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Abstract: With the evolution of the Internet and the introduction of third-party platforms, a diversified
supply chain has gradually emerged. In contrast to the traditional single sales channel, companies
can also increase their revenue by selling through multiple channels, such as dual-channel sales:
adding a sales channel for direct sales through online third-party platforms. However, due to the
complexity of the supply chain structure, previous studies have rarely discussed and analyzed
the capital-constrained dual-channel supply chain model, which is more relevant to the actual
situation. To solve more complex and realistic supply chain decision problems, this paper uses the
concept of game theory to describe the pricing negotiation procedures among the capital-constrained
manufacturers and other parties in the dual-channel supply chain by applying the Stackelberg game
theory to describe the supply chain structure as a hierarchical multi-level mathematical model to
solve the optimal pricing strategy for different financing options to achieve the common benefit of
the supply chain. In this study, we propose a Multi-level Improved Simplified Swarm Optimization
(MLiSSO) method, which uses the improved, simplified swarm optimization (iSSO) for the Multi-level
Programming Problem (MLPP). It is applied to this pricing strategy model of the supply chain and
experiments with three related MLPPs in the past studies to verify the effectiveness of the method.
The results show that the MLiSSO algorithm is effective, qualitative, and stable and can be used to
solve the pricing strategy problem for supply chain models; furthermore, the algorithm can also be
applied to other MLPPs.

Keywords: dual-channel supply chain; pricing strategy; Stackelberg game; multi-level programming;
improved simplified swarm optimization

1. Introduction

Supply chain systems have been progressively diversifying besides conventional
retailing manners. Nowadays, the increased competition and globalization of the market
have become necessary for different individuals in the supply chain to cooperate to achieve
mutual benefits. The competitions within the supply chain have catching researchers’
attention [1,2].

Supply chain management (SCM) handles the entire production flow of a good or
service, which is a network that moves the product along from the suppliers of raw
materials to those organizations that deal directly with users. In addition, due to the
invention and growth of the internet, the prosperity of third-party platforms—online
retailing, has gradually increased; companies can engage an additional sales channel in
direct selling their products to customers and create various ways of sales to increase
income. The appearance of multi-channel supply chain management issues is due to the
rapid growth of e-commerce, which has led some manufacturers to sell their products online
and increase their sales channels to remain competitive and increase the accessibility of
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their products. The increase in sales channels represents the complexity of their competition
as well as coordination. The market demand is sensitive to the selling price set by the
seller, so in a supply chain system, pricing strategy is a complex and tedious decision with
numerous factors that affect it.

With all these buying and selling behaviors in business activities, many variables are
considered by either the seller or the buyer. Each party is expected to achieve its desired
benefit or goal in conducting the activity. Under this premise, the parties coordinate to
reach a consensus and gain equilibrium through repeated communication for possible
requests to achieve compromises. Therefore, replacing traditional corporate goals with
overall value maximization through a holistic approach to the supply chain is a key issue
for companies to consider nowadays. Decentralized decision-making occurs when there
is a conflict between decision-makers. A hierarchical structure of decentralized decision-
making should be carried out according to organizational departments. The objectives of
the decision-makers are independent, and they are aimed at maximizing their own profits.

In reality, however, the situation is actually not that simple. There may be some
conflict of interest because the asymmetry of the market position causes an asymmetry in
the order of decision making for this German economist Heinrich Freiherr von Stackelberg
proposed the Stackelberg model in 1934 to describe this situation of priority order decision
making with leaders and followers [3]. In addition, the equilibrium point of this problem
is determined through the solution of the Stackelberg game. The Nash equilibrium does
not guarantee the best resolution for all decision-makers, the result may not be the most
favorable situation, but it is an acceptable outcome for all parties. As a result, some
studies use the method of multi-level programming (MLP), a mathematical model for
solving decentralized decision-making problems, as an extension of the Stackelberg game
to find the solution [4–6]. The key feature of this model is that the decision-makers have
independent objective functions at each level of the hierarchy and control over the selection
of decision variables.

The earliest proofs that a multi-level programming problem (MLPP) is an NP-hard
problem are Ben & Blair (1990) [7] and Bard (1991) [8], and the bi-level programming
problem (BLPP) they solved and proposed is derived from the MLPP problem, so the
more complex MLPP also belongs to the NP-hard problem. Because of its limitations and
complexity, it is more difficult to solve large-scale problems by mathematical planning
methods. In recent years, researchers have adopted the more efficient meta-heuristic
algorithm to obtain approximate solutions [6,9–12], which may not always lead to the best
solution, but can handle more complex MLPP problems.

Nowadays, with increasingly complex supply chain relationships, companies need to
be equipped with better decision models to manage their own goals. These problems can
be solved by proposing suitable algorithms that can solve MLPP in a reasonable time and,
at the same time, obtain an acceptable quality of the solution. The relationship between the
supply chain network and the logistics distribution scheduling as regards applying swarm
optimization algorithms proposed by some scholars, they harnessed the machine learning
method, algorithms in the retailing environment in dynamic assessment to determine
the users’ trends and patterns and grasp customer attitudes and feelings [13–16].The
improved Simplified Swarm Optimization (iSSO) designed by Yeh [17] in 2015 is one of the
evolutionary algorithms and stochastic optimization algorithms. It is characterized by the
simplicity and efficiency of the iterative method. The algorithm demonstrates its excellent
efficiency and generates high-quality solutions in solving most of the continuity problems.

Based on the above-mentioned excellent features, we propose an approach that uses
iSSO to further optimize the pricing strategy by constructing an MLPP model that can
effectively maximize the profit among all parties.

The purpose of this study is to investigate the use of an MLPP to solve the pricing
problem of the supply chain, considering the financing decision options under dual sales
channels where different options generate different interactions among the parties in the
supply chain that will affect the pricing strategy. Therefore, this paper first uses the study
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of Zhen (2020) [18] as the basis of the mathematical model of a dual-channel supply chain
system to analyze the profit formula of each party under different financing strategies.

This study aims to develop a method to solve the NP-hard problem of MLPP and con-
struct and investigate the multi-level supply chain system by exploring how the decision-
makers in the supply chain system should decide on the best pricing strategy to maximize
the profit. By considering various competing influences, the benefits of the supply chain
system are maximized by making pricing decisions that satisfy all parties. Thus, the ideal
situation is to prioritize the manufacturer’s best interests and minimize the costs of all
parties while achieving the best interests of the other parties.

The study objectives can be summarized as follows,

1. Build an MLPP model to obtain the equilibrium solution of pricing strategy in the
dual-channel supply chain system.

2. Study and analyze the best decision for the manufacturer on finance strategy.
3. Apply the improved, simplified swarm optimization algorithm to multi-level pro-

gramming problems.

The rest of this article is organized as follows. Section 2 lists the theoretical basis of
the research. Section 3 describes the supply chain model, including proposed symbols,
assumptions, and mathematical models. In Section 4, we introduce the research method,
including the concept of MLPP and iSSO, and discuss the novelty and steps of the proposed
MLiSSO. In Section 5, we analyzed the effects of the proposed method and described
in detail the results of the above-mentioned supply chain pricing strategy. Finally, our
conclusions are given in Section 6.

2. Literature Review
2.1. Dual-Channel Supply Chain

Nowadays, due to the rapid development of technology, various sales models have
emerged in our society. In response to the purchasing habits of the new generation, the
development of online retailing has become more and more prevalent.

In addition to traditional sales channels, upstream manufacturers in the supply chain
are gradually developing channels to sell their products directly online. In this way, sales
can be managed through a third-party platform without expanding your physical store or
website and only require the costs associated with the platform, such as profit sharing and
rent; the structure of the dual-supply chain is shown in Figure 1. Various studies on the
supply chain phenomenon are also available in the market with service competition [19],
channel selection [20], pricing strategies [21], and dual-channel supply chains [22].
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Channel competition holds an important role in dual-channel supply chain manage-
ment. For example, Bernstein et al. (2009) address how competition between both retail
and direct channels affects decisions made by manufacturers on supply chain structure [23].
Ryan et al. (2012) discussed the price competition and coordination in a dual-channel
model [24]. Saha (2016) compared the performance of the manufacturer, the distributor, the
retailer, and the entire supply chain in three different supply chain structures to prove that
under some conditions that a dual-channel can outperform a single retail channel [25].

However, the studies on dual-channel supply chains mostly do not assume that firms
are capital constrained; therefore, this study uses the financing strategy preferences of
capital-constrained firms in the dual-channel supply chain proposed by Zhen in 2020 [18]
while considering the financing strategies of third-party platforms in SCM. As a result, this
study considers the operational management and financing strategy preferences of supply
chain systems in the above-mentioned points.

Therefore, based on the model proposed by Zhen [18], this study examines the two
aforementioned financing approaches for dual-channel competition and consumer con-
siderations and presents the decision relationships between manufacturers and retailers
with three different financing strategies. In addition, we compare the impact of cost and
revenue on manufacturers, retailers, and lenders in the supply chain, maximizing profit
and minimizing each cost to obtain the best pricing decision for the entire supply chain.

2.2. Supply Chain Finance

As the members of the supply chain gain benefits by selling their products while
the market demand is sensitive to the selling price of the products, therefore, the pricing
decision plays an important role in the profit optimization of the supply chain [6]. In con-
sidering changes in the correlation between product prices and market demand, companies
can make profit analysis and pricing strategies efforts [26].

Lack of funding may be a hindrance to business development. There are two types of
financing discussed in the literature on supply chain financing. One type of financing is
external financing, which is defined as loans from institutions outside the supply chain,
such as banks, third-party logistics, or other financial institutions. The other is internal
financing, defined as loans from companies in the supply chain to their upstream or
downstream companies, such as trade credit and buyer’s credit [27].

Most research on internal financing has examined trade credit financing, with the
majority of studies focusing on contract coordination and operational decisions under
credit risk [28,29]. For external financing, the emphasis is on how the financing affects
inventory or operations management and supply chain coordination [30,31]. Unlike the
previous studies, Zhen (2020) focuses on the capital constraints of upstream firms under
channel competition. This study is significant in examining how the capital constraints of
upstream manufacturers affect the operation of dual channels [18].

When sales are not limited to traditional retail channels, to maximize the overall
revenue is to develop a multi-channel pricing strategy, and it is cooperation and negotiation
between each member in the supply chain system which can be considered as a game.
For example, Matsui (2017) proposed that it would be appropriate for the manufacturer
to release the direct selling price before the wholesale price is set. A sub-game perfect
Nash equilibrium with the non-cooperative game of channel members is reached, and
the manufacturer’s profit is maximized [1]. The subgame perfect Nash equilibrium of the
non-cooperative game with channel members is reached, and the manufacturer’s profit is
maximized.

2.3. Game Theory

Game theory is considered to be one of the most effective tools for dealing with these
management problems. The well-known Prisoner’s Dilemma and the Nash Equilibrium of
modern noncooperation have become important concepts in game theory.
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The strategic interactions between players are what game theory studies as the real-life
dilemma that we often encounter. A strategic interaction means that the optimal choices
of one player depend on other players’ optimal choices and vice versa. Assume that each
player is aware of the equilibrium strategies of the other players. In addition, none of the
players gains any benefit by unilaterally changing its own strategy.

Increasingly, research papers are applying game theory to supply chain manage-
ment [2,32,33]. Cachon and Zipkin [34] addressed the Nash equilibrium in a non-cooperative
supply chain with one supplier and multiple retailers. Hennet and Arda [35] evaluated
the efficiency of different types of contracts among industrial parties in a supply chain.
Tian et al. [36] proposed a dynamic system model for green supply chain management based
on evolutionary game theory, which applied game-theoretic methods to decision-making
purposes.

2.4. Stackelberg Game

Several researchers have studied through game theory about coordination between
manufacturers and retailers [37,38]. Each member attempts to maximize their own profit, a
situation known as a non-cooperative game.

Since the market position asymmetry leads to the asymmetry of the decision sequence,
there may be some conflict of interest. For this reason, the German economist Heinrich
Freiherr von Stackelberg proposed the Stackelberg model in 1934 [3]. The Stackelberg
model emphasizes the sequential relationship of decisions. In a game, the player who
decides on a decision firstly is called the first player, while the other player is called the
follower. When the first player decides his own strategy, he has already taken into account
the possible decisions made by the followers in response to the first player’s decision. After
the first player’s decision, the follower observes the first player’s decision and thinks about
the effect of the strategy on itself, and then makes the best response decision. The whole
process means that both sides in the game make decisions based on the pursuit of their
own best goals while considering the possible best response of the other side.

In the Stackelberg non-cooperative game, the dominant (leader) member controls
the other members who act after the leader (followers). After estimating the reactions of
other members, the leader will take the first decision [39]. The aforementioned hierarchical
structure and the sequential nature of decision-making are consistent with the context set
by Stackelberg’s theory. Therefore, the main modeling framework in this paper applies the
Stackelberg model in the tournament.

According to the number of participants, the Stackelberg game can be divided into
four main structures, as shown in Figure 2.
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2.5. Multi-Level Programming Problem

In this section, we first review the development of techniques for solving the Stackel-
berg game problem, then addresses the general formulation of the bi-level programming
problem model and multi-level programming problem model.

The multilevel programming problem (MLPP) is an extension of the Stackelberg
game [39]. It aims to solve decentralized planning involving multiple decision-makers,
where each member seeks to maximize its own interests in a hierarchical organization.
This mathematical model has been widely used in practical problems such as resource
allocation [4], transportation network design [5], and pricing and lot-sizing [6].

When decision-makers conflict with each other, a decentralized decision-making
problem arises. The decentralized decision-making should be by organization departments
and form a kind of hierarchical structure. The decision makers’ objectives are independent
and may have some conflict of profit. Every decision-maker always wants to achieve a win-
win situation called “dominant strategic equilibrium." However, in reality, the situation
is actually not that simple. Nash equilibrium does not guarantee the best solution for
every decision-maker, but it can get the best solution under the consideration of the entire
group; therefore, multilevel programming (MLP) would be needed to find a solution.
Zhou (2012) used game theory to determine the optimal pricing strategy to maximize
the multilevel remanufacturing reverse supply chain [40]. Sadigh et al. (2012) found the
optimal equilibrium of price, advertising spending, and production strategy in a bi-level
programming approach [41].

The multilevel programming model has more advantages compared to the traditional
single-level programming model. Its main benefits are (1) multilevel planning can be
applied to analyze both different or even conflicting objectives in the decision process;
(2) The multi-criteria approach of bi-level planning for decision-making can better reflect
the actual problem; (3) The multi-level planning approach can denote the interactions
between decision-makers.

In the current development of multi-level programming, several challenges emerge
(1) Large scale—due to high dimensional decision variables for multi-level decision prob-
lems which become complex; (2) Uncertainty—with the uncertain information causing
imprecise or unclear decision parameters and conditions for the decision subjects con-
cerned; (3) Variety—with the possibility of the existence of multiple decision subjects with
various relationships among them in each decision level. Yet, existing decision models
or solution methods cannot fully and effectively handle these large-scale, uncertain and
diverse multilevel decision problems [42].

There are two fundamental problems in solving MLPPs from a practical point of
view. The first is the way to construct a multilevel decision model that describes the
hierarchical decision process. Depending on the number of objectives involved, including
dual objectives or multiple objectives; the number of members involved, including single
leaders and followers or multiple leaders and followers; and the number of layers in
the structure, including the bi-level programming problem (BLPP) or the MLPP. The
BLPP is a special type of MLPP, and most of the research has been devoted to the BLPP
study [9–11,41,43]. In addition, MLPP making that it is more complex than BLPP has been
studied in depth in model building.

A further problem is how to identify methods for optimizing decisions. Several
solving methods have been developed to solve these problems, broadly classified as exact
algorithms and intelligent optimization algorithms. On the basis of the complexity of
solving MLPP solutions, Ben & Blair (1990) proved through the well-known knapsack
problem that BLPP is an NP-hard problem [7], and Bard (1991) even proved that BLPP is
also an NP-hard problem through the search for locally optimal solutions [8]. This leads to
exact algorithms that are time-consuming in solving nonlinear, discrete, and multi-optimal
versions of large-scale problems that rely heavily on target function differentiability, which
is not universally applicable [42].
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At present, to obtain the optimal solution of MLPP, metaheuristic algorithms or
innovative computations have been designed and widely used to solve BLPP and MLPP,
i.e., Liu (1998) proposed a genetic algorithm for solving the Stackelberg-Nash equilibrium
problem for generic MLPP with multiple followers [12], and Ma et al. (2013) using Particle
Swarm Optimization (PSO) to solve BLPP on supply chain model [6]. Moreover, extending
these algorithms to solve MLPPs is difficult and sometimes almost impossible. The main
reason why solving MLPPs remains difficult is the lack of efficient algorithms; this is the
biggest obstacle to the MLP problem [35,37].

Consequently, a more efficient algorithm has to be developed to solve large-scale
BLPP and these algorithms can also be extended to solve MLPP. Thus, in this paper, we
propose a multi-level improved, simplified swarm optimization (MLiSSO) method to
solve the complex pricing strategy problem of a dual-channel supply chain involving
multi-decision-makers, which are applied with a multi-level structure.

2.5.1. Bi-Level Programming Problem

A special case of a multi-level programming problem(MLPP) with a two levels struc-
ture is the bi-level programming problem (BLPP) [44]. The general form of the BLPP
structure is shown in Figure 3.
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Assume that upper-level decision-makers are given control over X, and lower-level
decision-makers are given control over Y. Thus, we have x ∈ X ⊂ RP, y ∈ Y ⊂ Rq, and
F, f : RP × Rq → R1 . The general BLPP can be formulated as follows:

Min
xεX

F(x, y) (Leader) (1)

s.t. G(x, y) ≤ 0 (2)

where y, for each x fixed, solves the problems Equations (3) and (4).

Min
yεY

f (x, y) (Follower) (3)

s.t. g(x, y) ≤ 0 (4)

The leader is the upper-level decision-maker Equation (1), and the follower is the
lower-level decision-maker Equation (3). Depending on the demands of the model, x and y
may have some additional restrictions, such as integer restrictions or limits on upper and
lower bounds.

Based on these, we have the following definitions [45]:
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Definition 1.1.

1. The problem constraint region,

S = {(x, y) ∈ X×Y : G(x, y) ≤ 0, g(x, y) ≤ 0} (5)

2. The follower feasible set for each fixed x,

S(x) = {y ∈ Y : g(x, y) ≤ 0} (6)

3. The follower rational reaction set,

P(x) = {y ∈ Y : y ∈ arg min[ f (x, y) : y ∈ S(x)]}. (7)

4. The problem inducible region (IR),

IR = {(x, y) : (x, y) ∈ S, y ∈ P(x)}. (8)

5. The problem optimal solution set,

OS = {(x, y) : (x, y) ∈ argmin[F(x, y) : (x, y) ∈ IR]} (9)

Definition 1.2. This section may be divided into subheadings. It should provide a concise and
precise description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

Definition 1.3. For ∀(x, y) ∈ IR, i f ∃(x∗ ,y∗) ∈ IR, F(x∗, y∗) ≤ F(x, y), then (x∗, y∗) is an
optimal solution of problem.

2.5.2. Multi-Level Programming Problem

In many applications, the problem of decentralized decision-making within a hier-
archical system tends to include more than two levels, which are known as multi-level
programming problems (MLPP). The general form of MLPP—tri-level structure is shown
in Figure 4.
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For x ∈ X ⊂ RP, y ∈ Y ⊂ Rq, z ∈ Z ⊂ Rr, The general tri-level decision problem
presented by Faísca [41] is defined as follows:

Min
xεX

f1(x, y, z) (Leader) (10)

s.t.g1(x, y, z) ≤ 0 (11)

where (y, z), for each x fixed, solves the problems Equations (12)–(15)

Min
yεY

f2(x, y, z) (Middle− level follower) (12)

s.t.g2(x, y, z) ≤ 0 (13)

where z, for each (x, y) fixed, solves the problems Equations (14) and (15)

Min
zεZ

f3(x, y, z) (Bottom− level follower) (14)

s.t. g3(x, y, z) ≤ 0 (15)

where x, y, z are the decision variables of the leader, the middle-level follower, and the
bottom-level follower, respectively; f1, f2, f3 : RP × Rq × Rr → R are the objective func-
tions of the three decision entities, respectively; gi : Rp × Rq × Rr → Rki , i = 1, 2, 3 are
the constraint conditions of the three decision entities respectively.

Based on these, we have the following definitions [46]:

Definition 2.1.

6. The problem constraint region,

S = {(x, y, z) ∈ X×Y× Z : gi(x, y, z) ≤ 0, i = 1, 2, 3} (16)

7. The middle-level follower feasible set for each fixed x,

S(x) = {(y, z) ∈ Y× Z : z ∈ g2(x, y, z) ≤ 0, g3(x, y, z) ≤ 0} (17)

8. The bottom-level follower feasible set for each fixed (x, y),

S(x, y) = {z ∈ Z : g3(x, y, z) ≤ 0} (18)

9. The bottom-level follower rational reaction set,

P(x, y) = {z ∈ Z : z ∈ argmin[ f3(x, y, z) : z ∈ S(x, y)]} (19)

10. The middle-level follower rational reaction set,

P(x) = {y, z ∈ Y× Z : (y, z) ∈ argmin[ f2(x, y, z) : (y, z) ∈ S(x), z ∈ P(x, y)]} (20)

11. The problem inducible region,

IR = {(x, y, z) : (x, y, z) ∈ S, (y, z) ∈ P(x)} (21)

12. The problem optimal solution set,

OS = {(x, y, z) : (x, y, z) ∈ argmin[ f1(x, y, z) : (x, y, z) ∈ IR]} (22)
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To develop an efficient algorithm to solve a 3 levels decision problem, it is necessary
to explore the geometry of the solution space and the associated theoretical properties. The
following assumptions are usually made to ensure that the problem is well formulated in
terms of the existence of a solution.

Assumption 2.1. f1, f2, f3, g1, g2, g3 are continuous functions, whereas f2, f3, g1, g2, g3 are
continuously differentiable.

Assumption 2.2. f3 is strictly convex in z for z ∈ S(x, y) where S(x, y) is a compact convex set,
while f2 is strictly convex in (y, z) for (y, z) ∈ S(x) where S(x) is a compact convex set.

Assumption 2.3. f1 is continuous convex in x, y, and z.

Under Assumptions 2.1 and 2.2, the rational reaction sets of the bottom-level follower
and the middle-level follower P(x, y) and P(x) are point-to-point maps and closed, which
implies that IR is compact. Thus, under Assumption 2.3, solving the tri-level decision
problem is equivalent to optimizing the leader’s continuous function f1 over the compact
set IR. It is well known that the solution to such a problem is guaranteed to exist.

It is noticeable that if the bottom-level follower’s problem is a convex parametric
programming problem that satisfies the Karush–Kuhn–Tucker Conditions (KKT) for each
fixed (x, y) [45,47], the bottom-level follower’s problem is equivalent to the following
KKT Equations (23)–(26):

5zL(x, y, z, u) = 5z f3(x, y, z) + u5zg3(x, y, z), (23)

ug3(x, y, z) = 0, (24)

g3(x, y, z) ≤ 0, (25)

u ≥ 0 (26)

where 5z f3(x, y, z) + u5zg3(x, y, z) is the Lagrangian function of the bottom-level fol-
lower, 5zL(x, y, z, u) denotes the gradient of the function, for z and u is the vector of
Lagrangian multipliers. A necessary and sufficient condition that (y, z) ∈ P(x) is that the
row vector u exists such that (x, y, z, u) satisfies the KKT Equations (23)–(26).

On this basis, by replacing the bottom-level follower problem with the KKT
Equations (23)–(26), the tri-level programming problem can be transformed into a bi-level
programming problem. The converted equation is shown below:

Min
x

f1(x, y, z) (Leader) (11) (27)

where (y, z), for each x fixed, solves the problems Equations (22)–(25)

Min
y,z,u

f2(x, y, z) (Follower) (12) (28)

5z f3(x, y, z) + u5zg3(x, y, z) = 0 (24)–(26) (29)

In this research, the proposed MLiSSO algorithm is extended to solve a multi-level supply
chain pricing problem to find a solution (x, y, z) based on Equations (11), (12) and (27)–(29).

2.6. Improved Simplified Swarm Optimization (iSSO)

In this study, because of the NP-hard nature of the multi-level model, we propose a
solution procedure based on a novel, convenient and efficient heuristic algorithm called
improved Simplified Swarm Optimization (iSSO) [17], which is based on the Simplified
Swarm Optimization (SSO) [48] that can perform a full domain search over a large feasible
solution space and enhance the solution quality of the algorithm during the search process.
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In 2009, Yeh designed the Simplified Swarm Optimization (SSO) [43] to overcome the
shortcomings of PSO proposed by Kennedy and Eberhart [49], which was developed based
on human observation of birds foraging behavior and a little weak for discrete problems.
The targeting principle was used to update variables quickly, which only uses one random
number, two multiplications, and one comparison after cw, cp, and cg are given in SSO.
According to the results of Yeh [50,51], SSO is more efficient in converging to high-quality
solution spaces in some problems.

The update mechanism of SSO is very simple, efficient and flexible [48,50–56], and can
be presented as a stepwise-function update:

xt+1
ij =


gj, i f ρ[0,1] ∈

[
0, Cg

)
pij, i f ρ[0,1] ∈

[
Cg, Cp

)
xt

ij, i f ρ[0,1] ∈
[
Cp, Cw

)
x, i f ρ[0,1] ∈ [Cw, 1)

(30)

All variables need to be updated in traditional SSO (called all-variable update),
i = 1, 2, . . . , Nsol, j = 1, 2, . . . , Nvar, t = 0, 1, 2, . . . , Ngen − 1. Let Xt

i ={
xt

i1, xt
i2, . . . , xt

iNvar
}

represent the ith solution in the t generation, and in the formula of
Equation (30), xt

ij is expressed as the jth variable in Xt
i ; Nvar represents the number of

variables; cw, cp, and cg are a preset constant; pt
ij is the best solution in its evolutionary

history; gj is the jth variable of the best solution ever, and x is a random number between
the lower bound and the upper bound of the jth variable.

Then to further improve the ability of SSO to solve continuous type problems, Yeh
introduced the improved Simplified Swarm Optimization (iSSO) in 2015 [17]. A continuous
version of SSO with a new update mechanism is proposed in this work to enhance the
ability to solve continuous problems with traditional SSO. To date, iSSO has been success-
fully applied to many sequential problems, as shown in Yeh [57,58], with experimental
results demonstrating its effectiveness in solving sequential problems and its ability to
produce high-quality solutions. The update mechanism of iSSO is much simpler than the
major soft computing technique-PSO (which must calculate both the velocity and position
functions) [18,48,54–56].

The update mechanism of iSSO can be presented as follows:

xt+1
ij =


xt

ij + rt
ij[−0.5,0.5]

·uj i f xt
ij = gi or ρt

ij[0,1]
∈ [0, Cr = cr)

gj + rt
ij[−0.5,0.5]

·uj i f xt
ij 6= gi and ρt

ij[0,1]
∈ [Cr, Cg = cr + cg)

xt
ij + rt

ij[−0.5,0.5]
·(xt

ij − gj) i f xt
ij 6= gi and ρt

ij[0,1]
∈ [Cg, 1 = cr + cg + cw)

(31)

uj =
xmin

j − xmax
j

2·Nvar
(32)

As defined in Equation (36), Cr = cr, Cg = cr + cg. In addition, in Equation (32), uj is
calculated with the variable’s lower-bound xmin

j , the upper-bound xmax
j , and the numbers

of variables. For each update, a random number ρt
ij that is uniformly distributed between

[0, 1] is randomly generated first, and rt
ij is a random number that is uniformly distributed

between [−0.5, 0.5]. To compare ρt
ij with the three constants Cr, Cg, and Cw, if 0 < ρt

ij < Cr,
the variable is updated according to the first term of Equation (31); if t, the variable is
updated according to the second term of Equation (31) to find the adjacent values of g. If
Cr < ρt

ij < Cg, the variable will be updated according to the third term of Equation (36) to
find a value between the interval from itself to gj.
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If the variable does not meet the upper and lower bound restrictions, the variable will
be set to the nearest boundary value. If Xt+1

i does not outperform Xt
i in the target function,

then Xt+1
i = Xt

i and will not be updated.
So far, only a few papers have studied dual-channel supply chains under capital

constraints, which can be regarded as an MLPP. To solve these problems, we apply a
continuous-type algorithm iSSO on MLPP to deal with these pricing strategy problems.
The detailed algorithmic procedure will be presented and explained in Section 4.

3. Statement
3.1. Model Description

To solve the optimal pricing strategy for the overall supply chain and to further
illustrate the hierarchical and interactive relationships among the supply chain decisions,
we use a multi-level programming problem to describe the master-slave decision structure
of the proposed capital constraint dual-channel supply chain model by Zhen [18]. The
Stackelberg game is applied to the model due to the aforementioned level structure of the
supply chain system and the sequential relation of decision-making is consistent with the
context set. As a result and according to the different financing strategies, the supply chain
structure can be divided into two types: bi-level and tri-level planning models to present
the decisions made by all members of the supply chain in pursuit of their own optimal
goals while considering the optimal responses of each other. This chapter introduces the
assumptions, notations, and mathematical models of the problem.

3.2. Assumptions

All assumptions regarding the study are described below.

1. This study constructs a dual-channel supply chain model with three levels of the
supply chain (manufacturer→ retailer→ customer) to profit maximization.

2. The manufacturer’s initial capital is zero and must repay the entire capital liability.
3. The basic principle of profitability is that the price must be designed to meet the

conditions of profitability for all parties.
4. In the model, neither the upstream manufacturer nor the downstream manufacturer

considers the inventory problem. The upstream manufacturer ships as much product
as it makes to the downstream retailer. The downstream manufacturer buys as much
as it can and sells it all to the market.

3.3. Notations

According to the article published by Zhen [18], the notation in Table 1 is used in the
capital-constrained dual-channel supply chain model.

Table 1. Notations of the dual-channel supply chain model.

Type Symbol Description

parameter

a The total potential market size.

λ
The underlying market share of the retailer for the manufacturer is
(1− λ). 0 ≤ λ ≤ 1.

b Demand sensitivity to its selling/retail price. 0 < b ≤ 1.

d The coefficient of cross− price sensitivity. 0 < d ≤ 1.

c Product production cost.

η Revenue sharing of 3rd party platform. 0 < η ≤ 1.

i
Finance strategy for:

i =


B, bank f inance strategy.
T, 3rd plat f orm f inance strategy.
R, retailer f inance strategy.
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Table 1. Cont.

Type Symbol Description

variables

wi

Wholesale price, for i =


B
T
R
None

, wi ≥ 0.

Pi
R

Retailer′s retail channel retail price, with finance strategy
for i = B, T or R. Pi

R ≥ 0.

Pi
M

Manufacturer′s direct channel selling price through 3rd party
platform, with finance strategy for i = B, T or R. Pi

M ≥ 0.

qi
R Retail channel demand, with finance strategy for i = B, T or R.

qi
M Direct channel demand, with finance strategy for i = B, T or R.

ri Revenue sharing rate, with finance strategy for
i = B, T or R. 0 < ri ≤ 1.

In general, in each channel, the demand is mainly influenced by its own price; therefore,
it is assumed that b > d. In addition, we also assume a > (b− d)(PM + PR) as the demand
is not negative.

3.4. The Mathematical Model Description

A dual-channel supply chain with the aim of profit maximization is considered in this
article, with a manufacturer to produce a unit product at cost c. The manufacturer has two
sales channels in this market. One is the retail channel, where the manufacturer sells the
product at wholesale price w to the retailer, which sells it at retail price PR to the consumer,
and this channel is also known as the traditional channel. The other channel is the direct
sales channel. The manufacturer sells the products directly to the consumers at the selling
price PM through a third-party platform, also called the third-party platform channel. The
structure of the supply chain model is shown in Figure 5; the solid black line indicates that
the products are sold to retailers through wholesale; the dotted black line indicates that the
products are sold directly through a third-party online platform, and the platform fee η is
paid for the cooperation.

In addition, the demands in this market are variables, defined as manufacturer demand
qM and retailer demand qR, respectively. It is assumed that the demand structure of this
supply chain is a linear price dependence, which is widely used in the literature [59]. The
demand functions are as follows,

qR = λa− bPR + dPM (33)

qM = (1− λ)a− bPM + dPR (34)

where b means that a unit of price reduction increases the demand by b, corresponding to
marginal and switching customers. A large value of d corresponds to switching customers
who are sensitive to differences between the selling price and the retail price. In other words,
the degree of differentiation between direct and retail channels decreases as d increases.
Thus, d captures the degree of competition between the two channels [60,61].

To find the optimal financing decision and related pricing outcome for this model, we
try to maximize the profits for manufacturers, retailers, third-party platforms, and the bank.
The objective function and constraints of the model are described in the next part.
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3.5. Model Construction

Based on the proposed dual-channel supply chain model proposed in [18] and due to
the hierarchical decision relationship of the model, we formulate the supply chain model
as an MLPP according to the literature review as follows:

(a) Retailer

Max = wRqR
R + (1− η)PR

MqR
M − c

(
1 + rR

)(
qR

M + qR
R

)
(35)

Max =
(

PR
R − wR

)
qR

R + rRc
(

qR
M + qR

R

)
(36)

(b) Bank

Max f1 = wBqB
R + (1− η)PB

MqB
M − c

(
1 + rB

)(
qB

M + qB
R

)
(37)

Max f2 =
(

PB
R − wB

)
qB

R (38)

Max f3 = rBc
(

qB
M + qB

R

)
(39)

(c) 3rd Party Platform

Max f1 = wTqT
R + (1− η)PT

MqT
M − c

(
1 + rT

)(
qT

M + qT
R

)
(40)

Max f2 =
(

PT
R − wT

)
qT

R (41)

Max f3 = ηPT
MqT

M + rTc
(

qT
M + qT

R

)
. (42)
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(d) Constraints of all

s.t. a > (b− d)
(

Pi
M + Pi

R

)
(43)

wiqR + (1− η)Pi
Mqi

M > c
(

qi
R + qi

M

)(
1 + ri

)
(44)

Pi
R ≥ wi ≥ c

(
1 + ri

)
(45)

Pi
M ≥ c

(
1 + ri

)
(46)

Pi
M ≥ wi (47)

Equation (35) means the manufacturer’s maximum profit with retailer finance strategy,
and Equation (36) means the retailer’s maximum profit with retailer finance strategy.

Equation (37) means the manufacturer’s maximum profit with bank finance strat-
egy, Equation (43) means the retailer’s maximum profit with bank finance strategy, and
Equation (38) means the bank’s maximum profit with bank finance strategy.

Equation (39) means the manufacturer’s maximum profit with a third-party platform
finance strategy, Equation (40) means the retailer’s maximum profit with a third-party
platform finance strategy, and Equation (41) means the third-party platform’s maximum
profit with a third-party platform finance strategy.

These three problems all share the same constraints for each layer of Equations (43)–(47).
For Equation (43) means demand should not be negative. To fulfill Equation (44), man-
ufacturers must set a selling price that ensures their revenue is greater than its cost. For
Equations (45) and (46), we assume that channel prices must exceed marginal costs. For
Equation (47), the retailer cannot purchase from the direct channel, so the selling price of
the direct channel must not be lower than the wholesale price.

4. Methodology
4.1. Multi-Level Improved Simplified Swarm Optimization (MLiSSO)

In this study, we propose an MLiSSO approach to apply iSSO to MLPP, including the
following functional concepts, which are described in detail in the subsequent subsections.

The basic idea of MLPP can be explained as follows, for a strategy given by the
leader, followers are assumed to react rationally. The resulting decisions of the leader and
the followers can be considered as the “outcome” of the problem. If the leader chooses
a different strategy, the outcome will change accordingly. The inducible region is then
defined as the set of these outcomes for all the leader’s strategies. Thus, the best outcomes
that the leader can induce are the best results in the inducible region.

Therefore, in this paper, based on the main constraints of MLPP solving, we use
the following methods to ensure the implementation of the above ideas and to avoid
the problem of the solving process falling into the best solution of the region, as well as
to ensure that it presents the characteristics of the MLPP model and the generation of
feasible solutions.

4.1.1. Improved Simplified Swarm Optimization (iSSO)

For the update mechanism iSSO we used in this paper, which is mentioned in
the literature review [17], to maintain the diversity of the solution, we add the condi-
tion of partial best pij back into the formula, set the random range for turbulence to
[−0.001, 0.001], and make the value of uj decrease as the number of generations increases.
Equations (48) and (49) are the core formulas when iSSO evolves. Thus, there are four
evolution scenarios for xt+1

ij : oscillating near gj, oscillating near Pij, oscillating near the
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original value, or evolving to the point between the original value and gj. The evolution
decision is determined by ρt

ij.
The modified formula is as follows:

xt+1
ij =


gj + ρ[−0.001,0.001]·uj if xt

ij 6= gj and ρ[0,1] ∈
[
0, Cg

)
pij + ρ[−0.001,0.001]·uj if xt

ij 6= gj and ρ[0,1] ∈
[
Cg, Cp

)
xt

ij + ρ[−0.001,0.001]·uj if xt
ij = gj or ρ[0,1] ∈

[
Cp, Cw

)
xt

ij + ρ[−0.001,0.001]·
(

xt
ij − gj

)
if xt

ij 6= gj and ρ[0,1] ∈ [Cw, 1]

(48)

uj =
xmin

j − xmax
j

2·NgenNvar
(49)

If any variable violates the boundary condition, it is set to the nearest boundary after
using Equation (53). The steps are shown in detail in the following Section 4.1.7

4.1.2. Fixed-Variables Local Search

Based on the hierarchical properties of the MLP problem, we introduce a local search
method with fixed variables in MLiSSO. In traditional SSO, the initial solution is generated
randomly between the lower and upper bounds at the same time. When SSO updates the
position, the solutions of all dimensions are changed simultaneously. In this study, only the
solution of the decision variable of that level is changed when it is updated and then the
local search is executed. The solutions of the remaining levels keep the original results. The
calculation process is explained in detail in the following Section 4.1.7.

4.1.3. Fitness Function

For the BLPP structure mentioned in the literature review Equations (1)–(4), the upper
and lower levels of the programming problem are both standard constraints optimization
problems that do not consider the information interaction between the leader and the fol-
lower. We treat the lower-level programming problem as a separate constraint optimization
problem without losing the general approach to describe constraint processing techniques.
In this case, the fitness of all particle updates can be calculated according to Equation (50);
the fitness of the best solution is calculated and evaluated according to Equation (51):

f itness(x, y) =
{

f (x, y), i f y ∈ S(x)
F(x, y), i f y ∈ S(x)/S

(50)

where S(x) denotes the lower-level programming problem feasible set and S denotes the
constraint region. The fitness value is calculated differently according to the updated level.
For the upper-level update, we generate the value of F(x, y), and for the lower-level update,
we generate the value of f (x, y), due to the level having different objective functions to
obtain their optimal value.

f itness(x, y) = F(x, y), i f y ∈ S(x)/S (51)

The MLiSSO targets the leader’s priority first. Therefore we use the higher-level
objective functions for the best solution evaluation to ensure that we always put the
leader’s interest first in a multilevel programming situation. The calculation of all processes
is explained in detail in the following Section 4.1.7.
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4.1.4. Constraint Handling

In this study, to make the solutions obtained by MLiSSO conform to the problem
constraints, we propose a simple but effective constraint method that ensures that the
solutions generated during its operation are all conforming to the various constraints of
the problem.

We use conditional constraints to enforce domain integrity by restricting the solutions
generated after iterative updates to acceptable values that match the domain restrictions. A
Boolean operator is used to establish the constraints, and when a solution is generated, it
is determined whether it satisfies the constraints, and the result is returned. If the result
meets the constraint, it is accepted as True and proceeds to the next step of the process; if it
violates any of the constraints, it is rejected as False and generates a random set of solutions
that meet the variable limitations (upper bound and lower bound), then redo the Boolean
evaluation, repeating this step until it is accepted.

4.1.5. Stopping Criteria

There are two major stopping criteria used:

1. The generation number.
2. The maximum iteration.

It will terminate the MLiSSO algorithm after it has reached the maximum number of
iterations or generations.

4.1.6. Level Conversion

Based on the literature review that we referred to above, the problem of tri-level supply
chains required to be solved in this study can be transformed into a bi-level programming
problem through the use of Kuhn–Tucker conditions Equations (23)–(26) to convert the
problem to the term as Equations (27)–(29) and Equations (11) and (12). The transformed
supply chain equation is shown in Equations (52)–(57), Equations (11), Equations (13) and
Equation (13) below:

Max
x

F = wiqi
R + (1− η)Pi

Mqi
M − c

(
1 + ri

)(
qi

M + qi
R

)
(11) (52)

where (y, z, u), for each x fixed, solves the problems Equations (59)–(66)

Max
y,z,u

f =
(

Pi
R − wi

)
qi

R (13) (53)

0.4
(

qi
M + qi

R

)
− u1

[
0.4
(

qi
M + qi

R

)]
− 0.4u2 − 0.4u3 = 0 (54)

u1

[
−wiqi

R − (1− η)Pi
Mqi

M + 0.4
(

1 + ri
)(

qi
M + qi

R

)]
= 0, (55)

u2

[
−wi + 0.4

(
1 + ri

)]
= 0, (56)

u3

[
−Pi

M + 0.4
(

1 + ri
)]

= 0, (15), (26) (57)

4.1.7. Steps of MLiSSO for Solving MLPP

The steps of MLiSSO to solve MLPP are described in this section. With one main
program and two subprograms are included, which are based on iSSO algorithms. The
details are explained as follows.
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Main Program: The best solution to solving
STEP 1-1 Maximum iteration Tmax.

STEP 1-2 Set Tmax T = 0.

STEP 1-3 Call Subprogram1 and generate the initial solution
(
XT

i , YT
i
)
.

STEP 1-4 Evaluate F
(
XT

i , YT
i
)
and let (X∗, Y∗) =

(
XT

i , YT
i
)
.

STEP 1-5 Fixed YT
i to the upper-level programming model.

STEP 1-6 Let T = T + 1.

STEP 1-7 Call Subprogram2 to generate XT
i .

STEP 1-8 Fixed the solution XT
i .

STEP 1-9 Call Subprogram2 to generate YT
i .

STEP 1-10
Fixed

(
XT

i , YT
i
)

into the objective
function to evaluate the value of the objective function.
If F
(
XT

i , YT
i
)
> F(X∗, Y∗),

(
XT

i , YT
i
)

it is recorded as (X∗, Y∗).

STEP 1-11 Stopping criterion : if T ≥ Tmax go to STEP 1-12; otherwise, go to STEP 1-6.

STEP 1-12
Output (X∗, Y∗) and the objective function value of the upper− level F(X∗, Y∗)
and the lower− level f (X∗, Y∗).

Subprogram 1: Solution initialization

STEP 2-1
Initiate Nsol , Ngen, Nvar, Cg, Cp, and Cw, and the upper and lower bounds of
each variable.

STEP 2-2 Set Ngen t = 0 and i = 1, where i = 1, 2, . . . , Nsol .

STEP 2-3

Generate
(
XTt

i , YTt
i
)
. Let PT

f i =
(
XTt

i , YTt
i
)
, and calculate f

(
PT

f i

)
= f

(
XTt

i , YTt
i
)

for

i = 1, 2, . . . , Nsol . And find Gbest such that f
(

PT
f G

)
is the best, and then let t = 1

and i = 1.

STEP 2-4 Generate ρ and calculate uj.

STEP 2-5 Generate r to update the XTt
i and YTt

i , and calculate f
(
XTt

i , YTt
i
)
.

STEP 2-6 If f
(
XTt

i , YTt
i
)

> f
(

PT
f i

)
, then PT

f i =
(
XTt

i , YTt
i
)
; Otherwise, go to STEP 2-8.

STEP 2-7 If f
(

PT
f i

)
> f
(

PT
f G

)
, then PT

f G = PT
f i.

STEP 2-8 If i ≤ Nsol then i = i + 1 and return to STEP 2-4.

STEP 2-9
If t < Ngen then t = t + 1 and i = 1, and return to STEP 2-4. Otherwise, go to
STEP 2-10.

STEP 2-10 Output PT
f G =

(
XT

i , YT
i
)
.

Subprogram 2: Level updating solving

STEP 3-1
Initiate Nsol for both levels, Ngenl (if updating with upper-level l = 1; otherwise,
l = 2), Nvar, Cg,Cp, and Cw, and the upper and lower bounds of each variable.

STEP 3-2 Set Ngenl t = 0 and i = 1, where i = 1, 2, . . . , Nsol .

STEP 3-3

Generate XTt
i or YTt

i . Let PT
Fi =

(
XTt

i , YT
i
)
, PT

f i =
(
XT

i , YTt
i
)
,

and calculate F
(

PT
Fi
)
= F

(
XTt

i , YT
i
)
, f
(

PT
f i

)
= f

(
XT

i , YTt
i
)

for i = 1, 2, . . . , Nsol . And find Gbest such that F
(

PT
FG
)

or f
(

PT
f G

)
is the best,

and then let t = 1 and i = 1.

STEP 3-4 Generate ρ and calculate uj.

STEP 3-5 Generate r to update XTt
i and YTt

i and calculate F
(
XTt

i
)

and f
(
YTt

i
)
.

STEP 3-6

For upper− level update, If F
(
XTt

i , YT
i
)
> F

(
PT

Fi
)
, then PT

Fi =
(
XTt

i , YT
i
)
;

for lower− level update, if f
(
XT

i , YTt
i
)
> f

(
PT

f i

)
, then PT

f i =
(
XT

i , YTt
i
)
;

Otherwise, go to STEP 3-8.
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STEP 3-7
For upper− level update, if F

(
PT

Fi
)
> F

(
PT

FG
)
, then PT

FG = PT
Fi;

for lower− level update, if f
(

PT
f i

)
> f

(
PT

f G

)
, then PT

f G = PT
f i.

STEP 3-8 If i ≤ Nsol , then i = i + 1 and return to STEP 3-4.

STEP 3-9 If t < Ngenl then t = t + 1 and i = 1, and return to STEP 3-4. Otherwise, stop.

STEP 3-10 Output PT
FG or PT

f G.

5. Data Analysis and Results

Section 5 is divided into two subsections. The first subsection presents a comparative
analysis of the differences between the performance of the proposed algorithms in this
thesis and other algorithms based on other papers. In the second section, the proposed
methodology is applied to the actual supply chain problem, and the pricing decision results
are analyzed.

5.1. Numerical Experiments

To test and demonstrate the above concept, three different types of numerical examples
taken from the literature are presented. For comparison, in this study, 20 runs were
performed (for problem 1 is 30 runs according to the compared algorithm results) for each
problem. The standard deviation was calculated with the formula listed below in Table 2,
where the standard deviation is based on the upper-level objective function.

Table 2. Comparison formula.

Formula Description

Standard deviation (SD)

√
∑R

i=1(F∗Mi−F∗MA)
2

R
where i = 1, 2, . . . , R. R = 30 in
this paper.

F∗Mi= The optimal solution for
MLiSSO in ith run.
F∗MA= The average of R optimal
solutions for MLiSSO.

5.1.1. Experimental Datasets

In this study, we used four questions used in previous literature as the datasets for the
validation tests; the functions are as shown in Tables 3–5. The dataset parameters were set
according to the parameters used in the reference source data.

Table 3. Functions for problem 1.

No. Problem Functions

Problem 1 [62]

Max F = 8x1 + 4x2 − 4y1 + 40y2 + 4y3,
where (y1, y2, y3) solves,

Max f = −x1 − 2x2 − y1 − y2 − 2y3
s.t.
y1 − y2 − y3 ≥ −1
−2x1 + y1 − 2y2 + 0.5y3 ≥ −1
−2x2 − 2y1 + y2 + 0.5y3 ≥ −1
x1, x2, y1, y2, y3 ≥ 0
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Table 4. Functions for problem 2.

No. Problem Functions

Problem 2 [63]

Min F = −x1
2 − 3x2

2 − 4y1 + y2
2, where (y1, y2) solves,

s.t.
x1

2 + 2x2 ≤ 4
x1, x2 ≥ 0
Min f = 2x1

2 + y1
2 − 5y2

s.t.
x1

2 − 2x1 + x2
2 − 2y1 + y2 ≥ −3

4x2 + 3y1 − 4y2 ≥ 4
y1, y2 ≥ 0

Table 5. Functions for problem 3.

No. Problem Functions

Problem 3 [6]

Min F = x2 + (y− 10)2, where y solves,
s.t.

x + 2y− 6 ≤ 0,
− x ≤ 0
Min f = x3 − 2y3 + x− 2y− x2

s.t.
− x + 2y− 3 ≤ 0,
− y ≤ 0

5.1.2. Experiments with Orthogonal Arrays

The experimental design of the MLiSSO setup was carried out using a two-factor, two-
level full factorial design with four experimental combinations. Including the parameter
pbest, and the modification of the u value according to the above mentioned in Section 4.

Each of the above-mentioned three experimental datasets was used to perform in-
dependent configuration experiments to identify the most suitable configurations, and
Tables 6 and 7 show the configuration combinations.

Table 6. Factor level table.

Level\Factor Parameter Cp u Value Setting

1 Without Constant

2 Add-in Dynamic

Table 7. Full factorial design table.

Setting\Factor Parameter Cp u Value Setting

1 Without Constant

2 Without Dynamic

3 Add-in Constant

4 Add-in Dynamic

The following experiments were compiled using python 3.8 with the same basic param-
eters, Cg = 0.2, Cp = 0.3, Cw = 0.5, number of particles = 20, number of generations = 200
(for subprogram), and iterations= 500 (for main program).
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Each experiment was run 20 times, and the results were evaluated and analyzed by
using the leader’s target function value results. Assuming that the samples conformed to
the norm, an analysis of variance (ANOVA) with α = 0.05 was conducted to select the most
suitable configuration.

Dataset: Problem 1
Table 8 shows that the p-values of factors A is smaller than α = 0.05, so the factors

did cause significant differences, and the p-value of factor B were greater than α = 0.05,
so the factors did not cause significant differences. However, factor B was more likely
to cause differences than factor A, as shown in Table 9, which shows the mean value of
20 experiments for each of the four groups of experiments

Table 8. ANOVA table of Dataset problem 1.

Source DF SS MS F-Value p-Value

A 1 23.401 23.4015 4.53 0.036

B 1 0.413 0.4126 0.08 0.778

Error 76 392.193 5.1604

Total 79 427.444 0.000

S = 2.27166 R − Sq = 8.25% R − Sq (adj) = 4.63%

Table 9. Response table of Dataset problem 1.

Level A B

1 27.5 27.0

2 28.0 26.0

Delta 0.5 1.0

Rank 2 1

From Figure 6, it can be concluded that the A factor has better performance at level 2
than level 1, and the B factors have better performance at level 1 than at level 2. But, accord-
ing to the interaction plot, as shown in Figure 7, it indicates the existence of interaction, and
we cannot tell if the configuration settings will have better performance by all set to level 2.

Dataset: Problem 2
Table 10 shows that the p-values of both factors A and B are smaller than α = 0.05,

so the factors did cause significant differences; furthermore, the factor B was more likely
to cause differences than the factor A, as shown in Table 11, which is the mean values of
20 experiments for each of the four groups of experiments.

Table 10. ANOVA table of Dataset problem 2.

Source DF SS MS F-Value p-Value

A 1 0.02050 0.020505 5.13 0.026

B 1 0.04019 0.040187 10.06 0.002

Error 76 0.30370 0.003996

Total 79 0.45029 0.000000

S = 0.0632139 R − Sq = 32.56% R − Sq (adj) = 29.89%

From Figure 8, it can be concluded that both A and B factors have better performance at
level 2 than at level 1, which also has a significant difference in the performance. However,
the interaction plot, as shown in Figure 9, it indicates the existence of interaction, and we
cannot tell if they could have better performance by all set to level 2.
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Table 11. Response table of Dataset problem 2.

Level A B

1 18.59 18.63

2 18.625 18.585

Delta 0.035 0.045

Rank 2 1
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Dataset: Problem 3
Table 12 shows that the p-values of factors A and B were greater than α = 0.05, so the

factors did not cause significant differences; however, factor A was more likely to cause
differences than factor B, as shown in Table 13, which is the mean values of 20 experiments
for each of the four groups of experiments.
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Table 12. ANOVA table of Dataset problem 3.

Source DF SS MS F-Value p-Value

A 1 3.1344 3.1344 3.24 0.076

B 1 0.6697 0.6697 0.69 0.408

Error 76 73.4531 0.9665

Total 79 78.8582 0.0000

S = 0.983102 R−Sq = 6.85% R−Sq (adj) = 3.18%

Table 13. Response table of Dataset problem 3.

Level A B

1 −67.5 −67.2

2 −67.1 −67.4

Delta 0.4 0.2

Rank 1 2

From Figure 10, it can be concluded that the A factor has better performance at level 2
than level 1, and the B factors have better performance at level 1 than at level 2. However,
the interaction plot, as shown in Figure 11, it indicates the existence of interaction, and we
cannot tell if the configuration settings will have better performance by all set to level 2.
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Result Summary
The results of the experiments for the above four configurations are listed and dis-

cussed. As shown in Tables 14–16, it can be concluded that when both factors A and B are
set to level 2 (setting 4), the results obtained for this configuration are superior to those
in the other configurations in all three experiments. This setting 4 is also the MLiSSO
configuration proposed in this study. Therefore, based on this result, the proposed MLiSSO
will be used for other experiments and analyses in the following.

Table 14. Results of dataset problem 1.

Setting Favg Fstdev Fstdev Fmin

1 27.1654863 2.7327978 2.7327978 17.3713556

2 26.2656556 3.0503393 3.0503393 20.0050241

3 27.4909892 1.7662205 1.7662205 21.7917118

4 28.1035510 0.8657080 0.8657080 26.4103750

Table 15. Results of dataset problem 2.

Setting Favg Fstdev Fstdev Fmin

1 18.6020324 0.0710975 18.7231808 18.4959183

2 18.5813208 0.0616991 18.7136139 18.4883674

3 18.5685148 0.0636811 18.7202904 18.4420441

4 18.6788774 0.0553813 18.8334935 18.6205643
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Table 16. Results of dataset problem 3.

Setting Favg Fstdev Fstdev Fmin

1 67.24701323 0.977282509 68.93931587 65.6916659

2 67.71292941 1.031981155 69.28061716 65.54469136

3 67.13405382 0.969031058 69.17334034 65.33748003

4 67.03412608 0.952295648 67.03412608 65.23260349

5.1.3. Comparison Experiment Results

In this study, we solved three sets of MLPP problems with different levels of complexity
by using MLiSSO and compared the results with those of algorithms proposed in other
related literature.

Dataset: Problem 1
We constructed a linear BLPP with multiple leaders and followers from [62] as a

numerical example to analyze more complex problems; the functions of problem 1 are
listed in Table 3.

In this problem, the parameters setting of two different algorithms, GA [64] and PSO,
are given in [11], then we used the trial-and-error method for the setting of MLiSSO, and
summarized in Table 17. In addition, as mentioned above, the number of iterations of
MLiSSO is indicated by generation(update) and iteration(main), while other algorithms
used for comparison are indicated by iteration if not specified. The best optimal solu-
tion, mean, and standard deviation values of the solutions for 30 runs are presented in
Tables 18 and 19. Figure 12 shows the convergence of the optimal solution target function
value F(X, Y) in MLiSSO.

Table 17. Parameters setup for problem 1.

GA [64] PSO [11] MLiSSO

opulation: 20, Crossover rate:
0.9, Mutation rate: 0.1,
Iterations: N/A

Population: 20, Vmax: 10,
Inertial weight: 1.2–0.2,
Iterations: 150

Population: 20, Cg: 0.3, Cp:
0.6, Cw: 0.8,
Generations:100/150,
Iterations: 500/150

Table 18. Best results of problem 1.

GA PSO MLiSSO
(500)

MLiSSO
(As Literature/150)

x1 0.000 0.0004 0.0002 0.0266

x2 0.898 0.8996 0.8991 0.0205

y1 0.000 0.0000 0.0000 0.7969

y2 0.599 0.5995 0.5993 0.7944

y3 0.399 0.3993 0.3986 0.1503

F 29.1480 29.1788 29.6631 29.4853

f −3.193 −3.1977 −3.1948 −1.9594

Runtime(s) N/A N/A 35 32
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Table 19. Average results & SD of problem 1.

GA PSO MLiSSO
(500)

MLiSSO
(As Literature/150)

x1 0.15705 0.02192 0.00078 0.01579

x2 0.86495 0.86693 0.89607 0.18669

y1 0.00000 0.00000 0.00000 0.41225

y2 0.47192 0.56335 0.59701 0.66371

y3 0.51592 0.34108 0.39351 0.19149

F 21.52948 24.81256 29.04494 26.53842

f −3.39072 −3.1977 −3.17696 −1.84811

F stdev 3.14432 1.55374 0.10689 2.23245

Runtime(s) N/A N/A 45 35
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Tables 18 and 19 indicate that MLiSSO has the smallest standard deviation according
to the objective value priority of the leader in the case of linear bi-level decision-making
with multiple leaders and multiple followers. It returns better results than the GA, just
after the results of PSO with a difference of 0.0157 in terms of the best result. In addition,
the average solutions of MLiSSO return significantly better than the solutions of other
algorithms in the average result, and the standard deviation of the MLiSSO method is
lower than that of other algorithms. This indicates that MLiSSO has higher stability and
provides better solution quality for solving complex problems.

In the study of Kuo & Huang [11], for the initial solution, they adopt the float coding
method to generate the random numbers for the upper-level variables and program for
variables in the lower level. Then, update the velocity and position for every particle at
once. To compare with the results, we use the same structure and iteration = 150 to generate
the results, which are listed in the right column (as literature) in Tables 18 and 19.

The results show that if we only use the proposed modified iSSO with the same
kind of structure, the best result and the average result are both superior to the other two
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methods, and the average result is just after the original MLiSSO. However, the purpose of
MLiSSO is for general use on other types of MLPP when this method is only used on linear
programming problems mentioned in the literature, so we use the following non-linear
problems to emphasize the commonality of MLiSSO.

Dataset: Problem 2
For the example of nonlinear BLPP, which was constructed from [63], the functions of

problem 2 are listed in Table 4. In this problem, the two different algorithms, evolutionary
algorithm (EA) and PSO-CST are given in [65,66], and the setup of the parameters is listed in
Table 20. In addition, as mentioned above, the number of iterations of MLiSSO is indicated
by generation (update) and iteration (main), while other algorithms used for comparison
are indicated by iteration if not specified. The best optimal solution, mean, and standard
deviation values of the solutions for 20 runs are shown in Table 21, and because the average
results are not given in the literature [65,66], we only list the result of MLiSSO. Figure 13
shows the convergence of the optimal solution target function value F(X, Y) in MLiSSO.

Table 20. Parameters setup for problem 2.

EA [65] PSO-CST [66] MLiSSO

Population: 30, Crossover
rate: 0.8, Mutation rate: 0.2,
Iterations: 100

Population : 45, Numbers
of particles : m = 40 (first update),
n = 5 (CST particles),
Vmax = 2, c1 = c2 = 2,
Iterations: 8

Population: 20, Cg: 0.2, Cp:
0.3, Cw: 0.5, Generations:
100, Iterations: 100

Table 21. Best results of problem 2.

EA [65] PSO-CST [66] MLiSSO

x1 0.00000044 0.3844 0.0115

x2 2 1.6124 1.9765

y1 1.875 1.8690 1.8466

y2 0.9063 0.8041 0.7988

F −12.68 −14.7772 −18.4633

f −1.016 −0.2316 −6.1174

F stdev N/A N/A 0.1396

F avg N/A N/A −18.4566

Runtime(s) N/A N/A 5

In the case of this problem, we conclude from Table 21 that MLiSSO outperforms
the other algorithms in terms of the objective priority of the leaders and the standard
deviation of the solutions obtained is only 0.1396, which means that its solutions remain
fairly stable. Thus, MLiSSO shows better performance than these two algorithms for the
nonlinear BLPP. This result also implies that the proposed MLiSSO is suitable for solving
nonlinear multi-player BLPP.

Dataset: Problem 3
We constructed a nonlinear BLPP with a single leader and follower from [6] as a

numerical example to analyze more complex problems(cube); the functions of problem 1
are listed in Table 5.

In this problem, the two different algorithms, HPSOBLP and IBPSO, are given in [6,67],
with parameter settings summarized in Table 22. In addition, as mentioned above, the
number of iterations of MLiSSO is indicated by generation (update) and iteration (main),
while other algorithms used for comparison are indicated by iteration if not specified. The
best optimal solution, mean, and standard deviation values of the solutions for 20 runs are
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presented in Tables 23 and 24. Figure 14 shows the convergence of the optimal solution
target function value F(X,Y) in MLiSSO.
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Table 22. Parameters setup for problem 3.

HPSOBLP [67] IBPSO [6] MLiSSO

Population : Nmax = 20, 40,
c1 = c2 = 2,
Vmax = bounds, w = decrease
linearly from 1.2 to 0.1,
Iterations: 120, 30

Population : N1 = N2 = 20,
Vmax = 10, c1 = c2 = 2.5,
Iteration : T1 = T2 =100

Population: 20, Cg: 0.2, Cp:
0.3, Cw: 0.5, Generations: 100,
Iterations: 100

Table 23. Best results of problem 3.

HPSOBLP IBPSO MLiSSO

x N/A 0.4960 1.0186

y N/A 1.7356 1.9753

F 88.77571 68.5459 65.8663

f −0.7698 −13.5561 −18.9133

Runtime(s) N/A N/A 5

Table 24. Average results & SD of problem 3.

HPSOBLP IBPSO MLiSSO

x N/A 1.1985 1.1036

y N/A 1.7791 1.8756

F 88.7835 69.0192 67.4949

f N/A −13.3375 −15.8649

F stdev 0.0016 N/A 1.0366

Runtime(s) N/A N/A 5
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Tables 23 and 24 indicate that MLiSSO outperforms the other algorithms in terms of
the objective priority of the leaders, which means that MLiSSO has a better performance
than these two algorithms. In addition, also the average results show that the solution can
be obtained with better quality in several independent experiments.

5.2. Model Evaluation

Based on the aforementioned experimental results, it can be stated that MLiSSO can
be used to solve the MLPP with a higher stability quality of optimal solution results. This
section further verifies the practicality of the MLiSSO on supply chain problems by using
the supply chain model with three different financing strategies Equations (40)–(47) and
constraints of them Equations (48)–(52). The parameters setup of the supply chain model is,
according to Zhen [18], listed in Table 25, and the parameter setup of MLiSSO is listed in
Table 26. The corresponding solutions of the three financing strategy models are shown in
Tables 27 and 28. Figures 15 and 16 show the convergence of the optimal solution target
function value F(X, Y) in MLiSSO

Table 25. Model parameters setup.

Parameter a λ b d c η

Setup 1 0.4 1 0.5 0.4 0.15

Table 26. Parameters setup for supply chain model.

MLiSSO

Population: 20
Cg: 0.2
Cp: 0.3
Cw: 0.5

Generations:100
Iterations: 500
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Table 27. The best result of the supply chain model.

RF BF 3PF

w 0.64952 0.40506 0.40506

PM 0.83284 0.70765 0.70765

PR 0.71113 0.62951 0.62951

qM 0.10529 0.12432 0.12432

qR 0.12272 0.20710 0.20710

r 0.34810 0.01265 0.01265

f1 0.03231 0.04068 0.04068

f2 0.00756 0.00284 0.00284

f3 N/A 0.00168 0.01487

Table 28. Average results & SD of supply chain model.

RF BF 3PF

w 0.73053 0.40495 0.40495

PM 0.88513 0.71293 0.71293

PR 0.76135 0.61588 0.61588

qM 0.08122 0.14058 0.14058

qR 0.09554 0.19501 0.19501

r 0.53832 0.01237 0.01237

f1 0.02197 0.03898 0.03898

f2 0.00355 0.00271 0.00271

f3 N/A 0.00161 0.01664

f1 stdev 0.00524 0.00068 0.00068

f2 stdev 0.00434 0.00265 0.00265

f3 stdev N/A 0.00153 0.00106
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As shown in Table 27 (1) for the retailer-financed case, the objective value of the leader
has converged to f1(x, y, z) = 0.03231, while the objective value of layers 2 have converged
to f2(x, y, z) = 0.00756; (2) for the bank-financed case, the objective value of the leader has
converged to f1(x, y, z) = 0.04068 while the objective values for layers 2 and 3 converge to
f2(x, y, z) = 0.00284 and f3(x, y, z) = 0.00168; (3) the third-party platform-financed case,
the objective value of the leader has converged to f1(x, y, z) = 0.04068, while the objective
values for layers 2 and 3 converge to f2(x, y, z) = 0.00284 and f3(x, y, z) = 0.01487. We
also list the average and standard deviation of the solutions we obtained in 20 runs in
Table 28.

It can be noted that under this group of market conditions of parameters and after
conversion calculation, as shown in Table 27, we learn that among all financing options, the
financing strategy with third-party platforms and banks has absolutely favorable conditions
for manufacturers. Thus, it can be concluded that this approach can be applied to complex
and practical decision problems to solve MLPP.

6. Conclusions

First, we review this paper; our proposed method uses hierarchical updates of fixed
variables, trivial problem transformations, computation of objective functions, and iSSO
algorithms. Although it does not outperform the best current algorithms for the related
small-scale problems, it surpasses the performance of other algorithms for large-scale
problems. In conclusion, due to the average and standard deviation of the results, it
provides a relatively stable, feasible, and effective solution to the MLPP problem and can be
applied to the relevant decision-making process. On the other hand, this paper uses a fixed-
variable approach to search, which can express the concept of hierarchical decision-making
more effectively and can be implemented on higher-level MLPs that introduce multiple
leaders and multiple followers to achieve a more realistic large-scale goal problem. It is also
easier to extend to solve a complex problem. If further exploration and experimentation
can be done, it may further enhance the ability of this solution to solve problems.

In recent years, many researchers have been studying hybrid algorithms for solving
MLPP problems, and as the complexity of the problems increases, mathematical research
will become more practical. Therefore, it is expected that more ways and improvements
will be developed to solve related problems to meet the industry’s current needs.

With the results of this study, the necessity of investigating many of these issues is
highlighted, especially to improve the methodology of MLPP. Among the many topics to be
explored in future research, there are several major extensions that we intend to focus on.
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(1) Hybridization of other heuristic mechanisms to improve MLiSSO solving
(2) Consider the dynamical mechanism for adjusting the upper and lower terms in terms

of the turbulence of the update mechanism to improve the generated solutions towards
the desired optimal solution to improve the efficiency and quality of the solutions.
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