
 Open access Journal Article DOI:10.1007/S10458-010-9145-2

Solving efficiently Decentralized MDPs with temporal and resource constraints
— Source link

Aurélie Beynier, Abdel-Illah Mouaddib

Institutions: University of Caen Lower Normandy

Published on: 01 Nov 2011 - Autonomous Agents and Multi-Agent Systems (Springer US)

Topics: Markov decision process, Partially observable Markov decision process, Decision problem and
Multi-agent system

Related papers:

 A polynomial algorithm for decentralized Markov decision processes with temporal constraints

 An iterative algorithm for solving constrained decentralized Markov decision processes

 Transition-independent decentralized markov decision processes

 Communication-based decomposition mechanisms for decentralized MDPs

 Planning with continuous resources for agent teams

Share this paper:

View more about this paper here: https://typeset.io/papers/solving-efficiently-decentralized-mdps-with-temporal-and-
22bajjsd7o

https://typeset.io/
https://www.doi.org/10.1007/S10458-010-9145-2
https://typeset.io/papers/solving-efficiently-decentralized-mdps-with-temporal-and-22bajjsd7o
https://typeset.io/authors/aurelie-beynier-1p504levh1
https://typeset.io/authors/abdel-illah-mouaddib-49vgobdc9u
https://typeset.io/institutions/university-of-caen-lower-normandy-15kcas0e
https://typeset.io/journals/autonomous-agents-and-multi-agent-systems-2vp287ru
https://typeset.io/topics/markov-decision-process-340ddo4p
https://typeset.io/topics/partially-observable-markov-decision-process-1mdtwr7t
https://typeset.io/topics/decision-problem-1lmzk2ay
https://typeset.io/topics/multi-agent-system-37vxqxp8
https://typeset.io/papers/a-polynomial-algorithm-for-decentralized-markov-decision-g737cax07m
https://typeset.io/papers/an-iterative-algorithm-for-solving-constrained-decentralized-2n5aian8ci
https://typeset.io/papers/transition-independent-decentralized-markov-decision-2qdx0h9l0c
https://typeset.io/papers/communication-based-decomposition-mechanisms-for-2vfrudslbn
https://typeset.io/papers/planning-with-continuous-resources-for-agent-teams-1c7lyoe2er
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/solving-efficiently-decentralized-mdps-with-temporal-and-22bajjsd7o
https://twitter.com/intent/tweet?text=Solving%20efficiently%20Decentralized%20MDPs%20with%20temporal%20and%20resource%20constraints&url=https://typeset.io/papers/solving-efficiently-decentralized-mdps-with-temporal-and-22bajjsd7o
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/solving-efficiently-decentralized-mdps-with-temporal-and-22bajjsd7o
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/solving-efficiently-decentralized-mdps-with-temporal-and-22bajjsd7o
https://typeset.io/papers/solving-efficiently-decentralized-mdps-with-temporal-and-22bajjsd7o

HAL Id: hal-01344444
https://hal.archives-ouvertes.fr/hal-01344444

Submitted on 11 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving efficiently Decentralized MDPs with temporal
and resource constraints

Aurélie Beynier, Abdel-Illah Mouaddib

To cite this version:
Aurélie Beynier, Abdel-Illah Mouaddib. Solving efficiently Decentralized MDPs with temporal and
resource constraints. Autonomous Agents and Multi-Agent Systems, Springer Verlag, 2011, 23 (3),
pp.486 - 539. ฀10.1007/s10458-010-9145-2฀. ฀hal-01344444฀

https://hal.archives-ouvertes.fr/hal-01344444
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Solving Efficiently Decentralized MDPs with Temporal

Constraints

Aurélie Beynier · Abdel-Illah Mouaddib

the date of receipt and acceptance should be inserted later

Abstract Optimizing the operation of cooperative multi-agent systems that can deal with

large and realistic problems has become an important focal area of research in the multi-

agent community. In this paper we first present a new model, the OC-DEC-MDP (Oppor-

tunity Cost Decentralized Markov Decision Processes), that allows for representing large

multi-agent decision problems with temporal and precedence constraints. Then, we propose

polynomial algorithms to efficiently solve problems formalized by OC-DEC-MDPs. The

problems we deal with consist of a set of agents that have to execute a set of tasks in a coop-

erative way. The agents cannot communicate during execution and they have to respect some

resource and temporal constraints. Our approach is based on Decentralized Markov Deci-

sion Processes (DEC-MDPs) and uses a concept of opportunity cost borrowed from eco-

nomics to obtain approximate control policies. Currently, the best existing techniques can

only solve optimally small problems. Experimental results show that our approach produces

good quality solutions for complex problems which are out of reach of existing approaches.

Keywords Decentralized Markov Decision Processes, Multiagent Systems, Decision-

theoretic Planning, Uncertainty

1 Introduction

There has been significant progress recently with the development of extensions of Markov

Decision Processes (MDP) for planning and control of teams of cooperative agents (Boutilier,

Dean, and Hanks, 1999). Decentralized Partially Observable Markov Decision Processes

(DEC-POMDPs) and Decentralized Markov Decision Processes (DEC-MDPs) have been

proposed to solve problems of multi-agent decentralized control. Nonetheless, they suffer

from high complexity. Indeed, it has been shown that solving optimally a DEC-POMDP is

NEXP-hard (Bernstein, Zilberstein, and Immerman, 2002). Thus, optimal algorithms can

only solve very small problems in practice (Hansen, Bernstein, and Zilberstein, 2004; Szer,

Charpillet, and Zilberstein, 2005). This has created a growing interest in developing good

GREYC-CNRS

Bd Marechal Juin, Campus II

BP 5186

14032 Caen cedex, France E-mail: {abeynier,mouaddib}@info.unicaen.fr

2

approximate solution techniques. Some of these approximations reach local optima, for ex-

ample, the Joint Equilibrium based Search for Policies (JESP) by Nair et al. (2003). Other

models use heuristic methods to approximate the optimal policy Goldman and Zilberstein

(2003). Another approximation approach is to use on-line learning as in the Partial Observ-

able Identical Payoff Stochastic Game (POIPSG) proposed by Peshkin et al. (2000). On the

other hand, Goldman and Zilberstein (2004) have identified properties of DEC-MDPs and

DEC-POMDPs that can reduce complexity such as transition and observation independence.

Becker et al. have identified two classes of DEC-MDPs that are no harder than exponential

in the number of states: the Decentralized MDPs with Event Driven Interaction (ED-DEC-

MDP) (Becker, Lesser, and Zilberstein, 2004a) and the Transition-Independent Decentral-

ized MDPs (TI-DEC-MDP) (Becker, Zilberstein, Lesser, and Goldman, 2003). These classes

take into account dependencies between tasks and can be solved optimally by the Coverage

Set Algorithm (Becker, Zilberstein, Lesser, and Goldman, 2004b).

Techniques developed so far have been used to solve relatively small problems. The

issue of scalability remains a serious challenge even for approximation methods. Moreover,

these approaches propose limited time and action representations (for instance, all actions

are supposed to have the same duration). In this paper, we introduce a new model, the OC-

DEC-MDP (Opportunity Cost Decentralized Markov Decision Processes) that can deal with

large problems where temporal, precedence and resource constraints must be respected.

Furthermore, we present polynomial algorithms that can compute coordinated policies of

agents with a good quality using a value function augmented with an opportunity cost. We

consider problems where communication during the execution is impossible and the agents

must be able to coordinate without communicating. Our algorithms allows each agent to

build its own local policy for executing its own tasks. In order to coordinate the agents’

policies, we introduce an opportunity cost value function which allows each agent to value

the consequences of his decisions on the other agents.

The paper is structured as follows. First, we detail existing works for solving DEC-

MDPs and we provide a formal definition of the problem we deal with. Next, we define the

OC-DEC-MDP model and we detail its components. We introduce the notion of opportunity

cost and a modified Bellman equation to make coordinated decision. This decision principle

is then use to develop polynomial algorithms to solve OC-DEC-MDPs. Finally, experimental

results describe the performance of our approach. To conclude, we discuss the contributions

of this work and we give some future research directions.

2 Decentralized control in multiagent systems

Decentralized control of a cooperative multiagent system consists of a set of agents where

each agent must decide of its own actions so as to maximize a common performance mea-

sure. As the agents often have a partial view of the system, the states of the system and

the other agents’ states may be partially observable. Moreover, there may exist uncertainty

about the other agents’ actions and the evolution of the system.

2.1 Applicative domain

We motivate the class of problems that we consider by two multirobot domains: multi-

rover exploration of Mars and rescue robots. These applications involve a set of robots that

3

must autonomously execute a set of tasks. While executing the tasks, each robot must au-

tonomously decide how to act in order to maximize the team’s performance. Moreover,

communication between the robots are often impossible during task execution.

This class of problems can be met in NASA scenarios dealing with rovers operating on

Mars. In order to increase scientific feedback, researchers plan to send fleets of robots that

could operate autonomously and cooperatively. Since the environment is unknown, robots

must deal with uncertainty regarding the duration of actions and consumption of resources.

Once a day, a mission of a hundred tasks is sent to the robots via satellite. Due to orbital

rotation of the satellite, the agents can communicate during a fixed amount of time. For

the rest of the day, the rovers must complete their tasks and cannot communicate via the

satellite which is unavailable. In addition, because of bandwidth limitations, distance be-

tween the robots and obstacles, the robots are unable to communicate directly. To guarantee

scientific feedback, temporal constraints must be respected. For example, pictures must be

taken at sunset or sunrise because of illumination constraints. Moreover, each robot may

have specific skills imposing precedence constraints. For instance, as digging a hole modi-

fies the ground topology of a site, a photograph-robot must have taken a picture of the site

before a digger-robot can start to dig the ground. Finally, executing a task requires power,

storage (storing pictures or measurements) or bandwidth (data communication). Resource

constraints must therefore be respected: each agent must have enough of the required re-

sources to complete a task. Military domains describe similar problems: UAV exploration

of enemy territories share many characteristics (uncertainty, partial observability,...) with

Mars exploration. Here, the agent cannot communicate because of the high cost of revealing

information to the enemy.

Our second motivating example is the problem of controlling large teams of rescue

robots (Morimoto, 2000; The RoboCup Rescue Technical Committee, 2000). These involve

different kinds of robots that must act in disaster environments, for instance, after an earth-

quake occurs. Each kind of robots has special skills: fire-agents can extinguish fires, police-

agents can unblock roads and ambulance-agents can give first aid to injured persons and

drive them to hospital. The agents’ objective is to maximize the number of rescued persons

and to minimize the area of burned buildings. This objective can be defined as a common

value function to maximize. As communications often breakdown in such disaster envi-

ronments, it is assumed that the agents cannot communicate. Moreover, the environment is

unknown and partially observable so, the agents must deal with uncertainty in action out-

come and with uncertainty about the state of the system. Because resources are limited, the

agents must consider resource constraints (for instance, fire-agents have a limited amount of

water). Dependencies between the agents arise from their skills and precedence constraints

can be identified. For example, fire-agents must have unblocked roads in order ambulance-

agents to drive injured person to hospital. Moreover, temporal constraints must be respected:

a fire must be extinguished before the building is completely burnt.

2.2 Problem statement

Based on the previous study of multi-robot decision problems, we define a mission X as a

set of agents that must complete a set of tasks.

Definition 1 A mission X is defined as a couple < Ag, T > where:

– Ag = {Ag1, · · · ,Agn} is a set of n agents Agi ∈ Ag.

– T = {t1, · · · , tp} is a set of tasks the agents Agi ∈ Ag have to execute.

4

Each time an agent finishes executing a task with respect to constraints, it obtains a

reward which depends on the executed task. The essence of the problem is to find a joint

policy that maximizes the sum of the rewards of the agents.

The execution of a task is uncertain and must respect temporal, precedence and resource

constraints. Thus, each task is assigned a probabilistic set of durations, a probabilistic set of

resource consumptions, a set of predecessors and a temporal window.

Definition 2 Each task ti ∈ T is defined by:

– An agent Agi that must execute the task.

– Different possible durations associated with probabilities. Pc(δ
i
c) is the probability the

execution of the task ti takes δi
c time units.

– Different possible resource consumptions associated with probabilities. Pr(∆
i
r) is the

probability the execution of the task ti consumes ∆i
r resources.

– A temporal window TCi = [ESTi, LETi] during which the tasks must be executed.

ESTi stands for the Earliest Start Time of the task and LETi is its Latest End Time.

– A set of predecessor tasks Predi: the tasks that must be finished before ti can start.

∀ti ∈ T , ti 6∈ root ⇔ ∃tj ∈ T : tj ∈ Pred(ti)

where root are the first tasks to be executed (tasks without predecessors).

– A reward Ri obtained by the agent when the task ti has been executed respecting tem-

poral, precedence and resource constraints. The agents aim at maximizing the sum of

their obtained rewards.

Each agent have to execute at least one task and each task is assigned an agent. Task

allocation must take into account each agent’s skills and must result in a feasible mission.

For instance, given a temporal window TCi = [ESTi, LETi], there must be at least one

possible interval of execution for the task ti which respects precedence constraints. Due

to temporal constraints, precedence constraints and properties of the problem (such as the

topology of the environment, distance between the sites to visit, etc.), tasks can often be

easily ordered. Hanna and Mouaddib (2002), and more recently Abdallah and Lesser (2005),

have developed MDP based algorithms that can perform such an allocation. Allocation of

tasks among physical robots have also been studied by Gerkey and Matarić (2002) and Esben

et al. (2002) using auction principles.

A mission X can be represented as an acyclic graph of tasks where edges stand for prece-

dence constraints. Figure 1 presents the graph of a mission derived from RoboCup Rescue

scenarios. A similar problem has been described by Marecki and Tambe (2007). Although

we can represent large mission graphs involving hundreds of tasks, we describe a small mis-

sion for clarity reason. This scenario involves three agents (a fire-agent, an ambulance-agent

and a police-agent) that have to rescue civilians from a burning building, after an earthquake

occurs. Dependencies between the tasks can be identified. So as to evacuate civilians, the

fire-agent must have put out the flames. Civilians have to be evacuated and roads must be

unblocked in order the ambulance-agent to drive injured people to hospital. Moreover, tem-

poral constraints have to be respected: it can be estimated that the fire-agent has 10 minutes

to evacuate civilians and 30 minutes before the building is entirely burned. Finally, each

agent has a limited amount of resources.

A similar representation language - multi-agent influence diagrams (MAIDs) - is de-

scribed by Koller and Milch (2003) and applied to multi-agent games. One could view our

graph representation as a MAID where decision variables are tasks and without chance vari-

ables. Utility variables would be the rewards of the tasks. Precedence constraints between

5

Fig. 1 A mission graph involving rescue agents

the tasks can be formalized in a MAID by probabilistic dependencies between decision vari-

ables. Thus, MAID edges would represent precedence constraints. By extending MAID to

account for uncertainty on task execution (captured by conditional probabilities and random

variables) and temporal constraints (encoded with the utility function), we obtain a similar

representation to our mission graphs.

Precedence constraints that associate different kinds of agents, stand for coordination re-

lationships. Such relationships are encountered in other frameworks such as TAEMS - Task

Analysis, Environment Modeling and Simulation - (Decker and Lesser, 1993) which allows

to describe task structures of multiagent systems. TAEMS “enable” relationship stands for

our precedence constraints. Nonetheless, TAEMS framework assumes that resource are not

consumed when the execution of a task partially fails. Moreover, TAEMS framework allows

precedence constraints not to be met.

Given a mission X , our purpose is to plan the execution of the mission so as to al-

low each agent to decide which task to execute and when, without communicating (during

task execution) and with respect to constraints. We aim at developing an off-line planning

approach based on DEC-MDPs.

2.3 Related work

In order to limit on-line computation and to deal with uncertainty, we are interested in off-

line stochastic planning. Some classical planning approaches, such as STRIPS or GPS, have

been adapted for planning under uncertainty (Blythe, 1999a; Bresina et al., 2002). Most

of these approaches search for a plan that meets a threshold probability of success or that

exceeds a minimum expected utility. During task execution, if the agent deviates from the

computed plan, a new plan has to be re-computed. To limit re-planning, some approaches

compute a contingent plan that encodes a tree of possible courses of actions. Nonetheless,

a contingent plan may not consider all possible courses of actions so, re-planning remains

and optimality is not guaranteed.

Markov Decision Processes (MDP) provide a stochastic planning approach that allows

for computing optimal policies. As a policy maps each possible state of the agent to an

action, there is no need for on-line re-planning. The agent’s objectives are expressed as a

utility function and efficient algorithms have been developed to efficiently compute a policy

that maximizes the utility (Puterman, 2005; Howard, 1960). MDPs have been successfully

6

applied to many domains such as mobile robots (Bernstein et al., 2001), spoken dialog man-

agers (Roy et al., 2000) or inventory management (Puterman, 2005). Then, MDPs have been

extended to deal with multiagent settings and Decentralized Partially Observable Markov

Decision Processes (DEC-POMDP) (Bernstein et al., 2002) have been defined.

2.3.1 Decentralized Markov Decision Processes

So as to modelize partial observability and uncertainty, the DEC-POMDP model is com-

posed of a set of observations, a probabilistic observation function and a probabilistic tran-

sition function. A reward function to maximize formalizes the objectives of the system.

Definition 3 A Decentralized Partially Observable Markov Decision Process (DEC-POMDP)

for n agents is defined by a tuple < S,A,P, Ω,O,R > where :

– S is a finite set of system states.

– A = 〈A1, · · · ,An〉 is a set of joint actions, Ai is the set of actions ai that can be

executed by the agent Agi.

– P = S × A × S → [0, 1] is a transition function. P(s, a, s′) is the probability of the

outcome state s′ when the agents execute the joint action a in s.

– Ω = Ω1 ×Ω2 × · · · ×Ωn is a finite state of observations where Ωi is agent Agi’s set of

observations.

– O = S×A×S×Ω → [0, 1] is the observation function. O(s, a, s′, o = 〈o1, · · · , on〉) is

the probability that each agent Agi observes oi when the agents execute the joint action

a from state s and the system moves to state s′.

– R is a reward function. R(s, a, s′) is the reward the system obtains when the agents

execute joint action a from state s and the system moves to state s′.

Definition 4 A Decentralized Markov Decision Process (DEC-MDP) is a special kind of

DEC-POMDPs where the system state is jointly observable. This property can be formalized

as:

If O(s, a, s
′
, o = 〈o1, · · · , on〉) > 0 then Prob(s′|〈o1, · · · , on〉) = 1

Note that this property does not imply that the agents can observe their states. Thus, a

DEC-MDP has the same components as a DEC-POMDP.

2.3.2 DEC-POMDP resolution

Solving a DEC-MDP consists in computing a set of individual policies. Each individual

policy of an agent Agi takes into account every possible state of the agent while meth-

ods based on classical planners find a sequence of actions based on a set of possible initial

states (Blythe, 1999b). Recent works have focused on developing off-line planning algo-

rithms to solve problems formalized by DEC-POMDPs and DEC-MDPs. They consist in

computing a set of individual policies, one per agent, describing the agents’ behaviors. Each

individual policy maps the agent’s information (its state, its observations or its belief state)

to an action. Since solving optimally a DEC-POMDP (or a DEC-MDP) is a very hard prob-

lem (NEXP-hard) (Bernstein et al., 2002), most approaches search for methods that reduce

the complexity of the problem. Two kinds of approaches can be identified. The first set of

approaches aims at identifying properties of DEC-POMDPs that reduce their complexity.

Thus, Goldman and Zilberstein (2004) have introduced transition independence and obser-

vation independence.

7

Definition 5 A transition independent DEC-MDP is such that the probability an agent Agi

moves from a state si to a state s′i only depends of the action ai the agent has executed.

Formally, a DEC-MDP is transition independent if the set of states S can be decomposed

into n components S1, · · · ,Sn and the transition function can be decomposed as a product

of probabilities such as: P =
Qn

i=1 Pi where Pi = Pr(s′i|si, ai).

Definition 6 A DEC-MDP is observation independent if the set of states S can be decom-

posed into n components S1, · · · ,Sn and there exists, for each agent Agi, an observation

function Oi such as:

Pr(oi|〈s1, · · · , sn〉, 〈a1, · · · , an〉, 〈s
′
1, · · · , s

′
n〉, 〈o1, · · · , oi−1, oi+1, · · · , on〉) = Oi(oi|si, ai, s

′
i)

Properties such as transition or observation independence allows for identifying classes

of problems that are easier to solve (Goldman and Zilberstein, 2004). For instance, it has

been proved that a DEC-MDP with independent transitions and observations is NP-complete.

Based on this study, an optimal algorithm, the Coverage Set Algorithm (CSA), has been de-

veloped to solve DEC-MDPs with independent observations and transitions (Becker et al.,

2003).

Other attempts to solve DEC-POMDPs have focused on finding approximate solutions

instead of computing the optimum. Thus, alternatives to Hansen’s exact dynamic program-

ming algorithm (Hansen et al., 2004) have been proposed by Bernstein et al. (2005) and

Amato et al. (2007b). They use memory bounded controllers to limit the required amount of

space to solve the problem. Nair et al. (2003) describe an approach, the Joint Equilibrium

Based Search for Policies (JESP), to solve transition and observation independent DEC-

MDPs. JESP relies on co-alternative evolution: the policies of a set of agents are fixed and

the policies of the remaining agents are improved. Policy improvement is executed in a cen-

tralized way and only a part of the agents’ policies is improved at each step. Finally, the

algorithm converges to a Nash equilibrium. Chadès et al. describe a similar approach based

on the definition of subjective MDPs and the use of empathy (Chadès et al., 2002). Im-

provements of JESP have also been proposed: DP-JESP (Nair et al., 2003) speeds up JESP

algorithm using dynamic programming and LID-JESP (Nair et al., 2005) combines JESP

and distributed constraints optimization algorithms. Thus, LID-JESP exploits the locality of

interactions to improve the efficiency of JESP. SPIDER (Varakantham et al., 2007) also ex-

ploits the locality of interactions to compute and approximate solution. Moreover, SPIDER

uses branch and bound search and abstraction to speed up policy computation. Peshkin

et al. (2000) propose a distributed learning approach based on gradient descent method that

also allows finding a Nash equilibrium. Emery-Montemerlo et al. (2004) approximate DEC-

POMDP solutions by decomposing the initial problem into local MDPs which are solved

separately. The problem is transformed into a set of one-step Bayesian games that are solved

using a heuristic.

Finally, some approaches introduce direct communication so as to increase each agent

observability (Goldman and Zilberstein, 2003; Xuan et al., 2001; Pynadath and Tambe,

2002). The agents can communicate to inform the other agents of their local state or ob-

servation. If communication is free and instantaneous, the problem is reduced to a Multia-

gent Markov Decision Process (MMDP) (Boutilier, Dean, and Hanks, 1999) that is easier

to solve. Otherwise, the problem complexity remains unchanged and heuristic methods are

described to find near optimal policies.

8

2.3.3 Existing Work limitations

Despite recent advances in DEC-POMDP domain, solving multi-robot decision problems

using DEC-POMDPs (or DEC-MDPs) remains a serious challenge. Indeed, recent works

have focused on problems, like the multiagent tiger problem (Nair et al., 2003), that do not

take into account properties of real-world problems. Thus, DEC-POMPs fail to modelize

precedence and temporal constraints. Moreover, each action is assumed to have the same

duration of one time unit and uncertainty on action duration cannot be formalized. Such

difficulties to formalize real-world problem using Markovian models have been identified in

the single agent case by Bresina et al. (2002). In order to increase the expressiveness of DEC-

MDPs, Becker et al. (2004a) have introduced Event-Driven Decentralized Markov Decision

Processes (ED-DEC-MDPs) that allow for modeling precedence and temporal constraints.

But this model remains limited to small problems.

Other difficulties arise while solving DEC-POMDPs (and DEC-MDPs). Due to the com-

plexity of optimally solving DEC-POMDPs (Bernstein et al., 2002), there is no existing op-

timal approaches that can solve problems involving more than 2 agent and 5 actions. For

instance, Hansen et al. (2004) optimally solve a two-agent and two-action decision problem

up to horizon 4. Szer et al. (2005) optimally solve the same problem up to horizon 5. Ap-

proximate approaches are able to solve larger problems but remains limited to 2 agents and

less than 10 actions. Nair et al. (2003) solves the multi-agent tiger problem (2 agents and

3 actions) up to horizon 7. More recently, Seuken and Zilberstein (2007) and Amato et al.

(2007a) have proposed approaches that can solve this problem up to horizon 100. Nonethe-

less, their approaches consider the classical DEC-POMDP model thus, limiting time and

action representation. It is therefore difficult to solve large problems like the ones encoun-

tered in real-world domains. Indeed, existing Mars rover missions are composed of 2 agents

but researchers plan to send more rovers. Thus, planning approach must be able to con-

sider missions that are composed of 3 or more robots which have to execute a hundred of

tasks with complex contraints and dependencies. Rescue missions may involve more than

ten robots and hundreds of tasks.

In order to increase the applicability of DEC-POMDP approaches, there is a need to

improve the problem modelization and to develop efficient tools to solve large problems. In

this paper, we first present a model that improves time and action modelizations in DEC-

MDPs. Then, we turn to problem resolution and we tackle the high complexity of DEC-

MDPs. We propose an efficient planning approach that computes each agent’s policy even

for large missions.

3 Formal model for constraints representation

In this section, we focus on improving time and action representations in DEC-MDPs. We

therefore define a class of DEC-MDPs, Opportunity Cost Decentralized Markov Decision

Processes (OC-DEC-MDPs), that allows us to consider several possible durations for each

task taking into account temporal, resource and precedence constraints.

3.1 The OC-DEC-MDP model

As we consider problems where each action has several possible durations, we cannot define

a joint action as the set of the agents’ individual actions. Indeed, at each time step t, some

9

agents try to execute new actions and the others continue executing their previously started

actions. The transition probability therefore relies on the time each agent has already spent

to execute its current action. In order to fulfill Markov property (Puterman, 2005), joint

actions can be defined as a set of couples (ai, ∆
i
c) where ai is the current action of Agi and

∆i
c the time Agi has already spent executing ai. Nonetheless, defining such joint actions

leads to large state and action spaces which are exponential in the number of agents and in

the number of time steps. This limits the size of problems that can be considered.

In order to allow for representing large problems, we suggest splitting the initial multia-

gent decision problem into a set of MDPs that are easier to solve. Each MDP stands for one

agent’s decision problem. Thus, individual states and actions are considered and exponential

growth of joint action set and state set is avoided. Decomposition of planning problems into

smaller problems has been widely studied in the single agent case. Techniques have been

proposed to decompose large Markov decision processes into local MDPs that are easier to

solve (Dean and Lin, 1995; Boutilier et al., 1997). These local MDPs are then solved and

exploited to find good approximate global solutions (Meuleau et al., 1998; Singh and Cohn,

1998; Poupart et al., 2002). Nonetheless, decomposition of decentralized Markov decision

problems into local MDPs are lacking. We introduce the OC-DEC-MDP framework that

performs such a decomposition and proposes a richer model of time and action formalizing

previously enumerated constraints. Moreover, this framework allows for limiting the state

and actions spaces of the agents.

Definition 7 An n-agent OC-DEC-MDP is a set of n MDPs, one for each agent. The MDP

of an agent Agi is defined as a tuple < Si, Ti,Pi,Ri > where:

– Si is the finite set of states of the agent Agi,

– Ti is the finite set of tasks of the agent Agi,

– Pi is the transition function of the agent Agi,

– Ri is the reward function of the agent Agi.

The components of each MDP are defined in order to model constraints on task execu-

tion. We now review each of these components.

3.1.1 Tasks - Actions

At each of his decision steps, the agent Agi must decide when to start his next task. The

actions to perform consist of “Executing task ti at time st : E(ti, st)”, that is the action to

start executing task ti at time st. We assume that each agent’s tasks are completely ordered.

So the next task to execute is easily decided. The question is therefore to decide when the

agent must start its next task and the set A of actions to execute from a state si is equal to

the set of start times for the next task.

Nonetheless, this assumption can be relaxed to consider situations where the agent must

choose between several possible next tasks. Then, the number of actions that can be executed

from a state si increases. In fact, it is exponential in the numbers of possible next tasks and

start times.

Start times and end times of each task can be deduced by propagating temporal con-

straints through the mission graph from the roots to the leaves. The graph is organized into

levels such that : L0 contains the roots of the graph, L1 contains all the successors of the

roots (successors(root)), . . ., Li contains the successors of all nodes in level Li−1. For each

node (task) ti in a given level Li, if all ti’s predecessors have already been considered, we

compute its possible start times and end times. The start times of ti are in [ESTi, LSTi]

10

where LSTi is ti’s Latest Start Time which is defined by LSTi = LETi − δ
i,min
c (δ

i,min
c

is the shortest duration of ti). However, Agi can start the execution of ti if all the predeces-

sors of ti have finished their execution. Thanks to the end times of the predecessors, we can

validate the possible start times in [ESTi, LSTi]. In the following, LBi stands for the first

valid start time of ti (Lower Bound), and UBi is the last valid start time (Upper Bound). For

each node, its start times and end times are computed by:

• level L0: The start times and the end times of each root node ti are computed as

follows:

ST (ti) = max({ESTi, start time}) = LBi = UBi

ET (ti) = {st(ti) + δ
i
c ≤ LETi}

where δi
c is the computation time of ti and start time is the system “wake up” time. Con-

sequently, intervals of activities of ti are given by I = [st, et], where st ∈ ST (ti) and

et = st + δi
c, et ≤ LETi.

• level Li: Each node ti in level Li can start its execution if, and only if, all its prede-

cessors have finished their own activities. Since each predecessor has different possible end

times, the possible start times for nodes in level Li are also numerous. Firstly, we compute

the first possible start time of the considered node. To do that, we compute the set of first

end times (FET) of the predecessors:

FETi = min(ET (pred))

Then, the maximum of these first end times represents the first possible start time for the

node ti:

LBi = max({ESTi, max(FETi)})

Secondly, we compute the other possible start times of the node. To do that we consider

all the other possible end times of the predecessors. Let pred be a predecessor of ti. Any end

time et of pred such as et > LBi is a possible start time of the node because it represents

a situation where all the other predecessors have finished before LBi and pred has finished

after LBi at et. Consequently, the other possible start times are defined as follows:

OSTi = {et ∈ ET (pred), et > LBi}

The set of the possible start times of the node are:

ST (ti) = {LBi

[

OSTi}

and

UBi = max(ST (ti))

The set of the possible end times of the node is then given by:

ET (ti) = {et|et = st + δ
i
c, et < LETi and , ∀st ∈ ST (ti)}

Finally, the intervals of execution I of the node are such as:

I = [st ∈ ST (ti), st + δ
i
c ≤ LETi]

11

3.1.2 States

When an agent tries to execute a task ti+1 at st, it succeeds if temporal, precedence and

resource constraints are respected. If precedence constraints are violated (the agent tries to

execute ti+1 before its predecessors have finished their execution), the agent fails and can

retry to execute the task later. Then, if precedence constraints are respected while retrying

to execute ti+1, the agent may succeed. Failures due to precedence constraints are therefore

called partial failures. On the other hand, if temporal or resource constraints are violated

while executing ti+1, the execution of ti+1 fails permanently and the agent moves to a

failure state. Three kinds of states can therefore be identified: success states, partial failure

states and failure states.

When an agent Agi has just finished executing task ti+1 during an interval I and it has

rti+1 remaining resources, it moves to the success state [ti+1, I, rti+1].

When the agent has just tried to execute task ti+1 at st but failed because of precedence

constraints, it moves to the partial failure state [ti, [st, st + 1], et(I ′)ti , rti] where ti is the

agent’s last successfully executed task, et(I ′)ti is the end time of ti (I ′ is ti’s execution

interval), and rti is the agent’s remaining resources after it partially fails. As the end times

et(I ′) of ti influences the agent’s transition, it is registered in failure states. We consider

that when an agent starts before its predecessor agents finish, it realizes it immediately. This

means that the agent, at st + 1 realizes that it fails.

When the execution of ti+1 fails permanently, the agent moves to the failure state asso-

ciated with ti+1.

As each agent knows his last executed task ti+1, the interval of execution of ti+1 and

how many resources he still has, states are locally fully observable. Nonetheless, each agent

does not know the other agents’ states nor actions. The problem is therefore for the agents

to coordinate despite this lack of knowledge about the system’s state. Note that the system’s

states can be deduced from combining the agents’ partial views and an OC-DEC-MDP is

jointly fully observable. We therefore consider DEC-MDPs instead of DEC-POMDPs.

3.1.3 Transitions

The action of an agent allows him to move from one state to another. Given a state si of

an agent Agi, the agent can move to three different kinds of states. Thus, we identify three

kinds of transitions: success transitions (from si to a success state), partial failure transitions

(from si to a partial failure state) and failure transitions (from si to a failure state). Figure 2

represents the different kinds of possible transitions when an agent starts to execute a task

ti+1 at st from a state si.

Due to precedence constraints between the agents, the problems we consider are transi-

tion dependent. Indeed, the probability of an agent’s success in executing a task ti+1 depends

on the end times of ti+1’s predecessors which may be executed by other agents. Thus, the

transition of an agent relies on the other agents’ actions and states. Because our problems are

not transition independent, the transition function of the system cannot be directly decom-

posed into local independent functions. Next section will detail our approach for computing

one individual transition function per agent.

3.1.4 Rewards

When agent Agi successfully executes a task ti+1, it moves to a success state and receives

the reward associated with ti+1. When an agent fails executing a task (partial failure or

12

Fig. 2 Transition model of an agent from state si

permanent failure), no reward is obtained. Thus, the agents’ goal consists in maximizing the

sum of their obtained rewards.

3.2 Transition Decomposition

In this section, we describe a method for decomposing the transition function of the system

(P : S × S × A) into a set of individual transition functions. Each individual transition

function is associated with an agent and dictates the probability that the agent moves from

one state to another when he executes an individual action (Pi : Si × Si × Ai). Actions

are probabilistic since the processing time and the resource consumption of each task are

uncertain. Moreover, as precedence constraints must be respected, the probability an agent

Agi moves from a state si to a state s′i when it starts executing ti+1 at st relies on: the

executed task ti+1, the start time of ti+1, the end times of ti+1’s predecessors, the resource

consumption of ti+1, the available resources before the agent Agi starts executing ti+1, and

the duration of ti+1. Moreover the start times of each task ti+1 relies on ti+1’s execution

policy.

Probabilities on start times, end times and available resources have to be known in order

to compute transition probabilities. As these probabilities relies on the agents’ policies, we

assume an initial set of policies for the agents (one policy per agent) and we propagate

temporal and resource probabilities through the mission graph. For each node ti, temporal

13

and resource probabilities are computed based on probabilities on ti’s predecessors, the

execution policy of ti and probabilities on execution time and resource consumption of ti.

3.2.1 Temporal probabilities

The probability that agent Agi starts executing a task ti+1 at st depends on the end times of

ti+1’s predecessors, on the state of Agi and on Agi’s policy. Task ti+1, can be executed from

a partial failure state or from a success state. Let ti be the last successfully executed task of

Agi. Agi can start executing ti+1 from a partial failure state si = [ti, [∗, ∗], et(I
′)ti , rti], or

from a success state si = [ti, [, ∗, et(I
′)ti], rti]. The start time of ti+1 therefore depends on

the agent’s policy from si. Agi starts executing ti+1 at st if:

– his policy dictates him to start ti+1 at st and the predecessors of ti+1 have finished their

execution or,

– his policy dictates him to start ti+1 at st′ (st′ < st), Agi partially fails (ti+1’s predeces-

sors have not finished their execution) and after 0 to N partial failures he starts executing

ti+1 at st.

Thus, the probability P
ti+1

ST (st|et(I ′)ti , rti) that the agent starts executing ti+1 at st,

when it has rti resources and ti ends at et(I ′)ti is defined as follows:

P
ti+1

ST (st|et(I ′)ti , rti) =P
r
enough(Pred(ti+1)).

Y

tj∈Pred(ti+1)

X

t ≤ st(I)P
tj

ET (t|et(I ′)ti)

·
“

Pπi(st|ti, et(I
′)ti , rti) +

stX

st′∈[et(I′),st[

Pπi(st
′
, taski+1|ti, et(I

′)ti , rti)

· Pnot end(st′) · P si

ST (st, si = [ti, [st, st + 1], et(I ′)ti , rti − ∆r
′])

”

(1)

where Pnot end(st′) stands for the probability that the predecessors of ti+1 have not fin-

ished their execution at st′. As described later, P
tj

ET (t|et(I ′)ti) is the probability tj ends at

t. Pπi(st
′, taski+1|ti, et(I

′)ti , rti) is the probability the agent Agi decides to execute ti+1

at st′ when ti finishes at et(I ′)ti and the agent has rti . Since we consider deterministic poli-

cies, this probability is 0 or 1. ∆r′ stands for the resource consumption of a partial failure.

For purpose of good understanding, we consider only deterministic resource consumptions

of partial failures. Nonetheless, equations can be extended to deal with uncertainty on partial

failures’ resource consumptions.

The probability that ti+1’s predecessors have finished their execution at st is:

P
r
enough(Pred(ti+1)) ·

Y

tj∈Pred(ti+1)

X

t ≤ st(I)P
tj

ET (t|et(I ′)ti)

where P r
enough(Pred(ti+1)) stands for the probability that the predecessors had enough

resources.

As described by Equation 1, we first consider cases where the agent’s policy dictates

to start ti+1 at st (Pπi(st|ti, et(I
′), rti)). Then, we consider cases where the agent’s policy

14

dictates to start the task before st, the agent partially fails and then starts executing the task

at st.

P si

ST (st, si) is the probability that the agent will start the execution of ti+1 at st when

the agent is in state si = [ti, [st, st + 1], et(I ′)ti , rti − ∆r′]. Before the agent starts at st, it

may try to execute the task and partially fail. Thus, we obtain:

P
si

ST (st(I), si) = Pπi(st|ti, st + 1, et(I ′)ti , rti − ∆r
′)+

X

st′∈[st+1,st]

Pπi(st
′
, taski+1|ti, [st, st + 1], et(I ′)ti , rti − ∆r

′) · Pnot end(st′)

· P si

ST (st, si = [ti, [st
′
, st

′ + 1], et(I ′)ti , rti − ∆r
′ − ∆r

′])

where Pπi(st
′, taski+1|ti, [st, st + 1], et(I ′)ti , rti − ∆r′) is the probability the agent

Agi decides to execute ti+1 at st′ when ti finishes at et(I ′)ti and the agent partially fails

the execution of ti+1 at st. Then, the agent realizes that it fails at st + 1 and it has rti −∆r′

resources.

Finally, P r
enough(Pred(ti+1)) is defined as:

P
r
enough(Pred(ti+1)) =

Y

tk∈Pred(ti+1)\ti

P
r
enough(tk)

where P r
enough(tk) stands for the probability agent Agk had enough resources to execute

tk. This probability is computed as follows:

– If tk is the last task that agent Agk has to execute:

P
r
enough(tk) =

X

rtk
≥0

X

∆k
r |rtk

−∆r≥0

P
tk
ra(rtk) · Pr(∆

k
r)

where P
tk
ra(rtk) is the probability Agk has rtk resources when it starts to execute tk. We

detail computation of this probability in the next section.

– Otherwise:

P
r
enough(tk) =

X

rtk+1
≥0

P
tk+1
ra (rtk+1)

where tk+1 is the next task of agent Agk.

From conditional probabilities P
ti+1

ST (st|et(I ′)ti , r), we can deduce conditional probabilities

P
ti+1

ST (st|et(I ′)ti) and probabilities P
ti+1

ST (st). Thus,

P
ti+1

ST (st|et(I ′)ti) =
X

rti

P
ti
ra(rti).P

ti+1

ST (st|et(I ′)ti , rti) (2)

We deduce:

P
ti+1

ST (st) =
X

et(I′)ti
∈ET (ti)

P
ti

ET (et(I ′)ti)
X

rti

P
ti
ra(rti).P

ti+1

ST (st|et(I ′)ti , rti) (3)

Once start time probabilities of ti+1 are known, end time probabilities P
ti+1

ET can be

deduced. The probability the execution of ti+1 ends at et is the probability that it starts at st

and its execution takes δi+1
c = et − st time units:

P
ti+1

ET (et) =
X

st∈ST (ti)

X

δ
i+1
c |st+δ

i+1
c =et

P
ti+1

ST (st) · Pc(δ
i+1
c) (4)

15

Moreover:

P
ti+1

ET (et|et(I ′)ti , rti) =
X

st∈ST (ti)

X

δ
i+1
c |st+δ

i+1
c =et

P
ti+1

ST (st|et(I ′)ti , rti) · Pc(δ
i+1
c) (5)

And,

P
ti+1

ET (et|et(I ′)ti) =
X

st∈ST (ti)

X

δ
i+1
c |st+δ

i+1
c =et

P
ti+1

ST (st|et(I ′)ti) · Pc(δ
i+1
c) (6)

3.2.2 Resource probabilities

Let P
ti+1
ra (rti+1) be the probability that agent Agi has rti+1 resources before it tries to exe-

cute ti+1. As agents do not share resources, this stands for the probability that Agi has rti+1

resources after executing ti+1’s previous task (let ti be this previous task). Probabilities Pra

on available resources are therefore defined as follows:

1. If ti+1 is the first task of the agent (ti = ∅) :

P
ti+1
ra (rti+1) =


0 If rti+1 6= Rini

1 Otherwise

where Rini is Agi’s initial rate of resources.

2. If ti+1 is the second task of the agent (ti−1 = ∅ and ti 6= ∅) (ti−1 is the task that Agi

has executed before ti) :

P
ti+1
ra (rti+1) =

available resources before ti’s execution
z }| {
X

rti

P
ti
ra(rti) ·

nr. of partial failures
z }| {
X

nbEP

PEP (nbEP, rti)

·

resource consumptions
z }| {

X

∆i
r|rti

−nbEP ·∆r′−∆i
r=rti+1

Pr(∆
i
r)

Probabilities on available resources before trying to execute ti+1 are deduced from prob-

abilities on available resources after the execution of ti. These are based on available

resources before trying to execute ti, the number of partial failures of ti, partial fail-

ure resource consumption ∆r′, and ti’s resource consumption ∆i
r . For each available

resource rate before trying to execute ti, we consider every possible number of partial

failures. Let PEP (nbEP, rti) be the probability that nbEP partial failures of ti occur

before successful execution of ti, when the agent has rti resources before trying to exe-

cute ti.

PEP (nbEP |rti) is computed by considering each possible start time sti of ti and the

number of partial failures that may have occurred when the task successfully starts ti at

sti. EP (sti) is the set of the numbers of partial failures nbEP that may have occurred

when the task is successfully executed at sti. Then,

PEP (nbEP, rti
) =

P

st∈ST (ti)|nbEP∈EP (st) P
ti
ST (st|rti

) ·
P

δi
c|st+δi

c≤LETi
Pc(δ

i+1
c)

(1 −
P

st∈ST (ti)
·P

ti
ST (st)) · (1 −

P

δi
c|st+δi

c≤LET
Pc(δi

c))

where ST (ti) is the set of possible start times st of ti. For each of these start times sti,

we compute the probability that the task is successfully executed when it starts at sti.

16

This is the probability that the task ends before the deadline (
P

δ
i+1
c |sti+δ

i+1
c ≤LETi+1

Pc(δ
i+1
c)).

As we consider successful execution of ti, the sum of probabilities is normalized by the

probability that ti is successfully executed.

3. Otherwise:

P
ti+1
ra (rti+1) =

available resources before ti’s execution
z }| {
X

rti

P
ti
ra(rti) ·

nr. of partial failures
z }| {
X

eti−1

P
ti−1

ET (eti−1)
X

nbEP

PEP (nbEP |eti−1, rti)

·

resource consumptions
z }| {

X

∆rti
|rti

−nbEP ·∆r′−∆i
r=rti+1

Pr(∆
i
r)

This equation is nearly the same as the one introduced in the previous case. Nonetheless,

Agi has executed a task ti−1 before ti. As the end time eti−1 of ti−1 influences the start

time of ti−1’s following tasks, it is taken into account while considering probabilities on ti’s

start times. PEP (nbEP |eti−1, rti) is then defined as follows:

PEP (nbEP |eti−1, rti) =

P

sti∈ST (ti)|nbEP∈EP (sti|eti−1)
P ti

ST (sti|eti−1, rti)

β

·
P

δ
i+1
c |sti+δ

i+1
c ≤LETi+1

Pc(δ
i+1
c)

β

And

β =(1 −
X

sti∈ST (ti)

P
ti

ST (sti|eti−1)) · (1 −
X

δ
i+1
c |sti+δ

i+1
c ≤LETi+1

Pc(δ
i+1
c))

where EP (sti|eti−1) is the set of numbers of partial failures that may occur before the

execution of ti successfully starts at sti, when ti−1 ends at eti−1.

3.2.3 Transition probabilities

Once temporal and resource probabilities are known, individual transition functions can be

deduced. As mentioned previously, each individual transition function can be decomposed

into three components that stand for each kind of transitions. Let Agi be in a state si where

it tries to execute ti+1 at sti+1. We assume that his previous executed task ti finished at

et(I ′)ti and Agi has rti remaining resources. We now detail how to compute individual

transition probabilities for each kind of transitions.

Success transitions When agent Agi starts to execute ti+1 at sti+1, it succeeds if:

– precedence constraints are respected (ti+1’s predecessors have finished their execution),

– Agi has enough resources to execute the task (∆i+1
r ≤ rti),

– temporal constraints are respected: sti+1 + δi+1
c ≤ LETi+1.

17

The probability that the agent successfully executes ti+1 is then defined as:

Psuc(sti+1|et(I
′)ti , rti) = P

r
enough(Pred(ti+1)) ·

Y

tk∈Pred(ti+1)

X

t|t≤sti+1

P
tk

ET (t|et(I)ti)

·
X

∆
i+1
r |rti

≥∆
i+1
r

X

δ
i+1
c |sti+1+δ

i+1
c ≤LETi+1

Pr(∆
i+1
r).Pc(δ

i+1
c)

where Pr(∆
i+1
r) is the probability that the execution of ti+1 consumes ∆i+1

r resources

and Pc(δ
i+1
c) stands for the probability that the execution takes δi+1

c time units.

Partial failure transitions The probability the agent partially fails executing the task is equal

to the probability that the predecessors have not finished their execution and the agent Agi

has enough resources to realize that it partially fails. Indeed, if the agent lacks resources, the

execution of the task permanently fails. Note that if sti+1 = UBi+1 and the predecessors

have not finished their execution, the agent permanently fails because it could not retry to

execute the task later (there is no other possible start time for the task).

The probability Pnot end(sti+1) that the agent’s predecessors have not finished at sti+1

is the probability that the predecessors will finish later or will never finish. The predecessors

may never finish because they violated temporal constraints or they lacked resources. The

probability that such events occur is given by:

1 − P
r
enough(Pred(ti+1)) ·

Y

tk∈Pred(ti+1)\ti

X

et∈ET (tk)|et≤UBi+1

P
tk

ET (et|et(I ′)ti)

The probability that the predecessors finish after sti+1 is:

P
r
enough(Pred(ti+1)) ·

Y

tk∈Pred(ti+1)\ti

X

et∈ET (tk)

P
tk

ET (et|et(I ′)ti)

−P
r
enough(Pred(ti+1)).

Y

tj∈Pred(ti+1)\ti

X

et′∈ET (tj)|et′≤sti+1

P
tj

ET (et′|et(I ′)ti)

Thus, Pnot end(sti+1) is defined as follows:

Pnot end(sti+1) =P
r
enough(Pred(ti+1)) ·

Y

tk∈Pred(ti+1)\ti

X

et∈ET (tk)|et≤UBi+1

P
tk

ET (et|et(I ′)ti)

− P
r
enough(Pred(ti+1)).

Y

tk∈Pred(ti+1)\ti

X

et′∈ET (tk)|et′≤sti+1

P
tk

ET (et′|et(I ′)ti)

+ 1 − P
r
enough(Pred(ti+1)) ·

Y

tk∈Pred(ti+1)\ti

X

end∈ET (tk)|et≤UBi+1

P
tk

ET (end|et(I ′)ti)

Given Pnot end, partial failure probabilities PPCV (Precedence Constraints Violated) is

deduced:

– If sti+1 < UBi+1:

PPCV =
X

∆′
r|rti

≥∆′
r

Pr(∆
′
r) · Pnot end(sti+1)

– Otherwise:

PPCV = 0

18

Failure transition The execution of ti+1 permanently fails if the agent lacks resources or he

violates temporal constraints.

• Lack of Resources (LR):

Agent Agi may lack resources during the execution of ti+1 or when he partially fails.

The probability Agi lacks resources while executing a task ti+1 is the probability that the

predecessors have finished their execution (so the agent can start to execute the task) and the

execution requires more resources than available (rti < ∆i+1
r). The probability the agent

lacks resources when it partially fails is the probability the predecessors have not finished

their execution and the necessary resources to be aware of it are not sufficient (rti < ∆′
r).

Recall that ∆r′ is the resource consumption of a partial failure. Thus, the probability PLR

the agent fails because of insufficient resources, is computed as follows:

– If sti+1 < UBi+1:

PLR = P
r
enough(Pred(ti+1))·

Y

tk∈Pred(ti+1)\ti

X

t∈ET (tk)|t≤sti+1

P
tk

ET (t|et(I)ti)·
X

∆
i+1
r |rti

<∆
i+1
r

Pr(∆
i+1
r)

+Pnot end(sti+1).
X

∆′
r|rti

<∆′
r

Pr(∆
′
r)

– Otherwise (sti+1 = UBi+1):

PLR = P
r
enough(Pred(ti+1))·

Y

tk∈Pred(ti+1)\ti

X

t∈ET (tk)|t≤sti+1

P
tk

ET (t|et(I)ti)·
X

∆
i+1
r |rti

<∆
i+1
r

Pr(∆
i+1
r)

Because sti+1 = UBi+1, there is no partial failure. If the agent fails, he moves to a

permanent failure state.

• Violation of temporal constraints TC(ti+1):

Temporal constraints restrict the start times and end times of each task. They are violated

if the agent starts the execution of a task ti+1 too late (after the Latest Start Time of the task

- LSTi+1) or it finishes the execution after the task’s deadline (Latest End Time - LETi+1).

Possible start times sti+1 of ti+1 belong to the interval [LBi+1, UBi+1] and respect

temporal constraints. Too late start time failure arises when the agent starts to execute a task

ti+1 at UBi+1 and he partially fails. Then, there is no other possible start time that respects

temporal constraints and the agent cannot respect LSTi+1 deadline. The probability of such

a failure is computed as follows:

– If sti+1 < UBi+1: PTL = 0

– Otherwise: PTL = Pnot end(sti+1)

The agent can also violate temporal constraints if the execution of the task is so long

that it finishes after its Latest End Time. In this cas, task duration is such as: sti+1 + δi+1
c >

LETi+1. The probability PDM that the deadline is met while executing ti+1 is:

PDM = P
r
enough(Pred(ti+1)).

Y

tj∈Pred(ti+1)−ti

X

t∈ET (tj)|t≤sti+1

P
tj

ET (t|et(I)ti).
X

∆
i+1
r |rti

≥∆
i+1
r

Pr(∆
i+1
r)

.
X

δ
i+1
c |sti+1+δ

i+1
c >LETi+1

Pc(δ
i+1
c)i+1

19

Finally, the probability Pfail the agent moves to a failure state is:

Pfail = PLR + PTL + PDM

Decomposition of the system’s transition function allows us to modelize the initial mul-

tiagent decision problem as a set of individual MDPs that represent each agent’s decision

problem. Each MDP of the OC-DEC-MDP model formalizes temporal, precedence and re-

source constraints on task execution. The model also allows for modeling several possible

durations for each task. It thus provides a richer model of time and action than the one

proposed by standard DEC-MDP framework. As we consider individual actions and states,

large problems, that are out of range of other approaches, can be modelized by OC-DEC-

MDPs. We detail the scalability of our approach in section 5.1.

3.3 Complexity Analysis

Theorem 1 Optimally solving an OC-DEC-MDP has a complexity exponential in the num-

ber of states.

Proof: Each agent’s state is locally fully observable. Thus, a joint policy is a mapping from

world states S = 〈S1, · · · , Sn〉 to joint actions A = 〈A1, · · · , An〉. The number of joint

policies is exponential in the number of states |S|. Evaluating a joint policy can be done in

polynomial time through the use of dynamic programming, the OC-DEC-MDP is therefore

exponential in the number of states |S|. ✷

Figure 3, classifies some existing models based on DEC-POMDPs. Unlike Transition

Independent Decentralized Markov Decision Processes (TI-DEC-MDPs) and Observation

Independent Decentralized Markov Decision Processes (OI-DEC-MDPs), we do not as-

sume some independence properties about the transition or observation functions. The Event

Driven Decentralized Markov Decision Processes (ED-DEC-MDPs) (Becker et al., 2004a)

model is OC-DEC-MDP’s nearest framework. Indeed, ED-DEC-MDPs and OC-DEC-MDPs

both deal with constraints on task execution and both consider several possible durations for

each task. These properties are not taken into account by other models. ED-DEC-MDPs

formalize a problem as a factored DEC-MDP where each agent’s state keeps track of infor-

mation about dependencies. This leads to larger set of states than the ones defined in OC-

DEC-MDP. Such a definition of states allows for representing a wider range of dependencies

but it limits the size of problems that can be solved. On the other hand, OC-DEC-MDP’s def-

inition exploits constraints and dependencies to restrict the action and state spaces allowing

for representing large size of problems (see section 5.1).

4 OC-DEC-MDP resolution

Given the decomposition of the problem, we aim at solving each local MDP and deducing

each agent’s policy. Nevertheless, we consider cooperative multiagent systems where inter-

actions between the agents arise from precedence and temporal constraints. Thus, maximiz-

ing a common reward requires the agents to coordinate and MDPs cannot be independently

solved.

Temporal constraints restrict the possible intervals of execution and precedence con-

straints partially order the tasks. If the execution of a task ti+1 starts before its predecessors

20

Fig. 3 Relationships between DEC-POMDP based models

finish, it partially fails. Partial failures consume restricted resources and can lead to insuffi-

cient resources. If an agent lacks resources it will be unable to execute its remaining tasks.

Consequently, the agents tend to avoid partial failures. One way to restrict partial failures

consists in delaying the execution of the tasks. As a result, the likelihood that the prede-

cessors have finished when an agent starts to execute a task increases and less resources

are consumed by partial failures. Nonetheless, the more the execution of a task is delayed,

the more the successors are delayed and the higher the probability of violating temporal

constraints. In fact, the probability the deadline is met increases. If temporal constraints are

violated during task execution, the agent fails permanently executing the task and does not

obtain the reward associated with the task. Note that this assumption can be easily relaxed

without modifications of our approach.

The problem is to find a local policy for each agent that maximizes the sum of the re-

wards of all the agents. The agents must trade off the probability of partially failing and

consuming resources against the consequences of delaying the execution of a task. To maxi-

mize the sum of the expected rewards, each agent must consider the consequences of a delay

on itself and on its successors. For purpose of coordinating the agents, we introduce the no-

tion of Opportunity Cost (OC) and we propose valuation measures that lead to cooperative

behaviors. We then introduce algorithms that use these measures to evaluate each agent’s

policy and solve the decision problem.

4.1 Opportunity cost and policy evaluation

Opportunity cost is borrowed from economics and refers to hidden indirect costs associated

with a decision (Wieser, 1889). In our approach, we use opportunity cost to measure the

effect of an agent’s decision on the other agents. More specifically, the opportunity cost is

21

the loss of expected value of the other agents resulting from delaying the execution of their

tasks. Taking this cost into account leads to better coordination among the agents: it allows

each agent to consider how its decisions influence the other agents.

When an agent Agi decides when to start the execution of a task ti+1, its decision

influences all the tasks that can be reached from ti+1 in the mission graph (direct or indi-

rect successors of ti+1). In order to obtain coordinated behaviors, each agent must therefore

consider the influence of its actions on the other agents. This is measured by expected oppor-

tunity cost (EOC) and policies are valued using two equations: a standard Bellman equation

and a modified Bellman equation. The modified Bellman equation allows the agent to se-

lect the best action to execute in a state si, considering its expected utility and the expected

opportunity cost induced on the other agents. The best action to execute from a given state

results from a trade-off between the agent’s expected utility and the EOC provoked on the

other agents.

The first equation is a standard Bellman equation that computes for each state si of each

agent Agi, the agent’s utility. It is based on Bellman optimality principle:

V (si) =

Immediat Gain
z }| {

R(si) +

Expected Utility
z }| {

maxE(ti+1,st),st≥t(V
′) (7)

where si = [ti, [st(I
′)ti , et(I

′)ti], rti] (and et(I ′)ti = t) or si = [ti, [t−1, t], et(I ′)ti , rti].

If si = [ti, [st(I
′)ti , et(I

′)ti], rti] (success state), t = et(I ′)ti . Moreover, R(si) = R(ti).

Otherwise, R(si) = 0.

Different kinds of transitions must be considered to compute the expected value, thus

V ′ is such that: V ′ = Vsuc +VPCV +Vfail. Each part of V ′ stands for a kind of transitions:

• Success transition:

Vsuc = Psuc(st|et(I
′)ti , r) · V ([ti+1, I, rti − ∆r])

• Pred(ti+1) violated:

VPCV = PPCV · V ([ti, [st, st + 1], et(I ′)ti , rti − ∆r
′])

• Failure transition:

Vfail = Pfail · V ([failureti+1 , ∗, ∗])

where V ([failureti+1 , ∗, ∗]) is the value of the failure state associated with ti+1:

V ([failureti+1 , ∗, ∗]) = −R(ti+1) −
X

tsuiv∈Tsuiv(ti+1)

R(tsuiv)

where −R(ti+1) is the immediate penalty due to the failure of ti+1 and
P

tsuiv∈Tsuiv(ti+1)
R(tsuiv)

is the loss in value due to the failure of all the remaining tasks executed by the Agi (the tasks

that can be reached from ti+1 in the mission graph). This is deduced from the mission graph.

The second equation computes the policies of the agents. We use an augmented Bellman

equation in which an expected opportunity cost is introduced:

πi(si) = argmaxE(ti+1,st),st≥et(I′)ti

“
Expected value

z}|{

V
′ −

Expected Opportunity Cost
z }| {

EOC(ti+1, st)
”

(8)

where argmax denotes an operator which returns the action of E(ti+1, st), st ≥ et(I ′)ti

which maximizes V ′. As mentioned previously, E(ti+1, st) is the action which consists in

22

executing ti+1 at st. si = [ti, [st(I
′)ti , et(I

′)ti], rti] (and et(I ′)ti = t) or si = [ti, [t −
1, t], et(I ′)ti , rti]. EOC(ti+1, st) is the EOC the execution of ti+1 will induce if the agent

starts at st and V ′ = Vsuc + VPCV + Vfail.

Thus, the most valuable foregone action is selected by considering:

– The expected value, computed using a standard Bellman equation (Equation 7). It takes

into account the expected value of executing the agent’s remaining task.

– The expected opportunity cost provoked on the other agents.

The following of the section will deal with the definition and computation of the ex-

pected opportunity cost.

Let two tasks ti+1 and tj be respectively executed by two agents Agi and Agj , and such

that tj is a successor of ti+1. Moreover, let suppose that Agj has rtj available resources

when it starts to execute tj . Two possible executions of ti+1 are presented in Figure 4. The

first one starts at st1 and ends at et1 = LBj . Thus, the execution of tj can start in the interval

[LBj , UBj], Agj will choose the best start time stj in this interval. The second execution

of ti+1 starts at st2 and ends at et2. Then, tj could not start before et2. If we consider that

et2−LBj = ∆t, the execution of tj will start in the interval [LBj +∆t, UBj]. The interval

of the possible start times is reduced by ∆t and Agj will choose the best start time st′j in the

interval [LBj + ∆t, UBj]. If stj = st′j , the fact that ti+1 ends later does not affect the best

possible start time of tj . Otherwise (stj 6= st′j), the expected utility V
0,rtj

tj
the agent can

obtain when it starts tj at stj (best start time in [LBj , UBj]) with rtj resources, is greater

than V
∆t,rtj

tj
the expected utility when it starts the execution of tj at st′j (best start time in

[LBj + ∆t, UBj]) with rtj resources. Then, the fact that ti+1 ends at et2 leads to a loss in

Agj’s expected value.

LBj UBjLBj + t

t

st1 st2

et1

et2

ti+1

ti+1

Fig. 4 Delay example

0

V

V0, r

t

r

r’

V

V

t

0, r’

Delay

Expected Utility

OC(t, r)

OC(t, r’)

, r

, r’t

Fig. 5 Influence of resources and delay on Ex-

pected Value

The OC induced by Agi on Agj is the loss in value when Agj has rtj resources and

its first possible start time is delayed by ∆t. The OC is measured by the difference between

V
0,rtj

tj
, the expected value if tj can start in [LBj , UBj] with rtj resources , and V

∆t,rtj

tj

the expected value if tj can start in the interval [LBj + ∆t, UBj] with rtj resources. The

23

opportunity cost is then given by:

OCtj (∆t, rtj) = V
0,rtj

tj
− V

∆t,rtj

tj
(9)

As the rate of resource rtj influences the expected value, an opportunity cost is com-

puted for each resource rate and each delay ∆t (see Figure 5). For instance, if the resource is

very tight, the probability the agent will fail because of lack of resources, is very high. Then,

delaying a task has a low cost because whatever its start time, the likelihood its execution

fails is very high.

Claim: OC is always positive or equal to zero.

Proof: Let assume that V
0,rtj

tj
< V

∆t,rtj

tj
. stj is the best possible start time in the

interval [LBj , UBj] and allows to obtain V
0,rtj

tj
. st′j is the best possible start time in the

interval [LBj + ∆t, UBj] and allows to obtain V
∆t,r
tj

. If stj belongs to [LBj + ∆t, UBj]

then, it is the best possible start time in [LBj +∆t, UBj]. Therefore stj = st′j and V
0,rtj

tj
=

V
∆t,rtj

tj
. We cannot have V

0,rtj

tj
< V

∆t,rtj

tj
.

If stj does not belong to [LBj + ∆t, UBj] then, there is another best possible start time

st′j in [LBj + ∆t, UBj] and V
0,rtj

tj
> V

∆t,rtj

tj
, otherwise st′j would be the best start time

in [LBj , UBj]. ✷

Expected Opportunity Cost
Let suppose that a task ti+1 starts at st. Since actions are not deterministic, we do not

know exactly when the task ti+1 will end and the opportunity cost it will induce. Different
kinds of transitions must be taken into account so as to consider the possible end times of the
task. That’s why we define expected opportunity cost and Equation 8 considers the expected
opportunity cost provoked by a task ti+1 on the other agents when it starts at st. Given a
start time st, the exepcted opportunity cost consider, for each possible end time etti+1 of
ti+1, the probability ti+1 ends at etti+1 and the OC provoked on the other agent in such a
case. The expected opportunity cost induced on the other agents when ti+1 starts at st is
defined as follows:

EOC(ti+1, st) =Psuc ×
X

Agj∈Ag,j 6=i

EOCAgj ,ti+1
(eti+1) (10)

+ Pfail

X

Agj∈Ag,j 6=i

EOCAgj ,ti+1
(fail) + PPCV × EOC(ti+1, t = next start)

=P r
enough(Pred(ti+1)) ·

Y

tk∈Pred(ti+1)

X

t|t≤sti+1

P
tk
ET (t|et(I)ti)

·
X

∆
i+1
r |rti

≥∆
i+1
r

X

δ
i+1
c |sti+1+δ

i+1
c ≤LETi+1

Pr(∆i+1
r).Pc(δ

i+1
c).EOCAgj ,ti+1

(eti+1)

+ (PLR + PTL + PDM)
X

Agj∈Ag,j 6=i

EOCAgj ,ti+1
(fail)

+ PPCV × EOC(ti+1, t = next start)

where eti+1 is a possible end time of ti+1, EOCAgj ,ti
(eti+1) is the EOC induced on the

agent Agj when it could not start before eti+1 (the end time of ti+1), and EOC(ti+1, t =

next start) is the opportunity cost when the execution of ti+1 partially fails and the agents

re-try to execute the task at t (the next start time given for ti+1). The execution of ti+1

can lead to different transitions, therefore all these transitions must be considered while

24

computing EOC(ti+1, st). For instance, if the execution of the task succeeds, the EOC will

be different from the EOC induced on the other agents if the execution fails.

When an agent Agi finishes to execute a task ti+1 at etti+1 , we consider the expected

opportunity cost provoked on each other agent Agj . We thus compute the delay provoked on

the nearest task tj that will be executed by Agj . This is the nearest task in the mission graph

that will be influence by the delay of ti+1. Distance between two tasks ti and tj is given by

the number of nodes that belong to the shortest path between ti and tj in the mission graph.

Let consider the task “Put out from flames” described on Figure 1. The ambulance agent’s

nearest task from the task “Put out from flames” is “Give first aid to injured people”.

This expected opportunity cost provoked by Agi on Agj is denoted EOCAgj ,ti+1
(etti+1).

If there is no intermediate task between ti+1 and tk (tk is a direct successor of ti+1), the

delay of ti+1 is the delay provoked on tk. Thus,

EOCAgj ,ti+1
(etti+1) =

X

rtj

P
tj
ra(rtj) × OCj(etti+1 − LBj , rtj) (11)

Otherwise, the tasks between ti+1 and tk may increase or decrease the delay provoked

on tk. The expected provoked on tk when ti+1 ends at etti+1 is then recursively computed.

Let tl be the successor task of ti+1 on the path from ti+1 to tk. We obtain :

EOCAgj ,ti+1
(etti+1) =

X

rtl

P
tl
ra(rtl)

X

δl
c

Pc(δ
l
c)EOCAgj ,tl

(st∗ + δ
l
c) (12)

where st∗ is tl’s start time when the Agl who executes tl has rtl resources before exe-

cuting tl and it cannot start executing tl before etti+1 .

Given a start time st of ti+1, Equation 10 computes the probabilities on ti+1 end times.

For all ti+1’s end times and each agent Agi, Equations 11 and 12 computes the delay pro-

voked on Agj’s nearest task tj , assuming ti+1 ends at etti+1 . Given this delay, Equation 9

computes the OC on tj . These equations allow us to deduce the expected opportunity cost

introduced in the augmented Bellman equation (Equation 8). Note that the OC is always

positive, then the EOC is always positive. While deciding the best action to execute in a

state si, the expected value is reduced by −EOC(ti+1, st) which always stands for a cost.

4.2 Revision algorithm

Optimally solving a general DEC-MDP is a double exponential problem (Bernstein et al.,

2002). It is therefore intractable to find an optimal solution for large size of problems (Becker

et al., 2004a). In order to solve large realistic problems that may be composed of hundreds

tasks and more than ten agents, we aim at finding an approximate solution. In this section, we

present a revision algorithm that uses the coordination mechanism described in the previous

section to evaluate each agent’s policy and solve the problem.

The revision algorithm consists in improving the initial set of policies which has been

previously used to compute transitions probabilities. Two versions of the algorithm have

been developed. A centralized one (Algorithm 1) allows a central entity to revise all the

agents policies and improves the policy of each task using Equation 8. Decentralized version

of the algorithm has also been proposed: each agent improves its own policy, thus allowing

for considering several tasks at the same time.

25

4.2.1 Centralized revision algorithm

Because of dependencies between the agents, the centralized revision algorithm (Algo-

rithm 1) evaluates the local MDPs at the same time. The algorithm passes through the mis-

sion graph from the leaves to the roots. The tasks of the mission are organized into levels.

The first level contains the leaves of the graph. The second level contains the predecessors of

the leaves whose successors have already been evaluated. Level Ln contains the predeces-

sors of the tasks belonging to level Ln−1 whose successors have already been evaluated. For

each task ti+1 of a level Ln, the execution policy of ti+1 is revised. In fact, we consider the

states from which ti+1 can be executed. Let ti+1 be executed by Agi and let ti be the task

that Agi executes just before ti+1. While revising the execution policy of ti+1, we consider

the partial failures and the success state associated with ti. Then, Equation 8 is applied to

select the best action to execute from these states.

Once the policy of a task ti+1 has been revised, opportunity cost values associated with

ti+1 are computed. These values will be used while revising the predecessors of ti+1. Notice

that leaves have no successor so delaying their execution do not provoke any loss in value

on the other agents (opportunity cost on the other agents is zero). Nonetheless, delaying a

leaf ti may provoke a loss in value on the agent which executes ti (because of temporal

constraints). While considering a level Ln, we only consider the tasks whose successors

have already been evaluated, we therefore guarantee that we know the opportunity cost the

execution of ti+1 will provoke on the other agents.

In order to measure, the EOC provoked by the execution of ti+1 (Equation 10), we need

to know the delay provoked on the nearest tasks tk of each agent Agk such as k 6= i. This

delay depends on the policies of the tasks between ti+1 and tk. As the algorithm passes

through the graph from the leaves to the node, the policies of the tasks between ti+1 and

tk have been revised when ti+1 is considered. If the initial policy is used to estimate the

delay provoked on tk, it may lead to inaccurate results because of policy changes. We have

therefore developed an update method that guarantees the accuracy of expected opportunity

cost values. Each time the algorithm finishes revising the policy of a task tj executed by

Agj , opportunity cost values are computed using Equation 9. Then, for each nearest tasks

tk of each agent Agk, expected opportunity cost values EOCtj (∆ttj , tk) are updated using

Equations 11 and 12 and tj’s new policy. These values will then be used to revise the policies

of tj’s predecessors. Let ti+1 be a predecessor of tj . While revising the policy of task

ti+1, we know that all the successors of ti+1 have already been evaluated, EOC values

of the successors EOCti+1(∆tti+1 , tk) that are used to compute EOCti+1(∆tti+1 , tk) are

therefore guaranteed to be computed using the revised policy.

Theorem 2 The time complexity of the centralized revision algorithm is polynomial in |SU|×
|A| where |A| is the maximum number of actions that can be executed from a state si.

|A| = |ST | where |ST | is the maximum number of possible start times for a task. SU is the

union of the agents’s states: |SU| =
P

Agi∈Ag |Si| < |S|.

Proof: Let |S(ti)| be the number of states associated with a task ti. The centralized

revision algorithm passes through the state space of each agent. For each state si, a value

V (si) and a policy πi(si) are computed. Their complexity is O(|ST |). Indeed, each action

has to be considered and in the worst case, there are |ST | actions for each state. Moreover,

for each task ti there are |S(ti)| states to consider.

Let |ST (ti)| be the number of possible start times for a task ti and let #ri the maxi-

mum of possible resource rates per task. Lines 10 to 15 of the algorithm compute the OC

values associated with a task ti. The complexity of computing V ∆t,rti and OC(∆t, rti) is

26

Algorithm 1 Centralized Revision Algorithm

Require: the OC-DEC-MDP, an initial set of policies π =< π1, · · ·πn >

Ensure: a new set of policies π

1: for all level Ln from the leaves to the roots of the mission graph do

2: for all task ti+1 in level Ln do

3: Compute V for the failure state: [failure(ti+1), ∗, ∗]
4: for all partial failure states [ti, [st, st + 1], et(I′)ti , rti] associated with ti do

5: Compute V and π for [ti, [st, st + 1], et(I′)ti , rti]
6: end for

7: for all success state [ti, [st, st + δi
c], rti] associated with ti do

8: Compute V and π for [ti, [st, st + δi
c], rti]

9: end for

10: for all start time st of ti+1 from UBti+1 to LBti+1 do

11: for all resource rate rti available after a successful execution of ti do

12: Compute V
∆t,rti
ti

where ∆t = st− LBti

13: Compute OC(∆t, rti) = V
0,rti
ti

− V
∆t,rti
ti

and deduce EOC values

14: end for

15: end for

16: for all agentAgj that does not execute ti+1 do

17: Update the EOC values ofAgj ’s nearest task from ti+1

18: end for

19: end for

20: end for

O(1) since they consist in summation over possible transitions. In the worst case, there are

|STi| ×#ri values to compute for each task. Thus, the complexity of computing OC values

is O(|ST (ti)| × #ri) and

|ST (ti)| × #ri < |S(ti)|

Moreover, EOC values must be updated. In the worst case there are |ST | × |Ag| values

to update and |ST | × |Ag| < |S(ti)| × |ST |

Thus, the complexity of revising a task ti is O(|S(ti)|×|ST |). Lines 3 to 18 are executed

for each task and
X

ti∈T

|S(ti)| = |SU|

The time complexity of the algorithm is therefore O(|ST | × |SU|). ✷

Note that if there are several possible next tasks from a state si (the agent must choose

between several tasks), the algorithm remains polynomial. Nonetheless, the number of ac-

tions that can be executed from a state si is |ST | × |Next| where |Next| is the number

of possible next tasks to consider. Note that non-selected actions are delayed. The conse-

quences of delaying this task are taken into account by the expected utility V ′ of the agent

and the expected opportunity cost provoked on the other agent (EOC computation is similar

to the computation described in this paper).

4.2.2 Decentralized revision algorithm

Decentralized revision algorithm (Algorithm 2) allows the agents to simultaneously evaluate

their own local MDPs. Thus, each agent derives a new local policy from its initial policy

by applying the decision mechanism described in Equation 8. Unlike centralized revision

algorithm which considers only one task at the same time, decentralized algorithm allows

for several agents to simultaneously revise the execution policies of their tasks.

27

While revising his policy, each agent only considers the tasks he has to execute. Given

a mission graph, a graph of tasks can be defined for each agent Agi. This graph of tasks

orders the task the agent Agi has to execute. Then, the agent passes through his graph of

tasks from the leaves to the roots and revises the policy of each task.

Because of decentralization of the decision process, the agents have to communicate

expected opportunity cost values. When an agent evaluates the policy of a task ti+1, he needs

to know the expected opportunity cost he will provoke on the other agents. He must therefore

have received EOC values from its successors. If these values have not been received, the

agent waits until delivery. We assume that there is no loss of messages. As soon as EOC

values are known, the agent can compute its expected value and the policy of ti+1. Notice

that even if decentralized execution of the algorithm requires off-line communication, the

agents never communicate during the execution of the mission.

As soon as an agent finishes revising the policy of a task ti+1, he computes the OC

values associated with ti+1 using Equation 9 and EOC values of ti+1 are deduced. Given

the EOC values he has received and the OC values of ti+1, he then updates the expected

opportunity cost provoked on the other agents by ti+1. For each agent Agj and each delay

∆tti+1 , he therefore computes EOCti+1(∆tti+1 , tj) using Equations 11 and 12 and ti+1’s

new policy (tj is the nearest task that will be executed by Agj). Finally, he sends these

updated EOC values to the predecessors of ti+1 which will use them while computing the

EOC defined by Equation ??. Communicating updated expected opportunity cost values

instead of opportunity cost values guarantees the accuracy of opportunity cost regarding

revised policies.

Algorithm 2 Decentralized Revision Algorithm

Require: Agi’s local MDP and the initial policy πi oAgi

Ensure: A new policy πi of the agentAgi

1: for all level Ln from the leaves to the roots of the agentAgi’s graph of tasks do

2: for all task ti+1 in level Ln do

3: while the agent does not have received the EOC values he needs do

4: wait

5: end while

6: Compute V for the failure state: [failure(ti+1), ∗, ∗]
7: for all partial failure states [ti, [st, st + 1], et(I′)ti , rti] associated with ti do

8: Compute V and π for [ti, [st, st + 1], et(I′)ti , rti]
9: end for

10: for all success state [ti, [st, st + δi
c], rti] associated with ti do

11: Compute V and π for [ti, [st, st + δi
c], rti]

12: end for

13: for all start time st of ti+1 from UBti+1 to LBti+1 do

14: for all resource rate rti available after a successful execution of ti do

15: Compute V
∆t,rti
ti

where ∆t = st− LBti

16: Compute OC(∆t, rti) = V
0,rti
ti

− V
∆t,rti
ti

and deduce EOC values

17: Send EOC to ti+1’s predecessors

18: end for

19: end for

20: for all task tj executed by another agent and for which EOC values has been received do

21: Update the EOC values and send them to ti+1’s predecessors

22: end for

23: end for

24: end for

28

Theorem 3 The complexity of the decentralized revision algorithm is polynomial time in

|A|× |SU|+#OC ×K ×TM where K is the size of a message and TM is the time needed

to communicate one unit of information. |A| is the maximum number of actions that can be

executed from a state si. |A| = |ST | where |ST | is the maximum number of possible start

times for a task.

Proof: In the worst case, none of the states can be evaluated at the same time and the

algorithm has the same time complexity as the centralized algorithm which evaluates all the

agents’ states one by one. Only one state is therefore evaluated at a time. The time needed

to pass trough the state space of each local MDP and to value each state is |ST | × |SU|.
The complexity of sending an OC value relies on the size of the message (a message

consists in communicating a “double” value) and the time needed to send one unit of the

message. In the worst case there are #OC values of opportunity cost to communicate where:

#OC =
X

ti∈T

|Ag| × |ST |

Indeed, each time an agent revises the policy of a task ti+1, it must broadcast the updated

expected opportunity cost values. While updating the expected opportunity cost values, the

nearest task of each agent is considered and there are |ST | values to update for each agent.

Thus, the time complexity of the algorithm is O(|ST | × |SU| + #OC × K × TM). ✷

Complexity analysis of both versions of the revision algorithm suggests that large prob-

lems could be solved. Indeed, we propose a polynomial algorithm whereas other existing

approaches are in best case exponential (Nair et al., 2003; Becker et al., 2004b). As de-

tailed in section 5.1, our approach allows for scaling up to problems with hundreds of tasks

whereas existing approaches are limited to small problems involving at best about ten tasks.

PerformanceThe revision algorithm consists in improving an initial set of policies and re-

sults in an approximate solution. However, under some identified assumptions, the algorithm

returns an optimal solution. Let EST-policy be the policy which consists in executing each

task as soon as possible (Earliest possible Start Time). Let LST-policy be the policy which

consists in executing each task as late as possible (Latest possible Start Time). For purpose

of good understanding, we do not detail the proofs of the following claims. Although, the

authors are willing to provide mathematical details of these proofs.

Claim 1 Under unlimited resources, EST-policy is an optimal policy.

Proof: Under unlimited resources, decisions are not influenced by available resources.

Thus, the agents do not tend to avoid partial failures and do not have to delay the execution of

their tasks. The agents do not have to care about resource failure consumption. Nevertheless,

they have to to respect temporal constraints. In order to limit failures due to violation of

temporal constraints, the agents must start their task as soon as possible. Under unlimited

resources, the agents therefore select the earliest possible start time of each task and EST-

policy is an optimal policy.✷

Claim 2 If there is no constraint on tasks’ end times (LET ≃ +∞), LST-policy is an opti-

mal policy.

Proof: If there is no constraint on tasks’ end times (LET ≃ +∞), an agent cannot

fail because he finishes the execution of his task after the deadline. Delaying the execution

of a task does not increase the probability of deadline met. Moreover, this decreases the

probability of partially failing. So as to maximize their utility, the agents have to start the

execution of their task as late as possible. LST-policy is therefore an optimal policy.✷

29

Claim 3 If there is no constraint on tasks’ end times (LET ≃ +∞) and resources are

unlimited, all policies are optimal policies.

Proof: If there is no constraint on tasks’ end times (LET ≃ +∞) and resources are

unlimited, resources and deadlines do not influence the agents’ expected utility. Whenever

the agents start the execution of their task, their expected utility remains unchanged. Thus,

the agents can start the execution of their task whenever they want.✷

Claim 4 Under unlimited resources, the revision algorithm computes an optimal policy.

Proof: See Appendix A

Claim 5 If there is no constraint on tasks’ end times (LET ≃ +∞), the revision algorithm

computes an optimal policy.

Proof: See Appendix B

Claim 6 If there is no constraint on tasks’ end times (LET ≃ +∞) and resources are

unlimited, the revision algorithm computes an optimal policy.

Proof: If there is no constraint on tasks’ end times (LET ≃ +∞) and resources are

unlimited, all policies are optimal policies. We deduce that computed policies are always

optimal. ✷

Claim 7 Let X be a mission involving two agents Agi and Agj . If the initial policy of

Agi is EST-policy and all precedence constraints come from Agi to Agj then, the revision

algorithm computes an optimal policy.

Proof: See Appendix C

4.3 Iterative algorithm

Both versions of the revision algorithm presented in the previous section consist in improv-

ing an initial policy set. When the algorithm stops, each task has been considered once and

a new policy is available for each agent. In order to obtain better solutions, we suggest re-

executing the revision algorithm considering that the initial policy set is the set of policies

we have just computed. By iterating the revision algorithm, each task is therefore consid-

ered several times. Let ti be a task executed by Agi and let tj be a predecessor of ti. At first

iteration step, an initial policy is assumed for the execution of ti and tj . ti’s policy is revised

first, assuming tj’s initial policy. Once the policy of ti has been revised, tj is considered and

its policy is also revised. Thanks to updated expected opportunity cost, tj’s new policy is

computed assuming the new policy of ti. Nonetheless, given the new policy of tj , a better

policy may be found for ti. The iteration process allows for revising ti’s policy given tj’s

new policy.

The outcome policies of iteration N-1 are the initial policies of iteration N. Obviously,

the transition function depends upon the initial policy of the current iteration and must be

updated at each iteration step by propagating temporal and resource constraints through the

mission graph (see section 3.2). Once the new transition function is known, each agent re-

executes the revision algorithm to obtain new local policies. This process is repeated until

no changes are made. Note that states, actions and reward functions remain unchanged at

each iteration.

30

Algorithm 3 Centralized Iterative Algorithm

Require: the OC-DEC-MDP, an initial set of policies π =< π1, · · ·πn >

Ensure: a new set of policies π

1: repeat

2: nbChanges = 0

3: Compute new transition functions from π

4: π′ ← Revise local policies πi ∈ π using the centralized revision algorithm

5: for all Agk ∈ Ag do

6: nbChanges += number of changes in π′

7: end for

8: π ← π′

9: until nbChanges == 0

Two versions of the iterative algorithm have been developed. They are based on the two

versions (centralized and decentralized) of the revision algorithm. The centralized iterative

algorithm (Algorithm 3) consists in iteratively executing the centralized revision algorithm

until no policy changes are made.

Theorem 4 The complexity of the centralized iterative algorithm is polynomial time in

IN × |SU| × |A| where IN is the number of iterations. |A| is the maximum number of

actions that can be executed from a state si. |A| = |ST | where |ST | is the maximum num-

ber of possible start times for a task.

Proof: At each iteration step, the transition function is computed and the revision al-

gorithm is executed. The complexity of the centralized revision algorithm is polynomial

time in |SU| × |ST |. The transition function is updated before each iteration step (line

4) by propagating temporal constraints through the mission graph whose complexity is

less than O(|SU|). Then, the overall complexity of the centralized iterative algorithm is

O(IN × |SU| × |ST |). ✷

While decentralizing the revision process (Algorithm 4), each agent iteratively improves

its own policy until no policy changes are made by any agents. In order to update its tran-

sition function, each agent has to know all the policy changes the other agents have made.

Policy changes must therefore be broadcasted at the end of each iteration. Nonetheless,

little information exchange is required compared to other approaches such as Subjective

MDPs developed by Chadès et al. (2002) or the Joint Equilibrium based Search for Policies

(JESP) (Nair et al., 2003). Indeed, these approaches only revise a part of the agents’ policies

at each iteration step thus leading to more frequent policy exchange.

Theorem 5 The complexity of the centralized iterative algorithm is polynomial time in

IN × (|A|× |SU|+ (#OC + |SU|)×K ×TM) where IN is the number of iterations. |A|
is the maximum number of actions that can be executed from a state si. |A| = |ST | where

|ST | is the maximum number of possible start times for a task.

Proof: At each iteration step, the transition function is computed and the revision algorithm

is executed. The complexity of the centralized revision algorithm is O(|ST |×|SU|+#OC×
K × TM). At the end of each iteration step, each agent must send his policy changes to

the other agents. There are in the worst case |SU| values to communicate. The transition

function is then updated by propagating temporal constraints through the mission graph

whose complexity is less than O(|SU|). Then, the overall complexity of one iteration is

O(|ST |× |SU|+(#OC + |SU|)×K ×TM) and the complexity of the centralized iterative

algorithm is O(IN × (|ST | × |SU| + (#OC + |SU|) × K × TM)). ✷

31

Algorithm 4 Decentralized Iterative Algorithm

Require: the agentAgi’s MDP, an initial set of policies π =< π1, · · ·πn >

Ensure: a new policy πi forAgi

1: repeat

2: Compute the transition function ofAgi from π

3: π′
i ← Revise the local policy using the decentralized revision algorithm

4: for all Agj ∈ Ag, j 6= i do

5: Send π′
i toAgj

6: end for

7: nbChanges = 0

8: for all Agk ∈ Ag do

9: nbChanges += number of changes in πk

10: πk ← π′
k

11: end for

12: until nbChanges == 0

ConvergenceTemporal complexity analysis proves that it is mainly influenced by the num-

ber of iterations. We end this section discussing convergence of the iterative process. We

describe the influence of centralization, decentralization and opportunity cost computation

on convergence guarantee.

First, it is proved that Equation 8 allows for choosing the action that maximizes the

agents’ joint utility.

Claim 8 If expected opportunity cost accurately measures the influence of an action on

the other agents’ expected utility then, selecting the action to execute from a state si using

Equation 8 maximizes the system’ utility.

Proof: See Appendix D

This claim assumes that an accurate measure of expected opportunity cost is used to re-

vise policies. Indeed, the expected opportunity cost must correctly and accurately measure

the influence of an action on the other agents’ expected utility. While executing the central-

ized iterative algorithm, the execution policy of only one task is revised at the same time.

Moreover, each time a task is revised, expected opportunity cost values are updated consid-

ering the new policy of the task. We thus guarantee that the expected opportunity cost used

in Equation 8 always remains accurate and correct and it can be deduced that centralized

iterative algorithm converges.

Claim 9 If expected opportunity cost accurately measures the influence of an action on the

other agents’ expected utility then, the centralized iterative algorithm converges.

Proof: Let task ti be executed by agent Agi and let π be the joint policy of the agents.

While revising the execution policy of ti (in a centralized way), the execution policy of all

the other tasks remains unchanged. Let π−i be the policy of the agents Agj where j 6= i. For

each state si from which ti can be executed, Claim 8 proves that the revised policy of these

states maximizes the joint expected utility given the policy π−i of the other agents. Let πold
i

be the policy of the agent Agi before revising the execution of ti and let πnew
i be the policy

of the agent Agi after revising the execution of ti. From Claim 8, we deduce:

If π
old 6= π

new
then, V

π−i×πold

(si) < V
π−i×πnew

(si) ∀si

where V π−i×πold

is the expected gain of the agents while executing the joint policy

π−i × πold.

32

Thus, each time the execution policy of a task ti is modified, the agent’s joint utility

increases. As the agents’ utility is upper bounded (the upper bound is the sum of the rewards

of the tasks), we deduce that the algorithm converges.✷

Fig. 6 A mission graph involving rescue agents

While executing the decentralized iterative algorithm, the execution policies of several

tasks are revised at the same time. We cannot therefore guarantee the accuracy of expected

opportunity cost. Figure 6 simplifies the mission graph presented on Figure 1. While exe-

cuting the decentralized algorithm on this mission, tasks F and I are revised at the same

time. The expected opportunity cost provoked by agent Ag3 on Ag2 is influenced by Ag2’s

available resources before the execution of G. These rely on the resources consumed to ex-

ecute F and on the execution policy of F . As tasks F and I are revised at the same time,

the accurate amount of resources available before the execution of G is not known by agent

Ag3. Thus, while revising the execution of I, the expected opportunity cost used in Equa-

tion 8 is not accurately known and we cannot guarantee that Equation 8 selects the action

that maximizes the agents’ joint utility. That’s why convergence is not guaranteed.

PerformanceIn order to remedy the high complexity of optimally solving DEC-MDPs, we

have developed approximate algorithms that improve an initial set of policies. Experiments

dealing with the quality of the resulting policies are presented in the next section. Nonethe-

less, properties of the computed solutions can be identified. We first introduce Bayesian

games to define the kind of equilibrium achieved by the centralized iterative algorithm.

Our work deals with partially observable domains. Indeed, we consider multiagent sys-

tems where each agent does not exactly know the other agents’ states nor actions. Bayesian

games modelize decision problems in which information about the other players is incom-

plete. Each agent (or player) has private information that is relevant to the decision making

process and that influences the expected utility of the system (Emery-Montemerlo et al.,

2004). The private information held by each agent is called “type”. In our approach, the

type of an agent Agi stands for his state. Each agent knows his state (or type) but he does

not know the other agents’s states. Computing the strategy for an agent then consists in

finding a strategy that maximizes the agent’s expected utility conditioned by the probability

distribution over the other agents’ states. Let uπ
i be the expected utility of the agent Agi

when strategy (policy) π is applied by the agents. A Bayesian Nash equilibrium is then such

as:

∀i u
π
i (si) ≥ u

π−i×π′
i

i (si) ∀si ∈ Si ∀π
′
i

33

where π−i is the policy if the agents Agj such as j 6= i and:

u
π
i (si) =

X

s∈S|s=〈··· ,si,··· 〉

p(s|si)u
π
i (s)

where p(s|si) is the probability that the system is in state s when Agi is in si.

Claim 10 Let X be a mission involving two agents Agi and Agj . If all precedence con-

straints come from Agi to Agj then, the iterative algorithm computes an optimal policy.

Proof: If Agi’s initial policy is EST-policy, it has been previously proved that the revi-

sion algorithm computes an optimal policy. While executing the iterative process, any initial

policy leads to an optimal solution. Whatever Agi’s policy is initially considered, Agi’s

policy resulting from the first iteration is EST-policy. Then, second iteration consists in exe-

cuting the revision algorithm assuming Agi’s policy is EST-policy. This results in an optimal

policy (see Claim 7).✷

Like our iterative revision algorithm, co-alternative algorithms for solving DEC-POMDP

iteratively improve the agents’ policies until no more improvement is possible. Nonetheless,

these algorithms, such as the Joint Equilibrium based Search for Policies (JESP) and the

Dynamic Programming Joint Equilibrium based Search for Policies (DP-JESP) ?, improve

only one local policy at a time while our algorithm allows the agents’ policies to be im-

proved at the same time. Moreover, they do not take into account temporal and precedence

contraints. Finally, improvement is centralized and the algorithms can solve only small sizes

of problems: DP-JESP Nair et al. (2003), cannot be run for problems over horizon of 7. In

order to increase the efficiency of these algorithms, a decentralized version of JESP, that ex-

ploits the locality of interactions has also been described Nair et al. (2005). This algorithm,

called LID-JESP, allows for solving larger problems bu still remains limited to small results

(4-agent problems that can be solved up to horizon 5 by JESP are solve up to horizon 6 by

LID-JESP).

Our revision algorithms take advantage of precedence constraints to order policy revi-

sion. The policy of a task ti is revised once the successor task of ti has been considered.

Similarly, the Global Optimal Algorithm (GOA) Nair et al. (2005) exploits the structure of

the agents’interactions to order policy revision. GOA solve problems where interactions can

be formalized by a tree structure. This algorithm allows each agent to compute his optimal

policy given the policies of hiss children in the tree-structure. Although exploiting the struc-

ture of interactions speeds up the problem resolution, the optimal resolution limit the size of

problems (4-agent problems that can be solved up to horizon 6 by LID-JESP are solve up

to horizon 3 by GOA). As mentioned previously, SPIDER is an approximate algorithm that

solves problems where interactions are formalized as a tree structure. Unlike our approach,

SPIDER Varakantham et al. (2007) improves the policy of only one agent at a time. Al-

though SPIDER can provide bounds on quality solutions and allows for considering larger

set of agents (5 agents), experimental results are limited to problems up to horizon 4.

5 Experimental results and analysis

In order our approach to be used to solve realistic problems, it must be able to consider large

problems and to find good approximate solutions. The following experiments first test the

scalability and efficiency of our approach and then, describe its performance.

34

5.1 Scalability

Previous complexity analysis show that the efficiency of our algorithms depends on the

state space and action space sizes of the local MDPs. Thus, first experiments deal with the

influence of problems’ parameters on the number of states and actions.

5.1.1 State space size

An upper bound on each agent’s state space size can be computed considering the number

of tasks to execute, the number of durations and resource consumptions per task, temporal

and resource constraints.

Let #succ(Agi) be the worst case number of success states of an agent Agi:

#succ(Agi) =
X

ti∈Ti

#I(ti) × #ri

where #I(ti) is the number of possible execution intervals of task ti. Most of the time, the

number of states of Agi is less than #succ(Agi) since not all resource rates are possible for

each execution interval.

Similarly, the worst case number of partial failure states of an agent Agi is:

#EP (Agi) =
X

ti∈Ti

|ET (ti−1)| × #ri × |ST (ti)|

where |ET (ti−1)| is the number of possible end times for the task ti−1 which is executed

by Agi before it starts ti.

As there is one failure state associated with each task, the state space size Si of agent

Agi is:

|Si| = #succ(Agi) + #EP (Agi) + |Ti|

=
X

ti∈Ti

“

#I(ti) × #ri + |ET (ti−1)| × #ri × |ST (ti)| + 1
”

The state space size of each agent Agi therefore relies on: the number of tasks |Ti|
executed by Agi, the number of execution intervals per task, the number of possible resource

rates per task, the number of start times and end times per task. Moreover, the number of

intervals per task is strongly related to the number of start times and end times per task; and

in the worst case #I(ti) = |ST (ti)| × |ET (ti)|

Number of tasks The number of tasks each agent has to execute mainly influences the

agents’ state spaces. The more tasks an agent has to execute, the larger his state space is.

The number of tasks per agent relies on the number of agents involved in the mission.

Given a set of tasks, the state space changes as the number of agents changes. Figures 7 and 8

describe the agents’ state space sizes considering several missions where we increase the

number of agents. We consider missions involving 20, 50, 100, 150 and 200 tasks. A peak in

the number of states can be observed when starting to increase the number of agents. While

increasing the number of agents that have to execute a set of tasks, the number of precedence

constraints between two different agents increases. Thus, there are more dependencies be-

tween the agents and more partial failure states have to be considered. Figure 9 illustrates

changes in the number of each kind of states while increasing the number of agents involved

in a mission composed of 50 tasks. On the other hand, the number of success states decreases

as there are less tuple [ti, I, rti] to consider for each task ti.

35

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 2 4 6 8 10 12 14 16 18 20

S
at

e
sp

ac
e

si
ze

Number of agents

20 tasks
50 tasks

Fig. 7 Influence of the number of agents on the

state space size

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 5 10 15 20 25 30 35 40 45 50

S
ta

te
 s

pa
ce

 s
iz

e

Number of agents

200 tasks
150 tasks
100 tasks

Fig. 8 Influence of the number of agents on the

state space size

 0

 100000

 200000

 300000

 400000

 500000

 600000

 2 4 6 8 10 12 14

S
ta

te
 s

pa
ce

 s
iz

e

Number of agents

Succes states
Partial failure states

Fig. 9 Influence of the number of agents on the dif-

ferent kinds of states

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 1 1.5 2 2.5 3 3.5 4 4.5 5

S
ta

te
 s

pa
ce

 s
iz

e

Scale of windows

Fig. 10 Influence of temporal windows on the state

space size

Number of intervals per task The number of execution intervals associated with a task ti re-

lies on the number of possible start times and end times of ti which depends on: precedence

constraints associated with ti, temporal constraints associated with ti, possible durations

associated with ti.

When we increase the size of the temporal windows [EST, LET], the state space size

grows. Indeed, temporal constraints are less tight, and new execution plans (involving new

states) can be considered. Figure 10 gives an example of this evolution considering a graph

of one hundred tasks. Size“1” is the initial size of the temporal windows. Size “2” stands for

sizes of windows twice as large as the initial size. On Figure 10, the state space size rises and

then, levels off at 4. Indeed, temporal windows become more and more large, and temporal

constraints get more and more relaxed. While the size of temporal windows is multiply by

4, temporal windows do not constrain the execution of the agent any more. All the possible

36

execution plans (and possible states) are considered and the maximum of the state space size

is reached. Keeping on relaxing the constraints does not increase the state space.

Precedence constraints also influence the number of intervals per task. In fact, they re-

strict or increase the number of possible start times and intervals of each task. Adding prece-

dence constraints to a task ti increase the number of ti’s predecessors. According to the end

times of ti’s new predecessors, temporal propagation may result in new start times for ti or

it may remove some possible start times of ti. Figure 11 illustrates changes in the number

of states per agent while increasing the number of precedence constraints. One can observe

that the number of states finally levels off. In fact, for each task ti, all the possible start times

have been considered and restricted at most. Thus, adding a precedence constraint does not

add or remove any start time. The number of intervals therefore remains unchanged.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 10 20 30 40 50 60 70 80

S
ta

te
 s

pa
ce

 s
iz

e

Number of constraints

100 tasks
150 tasks
200 tasks

Fig. 11 Influence of precedence constraints on the

state space size

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 5 10 15 20 25 30 35 40 45 50

S
ta

te
 s

pa
ce

 s
iz

e

Number of agents

Mission of 200 tasks

Rini = 125
Rini = 150
Rini = 165
Rini = 180
Rini = 200
Rini = 300
Rini = 400

Fig. 12 Influence of initial resources on the state

space size

Finally, execution durations influence the number of intervals per task. The more du-

rations we consider for each task, the more intervals we obtain. Nonetheless, the number

of intervals is restricted by temporal constraints which define lower and upper bounds on

intervals bounds.

Number of resource rates per task The peak we have previously observed while increasing

the number of agents also relies on resources. Let Rini be the amount of resources which

is initially available to each agent. When we increase the number of agents, each agent Agi

has less tasks to execute and initial resources become wider given the set of tasks Agi must

execute. Lacks of resources become scarce and the number of possible resource rates which

are greater than zero and that have to be considered, increases. Thus, when we increase initial

resources, agents do not lack of them and there are more possible resource consumptions to

consider for each task. That’s why we observe a peak. As shown on Figure 12, under tight

initial resource rates (Rini ∈ [165, 300[), we observe a peak in the number of states. Let Rini

be 165. If the number of agents that must execute the mission increases, the agents have the

same initial resource rate (Rini = 165) to execute less tasks. Then, resources become wider

and more positive resource rates have to be considered. Therefore, the number of states

37

increases and there is a peak. When resources are enough large, increasing the number of

agents (i.e. decreasing the number of tasks per agents) does not add new possible resource

rates and there is no peak. Indeed, all the possible resource rates are computed even for small

numbers of agents. If we increase the number of agents no other resource rate is computed

and there is no peak in the number of states. Moreover, each agent has less tasks to execute

and the state space size diminishes.

5.1.2 Action space size

The action set of each agent Agi relies on the number of tasks which are executed by Agi

and the number of possible start times for each task. Temporal and precedence constraints

influence the number of possible start times per task. In fact, temporal constraints restrict

the number of possible start times of each task. Moreover, precedence constraints increase

or decrease the number of possible start times. Note that adding new agents to a mission

increases dependencies between the agents. This increases the number of precedence con-

straints between different agents thus, influencing the number of possible start times of each

task. On the other hand, adding new agents to a mission decreases the number of tasks per

agent. Table 1 describes the influence of the number of agents on the number of actions the

agents have to consider.

Scalability experiments show that many parameters influence the state and action spaces

of each agent. It is therefore difficult to a priori evaluate the number of states and actions

that have to be considered by the revision algorithm. Despite the wide range of parameters

to consider, a rough estimate of state space sizes can be given. Considering a mission of

200 tasks and 3 agents, MDPs composed of about 250 000 states are obtained. Increasing

initial resources leads to MDPs composed of 700 000 states. Nonetheless, adding temporal

constraints and agents to the mission allows for limiting the MDPs’ state spaces. Thus,

problems involving 800 tasks, 20 agents and 700 constraints have led to MDPs composed

of about 57 200 states.

5.2 Efficiency

Based on scalability experiments, we have tested our algorithms on different problems. We

considered a benchmark composed of several sizes of missions (20, 50, 10, 150 and 200

tasks, from 2 to 50 agents) where we varied the number of precedence constraints, temporal

windows and initial resources. Running time of the centralized revision algorithm has then

been studied. Tables 1 and 2 describe the influence of the numbers of actions and states on

the running time of the centralized revision algorithm1. Solving a problem involving 30 000

states usually takes less than 15 seconds. Revising about 150 000 states takes less than 5

minutes and revising a million of states takes between one and two hours.

Experiments have also be run using the decentralized revision algorithm. The time

gained using decentralization is mainly influenced by the number of tasks that can be revised

at the same time and by the time needed to communicate opportunity cost values. On small

problems, running times of centralized and decentralized algorithms are quite the same. In

fact, since there are few agents, few tasks can be revised at the same time. If communication

takes a long time, the decentralized algorithm runs slower than the centralized algorithm

since communication is very time consuming. When large problems are considered (more

1 Algorithms have been executed on a computer equipped with Pentium III, 700 MHz.

38

Number Number State space Number Running

of tasks of agents size actions time (s.)

50 2 73 202 222 696 138

50 3 142 477 153 336 95

50 4 123 189 208 301 154

50 5 95 172 326 907 292

50 10 56 873 702 553 312

50 15 48 697 548 435 350

Table 1 Running time of centralized revision algorithm

Number of tasks Number of agents Running time

20 2 8s.

20 10 8s.

50 2 138s.

50 10 312 s.

100 2 15 min

100 10 20 min

200 2 1h30

Table 2 Running time of centralized revision algorithm

than 50 tasks), the decentralized algorithm allows for gaining time if the problem involves

many agents and they can revise their tasks at the same time. Gain of several minutes (from

2 to 3 minutes on our experiments) have been recorded for problems involving a hundred

tasks and ten agents.

These experiments prove that large missions can be solved using the revision algorithm.

We have then studied the efficiency of the iterative algorithm. We have therefore been inter-

ested in the number of iterations needed to converge. One iteration of the iterative algorithm

consists in executing the revision algorithm and updating the transition function. Nonethe-

less, the time needed to update transition functions is negligible compared to the running

time of the revision process. For instance, updating the transition functions of a problem

composed of 20 tasks and 3 agents takes about 5 milliseconds whereas the revision algo-

rithm takes about 4 seconds. The running time of one iteration is therefore mainly influenced

by the revision algorithm’s running time.

Experiments dealing with the number of iterations have highlighted the influence of

initial resources on the number of iterations. Figure 13 relates the number of iteration steps

to the initial resource rate considering that EST-policy is the initial policy. With large or

unlimited resources, only one iteration step is needed to converge. As the initial resource

rate decreases, the number of iteration steps increases since it reaches a maximum which

corresponds to a critical resource rate. If the agents initially have less resources than this

critical rate, they will not be able to execute all the tasks. Whatever their policy, the latest

tasks cannot be executed because of a lack of resources. Then, all the possible policies of

these tasks are equivalent and there is no strictly better policy than the initial EST-policy.

Figure 14 describes the relationship between the initial resource rate and the number of

policy changes of each iteration. If resources are large or unlimited, there is no change.

Indeed, we proved that the initial policy is an optimal policy. As the initial resource rate

decreases, more and more changes are needed to obtain the solution. If initial resources

39

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80

N
um

be
r

of
 It

er
at

io
ns

Initial resource rate

Fig. 13 Influence of resources

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80
N

um
be

r
of

 p
ol

ic
y

ch
an

ge
s

Initial resource rate

Fig. 14 Influence of resources

are low, the policy of the latest task remains unchanged and few changes are necessary. The

number of policy changes per iteration has also been studied. Most changes are made during

the earliest iterations. Then, the number of policy changes per iteration diminishes until it

becomes null and convergence is reached.

While experimenting the number of iterations to converge, the iterative algorithm have

been run for planning each mission of our benchmark. Most of the time, it takes less than

four iterations for the centralized and decentralized algorithms to converge. Although con-

vergence of the decentralized algorithm is not guaranteed, it never diverges while consider-

ing our benchmark. Divergence seems therefore to be unusual.

5.3 Performance

Finally, the performances of our solutions have been studied by running mission executions.

We have compared the performances obtained at each iteration step. The performances of

our approach have also been compared with other existing works. The following experi-

ments have been developed using the previously described benchmark.

We have studied how the quality of the solutions evolves at each iteration step. We have

thus run the policies that are computed ate each iteration and we have studied the gain of

the agents (sum of the rewards obtained by the agents). Experiments demonstrate that the

performances of the agents increase with the number of iterations. Moreover, it can be shown

that first iteration achieves largest improvements. Subsequent iterations reduce the number

of partial failures and often lead to maximum gain. By iterating the process, the likelihood

the agents fail because of lack of resources decreases. The resulting policy is safer than

policies of previous iteration steps. Figure 15 plots the number of partial failures of the

agents over 1000 executions. Note that experiments described on Figure 15 are developed

assuming that first iteration’s initial policy is EST-policy. At the first iteration, revision of

policies always consists in delaying the execution of the tasks. That’s why the number of

partial failures at “iteration 1” is greater than the number of partial failures at “iteration

0”. A near optimal policy is obtained at the end of the first iteration. Then, the second

iteration leads to small improvements but it diminishes the number of partial failures. When

resources are tight, more iterations are needed to converge. Now, more benefits are gained

40

from re-iterating. As soon as the solution produces the maximum gain, re-iterating reduces

the number of partial failures.

Because of the high complexity of the problems that we consider, only small problems

can be optimally solved in practice. While considering problems involving more than two

agents and ten tasks, the optimal solution cannot be computed and our solutions cannot be

compared with the optimum. Let OC-policy be the solution computed by the revision algo-

rithm. In order to test the performance of our approach, OC-policies have been compared

with the performances of three heuristic policies which have been proved to be optimal un-

der some assumptions. The first one is EST-policy, the second policy is LST-policy and the

third policy (P-policy) selects the most likely start time of each task. In fact, for each start

time st of a task ti, it computes the probability that the predecessors of ti end at ti and it

selects the start time with the highest probability. Performances of these policies have been

compared considering the number of partial failures of the agents and the gain they obtain

(the sum of the rewards obtained by the agents) over 1000 executions.

Experiments show that OC-policy outperforms heuristic policies. Figure 16 exemplifies

the agents’ performance considering a scenario involving 2 agents and 20 tasks. The number

of partial failures of the agents is quiet small while executing OC-policy. Indeed, over 1000

executions, the agents move 113 times to a partial failure and they obtain the maximum gain.

 0

 200

 400

 600

 800

 1000

 1200

 1400

−1 0 1 2 3

N
um

be
r

of
 p

ar
tia

l f
ai

lu
re

s

Iteration

Fig. 15 Number of partial failures per iter-

ation

EST-pol. LST-pol. P-pol. OC-pol.

Partial 519 0 114 113

failures

Gain 8274 9600 9888 10059

Fig. 16 Heuristic methods vs OC-DEC-MDP

Partial failures arise from miscoordination between the agents: an agent starts to execute

a task ti before the predecessors of ti have finished their execution. Since partial failures are

time and resource consuming, the agent must avoid such failures. If we consider the number

of partial failures, the worst case arises for EST-policy. Indeed, each agent chooses to start

the execution of its next task as soon as possible, even if the probability to fail is high. In

the worst case, the agent will try to execute its task at each possible start time. On the other

hand, LST-policy never leads to a partial failure: the agent only tries once to execute its task,

if he fails he could not retry later because there is no more possible start time (permanent

failure).

The more initial resources the agents have, the closer EST-policy is to OC-policy. If

initial resources are high, the cost of a partial failure is negligible and the OC-policy tries

to execute the task at each possible start time (like EST-policy). Then, these policies are the

same. Under unlimited resources, these policies are optimal.

41

The difference between the gain of OC-policy and the gain of P-policy, relies on tem-

poral constraints and on the probability distributions on durations. If P-policy is safe (the

probability to move to a permanent failure is low) and the expected opportunity cost of such

a policy is low, P-policy is close to OC-policy.

The performance of our approach have also been compared with the optimum on small

size of problems. The Coverage Set Algorithm (CSA) developed by Becker et al. (2004b)

is the only algorithm that is able to solve DEC-MDPs with complex constraints and several

durations for each task. Despite the wide range of problems solved by CSA (Becker et al.,

2003, 2004a), only small problems can be solved in practice. While considering the kind

of missions we deal with, CSA can only solve problems involving two agents and one way

precedence constraints, (precedence constraints between the agents always come from the

first agent to the second one). Such problems have been proved to be optimally solved by our

approach (Claims 7 and 10). Thus, our approach performs as well as CSA on the problem

CSA and our algorithms both can solve.

It is difficult to compare the performance of our approach on larger sizes of problems.

We have in fact developed the first approach that can deal with large problems and several

kinds of constraints. Even approximate approaches only solve small problems. Moreover

these methods do not deal with constraints and several durations so, we were not able to

compare our results even on small size of problems. Despite the lack of comparison, exper-

iments show that most of the time, the iterative algorithm allows the agents to obtain the

maximum reward and the Bayesian Nash equilibrium achieved by the centralized iterative

algorithm seems often to be very closed to optimal.

6 Conclusion

The framework of DEC-MDPs has been proposed to solve decision problems in cooperative

multiagent systems. Nonetheless, DEC-MDPs assume a simple model of time and actions

and they suffer from a high complexity. It is therefore difficult to formalize and solve large

multiagent decision problems with complex constraints, like multi-robot decision problems.

The framework of ED-DEC-MDPs (Becker et al., 2004a) has been the only attempt to in-

crease the expressiveness of DEC-MDPs considering contraints on task execution. Never-

theless, ED-DEC-MDPs suffer from large state spaces that are exponential in the number

of dependencies and make them intractable for large problems. Due to the high complexity

of optimally solving DEC-MDPs, recent works have focused on developing approximate

approaches. Nonetheless, effective methods to solve large DEC-MDPs are still lacking. In-

deed, approximate approaches are able to solve larger problems than optimal approaches

but they remain limited to small sizes of problems (about 2 agents and 10 tasks). In order to

increase the applicability of DEC-MDP based approaches, our purpose has been to propose

a model that can deal with more complex time and action representations; and to develop

algorithms that efficiently solve large problems with respect to constraints on task execution.

We proposed a new model, OC-DEC-MDP, that allows for representation of temporal,

precedence and resource constraints. In order to deal with large missions, the multiagent

decision problem has been broken into a set of MDPs which represent the agent’s decision

problems. Full definition of MDPs requires the system’s transition function to be decom-

posed. Because of dependencies between the agents such decomposition is not easy. We

have therefore considered an initial set of policies and individual transitions have been com-

puted assuming that each agent follows its initial policy.

42

Once the problem was formalized, we tackled policy computation. Given the high com-

plexity of finding an optimal solution, we turned to an approximate approach. We then tried

to improve the initial policy set which has been used to define individual transition functions.

Opportunity cost has been introduced in order to coordinate the agents. We have defined ex-

pected opportunity cost to better estimate the influence of an action on the other agents.

Thus, each decision of an agent Agi results from a trade-off between the expected utility of

Agi and the opportunity cost provoked on the other agents. It has been proved that, if the

expected opportunity cost accurately measures the influence of an action on the other agents

then, each agent chooses the action that maximizes the expected gain of the system.

We then developed a revision algorithm that applies this decision trade-off to improve

the initial policy set. This revision process has been iterated to obtain higher quality so-

lutions and to allow a Bayesian Nash equilibrium to be reached. Finally, we analysed the

complexity of our approach and the quality of solutions. Thus, we have pointed out some

properties that guarantee optimal policy computation. Complexity analysis proved that our

approach is polynomial time in the number of states and actions whereas other approaches

are exponential. Moreover, experiments have shown that constraints on task execution limit

the state and action spaces. Our algorithms are therefore able to solve large problems com-

posed of hundreds of tasks and more than ten agents.

Experimental results, complexity and quality analysis have shown that our approach ful-

fils initial ambitions. Indeed, we have developed efficient algorithms that can deal with large

missions and compute good quality solutions respecting several kinds of constraints. Future

work will first aim at increasing the expressiveness of OC-DEC-MDPs. Thus, we plan to

consider a wide variety of problems. The agents would therefore be able to choose between

several possible tasks. We also plan to relax the assumption about the order of the tasks of

each agent to allow the agents to choose whether execute ti or t′i first. We could also extend

the range of constraints formalized by our approach and the expressiveness of the mission.

We also plan to improve the performance of the system. Marecki and Tambe (2007) have

proposed an heuristic solution to speed up OC-DEC-MDP resolution and to achieve better

solution qualities. Nevertheless, they do not take into account resource consumptions nor

partial failures. In order to increase the quality of the policies computed by approach, we

plan to allow the agents to communicate during task execution. Indeed, sometimes com-

munication during task execution is possible. In fact, it is restricted by temporal windows.

Then, on-line information exchange could improve decision making and could lead to higher

performance (Nair et al., 2004). The agents should therefore trade-off communication cost

and relevance of communicated information (Becker et al., 2005; Goldman and Zilberstein,

2004).

References

Abdallah, S., Lesser, V., 2005. Modeling Task Allocation Using a Decision Theoretic Model.

In: Proceedings of Fourth International Joint Conference on Autonomous Agents and

Multiagent Systems. ACM Press, Utrecht, Netherlands, pp. 719–726.

Amato, C., Carlin, A., Zilberstein, S., 2007a. Bounded dynamic programming for decetral-

ized pomdps. In: AAMAS 2007 Workshop on Multi-Agent Sequential Decision Making

in Uncertain Domains.

Amato, C., D.S., B., Zilberstein, S., 2007b. Optimizing memory-bounded controllers for

decentralized pomdps. In: Proceedings of the Twenty Third Conference on Uncertainty in

Artificial Intelligence.

43

Becker, R., Lesser, V., Zilberstein, S., 2004a. Decentralized Markov Decision Processes with

Event-Driven Interactions. In: The Third International Joint Conference on Autonomous

Agents and Multi Agent Systems. Vol. 1. IEEE Computer Society, NYC, pp. 302–309.

Becker, R., Lesser, V., Zilberstein, S., September 2005. Analyzing Myopic Approaches for

Multi-Agent Communication. In: Proceedings of the 2005 IEEE/WIC/ACM International

Conference on Intelligent Agent Technology (IAT 05). IEEE Computer Society, Com-

piegne, France, pp. 550–557.

Becker, R., Zilberstein, S., Lesser, V., Goldman, C., July 2003. Transition-independent de-

centralized markov decision processes. In: Proceedings of the Second International Joint

Conference on Autonomous Agents and Multi Agent Systems. Melbourne, Australia, pp.

41–48.

Becker, R., Zilberstein, S., Lesser, V., Goldman, C., December 2004b. Solving transition

independent decentralized markov decision processes. Journal of Artificial Intelligence

Research 22, 423–455.

Bernstein, D., Hansen, E.A., Zilberstein, S., 2005. Bounded policy iteration for decentral-

ized pomdps. In: Proceedings of the Nineteenth International Joint Conference on Artifi-

cial Intelligence. Edinburgh, Scotland.

Bernstein, D., Zilberstein, S., Immerman, N., 2002. The complexity of decentralized control

of mdps. In: Mathematics of Operations Research. pp. 27(4):819–840.

Bernstein, D., Zilberstein, S., Washington, R., Bresina, J., 2001. Planetary rover control as a

markov decision process. In: The 6th International Symposium on Artificial Intelligence,

Robotics and Automation in Space. Montreal, Canada.

Blythe, J., 1999a. Decision-theoretic planning. AI Magazine.

Blythe, J., 1999b. Planning under uncertainty in dynamic domains. Phd thesis, Carnegie

Mellon University.

Boutilier, C., Brafman, R., Geib, C., 1997. Prioritized goal decomposition of Markov deci-

sion processes: Towards a synthesis of classical and decision theoretic planning. In: Pro-

ceedings of the Fifteenth International Joint Conference on Artificial Intelligence. Morgan

Kaufmann, San Francisco, pp. 1156–1163.

Boutilier, C., Dean, T., Hanks, S., 1999. Decision-theoretic planning: Structural asumptions

and computational leverage. Journal of Articicial Intelligence Research 1, 1–93.

Bresina, J., Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D., Washington, R., 2002.

Planning under continuous time and resource uncertainty: A challenge for ai. In: UAI.

Chadès, I., Scherrer, B., Charpillet, F., 2002. A heuristic approach for solving decentralized-

POMDP: Assessment on the pursuit problem. In: Proceedings of the Sixteenth ACM Sym-

posium on Applied Computing.

Dean, T., Lin, S., 1995. Decomposition techniques for planning in stochastic domains. In:

IJCAI-95.

Decker, K., Lesser, V., 1993. Quantitative modeling of complex environments. International

Journal of Intelligent Systems in Accounting Finance and Management 2 (4), 215–234.

Emery-Montemerlo, R., Gordon, G., Schneider, J., Thrun, S., 2004. Approximate solutions

for partially observable stochastic games with common payoffs. In: Proceedings of the

Third Joint Conference on Autnomous Agents and Multi Agent Systems.

Esben, H. O., Maja, J. M., Gaurav, S. S., 2002. Multi-robot task allocation in the light of un-

certainty. In: Proceedings of IEEE International Conference on Robotics and Automation.

pp. 3002–3007.

Gerkey, B. P., Matarić, M. J., 2002. Sold!: Auction methods for multi-robot coordination.

IEEE Transactions on Robotics and Automation 18 (5), 758–768.

44

Goldman, C., Zilberstein, S., 2003. Optimizing information exchange in cooperative multia-

gent systems. In: International Joint Conference on Autonomous Agents and Multi Agent

Systems. pp. 137–144.

Goldman, C., Zilberstein, S., 2004. Decentralized control of cooperative systems: Catego-

rization and complexity analysis. Journal of Artificial Intelligence Research 22, 143–174.

Hanna, H., Mouaddib, A., 2002. Task selection as decision making in multiagent system.

In: International Joint Conference on Autonomous Agents and Multi Agent Systems. pp.

616–623.

Hansen, E.A., Bernstein, D., Zilberstein, S., 2004. Dynamic programming for partially ob-

servable stochastic games. In: Proceedings of the Nineteenth National Conference on Ar-

tificial Intelligence.

Howard, R. A., 1960. Dynamic Programming and Markov Processes. MIT Press.

Koller, D., Milch, B., 2003. Multi-agent influence diagrams for representing and solving

games. Games and Economic Behavior, 45(1): 181–221.

Marecki, J., Tambe, M., 2007. On opportunistic techniques for solving decentralized mdps

with temporal constraints. In: Proceedings of the Sixth International Joint Conference on

Autonomous Agents and Multi-agent Systems (AAMAS).

Meuleau, N., Hauskrecht, M., Kim, K.-E., Peshkin, L., Kaelbling, L., Dean, T., Boutilier,

C., 1998. Solving very large weakly coupled markov decision processes. In: AAAI/IAAI.

pp. 165–172.

Morimoto, T., 2000. How to develop a RoboCupRescue agent. RoboCupRescue Technical

Committee.

Nair, R., Pradeep, V., Milind, T., Makoto, Y., 2005. Networked distributed POMDPs: A syn-

thesis of distributed constraint optimization and POMDPs. In: Proceedings of the Twen-

tieth National Conference on Artificial Intelligence (AAAI-05).

Nair, R., Roth, M., Yokoo, M., Tambe, M., 2004. Communication for improving policy

computation in distributed pomdps. In: Proceedings of the Third International Joint Con-

ference on Agents and Multiagent Systems (AAMAS-04). pp. 1098–1105.

Nair, R., Tambe, M., Yokoo, M., Marsella, S., Pynadath, D.V., 2003. Taming decentralized

pomdps: Towards efficient policy computation for multiagent settings. In: Proceedings of

the International Joint Conference on Artificial Intelligence. pp. 705–711.

Peshkin, L., Kim, K., Meuleu, N., Kaelbling, L., 2000. Learning to cooperate via policy

search. In: Sixteenth Conference on Uncertainty in Artificial Intelligence. pp. 307–314.

Poupart, P., Boutilier, C., Patrascu, R., Schuurmans, D., 2002. Piecewise linear value func-

tion approximation for factored mdps. In: Eighteenth National Conference on Artificial

Intelligence. Edmonton.

Puterman, M. L., 2005. Markov Decision processes : discrete stochastic dynamic program-

ming. Wiley-Interscience, New York.

Pynadath, D., Tambe, M., 2002. The communicative multiagent team decision problem: An-

alyzing teamwork theories and models. Journal of Artificial Intelligence Research, 389–

423.

Roy, N., Pineau, J., Thrun, S., 2000. Spoken dialogue management using probabilistic rea-

soning. In: Proceedings of the 38th Annual Meeting of the Association for Computational

Linguistics (ACL-2000). Hong Kong.

Seuken, S., Zilberstein, S., 2007. Memory-bounded dynamic programming for dec-pomdps.

In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence

(IJCAI). pp. 2009–2015.

Singh, S., Cohn, D., 1998. How to dynamically merge markov decision processes. In: Ad-

vances in Neural Information Processing Systems. Vol. 10. The MIT Press.

45

Szer, D., Charpillet, F., Zilberstein, S., 2005. MAA*: A heuristic search algorithm for solv-

ing decentralized POMDPs. In: Proceedings of the 21st Conference on Uncertainty in

Artificial Intelligence.

The RoboCup Rescue Technical Committee, 2000. RoboCup-Rescue simulator manual.

Varakantham, P., Marecki, J., Yabu, y., Milind, T., Makoto, Y., 2007. Letting loose a SPIDER

on a network of POMDPs: Generating quality guaranteed policies. In: Proceedings of the

International Joint Conference on Agents and Multiagent Systems (AAMAS-07).

Wieser, F., 1889. Valeur naturelle (Der natrliche Wert).

Xuan, P., Lesser, V., Zilberstein, S., January 2001. Communication decisions in multiagent

cooperation : Model and experiments. In: Proceedings of the Fifth International Confer-

ence on Autonomous Agents. ACM Press, Montreal, pp. 616–623.

A Proof of Claim 4

Under unlimited resources, the revision algorithm computes an optimal policy.

Proof: Under unlimited resources, decisions are not influenced by available resources. Thus, expected

utility and opportunity cost values do not depend on resources. Moreover, partial failures do not penalize

the agents. Indeed, as resources are unlimited, partial failures’ resource consumptions do not increase the

probability of failing because of insufficient resources.

When an agentAgi delays the execution of its task ti+1, he increases the probability of failing because

of deadline met. Although the agents reduces the probability of partially failing, the probability of failing

because of insufficient ressources remains unchanged. It can therefore be deduced that the agent’s expected

utility decreases when he delays the execution of his tasks. Moreover the opportunity cost increases as the

delay of a task increases. Let st and st′ be two possible start times (st < st′) for a task ti+1 executed by

agentAgi and let V ′
st beAgi’s expected utility when he starts to execute ti+1 at st. Then,

V ′
st ≥ V ′

st′ and OC(ti+1, st) ≤ OC(ti+1, st′)

As the policy of each task ti+1 is computed using Equation 8, it can be deduced that the policy computed

by the revision algorithm consists in starting each task as soon as possible (EST-policy). In fact, for each state

from which a task ti+1 can be executed, the start time which maximizes Equation 8 is the earliest start time

of ti+1.Under unlimited resources, it has been proved that EST-policy is an optimal policy (see Claim 1).

Then, it can be deduced that, under unlimited resources, the revision algorithm computes an optimal policy.

✷

B Proof of Claim 5

If there is no constraint on tasks’ end times (LET ≃ +∞), the revision algorithm computes an optimal

policy.

Proof: If there is no constraint on tasks’ end times, the agents do not fail because of deadline met. When

an agent Agi delays the execution of its task ti+1, the probability of partially failing decreases. Moreover,

the probability of failing because of insufficient resources decreases. On the other hand, the probability of

failing because of deadline met does not increase. It can therefore be deduced that the agent’s expected value

increases when the agent delays the execution of his tasks. As the highest expected value is obtained for the

largest delay, opportunity cost is equal to zero whatever the delay. Let st and st′ be two possible start times

(st < st′) for a task ti+1 executed by agent Agi and let V ′
st be Agi’s expected utility when he starts to

execute ti+1 at st. Then,

V ′
st ≤ V ′

st′ and OC(ti+1, st) = OC(ti+1, st′) = 0

As the policy of each task ti+1 is computed using Equation 8, we can deduce that the policy computed

by the revision algorithm consists in starting each task as late as possible (LST-policy). In fact, for each state

from which a task ti+1 can be executed, the start time which maximizes Equation 8 is the latest start time

of ti+1. If there is no constraint on tasks’ end times, it has been proved that LST-policy is an optimal policy

(see Claim 2). Then, it can be deduced that the revision algorithm computes an optimal policy when there is

no constraint on tasks’ end times. ✷

46

C Proof of Claim 7

Let X be a mission involving two agents Agi and Agj . If the initial policy of Agi is EST-policy and all

precedence constraints come fromAgi toAgj then, the revision algorithm computes an optimal policy.

Proof: If there is no precedence constraints from Agj to Agi, agent Agi never partially fails. Because

Agi does not have to wait for other agents, he can start to execute his tasks as soon as possible. Thus, he

minimizes the probability of meeting the deadline and the delay provoked on the other agent Agj . Agi’s

optimal policy is therefore EST-policy.

Let st and st′ be two possible start times (st < st′) for a task ti+1 executed by agent Agi and let V ′
st

be Agi’s expected utility when he starts to execute ti+1 at st. When Agi delays the execution of its task

ti+1, his expected utility decreases and the opportunity cost provoked onAgj increases. Thus,

V ′
st ≥ V ′

st′ and OC(ti+1, st) ≤ OC(ti+1, st′)

ComputingAgi’s policy using Equation 8 leads to EST-policy. If the initial policy ofAgi is EST-policy,

this remains unchanged while executing the revision algorithm.Agj ’s policy is therefore computed assuming

Agi’s optimal policy. As there is no precedence constraints from Agj to another agent, modifying Agj ’s

policy does not influence any agent and the opportunity cost provoked by Agj is equal to zero. If the initial

policy of Agi is EST-policy the OC-DEC-MDP resolution consists in computing the policy that maximizes

Agj ’s expected value givenAgi’s optimal policy. As the opportunity cost provoked byAgj is equal to zero,

Equation 8 maximizes Agj ’s expected utility and allows for computing Agj ’s optimal policy. Because Agj

does not influence any agent, his optimal policy is individually optimal and jointly optimal. The revision

algorithm therefore computes the optimal policy of each agent. ✷

D Proof of Claim 8

The opportunity cost provoked onAgj whenAgi fails executing ti+1 is defined by:

EOCAgj,ti+1
(fail) = OCtj

(fail) =
X

rtj

P
tj
ra(rtj

)V
0

tj ,rtj
− V ([failuretj

, ∗, ∗])

Given transition probabilities’ computation and the definition of the expected opportunity cost provoked

by a partial failure, Equation 10 can be re-written as follows:

OC(ti+1, st) =

Probability of success

z }| {

P
r
enough(Pred(ti+1)).

Y

a∈Pred(ti+1)−ti

X

s≤st

P
a
ET (s|et(I

′
)ti

)

Probability of success

z }| {

.
X

∆r|r≥∆
i+1
r

X

δ
i+1
c |st+δ

i+1
c ≤LET

Pr(∆
i+1
r).Pc(δ

i+1
c) ·

X

Agj∈Ag,j 6=i

EOCAgj,ti+1
(eti+1)

+

Failure probability

z }| {

(PLR + PT T + PDM)
X

Agj∈Ag,j 6=i

(
X

rtj

P
tj
ra(rtj

)V
0

tj ,rtj
− V ([failuretj

, ∗, ∗]))

+ PP P C−fail

X

Agj∈Ag,j 6=i

(
X

rtj

P
tj
ra(rtj

)V
0

tj ,rtj
− V ([failuretj

, ∗, ∗]))

+
X

et′(ti+1)>et(ti+1)

PP P C−suc(et
′
(ti+1))

X

Agj∈Ag,j 6=i

EOCAgj,ti+1
(et

′
(ti+1))

where PPPC−fail is the probability that the execution of ti+1 fails after one partial failure or more.

PPPC−suc(et
′(ti+1)) is the probability that the execution of ti+1 succeeds after one partial failure or more

and the task ends at et′(ti+1). Thus,

PP P C =
X

et′(ti+1)>et(ti+1)

PP P C−suc(et
′
(ti+1)) + PP P C−fail

47

Moreover,

EOCAgj,ti+1
(etti+1

) = maxtk∈Suc(ti+1)

X

rtj

P
tj
ra(rtj

)OCj(etti+1
− LBk, rtj

)

For purpose of good understanding, it is assumed that tj = tk . If tj 6= tk , a similar proof can be done

by recursively applying Equations 11 and 12.

We deduce that:

EOCAgj,ti+1
(etti+1

) =
X

rtj

P
tj
ra(rtj

)OCj(etti
− LBk, rtj

)

=
X

rtj

P
tj
ra(rtj

)(V
0,rtj

tj
− V

∆t,rtj
tj

)

=
X

rtj

P
tj
ra(rtj

)V
0,rtj

tj
−

X

rtj

P
tj
ra(rtj

)V
∆t,rtj

tj

=
X

rtj

P
tj
ra(rtj

) · V
0,rtj

tj
−

X

rtj

P
tj
ra(rtj

)V
∆t,rtj

tj

We thus obtain:

EOCAgj,ti+1
(etti+1

) =
X

rtj

P
tj
ra(rtj

)V
0,rtj

tj
−

X

rtj

P
tj
ra(rtj

)V
∆t,rtj

tj

where ∆t = etti+1
− LBj

48

Then,

EOC(ti+1, st) =

Probability of success

z }| {

P
r
enough(Pred(ti+1)).

Y

a∈Pred(ti+1)−ti

X

s≤st

P
a
ET (s|et(I

′
)ti

)

Probability of success

z }| {

.
X

∆r|r≥∆
i+1
r

X

δ
i+1
c |st+δ

i+1
c ≤LET

Pr(∆
i+1
r).Pc(δ

i+1
c) ·

X

Agj∈Ag,j 6=i

(
X

rtj

P
tj
ra(rtj

)V
0,rtj

tj
−

X

rtj

P
tj
ra(rtj

)V
∆t,rtj

tj
)

+

Failure Probability

z }| {

(PLR + PT T + PDM)
X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
0

tj ,rtj

−

Failure Probability

z }| {

(PLR + PT T + PDM)
X

Agj∈Ag,j 6=i

V ([failuretj
, ∗, ∗])

+ PP P C−fail

X

Agj∈Ag,j 6=i

(V
0

tj
− V ([failuretj

, ∗, ∗]))

+
X

et′(ti+1)>et(ti+1)

PP P C−suc(et
′
(ti+1))

X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
0,rtj

tj

−
X

et′(ti+1)>et(ti+1)

PP P C−suc(et
′
(ti+1))

X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
∆t,rtj

tj

EOC(ti+1, st) =

Probability of success

z }| {

P
r
enough(Pred(ti+1)).

Y

a∈Pred(ti+1)−ti

X

s≤st

P
a
ET (s|et(I

′
)ti

)

Probability of success

z }| {

.
X

∆r|r≥∆
i+1
r

X

δ
i+1
c |st+δ

i+1
c ≤LET

Pr(∆
i+1
r).Pc(δ

i+1
c) ·

X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
0,rtj

tj

+

Failure Probability

z }| {

(PLR + PT T + PDM)
X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
0

tj ,rtj

+
X

et′(ti+1)>et(ti+1)

PP P C−suc(et
′
(ti+1))

X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
0,rtj

tj

+ PP P C−fail

X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
0

tj ,rtj

−

Probability of success

z }| {

P
r
enough(Pred(ti+1)).

Y

a∈Pred(ti+1)−ti

X

s≤st

P
a
ET (s|et(I

′
)ti

)

Probability of success

z }| {

.
X

∆r|r≥∆
i+1
r

X

δ
i+1
c |st+δ

i+1
c ≤LET

Pr(∆
i+1
r).Pc(δ

i+1
c) ·

X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
∆t,rtj

tj
)

−

Failure Probability

z }| {

(PLR + PT T + PDM)
X

Agj∈Ag,j 6=i

V ([failuretj
, ∗, ∗])

− PP P C−fail

X

Agj∈Ag,j 6=i

V ([failuretj
, ∗, ∗])

−
X

et′(ti+1)>et(ti+1)

PP P C−suc(et
′
(ti+1))

X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
∆t,rtj

tj

49

As the transition system is complete:

Success probability

z }| {

P
r
enough(Pred(ti+1)).

Y

a∈Pred(ti+1)−ti

X

s≤st

P
a
ET (s|et(I

′
)ti

).
X

∆r|r≥∆
i+1
r

X

δ
i+1
c |st+δ

i+1
c ≤LET

Pr(∆
i+1
r).Pc(δ

i+1
c)

+PLR + PT T + PDM + PP P C = 1

EOC(ti+1, st) can therefore be simplified as:

EOC(ti+1, st) =
X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
0,rtj

tj

−

Success probability

z }| {

P
r
enough(Pred(ti+1)).

Y

a∈Pred(ti+1)−ti

X

s≤st

P
a
ET (s|et(I

′
)ti

)

Success probability

z }| {

.
X

∆r|r≥∆
i+1
r

X

δ
i+1
c |st+δ

i+1
c ≤LET

Pr(∆
i+1
r).Pc(δ

i+1
c) ·

X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
∆t,rtj

tj
)

−

Failure probability

z }| {

(PLR + PT T + PDM)
X

Agj∈Ag,j 6=i

V ([failuretj
, ∗, ∗])

− PP P C−fail

X

Agj∈Ag,j 6=i

V ([failuretj
, ∗, ∗])

−
X

et′(ti+1)>et(ti+1)

PP P C−suc(et
′
(ti+1))

X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
∆t,rtj

tj

Whatever st, probabilities on resource rates rtj remain unchanged. So,
P

rtj
P

tj
ra(rtj)V

0,rtj

tj
remains

unchanged whatever ti+1’s start time.
If the expected opportunity cost is accurately and correctly computed, it can be re-written as the differ-

ence between a constant (C) and the expected utility of the other agents:

OC(ti+1, st) = C −
X

Agj∈Ag,j 6=i

V
′
Agj

where V ′
Agj

is the expected utility ofAgj .

Indeed, if the expected opportunity cost is accurately and correctly computed:

X

Agj∈Ag,j 6=i

V
′
Agj

=

Probability of success

z }| {

P
r
enough(Pred(ti+1)).

Y

a∈Pred(ti+1)−ti

X

s≤st

P
a
ET (s|et(I

′
)ti

)

Probability of success

z }| {

.
X

∆r|r≥∆
i+1
r

X

δ
i+1
c |st+δ

i+1
c ≤LET

Pr(∆
i+1
r).Pc(δ

i+1
c) ·

X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
∆t,rtj

tj
)

+

Failure probability

z }| {

(PLR + PT T + PDM)
X

Agj∈Ag,j 6=i

V ([failuretj
, ∗, ∗])

+ PP P C−fail

X

Agj∈Ag,j 6=i

V ([failuretj
, ∗, ∗])

+
X

et′(ti+1)>et(ti+1)

PP P C−suc(et
′
(ti+1))

X

Agj∈Ag,j 6=i

X

rtj

P
tj
ra(rtj

)V
∆t,rtj

tj

50

Equation 8 therefore consists in maximizing the following terms:

πi(si) = arg maxE(ti+1,st),st≥et(I′)ti
(

Exepcted Utility of Agi
z }| {

V
′
Agi

−

Constant
z}|{

C +

Expected Utility of the other agents

z }| {

X

Agj∈Ag,j 6=i

V
′
Agj

)

The selected action from si therefore maximizes the joint expected utility. Indeed, if the expected oppor-

tunity cost is correctly and accurately estimated when an agent revises its policy, the revised policy maximizes

the system’s expected utility.✷

