Solving Direct and Inverse Heat Conduction Problems

Contents

.

Part I Heat Conduction Fundamentals	1
1 Fourier Law	3
Literature	
2 Mass and Energy Balance Equations	7
2.1 Mass Balance Equation for a Solid that Moves	
at an Assigned Velocity	7
2.2 Inner Energy Balance Equation	9
2.2.1 Energy Balance Equations	
in Three Basic Coordinate Systems	12
2.3 Hyperbolic Heat Conduction Equation	
2.4 Initial and Boundary Conditions	
2.4.1 First Kind Boundary Conditions (Dirichlet Conditions)	18
2.4.2 Second Kind Boundary Conditions	
(von Neumann Conditions)	18
2.4.3 Third Kind Boundary Conditions	
2.4.4 Fourth Kind Boundary Conditions	
2.4.5 Non-Linear Boundary Conditions	
2.4.6 Boundary Conditions on the Phase Boundaries	
Literature	
3 The Reduction of Transient Heat Conduction Equations	
-	20
and Boundary Conditions	
3.2 Spatial Averaging of Temperature3.2.1 A Body Model with a Lumped Thermal Capacity	
3.2.2 Heat Conduction Equation for a Simple Fin	22
with Uniform Thickness	33
3.2.3 Heat Conduction Equation for a Round Fin	25
with Uniform Thickness	55
3.2.4 Heat Conduction Equation for a Circular Rod or	07
a Pipe that Moves at Constant Velocity	
Literature	39

۰.

4 Substituting Heat Conduction Equation	
by Two-Equations System	. 41
4.1 Steady-State Heat Conduction in a Circular Fin	
with Variable Thermal Conductivity and Transfer Coefficient	41
4.2 One-Dimensional Inverse Transient Heat Conduction Problem .	43
Literature	46
5 Variable Change	
Literature	50
Part II Exercises. Solving Heat Conduction Problems	51
6 Heat Transfer Fundamentals	
Exercise 6.1 Fourier Law in a Cylindrical Coordinate System	53
Exercise 6.2 The Equivalent Heat Transfer Coefficient	
Accounting for Heat Exchange by Convection and Radiation	55
Exercise 6.3 Heat Transfer Through a Flat Single-Layered	
and Double-Layered Wall	57
Exercise 6.4 Overall Heat Transfer Coefficient	
and Heat Loss Through a Pipeline Wall	60
Exercise 6.5 Critical Thickness of an Insulation	
on an Outer Surface of a Pipe	
Exercise 6.6 Radiant Tube Temperature	65
Exercise 6.7 Quasi-Steady-State-of Temperature Distribution	
and Stresses in a Pipeline Wall	68
Exercise 6.8 Temperature Distribution in a Flat Wall	
 with Constant and Temperature Dependent Thermal Conductivity Exercise 6.9 Determining Heat Flux on the Basis of Measured 	70
Temperature at Two Points Using a Flat and Cylindrical Sensor	74
Exercise 6.10 Determining Heat Flux By Means of Gardon Sensor	
with a Temperature Dependent Thermal Conductivity	77
Exercise 6.11 One-Dimensional Steady-State Plate Temperature	
Distribution Produced by Uniformly Distributed Volumetric	
Heat Sources	80
Exercise 6.12 One-Dimensional Steady-State Preature	
Distribution Produced by Uniformly Distributed Volumetric	
Heat Sources	82
Exercise 6.13 Inverse Steady-State Heat Conduction Problem	
in a Pipe	
Exercise 6.14 General Equation of Heat Conduction in Fins	87
Exercise 6.15 Temperature Distribution and Efficiency	
of a Straight Fin with Constant Thickness	89

Exercise 6.16 Temperature Measurement Error Caused	
by Thermal Conduction Through Steel Casing that Contains	
a Thermoelement as a Measuring Device	
Exercise 6.17 Temperature Distribution and Efficiency	
of a Circular Fin of Constant Thickness	
Exercise 6.18 Approximated Calculation	
of a Circular Fin Efficiency	
Exercise 6.19 Calculating Efficiency of Square	
and Hexagonal Fins	
Exercise 6.20 Calculating Efficiency of Hexagonal Fins	
by Means of an Equivalent Circular Fin Method	
and Sector Method	
Exercise 6.21 Calculating Rectangular Fin Efficiency	
Exercise 6.22 Heat Transfer Coefficient	
in Exchangers with Extended Surfaces	
Exercise 6.23 Calculating Overall Heat Transfer Coefficient	
in a Fin Plate Exchanger	
Exercise 6.24 Overall Heat Transfer Coefficient	
for a Longitudinally Finned Pipe with a Scale Layer	
on an Inner Surface	
Exercise 6.25 Overall Heat Transfer Coefficient	
for a Longitudinally Finned Pipe	
Exercise 6.26 Determining One-Dimensional Temperature	
Distribution in a Flat Wall by Means of Finite Volume Method	
Exercise 6.27 Determining One-Dimensional Temperature	
Distribution in a Cylindrical Wall by Means	
of Finite Volume Method	
Exercise 6.28 Inverse Steady-State Heat Conduction Problem	
for a Pipe Solved by Space-Marching Method	
Exercise 6.29 Temperature Distribution and Efficiency	
of a Circular Fin with Temperature-Dependent	
Thermal Conductivity	
Literature	
7 Two-Dimensional Steady-State Heat Conduction.	
Analytical Solutions	
Exercise 7.1 Temperature Distribution in an Infinitely Long Fin	n

with Constant Thickness.....141 Exercise 7.2 Temperature Distribution in a Straight Fin with Constant Thickness and Insulated Tip.....145 Exercise 7.3 Calculating Temperature Distribution and Heat Flux in a Straight Fin with Constant Thickness and Insulated Tip148

Exercise 7.4 Temperature Distribution in a Radiant Tube	
of a Boiler	
Literature	160
8 Analytical Approximation Methods. Integral Heat	
Balance Method	161
Exercise 8.1 Temperature Distribution within a Rectangular Cross-	
Section of a Bar	161
Exercise 8.2 Temperature Distribution in an Infinitely Long Fin	
of Constant Thickness	163
Exercise 8.3 Determining Temperature Distribution	
in a Boiler's Water-Wall Tube by Means of Functional	. .
Correction Method	
Literature	169
9 Two-Dimensional Steady-State Heat Conduction.	
Graphical Method	171
Exercise 9.1 Temperature Gradient and Surface-Transmitted	
Heat Flow	171
Exercise 9.2 Orthogonality of Constant Temperature Line	
and Constant Heat Flux	
Exercise 9.3 Determining Heat Flow between Isothermal Surfaces	176
Exercise 9.4 Determining Heat Loss Through a Chimney Wall;	
Combustion Channel (Chimney) with Square Cross-Section	179
Exercise 9.5 Determining Heat Loss Through Chimney Wall	101
with a Circular Cross-Section	
Literature	182
10 Two-Dimensional Steady-State Problems.	
The Shape Coefficient	183
Exercise 10.1 Buried Pipe-to-Ground Surface Heat Flow	183
Exercise 10.2 Floor Heating	
Exercise 10.3 Temperature of a Radioactive Waste Container	
Buried Underground	186
Literature	187
11 Solving Steady-State Heat Conduction Problems by Means	100
of Numerical Methods	
Exercise 11.1 Description of the Control Volume Method	197
Exercise 11.2 Determining Temperature Distribution in a Square Cross-Section of a Long Rod by Means	
of the Finite Volume Method	104
	174

Exercise 11.3 A Two-Dimensional Inverse Steady-State Heat
Conduction Problem
Exercise 11.4 Gauss-Seidel Method and Over-Relaxation Method 204
Exercise 11.5 Determining Two-Dimensional Temperature
Distribution in a Straight Fin with Uniform Thickness
by Means of the Finite Volume Method
Exercise 11.6 Determining Two-Dimensional Temperature
Distribution in a Square Cross-Section of a Chimney
Exercise 11.7 Pseudo-Transient Determination of Steady-State
Temperature Distribution in a Square Cross-Section
of a Chimney; Heat Transfer by Convection
and Radiation on an Outer Surface of a Chimney
Exercise 11.8 Finite Element Method
Exercise 11.9 Linear Functions That Interpolate Temperature
Distribution (Shape Functions) Inside Triangular
and Rectangular Elements
Exercise 11.10 Description of FEM Based on Galerkin Method 238
Exercise 11.11 Determining Conductivity Matrix for a Rectangular
and Triangular Element
Exercise 11.12 Determining Matrix $[K_{\alpha}^{\circ}]$ in Terms of Convective
Boundary Conditions for a Rectangular and Triangular Element 249
Exercise 11.13 Determining Vector $\{f_0^c\}$ with Respect
to Volumetric and Point Heat Sources in a Rectangular
and Triangular Element
Exercise 11.14 Determining Vectors $\{f_q^e\}$ and $\{f_\alpha^e\}$ with Respect
to Boundary Conditions of 2nd and 3rd Kind on the Boundary
of a Rectangular or Triangular Element
Exercise 11.15 Methods for Building Global Equation System
in FEM
Exercise 11.16 Determining Temperature Distribution
in a Square Cross-Section of an Infinitely Long Rod by Means
of FEM, in which the Global Equation System is Constructed
using Method I (from Ex. 11.15)
Exercise 11.17 Determining Temperature Distribution
in an Infinitely Long Rod with Square Cross-Section
by Means of FEM, in which the Global Equation System
is Constructed using Method II (from Ex. 11.15)271
Exercise 11.18 Determining Temperature Distribution
by Means of FEM in an Infinitely Long Rod with Square
Cross-Section, in which Volumetric Heat Sources Operate
Exercise 11.19 Determining Two-Dimensional Temperature
Distribution in a Straight Fin with Constant Thickness
by Means of FEM
200

Exercise 11.20 Determining Two-Dimensional Temperature Distribution by Means of FEM in a Straight Fin with Constant	
Thickness (ANSYS Program)	
Exercise 11.21 Determining Two-Dimensional Temperature	
Distribution by Means of FEM in a Hexagonal Fin	
with Constant Thickness (ANSYS Program)	300
Exercise 11.22 Determining Axisymmetrical Temperature Dis	
in a Cylindrical and Conical Pin by Means of FEM	
(ANSYS program)	
Literature	
12 Finite Element Balance Method and Boundary	
Element Method	
Exercise 12.1 Finite Element Balance Method	
Exercise 12.2 Boundary Element Method.	
Exercise 12.3 Determining Temperature Distribution	
in Square Region by Means of FEM Balance Method	
Exercise 12.4 Determining Temperature Distribution	•
in a Square Region Using Boundary Element Method	
Literature	
13 Transient Heat Exchange Between a Body with Lumped T	
IS IPONSIANT HAAT REVANING RATWAAN O RAAV WITH I UMNAA I	
Capacity and Its Surroundings	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings	333
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod with Lumped Thermal Capacity, when the Temperature of a N	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod with Lumped Thermal Capacity, when the Temperature of a M Changes Periodically	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod with Lumped Thermal Capacity, when the Temperature of a M Changes Periodically Exercise 13.4 Inverse Problem: Determining Temperature	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod with Lumped Thermal Capacity, when the Temperature of a M Changes Periodically Exercise 13.4 Inverse Problem: Determining Temperature of a Medium on the Basis of Temporal Thermometer-Indicated	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod with Lumped Thermal Capacity, when the Temperature of a M Changes Periodically Exercise 13.4 Inverse Problem: Determining Temperature of a Medium on the Basis of Temporal Thermometer-Indicated Temperature History	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod with Lumped Thermal Capacity, when the Temperature of a M Changes Periodically Exercise 13.4 Inverse Problem: Determining Temperature of a Medium on the Basis of Temporal Thermometer-Indicated Temperature History Exercise 13.5 Calculating Dynamic Temperature Measurement	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod with Lumped Thermal Capacity, when the Temperature of a M Changes Periodically Exercise 13.4 Inverse Problem: Determining Temperature of a Medium on the Basis of Temporal Thermometer-Indicated Temperature History Exercise 13.5 Calculating Dynamic Temperature Measuremen by Means of a Thermocouple	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod with Lumped Thermal Capacity, when the Temperature of a M Changes Periodically Exercise 13.4 Inverse Problem: Determining Temperature of a Medium on the Basis of Temporal Thermometer-Indicated Temperature History Exercise 13.5 Calculating Dynamic Temperature Measuremen by Means of a Thermocouple Exercise 13.6 Determining the Time It Takes to Cool Body Do	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod with Lumped Thermal Capacity, when the Temperature of a M Changes Periodically Exercise 13.4 Inverse Problem: Determining Temperature of a Medium on the Basis of Temporal Thermometer-Indicated Temperature History Exercise 13.5 Calculating Dynamic Temperature Measuremen by Means of a Thermocouple Exercise 13.6 Determining the Time It Takes to Cool Body Do to a Given Temperature	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod with Lumped Thermal Capacity, when the Temperature of a M Changes Periodically Exercise 13.4 Inverse Problem: Determining Temperature of a Medium on the Basis of Temporal Thermometer-Indicated Temperature History Exercise 13.5 Calculating Dynamic Temperature Measurement by Means of a Thermocouple Exercise 13.6 Determining the Time It Takes to Cool Body Do to a Given Temperature Measurement Error of a Medium	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod with Lumped Thermal Capacity, when the Temperature of a M Changes Periodically Exercise 13.4 Inverse Problem: Determining Temperature of a Medium on the Basis of Temporal Thermometer-Indicated Temperature History Exercise 13.5 Calculating Dynamic Temperature Measurement by Means of a Thermocouple Exercise 13.6 Determining the Time It Takes to Cool Body Do to a Given Temperature Measurement Error of a Medium whose Temperature Changes at Constant Rate	
Capacity and Its Surroundings Exercise 13.1 Heat Exchange between a Body with Lumped Thermal Capacity and Its Surroundings Exercise 13.2 Heat Exchange between a Body with Lumped Thermal Capacity and Surroundings with Time-Dependent Temperature Exercise 13.3 Determining Temperature Distribution of a Bod with Lumped Thermal Capacity, when the Temperature of a M Changes Periodically Exercise 13.4 Inverse Problem: Determining Temperature of a Medium on the Basis of Temporal Thermometer-Indicated Temperature History Exercise 13.5 Calculating Dynamic Temperature Measurement by Means of a Thermocouple Exercise 13.6 Determining the Time It Takes to Cool Body Do to a Given Temperature Measurement Error of a Medium	

	Exercise 13.9 Inverse Problem: Calculating Temperature	
	of a Medium whose Temperature Changes Periodically,	
	on the Basis of Temporal Temperature History Indicated	
	by a Thermometer	347
	Exercise 13.10 Measuring Heat Flux	349
	Liferature	
14	Transient Heat Conduction in Half-Space	353
	Exercise 14.1 Laplace Transform	
	Exercise 14.2 Formula Derivation for Temperature Distribution	
	in a Half-Space with a Step Increase in Surface Temperature	355
	Exercise 14.3 Formula Derivation for Temperature Distribution	
	in a Half-Space with a Step Increase in Heat Flux	358
	Exercise 14.4 Formula Derivation for Temperature Distribution	550
	in a Half-Space with a Step Increase in Temperature	
		360
	Exercise 14.5 Formula Derivation for Temperature Distribution	500
	in a Half-Space when Surface Temperature is Time-Dependent	364
	Exercise 14.6 Formula Derivation for a Quasi-Steady State	504
	Temperature Field in a Half-Space when Surface Temperature	266
	Changes Periodically	300
	Exercise 14.7 Formula Derivation for Temperature	274
	of Two Contacting Semi-Infinite Bodies	
	Exercise 14.8 Depth of Heat Penetration	313
	Exercise 14.9 Calculating Plate Surface Temperature under the	
	Assumption that the Plate is a Semi-Infinite Body	311
	Exercise 14.10 Calculating Ground Temperature	• = 0
	at a Specific Depth	378
	Exercise 14.11 Calculating the Depth of Heat Penetration	
	in the Wall of a Combustion Engine	
	Exercise 14.12 Calculating Quasi-Steady-State Ground Temperature	
	at a Specific Depth when Surface Temperature Changes	
	Periodically	
	Exercise 14.13 Calculating Surface Temperature at the Contact Point	
	of Two Objects	382
	Literature	383
15	Transient Heat Conduction in Simple-Shape Elements	385
	Exercise 15.1 Formula Derivation for Temperature Distribution	
		385
	Exercise 15.2 A Program for Calculating Temperature Distribution	
	and Its Change Rate in a Plate with Boundary Conditions	
	of 3rd Kind	394

Exercise 15.3 Calculating Plate Surface Temperature
and Average Temperature Across the Plate Thickness
by Means of the Provided Graphs
Exercise 15.4 Formula Derivation for Temperature Distribution
in an Infinitely Long Cylinder with Boundary Conditions
of 3rd Kind
Exercise 15.5 A Program for Calculating Temperature Distribution
and Its Change Rate in an Infinitely Long Cylinder with Boundary
Conditions of 3rd Kind
Exercise 15.6 Calculating Temperature in an Infinitely Long Cylinder
using the Annexed Diagrams
Exercise 15.7 Formula Derivation for a Temperature Distribution
in a Sphere with Boundary Conditions of 3rd Kind
Exercise 15.8 A Program for Calculating Temperature Distribution
and Its Change Rate in a Sphere with Boundary Conditions
of 3rd Kind
Exercise 15.9 Calculating Temperature of a Sphere
using the Diagrams Provided
Exercise 15.10 Formula Derivation for Temperature Distribution
in a Plate with Boundary Conditions of 2nd Kind
Exercise 15.11 A Program and Calculation Results
for Temperature Distribution in a Plate with Boundary Conditions
of 2nd Kind
Exercise 15.12 Formula Derivation for Temperature Distribution
in an Infinitely Long Cylinder with Boundary Conditions
of 2nd Kind
Exercise 15.13 Program and Calculation Results
for Temperature Distribution in an Infinitely Long Cylinder
with Boundary Conditions of 2nd Kind
Exercise 15.14 Formula Derivation for Temperature Distribution
in a Sphere with Boundary Conditions of 2nd Kind
Exercise 15.15 Program and Calculation Results for Temperature
Distribution in a Sphere with Boundary Conditions of 2nd kind456
Exercise 15.16 Heating Rate Calculations
6
for a Thick-Walled Plate
6 6
of a Steel Shaft
Exercise 15.18 Determining Transients of Thermal Stresses
in a Cylinder and a Sphere
Exercise 15.19 Calculating Temperature
and Temperature Change Rate in a Sphere464

Exercise 15.20 Calculating Sensor Thickness
for Heat Flux Measuring465
Literature
16 Superposition Method in One-Dimensional Transient Heat
Conduction Problems
Exercise 16.1 Derivation of Duhamel Integral'469
Exercise 16.2 Derivation of an Analytical Formula
for a Half-Space Surface Temperature when Medium's Temperature
Undergoes a Linear Change in the Function of Time
Exercise 16.3 Derivation of an Approximate Formula
for a Half-Space Surface Temperature with an Arbitrary Change
in Medium's Temperature in the Function of Time
Exercise 16.4 Derivation of an Approximate Formula
for a Half-Space Surface Temperature when Temperature
of a Medium Undergoes a Linear Change in the Function of Time 479
Exercise 16.5 Application of the Superposition Method when Initial
Body Temperature is Non-Uniform
Exercise 16.6 Description of the Superposition Method Applied
to Heat Transfer Problems with Time-Dependent
Boundary Conditions
Exercise 16.7 Formula Derivation for a Half-Space Surface
Temperature with a Change in Surface Heat Flux
in the Form of a Triangular Pulse
Exercise 16.8 Formula Derivation for a Half-Space Surface
Temperature with a Mixed Step-Variable Boundary Condition
in Time
Exercise 16.9 Formula Derivation for a Plate Surface Temperature
with a Surface Heat Flux Change in the Form
of a Triangular Pulse and the Calculation of this Temperature
Exercise 16.10 Formula Derivation for a Plate Surface Temperature
with a Surface Heat Flux Change in the Form of a Rectangular Pulse;
Temperature Calculation
Exercise 16.11 A Program and Calculation Results
for a Half-Space Surface Temperature with a Change
in Surface Heat Flux in the Form of a Triangular Pulse
Exercise 16.12 Calculation of a Half-Space Temperature
with a Mixed Step-Variable Boundary Condition in Time
Exercise 16.13 Calculating Plate Temperature by Means
of the Superposition Method with Diagrams Provided
Exercise 16.14 Calculating the Temperature of a Paper in an
Electrostatic Photocopier
Literature

17 Transient Heat Conduction in a Semi-Infinite body. The Inverse Problem
Exercise 17.1 Measuring Heat Transfer Coefficient.
The Transient Method
Exercise 17.2 Deriving a Formula for Heat Flux on the Basis
of Measured Half-Space Surface Temperature Transient Interpolated
by a Piecewise Linear Function
Exercise 17.3 Deriving Heat Flux Formula on the Basis
of a Measured and Polynomial-Approximated Half-Space Surface
Temperature Transient
Exercise 17.4 Formula Derivation for a Heat Flux Periodically
Changing in Time on the Basis of a Measured Temperature Transient
at a Point Located under the Semi-Space Surface
Exercise 17.5 Deriving a Heat Flux Formula on the Basis
of Measured Half-Space Surface Temperature Transient,
Approximated by a Linear and Square Function
Exercise 17.6 Determining Heat Transfer Coefficient on the Plexiglass
Plate Surface using the Transient Method
Graphical Method529
Numerical Method
Exercise 17.7 Determining Heat Flux on the Basis of a Measured
Time Transient of the Half-Space Temperature, Approximated
by a Piecewise Linear Function
Exercise 17.8 Determining Heat Flux on the Basis
of Measured Time Transient of a Polynomial-Approximated
Half-Space Temperature
Literature
18 Inverse Transient Heat Conduction Problems
Exercise 18.1 Derivation of Formulas for Temperature Distribution
and Heat Flux in a Simple-Shape Bodies on the Basis of a Measured
Temperature Transient in a Single Point541
Plate
Cylinder
Sphere
Exercise 18.2 Formula Derivation for a Temperature
of a Medium when Linear Time Change
in Plate Surface Temperature is Assigned
Exercise 18.3 Determining Temperature Transient of a Medium
for which Plate Temperature at a Point with a Given Coordinate
Changes According to the Prescribed Function

-

Exercise 18.4 Formula Derivation for a Temperature of a Medium, which is Warming an Infinite Plate; Plate Temperature at a Point with a Given Coordinate Changes at Constant Rate	
on the Plate Surface is in the Form of a Triangular Pulse	55
Heat Flow on the Plate Surface is in the Form	
of a Rectangular Pulse	62
Exercise 18.7 Determining Time-Temperature Transient	
of a Medium, for which the Plate Temperature	
at a Point with a Given Coordinate Changes in a Linear Way5 Exercise 18.8 Determining Time-Temperature Transient	00
of a Medium, for which the Plate Temperature at a Point	
with a Given Coordinate Changes According to the Square Function	
Assigned	69
Literature	
Multidimensional Problems. The Superposition Method	573 577 580
Exercise 19.5 Calculating Steel Block Temperature	
Approximate Analytical Methods for Solving Transient Heat induction Problems	587
Exercise 20.1 Description of an Integral Heat Balance Method	
by Means of a One-Dimensional Transient Heat Conduction	
Example	87
Exercise 20.2 Determining Transient Temperature Distribution	
in a Flat Wall with Assigned Conditions of 1st, 2nd and 3rd Kind 5	
Exercise 20.3 Determining Thermal Stresses in a Flat Wall	
Literature	00

21	Finite Difference Method605
	Exercise 21.1 Methods of Heat Flux Approximation
	on the Plate surface
	Exercise 21.2 Explicit Finite Difference Method
	with Boundary Conditions of 1st, 2nd and 3rd Kind
	Exercise 21.3 Solving Two-Dimensional Problems
	by Means of the Explicit Difference Method616
	Exercise 21.4 Solving Two-Dimensional Problems
	by Means of the Implicit Difference Method
	Exercise 21.5 Algorithm and a Program for Solving
	a Tridiagonal Equation System by Thomas Method
	Exercise 21.6 Stability Analysis of the Explicit Finite Difference
	Method by Means of the von Neumann Method
	Exercise 21.7 Calculating One-Dimensional Transient Temperature
	Field by Means of the Explicit Method
	and a Computational Program
	Exercise 21.8 Calculating One-Dimensional Transient Temperature
	Field by Means of the Implicit Method
	and a Computational Program639
	Exercise 21.9 Calculating Two-Dimensional Transient Temperature
	Field by Means of the Implicit Method and a Computational Program;
	Algebraic Equation System is Solved
	by Gaussian Elimination Method644
	Exercise 21.10 Calculating Two-Dimensional Transient Temperature
	Field by Means of the Implicit Method and a Computational Program;
	Algebraic Equation System Solved by Over-Relaxation Method 652
	Literature
	,
	Solving Transient Heat Conduction Problems by Means
of	Finite Element Method (FEM) 659
	Exercise 22.1 Description of FEM Based on Galerkin Method
	Used for Solving Two-Dimensional Transient Heat Conduction
	Problems
	Exercise 22.2 Concentrating (Lumped) Thermal Finite Element
	Capacity in FEM
	Exercise 22.3 Methods for Integrating Ordinary Differential
	Equations with Respect to Time Used in FEM
	Exercise 22.4 Comparison of FEM Based on Galerkin Method
	and Heat Balance Method with Finite Volume Method671
	Exercise 22.5 Natural Coordinate System for One-Dimensional,
	Two-Dimensional Triangular and Two-Dimensional Rectangular
	Elements

	Exercise 22.6 Coordinate System Transformations	
	and Integral Calculations by Means	
	of the Gauss-Legendre Quadratures	578
	Exercise 22.7 Calculating Temperature in a Complex-Shape Fin	
	by Means of the ANSYS Program	587
	Literature	
23	Numerical-Analytical Methods	693
20	Explicit Method	594
	Implicit Method	
	Crank-Nicolson Method	
	Exercise 23.1 Integration of the Ordinary Differential Equation	J74
		C05
	System by Means of the Runge-Kutta Method	393
	Exercise 23.2 Numerical-Analytical Method for Integrating	
	a Linear Ordinary Differential Equation System	598
	Exercise 23.3 Determining Steel Plate Temperature by Means	
	of the Method of Lines, while the Plate is Cooled	
	by air and Boiling Water	703
	Exercise 23.4 Using the Exact Analytical Method and the Method	
	of lines to Determine Temperature of a Cylindrical Chamber	709
	Exercise 23.5 Determining Thermal Stresses in a Cylindrical	
	Chamber using the Exact Analytical Method	
	and the Method of Lines	714
	Exercise 23.6 Determining Temperature Distribution	
	in a cylindrical Chamber with Constant and Temperature Dependent	
	Thermo-Physical Properties by Means of the Method of Lines	718
	Exercise 23.7 Determining Transient Temperature Distribution	
	in an Infinitely Long Rod with a Rectangular Cross-Section	
	by Means of the Method of Lines	724
	Literature	
24	Solving Inverse Heat Conduction Problems by Means	
	Numerical Methods	733
	Exercise 24.1 Numerical-Analytical Method	155
	for Solving Inverse Problems	722
	Exercise 24.2 Step-Marching Method in Time Used for Solving	155
		739
		139
	Exercise 24.3 Weber Method Step-Marching Methods	716
	in Space	/40
	Exercise 24.4 Determining Temperature and Heat Flux Distribution	
	in a Plate on the Basis of a Measured Temperature on a Thermally	
	Insulated Back Plate Surface; Heat Flux is in the Shape	
	of a Rectangular Pulse	751

Exercise 24.5 Determining Temperature and Heat Flux Distribution
in a Plate on the Basis of a Temperature Measurement
on an Insulated Back Plate Surface; Heat Flux
is in the Shape of a Triangular Pulse
Literature
25 Heat Sources
Exercise 25.1 Determining Formula for Transient Temperature
Distribution Around an Instantaneous (Impulse) Point Heat Source
Active in an Infinite Space767
Exercise 25.2 Determining Formula for Transient Temperature
Distribution in an Infinite Body Produced by an Impulse Surface
Heat Source770
Exercise 25.3 Determining Formula for Transient Temperature
Distribution Around Instantaneous Linear Impulse
Heat Source Active in an Infinite Space772
Exercise 25.4 Determining Formula for Transient Temperature
Distribution Around a Point Heat Source, which lies in an Infinite
Space and is Continuously Active
Exercise 25.5 Determining Formula for a Transient Temperature
Distribution Triggered by a Surface Heat Source Continuously
Active in an Infinite Space
Exercise 25.6 Determining Formula for a Transient Temperature
Distribution Around a Continuously Active Linear Heat Source
with Assigned Power q per Unit of Length
Exercise 25.7 Determining Formula for Quasi-Steady-State
Temperature Distribution Caused by a Point Heat Source
with a Power \hat{Q}_0 that Moves at Constant Velocity v
in Infinite Space or on the Half Space Surface
with Power $\dot{\mathbf{Q}}_{0}$ that Moves At Constant Velocity v
in Infinite Space or on the Half Space Surface
the Analytical Solution and FEM792
Literature

26 Melting and Solidification (Freezing)	799	
Exercise 26.1 Determination of a Formula which Describes		
the Solidification (Freezing) and Melting of a Semi-Infinite Body		
(the Stefan Problem)	803	
Exercise 26.2 Derivation of a Formula that Describes		
the Solidification (Freezing) of a Semi-Infinite Body Under		
the Assumption that the Temperature of a Liquid Is Non-Uniform	808	
Exercise 26.3 Derivation of a Formula that Describes Quasi-Steady-		
State Solidification (Freezing) of a Flat Liquid Layer	811	
Exercise 26.4 Derivation of Formulas that Describe Solidification		
(Freezing) of Simple-Shape Bodies: Plate, Cylinder and Sphere		
Exercise 26.5 Ablation of a Semi-Infinite Body		
Exercise 26.6 Solidification of a Falling Droplet of Lead	823	
Exercise 26.7 Calculating the Thickness of an Ice Layer After		
the Assigned Time		
Exercise 26.8 Calculating Accumulated Energy in a Melted Wax	826	
Exercise 26.9 Calculating Fish Freezing Time	828	
Literature	829	
Appendix A Basic Mathematical Functions	831	
A.1. Gauss Error Function	831	
A.2. Hyperbolic Functions	833	
A.3. Bessel Functions		
Literature	835	
*		
Appendix B Thermo-Physical Properties of Solids	837	
B.1. Tables of Thermo-Physical Properties of Solids	837	
B.2. Diagrams	856	
B.3. Approximated Dependencies for Calculating Thermo-Physical		
Properties of a Steel [8]	858	
Literature	861	
Appendix C Fin Efficiency Diagrams (for Chap. 6, Part II)	863	
Literature	865	
<i>40</i>		
Appendix D Shape Coefficients for Isothermal Surfaces		
with Different Geometry (for Chap. 10, part II)	867	
Appendix E Subprogram for Solving Linear Algebraic Equations System using Gauss Elimination Method (for Chap. 6, Part II)879		
Appendix F Subprogram for Solving a Linear Algebraic Equations		
System by Means of Over-Relaxation Method		

٠.,

Appendix G Subprogram for Solving an Ordinary Different	ential
Equations System of 1st order using Runge-Kutta Method	đ
of 4th Order (for Chap. 11, Part II)	
Appendix H Determining Inverse Laplace Transform	
Appendix H Determining Inverse Laplace Transform for Chap. 15, Part II)	

ı

ø