = 50. We tried to select the value for N

and Nx so as to minimize the computational effort without sacrificing quality. The results

were compared against the results from the DSolve procedure of the Mathematica program

version 5.0 running on Mandrake Linux v10.0. According to the manual of Mathematica

the DSolve procedure can solve linear ordinary differential equations with constant coef-

ficients. Also, it can solve many linear equations up to second order with non-constant

coefficients and it includes general procedures that handle a large fraction of the nonlinear

ODE’s whose solutions are given in standard reference books such as Kamke [22]. The

evaluation of the derived functions was performed using the FunctionParser programming

library [3].

4.1. Linear ODE’s

In the present subsection we present the results from first and second order linear ODE’s.

The proposed was applied in each Eq. (30) times and in every experiment the analytical

solution was found.
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ODE1

y′ =
2x − y

x

with y(0) = 20.1 and x ∈ [0.1, 1.0]. The analytical solution is y(x) = x + 2
x
.

ODE2

y′ =
1 − y cos(x)

sin(x)

with y(0.1) = 2.1
sin(0.1)

and x ∈ [0.1,1]. The analytical solution is y(x) = x+2
sin(x)

.

ODE3

y′ = −
1

5
y + exp(−

x

5
) cos(x)

with y(0) = 0 and x ∈ [0, 1]. The analytical solution is y(x) = exp(− x
5
) sin(x).

ODE4

y′′ = −100y

with y(0) = 0 and y′(0) = 10 and x ∈ [0, 1]. The analytical solution is y(x) = sin(10x).

ODE5

y′′ = 6y′ − 9y

with y(0) = 0 and y′(0) = 2 and x ∈ [0, 1]. The analytical solution is y(x) = 2x exp(3x).

ODE6

y′′ = −
1

5
y′ − y −

1

5
exp

(

−
x

5

)

cos(x)

with y(0) = 0 and y′(0) = 1 and x ∈ [0, 2]. The analytical solution is y(x) = exp(− x
5
) sin(x).

ODE7

y′′ = −100y

with y(0) = 0 and y(1) = sin (10) and x ∈ [0, 1]. The analytical solution is y(x) = sin (10x).

ODE8

xy′′ + (1 − x)y′ + y = 0

with y(0) = 1 and y(1) = 0 and x ∈ [0, 1]. The analytical solution is y(x) = 1 − x.

ODE9

y′′ = −
1

5
y′ − y −

1

5
exp

(

−
x

5

)

cos(x)
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Table 2 Method results for linear ODE’s

ODE MIN MAX AVG

ODE1 8 1453 653

ODE2 52 1816 742

ODE3 23 1598 705

ODE4 14 1158 714

ODE5 89 1189 441

ODE6 37 1806 451

ODE7 42 1242 444

ODE8 3 702 66

ODE9 59 1050 411

with y(0) = 0 and y(1) = sin(1)

exp(0.2)
and x ∈ [0, 1]. The analytical solution is y(x) =

exp(− x
5
) sin(x).

In Table 2 we list the results from the proposed method for the equations above. Under

the ODE heading the equation label is listed. Under the headings MIN, MAX, AVG we list

the minimum, maximum and average number of generations (in the set of 30 experiments)

needed to recover the exact solution. The Mathematica subroutine DSolve has managed to

find the analytical solution in all cases.

In Fig. 4 we plot the evolution of a trial solution for the fourth problem of

Table 2. At generation 22 the fitness value was 4200.5 and the intermediate solution

was:

y22(x) = sin((sin(− log(4)x((− cos(cos(exp(7))) exp(cos(6))) − 5))))

At generation 27 the fitness value was 517.17 and the corresponding candidate solution was:

y27(x) = sin((sin(− log(4)x((− cos(cos(sin(7))) exp(cos(6))) − 5))))

Finally, at generation 59 the problem was solved exactly.

4.2. Non-linear ordinary differential equations

In this subsection we present results from the application of the method to non-linear ordinary

differential equations. In all the equations the method was applied 30 times and in every

application the exact solution was found.

NLODE1

y′ =
1

2y

with y(1) = 1 and x ∈ [1, 4]. The exact solution is y =
√

x . Note that
√

x does not belong

to the basis set.

NLODE2

(y′)2 + log(y) − cos2(x) − 2 cos(x) − 1 − log(x + sin(x)) = 0

with y(1) = 1 + sin (1) and x ∈ [1, 2] The exact solution is y = x + sin (x).
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Fig. 4 Evolving candidate solutions of y′ = − 100y with boundary conditions on the left

NLODE3

y′′y′ = −
4

x3

with y(1) = 0 and x ∈ [1,2]. The exact solution is y = log (x2).

NLODE4

x2 y′′ + (xy′)2 +
1

log(x)
= 0

with y(e) = 0, y′(e) = 1
e

and x ∈ [e, 2e]. The exact solution is y(x) = log (log (x)) and it was

recovered at the 30th generation. In Table 3 we list results from the application of the method

to the equations above. The meaning of the columns is the same as 2. The Mathematica

subroutine DSolve has managed to find the exact solution only for NLODE1.

In Fig. 5 we plot intermediate trial solutions of the NLODE3.

At the second generation the trial solution had a fitness value of 73.512 and it assumed

the form:

y2(x) = log(x − exp(−x − 1)) − cos(5)

Table 3 Method results for non-linear ODE’s

NLODE MIN MAX AVG

NLODE1 6 945 182

NLODE2 3 692 86

NLODE3 4 1564 191

NLODE4 6 954 161
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Fig. 5 Candidate solutions of third non-linear equation

while at the fourth generation it had a fitness value of 48.96 and it became:

y4(x) = log(log(x + x))

Similarly at the 8th generation the fitness of the intermediate solution was 4.61 and its

functional form was:

y8(x) = sin(log(x ∗ x))

The exact solution was obtained at the 9th generation.

4.3. Systems of ODE’s

SODE1

y′
1 = cos(x) + y2

1 + y2 − (x2 + sin2(x))

y′
2 = 2x − x2 sin(x) + y1 y2

with y1(0) = 0, y2(0) = 0 and x ∈ [0, 1]. The exact solution is given by: y1 = sin (x), y2 =
x2.

SODE2

y′
1 =

cos(x) − sin(x)

y2

y′
2 = y1 y2 + exp(x) − sin(x)

with y1(0) = 0, y2(0) = 1 and x ∈ [0, 1]. The exact solution is y1 = sin(x)

exp(x)
, y2 = exp (x).
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Table 4 Method results for non-linear ODE’s

SODE MIN MAX AVG

SODE1 6 1211 201

SODE2 15 1108 234

SODE3 30 1205 244

SODE4 5 630 75

SODE3

y′
1 = cos(x)

y′
2 = −y1

y′
3 = y2

y′
4 = −y3

y′
5 = y4

with y1(0) = 0, y2(0) = 1, y3(0) = 0,y4(0) = 1, y5(0) = 0 and x ∈ [0, 1]. The exact

solutions is y1 = sin (x), y2 = cos (x), y3 = sin (x), y4 = cos (x), y5 = sin (x).

SODE4

y′
1 = −

1

y2

sin(exp(x))

y′
2 = −y2

with y1(0) = cos (1.0), y2(0) = 1.0 and x ∈ [0,1]. The exact solution is y1 = cos (exp (x)),

y2 = exp ( − x). In Table 4 we list results from the application of the method to the equations

above. The meaning of the columns is the same as 2. The Mathematica subroutine DSolve

has managed to find the analytical solution only for SODE3.

4.4. An ODE without an analytical closed form solution

Example 1

y′′ +
1

x
y′ −

1

x
cos(x) = 0

with x ∈ [0,1] and y(0) = 0 and y′(0) = 1. With 20 points in[0,1] we find:

GP1(x) = x(cos(− sin(x/3 + exp(−5 + x − exp(cos(x)))))))

with fitness value 2.1 ∗ 10−6. The exact solution is :

y(x) =
∫ x

0

sin(t)

t
dt
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Fig. 6 Plot of GP1(x) and y(x) =
∫ x

0
sin(t)

t
dt

In Fig. 6, we plot the two functions in the range [0,5]

Example 2

y′′ + 2xy = 0

with x ∈ [0,1] and y(0) = 0 and y′(0) = 1. The exact solution is :

y(x) =
∫ x

0

exp(−t2)dt

With 20 points in [0,1] we find:

GP2(x) = sin(sin(x + exp(exp(x) log(9)/ exp(8 + cos(1))/(exp(7/ exp(x)) + 6)))

with fitness 1.7 ∗ 10−5. In Fig. 7 we the plot the two functions in the range [0, 5].

Observe, that even though the equations in the above examples were solved for x ∈ [0,

1], the approximation maintains its quality beyond that interval, a fact that illustrates the

unusual generalization ability.

4.5. A special case

Consider the ODE

y′′(x2 + 1) − 2xy − x2 − 1 = 0

in the range [0, 1] and with initial conditions y(0) = 0 and y′(0) = 1. The analytical solution

is y(x) = (x2 + 1)arctan(x). Note that arctan(x) does not belong to the function repertoire of

the method and this make the case special. The solution reached is not exact but approximate
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Fig. 7 Plot of GP2(x) and y(x) =
∫ x

0
exp(−t2)dt

given by:

GP(x) = x/ sin(exp(cos(5/4/ exp(x)) − exp((− exp(((−((− exp(cos(sin(2x))))))))))))

with fitness 0.0059168. Note that the subroutine DSolve of Mathematica failed to solve the

above equation. In Fig. 8 we plot z(x) ( obtained using the method of Lagaris et al. [5]), y(x)

= (x2 + 1)arctan(x) (which is the exact solution) and the above solution GP(x). From Figs.

6–8 we observe the quality of the approximate solution even outside the training interval,

hence rendering our method useful and practical.

4.6. PDE’s

In this subsection we present results from the application of the method to elliptic partial

differential equations. In all the equations the method was applied 30 times and in every

application the exact solution was found.

PDE1

∇2�(x, y) = exp(−x)(x − 2 + y3 + 6y)

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions: �(0, y) = y3, �(1, y) =
(1 + y3) exp(−1), �(x, 0) = x exp(−x), �(x, 1) = (x + 1) exp(−x). The exact solution is

�(x, y) = (x + y3) exp(−x).

PDE2

∇2�(x, y) = −2�(x, y)
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Fig. 8 z(x), y(x) = (x2 + 1)arctan(x), GP(x)

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions: �(0, y) = 0, �(1, y) = sin(1) cos(y),

�(x, 0) = sin(x), �(x, 1) = sin(x) cos(1). The exact solution is �(x, y) = sin(x) cos(y).

PDE3

∇2�(x, y) = 4

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions: �(0, y) = y2 + y + 1, �(1, y) =
y2 + y + 3, �(x, 0) = x2 + x + 1, �(x, 1) = x2 + x + 3. The exact solution is �(x, y) =
x2 + y2 + x + y + 1.

PDE4

∇2�(x, y) = −(x2 + y2)�(x, y)

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions: �(x, 0) = 0, �(x, 1) = sin(x),

�(0, y) = 0, �(1, y) = sin(y). The exact solution is �(x, y) = sin(xy).

PDE5

∇2�(x, y) = (x − 2) exp(−x) + x exp(−y)

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions: �(x, 0) = x(exp(−x) + 1), �(x, 1) =
x(exp(−x) + exp(−1)), �(0, y) = 0, �(1, y) = exp(−y) + exp(−1). The exact solution is

�(x, y) = x(exp(−x) + exp(−y)).

PDE6
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Table 5 Method results for PDE’s

PDE MIN MAX AVG

PDE1 159 1772 966

PDE2 5 1395 203

PDE3 18 311 154

PDE4 4 1698 207

PDE5 195 945 444

PDE6 185 1579 797

PDE7 10 1122 325

The following is a highly non-linear pde:

∇2�(x, y) + exp(�(x, y)) = 1 + x2 + y2 +
4

(1 + x2 + y2)2

with x ∈ [ − 1, 1] and y ∈ [ − 1, 1] and boundary conditions: f (0, y) = log(1 + y2),

f (1, y) = log(2 + y2), g(x, 0) = log(1 + x2) and g(x, 1) = log(2 + x2). The exact solution

is �(x, y) = log(1 + x2 + y2).

PDE7

∇2�(x, y, z) = 6

with x ∈ [0, 1] and y ∈ [0, 1] and z ∈ [0, 1] and boundary conditions: �(0, y, z) = y2 +
z2, �(1, y, z) = y2 + z2 + 1, �(x, 0, z) = x2 + z2, �(x, 1, z) = x2 + z2 + 1, �(x, y, 0) =
x2 + y2, �(x, y, 1) = x2 + y2 + 1. The exact solution is �(x, y, z) = x2 + y2 + z2 + 1.

In Table 5 we list results from the application of the method to the equations above.

The meaning of the columns is the same as 2. The Mathematica subroutine DSolve has not

managed to find the exact solution for any of the examples above.

In the following we present some graphs for trial solutions of the second PDE. At

generation 1 the trial solution was

GP1(x, y) =
x

7

with fitness value 8.14. The difference between the trial solution GP1(x,y) and the exact

solution �(x,y) is shown in Fig. 9. At the 10thgeneration the trial solution was

GP10(x, y) = sin(x/3 + x)

with fitness value 3.56. The difference between the trial solution GP10(x,y) and the exact

solution �(x,y) is shown in Fig.10.

At the 40th generation the trial solution was

GP40(x) = sin(cos(y)x)

with fitness value 0.59. The difference between the trial solution GP40(x, y) and the exact

solution �(x,y) is shown in Fig. 11.
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Fig. 9 Difference between

�(x, y) = sin(x) cos(y) and

GP1(x,y)

Fig. 10 Difference between

�(x, y) = sin(x) cos(y) and

GP10(x,y)

Fig. 11 Difference between

�(x, y) = sin(x) cos(y) and

GP40(x,y)

5. Conclusions and further work

We presented a novel approach for solving ODE’s and PDE’s. The method is based on genetic

programming. This approach creates trial solutions and seeks to minimize an associated error.

The advantage is that our method can produce trial solutions of highly versatile functional

form. Hence the trial solutions are not restricted to a rather inflexible form that is imposed

frequently by basis-set methods that rely on completeness. If the grammar has a rich function
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repertoire, and the differential equation has a closed form solution, it is very likely that our

method will recover it. If however the exact solution can not be represented in a closed form,

our method will produce a closed form approximant.

The grammar used in this article can be further developed and enhanced. For instance it is

straight forward to enrich the function repertoire or even to allow for additional operations.

Treating different types of PDE’s with the appropriate boundary conditions is a topic of

current interest and is being investigated. Our preliminary results are very encouraging.
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