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Ex irrationalibus oriuntur quantitates impossibiles seu imaginariae,
guarum mira est natura, et tamen non contemnenda utilitas.

[From the irrationals are born the impossible or imaginary quantities
whose nature is very strange but whose usefulness cannot be denied.]
Gottfried Wilhelm Leibniz (1646—-1716)

Education is not the filling of a pail, but the lighting of a fire.
William Butler Yeats (1865-1939)

Solving equations. The problems, techniques, and viewpoints are our legacy. One theme
throughout this lecture is that classical and modern mathematics are tightly intertwined, that con-
temporary mathematics contributes real insight and techniques to understand traditional problems.
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In the long second section I discuss some procedures that help to solve equations. I found
that the section on symmetry required an extensive discussion because it is treated so inadequately
as a fundamental thread throughout mathematics courses. The third section gives three different
techniques to prove that equations have solutions. They are typical of those used when an explicit
formula for a solution cannot be found.

I organized this so that most of the sections are independent; thus you can skip to examples
that are more appealing. To make this more self-contained I have occasionally added details that
may not be easily accessible. A few of the tools used here are frequently not met until beginning
graduate courses. If these tools are unfamiliar, their appearance here may serve as motivation to
learn them.

IThis is a considerably expanded version of a lecture—intended for undergraduates—that I gave at both the University
of Montreal and the University of Pennsylvania. I thank R. Horn and H. Wilf for valuable suggestions. A shorter version
appeared in the American Math. Monthly, 105, Jan. 1998, pp. 1-21.



One ingredient in solving equations that I have not emphasized adequately is the basic role of
inequalities. They are lurking here and there: the Euclidean algorithm and the application of the
Brouwer fixed point theorem, to name two less obvious instances. It is a shock the first time one sees
a proof that A = B not by algebraic manipulation but instead by proving the inequality |A—B| < €
for any € > 0. To give inequalities their due would have changed the character of this.

1 Introduction

The simplest equations are of the form
2x+7 =4.

Although the coefficients are positive integers, one is forced to enlarge the type of possible solution
to include not only rational numbers, but also negative numbers. It took centuries for negative
numbers to be accepted. Through the Middle Ages they frequently were called false numbers.

The next sort of equation one meets is perhaps

X2 =2.

Again to solve this one must enlarge the type of possible solution to include the irrational number
/2. The word irrational itself reveals people’s emotional attitudes. Another word used for numbers
such as /2 is surd, which is related to the word “absurd.”

The equation

x> 4+1=0

again forces one to introduce new types of numbers, the imaginary numbers. The quotation from
Leibniz at the beginning of this article conveys the views of his era.

These complex numbers were adequate to solve all quadratic equations

(1) ax’ +bx+c=0.
From the explicit formula (—b =+ +/b? —4ac)/2a for the solutions X; and X,, one observes that

b c
2 X|+Xo = —— d XiXp=-—.
) 1+X 5 o X =

For further progress it was essential that one also could obtain these formulas without using the
explicit formula for the solution. One merely expands

(3) 0= (X—X1)(X—X2) = X* — (X] +X2)X+ X1 X2

and compares the coefficients with those of (1). This was an early significant instance where one
found properties of the solutions of an equation without first requiring a formula for the solution.

After using complex numbers to solve quadratic equations, it was, however, surprising that
complex numbers were also adequate to find a formula to solve the general cubic polynomial equa-
tion p(x) := ax®> +bx? +cx+d = 0. One does not need to enlarge further beyond the complex
numbers. Without using the formula for the roots it is obvious how to obtain the analog of (2)); if
the roots are X, Xa,X3, then expanding p(X) = a(Xx —X;)(X —X2)(X —X3) we get for instance

b
4) XX +Xs = ——

An immediate consequence is that if the coefficients in the polynomial are rational and if two of the
roots are rational, then so is the third root.

Eventually, an explicit formula for the solutions of a quartic equation was also found. Here too,
complex numbers were adequate to find all solutions. In the seventeenth century there was probably
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uncertainty if /i was a complex number. That one could write v/i = (14 )/v/2 would have
surprised many—including Leibniz.
Solving the general quintic polynomial was a challenge. If the coefficients of

5) p(x) := x> +bx* +cx® + dx® +ex + f.

are real, obviously for all large positive X we have p(x) > 0, while for all large negative X we have
p(x) < 0. Thus if you graph the polynomial y = p(x), it is geometrically evident that it crosses
the x-axis at least once and hence there is at least one real root X; of p(x) = 0. The polynomial
q(x) := p(x)/(x—x;) is then a quartic polynomial for whose four roots there are formulas. Thus
it was known that every quintic polynomial has five (some possibly repeated or complex) roots. It
was upsetting when Abel [1802-29] showed that despite knowing these five roots exist, there cannot
be a general formula for them that involves only the usual arithmetic operations along with taking
roots. Formulas similar to (4) were essential in Abel’s reasoning.

Mathematicians found themselves in the fascinating dilemma of having proved that these roots
exist but also having proved that there can never be an algebraic formula for them. The general
existence proof is what we now call the Fundamental Theorem of Algebra, while understanding the
obstructions to finding formulas for the roots is Galois [1811-1832] theory. Both were vital pillars
in the future development of mathematics. As a twist of fate, except for their fundamental historic
role, the formulas for the solutions of the cubic and quartic have become museum pieces, rarely
used because they are so complicated.

The proof that the quintic always has at least one real root was one of the first “pure”
existence proofs. Although this proof was regarded as obvious, in the nineteenth century mathe-
maticians became more concerned because this proof presumes that the real number line has no
“holes.” What would happen if there were a hole in the number line exactly where the root should
have been? How can one precisely define this “no holes” property?

After considerable effort, mathematicians learned how to make precise what they meant when
they said that the number line has no “holes.” Ever since, the resulting concept, completeness, has
been a basic ingredient in mathematics. One reason that it is so important to consider the class of
all Lebesgue [1875-1941] integrable functions is that by including them the function spaces LP are
complete.

By allowing polynomials to have complex roots, one can prove that a polynomial of degree
n has exactly n roots—if one counts multiple roots appropriately. The number of real roots is
considerably more complicated and depends on the coefficients of the polynomial (Sturm’s theorem
[WA1]). This is why when one studies the roots of simultaneous polynomial equations, which is
the focus of algebraic geometry, one usually uses a field, such as the complex numbers, where
polynomials of degree n have exactly n roots. Not much is known about polynomials if one works
only with the real numbers.

2 Steps Toward Solving Equations

In solving equations, the most primitive question is to decide if there are any solutions at all.
From our understanding of the special case of polynomial equations, we have learned to separate
this from the important problem of explicitly finding solutions. Moreover, in the many cases where
we know there is a solution but there is no “formula”, you need qualitative properties of the solution.

2.1 What does “solution” mean?

It may be necessary to broaden what an acceptable solution is, much as for polynomials we
usually allow complex solutions, perhaps in projective space. You may solve a diophantine equation
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mod p for all primes p. For partial differential equations one accepts solutions in various function
spaces, including distribution and Sobolev spaces of functions. Finding the appropriate notion of
“solution” may be a key step.

2.2 Find a formula for a solution.

Usually there is no formula of any sort. Even when is there is one, it may involve a reduction to
another problem, say finding the roots of a polynomial or evaluating an integral, which you accept
as a solution. But this acceptance depends on the personal background of the consumer. In earlier
centuries difficulties were faced if the “solution” of a problem involved numbers like /7 or TL, or,
worse yet, complex numbers. Similarly, many people have difficulty accepting a power or Fourier
[1768-1830] series as the solution of any equation. For them infinite series are problems, not
answers. From the power series for sinX, the 2Tt periodicity is far from obvious; that information is
more accessible from other approaches. Eventually, one learns that even an infinite series solution
may encode useful information, although it takes experience before one learns to find them useful.

A numerical solution may be valuable in some circumstances, yet in others it may be a jumble
of numbers that you need to decipher to learn anything useful. Hamming’s assertion: “The purpose
of computing is insight, not numbers,” applies to most scientific computations.

There are elementary problems where there is no formula for the solution, but there is an al-
gorithm for finding a solution. Even in such cases occasionally you may prefer a non-constructive
proof that a solution exists.

An example is solving ax =b (modm), where a and m are relatively prime. Since the solution
is x=a"'b (modm), we need to find a~! (modm). One traditional approach is to observe that the
numbers @,2a, ...,(m—1)a are all distinct (modm) so one of them must be 1 (modm). This proof
that a—! exists gives no hint of how to find it except by trial and error. This is a non-constructive
existence proof for the solution of ax = 1 (modm). One constructive proof considers the equivalent
problem of solving ax—my =1 for integers X,Yy. The Euclidean algorithm solves this explicitly (see
[Da, Section 1.8]). Since at the k" step in this algorithm the absolute value of the remainder can be
chosen to be at most half the value of the previous remainder, this new remainder is at most a/2k
so you need at most loga/log?2 steps (this is one of the few places that we consider the important
issue of the efficiency of an algorithm).

An alternative approach to find a~! is to use the Fermat [1601-65]-Euler [1707-83] identity
a®™ =1 (modm), where the Euler function ¢(m) is the number of integers k, with 1 <k <m—1
that are relatively prime to m (if m = p is a prime number then ¢(p) = p—1). Thus a~!' =
a®™M-1 (modm ). Note, however, that computing abm-1 (modm) requires as much calculation as
exhaustively testing a,2a, ..., (m— 1)a; the method using the Euclidean algorithm is faster.

Polynomial interpolation supplies an example where a variety of approaches are available to
solve some equations, each approach with its own illumination. Here we seek a polynomial p(x) :=
ag+a;x+ - -+ axk of degree k with the property that its graph y = p(x) passes through K+ 1
specified points (X1,Y1), ..., (Xkt1,Yk+1), Where the X;’s are distinct. Thus we can view the problem
as solving the k+1 linear equations p(Xj) =Yj, j=1,...,k+1 forthe k+1 coefficients ao, ... ,ax.

Method 1 (Lagrange [1736-1813]). Lagrange introduced a clever basis for the space Py of polyno-
mial of degree at most k. Itis €j(x) = M [(x—%i) /(Xj —xi)], j=1,...,k-+1. Thus ej(x;) = &j,
the Kronecker delta (this was perhaps the first instance in mathematics of a “dual basis”). Then the
explicit—unique—solution to the interpolation problem is simply

(6) P(X) =Y1€1(X) +Y262(X) + -+ Ykt 1€kr1(X).



Method 2 (Newton [1642-1727]). Seek p(X) in the special form
P(X) =Ao+AT(X—X1) +FAs(X—=X1)(X—X2) + -+ +AX—X1) - (X—Xk)-

Setting X = X; we find y; = p(X;) = Ag. Then set X = X, to find A;, and so on, finding suc-
ceeding coefficients Ay, ..., Ax recursively. Here we use Newton’s basis 1, (X —X;), (X—X;)(X—
X2)y ooy (X—=X1)(X—X2) - -+ (X — Xk) for Py.

Method 3. Define the linear map L : Px — R*"! by the rule

L: p (p(xl)a p(XZ)v ""p(xk+1))'

The interpolation problem is to find the inverse map of L. Observe that if Lp = 0, then p(x) € Pk
vanishes at the k+ 1 distinct points X, ...,Xk:1, therefore p must be the zero polynomial. Thus,
the kernel of L is zero. Since both Py and R¥*! have the same dimension, k+ 1, then by basic
linear algebra the map L is invertible. This proves that the interpolation problem has a unique
solution—but yields no formulas or special procedures.

Comparing these, Method 1 yields some basic information quickly, but is not easy to use to
compute p(X) at other points (too many multiplications). The formula for Method 2 is computa-
tionally much easier to use to evaluate p(x). It has two additional virtues. (i) If the polynomial p(x)
is an approximation to some other function, f(x), then you can use this method to find an estimate
for the error |f(x) — p(x)|. This error estimate is similar to that found for Taylor series (see any
book on numerical analysis, my favorite is [D-B, p. 100]). (ii) If you add another interpolation point
Xk+2, then the formulas for the coefficients Aj already computed do not change. Finally, Method 3
shows quickly that the problem has a unique solution. See our discussion of harmonic polynomials
in Section 2.5 for a less obvious application of Method 3.

We’ll give a brief application of interpolation to numerical integration. Say you want to evaluate
J:= f;’ f(x)dx. You specify k+ 1 distinct points a < X; < ... < Xk1 < b and seek a formula

b
7 /a F(x)dx ~ By F(x1) +Ba F(Xa) &+ -+ Byt F (1)

Can one find coefficients Bj so this formula is exact whenever f happens to be a polynomial of
degree at most k? Yes, and the Bj’s are unique. A naive approach is to let f be x!, j=0,..,k
in (7). This gives k+ 1 linear equations for the k4 1 unknowns By,...,Bk, ;. But it is simpler to
use the Lagrange formula (6) to find the polynomial interpolating f at the chosen points: f(X) ~
p(x) = 3] f(x})ej(x). Then

b b k+1 b
/a f(x)dxz/a p(x)dx:glf(xj)/a & (x) dx.

Thus Bj = f;’ ej(x)dx. The trapezoidal rule is the special case of the two points X; =a, X, = b,
while Simpson’s rule is for the three points, X; =a, X, = (a+b)/2, x3 =b.

Finally we might also want to pick the points Xj themselves so the formula (7) is exact for all
polynomials of even higher degree. Since the right side of (7)) now involves 2k + 2 parameters (the
Bj’s and Xj’s), we suspect by choosing them adroitly we should be able to have (7)) be exact for all
polynomials of degree 2k + 1 (its dimension is 2k +-2). The equations (7) are linear in the Bj’s but
nonlinear in the Xj’s. Gauss studied this. He found that the X;j’s should be chosen as the zeroes of
the polynomial ¢y of degree k+ 1 from the family of orthogonal polynomials associated with the
standard inner product (u, V) = fab uvdx (for a= —1, b =1 these are the Legendre polynomials).
We prove Gauss’ result.

The proof is short and clever. Let Q be any polynomial of degree at most 2k + 1. By division
write Q = ) +r, where q and r are polynomials of degree at most k. The orthogonality
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property gives (q, ¢x+1) = 0; combined with our choice of the B;’s to make the formula exact for
all polynomials of degree k we find

k
(8) /:Q(x)dx:/ X)dx = fB r(x

But since the Xj’s are zeroes of ¢y then

k+1 k+1 k+1

©) > BijQ(xj) ZB (i1 (X)) +r(x ZB r(x
=1
Comparing (8) and (9) we see that the integration procedure (7) is exact for Q.

2.3 Find an equivalent problem that is simpler.
a) Change of variable

Making a change of variable is perhaps the most familiar technique to simplify a problem. A
small example of this is the cubic polynomial p(x) = ax> 4+ bx? 4 cx+d. View the coefficients as
those in a Taylor series. Since the second derivative is zero at the point where 6ax 4 2b = 0, the
change of variables z = 6ax + 2b (or just the translation z = x +b/3a) yields a simpler polynomial
q(z) = az® +yz + & without a quadratic term. If the coefficients of the original equation were
rational, then so are those of the new equation and the rational roots of the new equation correspond
to those of the original equation. This is a generalization of the procedure of “completing the
square.” Similarly, by a translation one can eliminate the coefficient an_; in p(x) = x"4an_1x" ' +
lower order terms

We can use this to show that every double root of a cubic polynomial with rational coefficients
is rational. Using our change of variable, it is enough to show this for q(z) = az® 4+ yz +&. Thus,
we must show that if q(r) =0 and ¢/(r) = 0, then r is rational. But 0 = ¢'(r) = 3ar? +y implies
that ar3 = —(y/3)r. Thus 0 = q(r) = —(y/3)r +yr + 3, that is, r = —38/2y, which is rational.
From (4)), since X; = X, = r, the third root of g (and hence of p) is also rational.

For cubic polynomials with rational coefficients and having a double root r (necessarily ratio-
nal, from the above) you can now find all rational points (x,y) (that is, both x and y are rational)
on the “elliptic curve” y> = p(X). They are the points where straight lines through (r,0) and having
rational slope intersect the curve. This is now an easy exercise. A related exercise is to show that
the rational points on the circle x> +Yy? = 1 are where the straight lines through (1,0) with ratio-
nal slope intersect the circle. One consequence is a formula for all the “Pythagorean triples”: the
integers a,b,c with a> 4 b?* = c¢?

Another instance of finding an equivalent problem that is simpler is the change of variable (that
is, a change of basis) in a matrix equation to diagonalize the matrix (if possible). We can use the
same idea for a system of differential equations

(10) Lu:=u +Au=f,

where u(t) and f(t) are vectors and A(t) is a square matrix. We seek a change of variables u = Sv
where S(t) is an invertible matrix, to transform this to a simpler equation. In some applications this
is called a gauge transformation. To find a useful S we compute

(11) f =Lu=uU+Au=(Sv) +A(Sv) =SV + (S +AS)v.
The right side of this is simplest if S is a solution of the matrix equation

(12) LS=S5+AS =0, say with  S(0) =1;
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we use S(0) =1 to insure that S is invertible. Then solving is just integrating V' = g where
g=S"!'f.

With this choice of S and writing D := d/dt it is instructive to rewrite as f=Lu=
SDv = SDS~!'u. In particular, L = SDS™!. One sees that every linear ordinary differential operator
is “conjugate” or “gauge equivalent” to D. We thus come to the possibly surprising conclusion
that any first order linear differential operator L is equivalent to the simple operator D; this makes
studying linear ordinary differential operators far easier than partial differential operators. We also
have formally L~! =SD~'S~!. Since D! is integration (and adding a constant of integration), an
immediate consequence is that the general solution of the inhomogeneous equation Lu = f is

(13) u(t) =L~'f =S(t)C+S(t) /OtS_l(T)f(T)dT,

where C = u(0). The matrix S defined by is the usual fundamental matrix solution one meets
for ordinary differential equations. Unfortunately it is presented frequently as a trick to solve the
inhomogeneous equation rather than as a straightforward approach to reduce the study of L to the
simpler differential operator D. It is sometimes useful to introduce Green’s function (G. Green
[1793-1841]) G(t,T) := S(t)S~!(1) and rewrite as

1
(14) u(t) = u(0)+/0 G(t,1)f(T)dT.

We then think of the integral operator with kernel G(t,T) as L~!. This integral can be interpreted
physically and gives another (equivalent) approach to solving (10).

Usually S cannot be found explicitly. However in special cases such as a single equation or a
2 x 2 system with constant coefficients, you can carry out the computations and obtain the classical
formulas quickly. For instance, for a single equation, we find that S(t) = e~ /AU Then we
recognize as the standard formula. Since one can write a second order linear ODE as a first
order system of this form, we have also covered that case.

What we call a “change of variable” is part of a fundamental procedure known to everyone,

yet often seems exotic when it arises in a mathematical setting. 54 P old

As an illustration, say you have a problem P that is stated in (original version)

another language, perhaps Latin. To solve it, first translate (T ) Tl TT_I

it into your language, solve the translated version Q, and then

translate it back (T~!). Symbolically, reading from right to new Q new

left, (new version)
P=T7'0T Figure 1

(see Figure 1). The goal is to choose the new setting and T so the new problem Q is easier than
P. Diagonalizing a matrix and using a Laplace [1749-1827] transform are two familiar mathemat-
ical examples. The same idea—but with a different twist—is also useful in discussing symmetry
(Section 2.7). There we will see that finding a T so that the new version is the same as the old,
P = T-1PT, is how one identifies symmetries of the problem P. As a silly linguistic illustration,
one observes the phrase “madam I’'m Adam” reads the same backwards. Here T is the operation of
reading backward.

b) Variational problem

The calculus of variations offers a radical way to reformulate some problems. First an example
in R". If A is a self-adjoint matrix, then solving AX = b is equivalent to finding a critical point of
the scalar-valued function

J(X) = 3(AX, X) — (x, b),
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where we use the standard inner product in R". To see this, if X is a critical point of J(x) and if
we set ¢(€) = J(X+¢€v), where V is a vector and € a scalar, then by the definition of critical point,
$’(0) = 0. But by a computation ¢’(0) = (Ax—b, v) . Thus (Ax—b, v) =0 for any vector v. Since
Vv is arbitrary this implies that Ax —b = 0, as we asserted.

A related problem is to find the lowest eigenvalue of a self-adjoint matrix A. It is an simple
exercise to show this is the minimum value of the function J(x) = (x, AX) /||x||* as X ranges over all
vectors X # 0 (or, equivalently, minimize (X, AX) on the unit sphere ||X|| = 1). A vector X giving this
minimum value is a corresponding eigenvector. This approach to the eigenvalues of a self-adjoint
matrix is used widely in computations, as well as giving one way to prove that one can always
diagonalize a self-adjoint matrix. Since it does not use the fundamental theorem of algebra, this
approach is applicable to some problems in infinite dimensional spaces—such as Sturm ([1803—
55]-Liouville ([1809-82]) theory and the spectrum of the Laplacian (see just below).

The identical approach works for more complicated problems. Say we want to solve the wave
equation, Uy = Uy + Uyy to find the position u(x,y,t) of a vibrating membrane Q; thus (X,y) are in
aregion Q € R? and time t is a real number. We claim that U being a solution of the wave equation
is equivalent to U being a critical point of the functional

(15) /// 22— u2) dxdydt.

One verifies this formally just as in the previous example by considering ¢(g) = J(u+€v), where
Vv is any smooth function with compact support in Q x (a, ). Again, by definition of critical point
this means ¢’(0) = 0 for any of our functions v. By differentiating under the integral

B
¢’(0):M :/// (UpVe — UxVy — UyVy) dxdy dt.
dS =0 QJa

To simplify this, we integrate by parts (the divergence theorem), taking the derivative off the v terms
and placing them on the U terms. There are no boundary terms because we assumed v had compact
support. The previous equation reads

B
—/// [Utt — Uxx — Uyy] vdxdydt.
aJa

From this it is clear that the solutions of the wave equation are critical points of ¢. For this converse,
it is helpful to introduce the inner product (f, g) = [[[ fgdxdydt. Then since ¢'(0) = 0,, the last
formula asserts that the expression in brackets [---] is orthogonal to all these functions v. Since
smooth functions v with compact support are dense, the expression in brackets must be zero. That
is, U must be a solution of the wave equation. It is customary to refer to the wave equation as the
Euler-Lagrange equation for the functional J(u) = [ F(X,t,u,ut, Uy, Uy) dxdydt whose integrand
F(X,t,U, U, Ux, Uy) := 3 (U — U3 — u3) is called the Lagrangian.

Closely related to the linear algebra case, the lowest eigenvalue of the Laplacian, —Au = Au
(note the “—" sign) for functions with zero boundary values on a region Q is found by minimizing
the Rayleigh [1842-1919] quotient J(v) = [, |0v|?dx/ [ V> dx among all functions V that are zero
on the boundary of Q. This is useful both for theoretical and practical applications.

One virtue of introducing a variational problem is that some properties may be more accessible.
We see instances of this below, where we’ll use invariance of the variational problem under the
translation t — t 4 € to deduce conservation of energy for the wave equation (Section 2.7d), and
in a situation where the existence of a solution to the original problem is more accessible from the
variational approach (Section 3.2). Two standard references to the calculus of variations are [G-F]
(a basic text) and [G-H] (a fresh, more thorough, approach). The book [H-T] is a nice introduction
for the general reader.




2.4 Duality: Find a related problem that is useful.

To me, duality is the most vague and mysterious item in this lecture. My impression is that du-
ality appeared first in projective geometry where one interchanges the roles of points and lines (this
evolved slowly from Apollonius’ [C. 262—-190 B.C.] use of “pole” and “polar” through 1850). La-
grange introduced the adjoint of a differential operator in the eighteenth century (this is the essence
of Lagrange’s identity for linear second order ordinary differential operators) while the adjoint of a
matrix seems to have been used significantly only in the nineteenth century. Green’s second identity
(1828) asserts that the Laplacian is formally self-adjoint. Lagrangian and Hamiltonian mechanics
are dual objects: Lagrangian living on the tangent bundle, Hamiltonian on the cotangent bundle.
There are dual problems in the calculus of variations—including linear programming. Cohomology
is the dual of homology. Duality is even a standard device in rhetoric: “Do unto others as you
would want others do unto you”, and J.F. Kennedy’s ... ask not what your country can do for you,
ask what you can do for your country”. I do not know how to make the concept of duality precise
enough to fit all known mathematical instances and ease introduction of new dual objects.

In Section 2.6 below we give a more subtle uses of duality in linear algebra and differential
equations. As preparation, and for its own interest, here we follow Lagrange and define the formal
adjoint L* of a linear differential operator L. Use the inner product for real-valued functions:
(¢, P) = [dWwdx. Then L* is defined by the usual rule

(u, L*v) = (Lu, V)

for all smooth functions U and Vv that are zero outside a compact set; we choose functions that are
zero outside a compact set to avoid having boundary terms when we integrate by parts. We use
the word “formal” since the strict adjoint requires a (complete) Hilbert [1862—1943] space and the
consideration of boundary conditions.

If L :=d/dt, then an integration by parts reveals that

(Lu, V) :/u’vdt: —/uv’dt: (u, L*v).

Thus, the formal adjoint of L :=d/dt is L* = —d/dt. Similarly, if A(t) is a matrix and u(t) is a
vector, then the formal adjoint of Lu:=u’+A(t)u is L*v = —v' 4+ A*(t)v. Two integrations by parts
show that the formal adjoint of the second order system Mu := u” +A(t)u is M*v = V" + A*(t)v.
In particular, if A is symmetric then M is formally self-adjoint, a fact that is basic in quantum
mechanics, where, with a complex inner product, the self-adjoint operator id/dt appears in the
Schrodinger equation.

One application of the adjoint is that if u is a solution of the homogeneous system Lu :=
u'+A(t)u=0 and v is a solution of the adjoint system, L*v = —Vv'+A*(t)v = 0, then their pointwise
inner product V- U is a constant. Indeed,

d
(16) a(v-u):v’-u+v-u’:A*v-u—v-Au:0_

Observing that v-u is the matrix product v*u, a similar computation shows that if S(t) and T (t)
are (not necessarily square) matrix solutions of LS =0 and L*T = 0, respectively, then

(17) T*(t)S(t) = constant.

In particular, if A, S and T are square matrices with S(0) =T (0) =1 (asin (12), S and T are then
fundamental matrix solutions), we have

(18) T*t)S(t)=1  thatis,  T(t)=S"1*(t).
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If this formula appears boring, the disguise is perfect. It is a wide-sweeping generalization both
of ele~t =1, which is the special case of Lu:=u’+u, so L*v=—V' +V, as well as cos’t +sin’t = 1.
In a physical context it may express some conservation law.

To prove cos’t +sin’t = 1, consider the second order system Mw := w” 4+ Cw = 0, where
C(t) is an n x n matrix, with corresponding adjoint system M*z =z" 4+ C*z. Let ¢(t) and Y(t) be
(vector or matrix) solutions of M$ = 0 and M* = 0, respectively. We assert that

(19) W (t)d(t) — W*(t)d'(t) = constant.

This reduces to cos’t 4 sin’t = 1 in the special case where C is the 1 x 1 identity matrix, ¢(t) =
cost, and Y(t) = sint. The identity is a routine consequence of the basic identity and
requires no additional insight to discover; merely rewrite w” 4+ C(t)w = 0 as a first order system by
the usual procedure of letting Uy := W and U, := W' . Then U := (¢/) satisfies the first order system

Lu:=u"+Au, where A is the 2n x 2n block matrix A := (8 _(')) . Similarly v := (_quj/) is a solution
of the adjoint equation L*v = —V' +A*v = 0. The result now follows from the identity
withS=uand T =v.

For equations of the form Lu := Pu’ + Au, where P may be singular at a boundary point of
the interval under discussion (this arises in Sturm-Liouville theory), it is useful to observe that
probably one should not multiply by P~! to reduce to the earlier case. Instead directly use L*v =
—(P*v)’ + A*v and generalize the identity to T*(t)P(t)S(t) = const. Similarly, for Mw :=
(PW)"+Cw = 0 identity becomes Y*'Pd — P P’ = const.

A consequence of and is that if G(t,T) = S(t)S~!(1) is Green’s function for Lu :=
U + Au, then Green’s function for L* is G*(T,t), a fact that has the useful physical interpretation
that for the adjoint one interchanges the roles of the observation time t and event time T (to see this
clearly for a scalar equation let f(T) be the Dirac delta function at, say, T = T¢ in (14)).

2.5 Understand the family of all solutions.

How many solutions are there? Is uniqueness desirable? If so, what conditions would insure
uniqueness of the solution? If you slightly modify some parameters in the problem, do the solutions
change only slightly? This continuous dependence on parameters is basic in real-life problems
where the data are known only approximately. It is also important for problems solved using a
computer that introduces both round-off errors (computers use only a finite number of decimal
places) and truncation errors (computers approximate limiting processes such as integration by finite
discrete operations).

For instance, by Rouche’s theorem in complex analysis the roots of a polynomial p(z) depend
continuously on the coefficients, that is, if p has k roots in the small disk |z—c| < p and if we
perturb the coefficients of p slightly, then this perturbed polynomial also has exactly k roots in this
disk. A corollary is that the eigenvalues of a matrix depend continuously on the elements of the
matrix. The simple example x> = € shows that these assertions may be false if one considers only
real roots.

This example x> = € for € near zero also shows that, even allowing complex roots, the solution
may not be a differentiable function of the parameter. By contrast, we will use the implicit function
theorem to show easily that simple roots do depend smoothly on parameters. Here is the proof. Say
we have a polynomial p(X,c) depending smoothly on a parameter ¢ and at ¢ = ¢y we have a root
X0, 80 P(Xo,Co) =0. Since X is a simple root, dp(X,Co)/0X|x=x, 7 0. Thus, by the implicit function
theorem, for all € near Cy, there is a unique solution X = X(C) near X of p(X,c) = 0. This solution
depends smoothly on . This proof was quite general; it does not require p to be a polynomial. A
consequence is that simple eigenvalues of a matrix depend smoothly on the elements of the matrix.
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The study of what happens when one cannot apply the implicit function theorem is carried
out in bifurcation theory and in the study of singularities of maps. We now know these are the
same subjects, although they arose from different origins with different viewpoints. See [Arn], [C-
H], [H-K], and [G-S]. The key new phenomenon is that several solutions can branch—or solutions
can disappear—as occurs for the real solutions of x*> = &; for € < 0 there are no real solutions
while for € > 0 there are two solutions. An early notable appearance of bifurcation theory was
Euler’s classical study of the buckling of a slender column under compression (see the elementary
discussion in the undergraduate text [Wi, pp. 167-169]).

In practical problems, one may need to delve more deeply into the dependence of a problem
on parameters. Wilkinson (see Forsythe’s beautifully illuminating article [F] and subsequent book
[F-M-M)]) illustrated this with the polynomial

PX) = (X—1)(X—=2) -+ (X— 19)(x—20) = x** —210x"" 4 --- .

Let p(x,€) be the polynomial obtained by replacing only the term —210x'° by —(210+ €)x!?,
where € =2723. Since 27 < 210 < 28, this means we are changing this one coefficient in the 30t
significant base 2 digit. A smaller perturbation of this sort might even occur because of roundoff
error in a computer, because computers keep only a finite number of decimal places. Since for
€ = 0 the roots of p(X,0) are well-separated, then for € near zero they depend smoothly on €.
By a careful calculation, one finds that some of the roots have moved substantially. For instance
the complex numbers 16.73073 +2.81262i are now roots. Should we be surprised the roots have
moved this much? No. For if we differentiate p(X,€) =0 with respect to € we obtain

0p(x,€) Ox  Op(x.€)

AR FBE
x 9t oe ’
SO
ox  0p/de x!9
de  dp/ox Y 1 (x—k)
1<<20 1<k<20
k#]
Evaluating this at x = j for j =1, ...,20 we find the sensitivity of the j root:
ox| it
0g X=] [ (J - k) '
1<k<20
k#]

For instance, at the root X = 16 one computes that %‘ =2.4x10°. Not small at all.

x=16

One can explicitly find the family of all solutions for only the simplest problems, yet these
frequently serve as guides for more general cases. To the astute—at least with hindsight—the
polynomial equation z" = 1 and differential equation u” = f(x) give significant hints of how more
complicated cases behave. Even without explicit formulas, you can sometimes obtain information
on the set of all possible solutions. The following example illustrates this; it also is an instructive
indication of the power of Method 3 in Section 2.2.

Consider the linear space Py of polynomials of degree at most ¢ in the n variables Xj, ..., Xp
and let Py be the sub-space of polynomials homogeneous of degree ¢. The standard Laplacian on R"
is AU = Uy, x, + Uyyx, + - - - Uxx, - A function u(x) is called harmonic if Au= 0. We wish to compute
the dimension of the subspace H; of P, consisting of homogeneous harmonic polynomials. If n =2,
and ¢ > 1 the dimension is 2, since for ¢ > 1 one basis for the space of harmonic polynomials of
degree exactly / is the real and imaginary parts of the analytic function (x4 iy)*.



For the general case, observe that A : Py, — P, and define the linear map L : Py — P, by the
formula

(20) Lp(x) :=A[(]x]* = 1)p(x)],

where |X| is the euclidean norm. Now Lp = 0 means the polynomial u(x) := (|x|> —1)p(x) € Pys»
is harmonic. But clearly u(x) =0 on the sphere |x| =1, so U= 0 [ Thus kerL =0 so L is invertible.
In particular, given a homogeneous ¢ € P, there is a p € P, with A[(]x|*—1)p(X)] =q. Let ve P,
denote the homogeneous part of p that has highest degree ¢. Since A reduces the degree by two,
we deduce that in fact A(|x|?v) = q. Therefore this map Vv + q from P, — P, is onto and hence an
isomorphism [} Here are two consequences.

1) Since the map A: Py — P,_; is onto, again by linear algebra, we can compute the dimension of
the space of homogeneous harmonic polynomials:

n+¢—1 n+¢-3 (n+20-2)(n+¢-3)!
¢ ) < -2 )‘ l(n—2)!

For instance if n = 3 then dimH, =2¢+1.

2) Any homogeneous polynomial q € P; can be written (uniquely) in the form q = h+ |x|?V,
where h € Hy and v € P,_,. To prove this, first compute Ag and then use the above to find a
unique Vv € Py_ so that A(]x|>v) = Aq € P;_,. The function h := g — |x|?v is clearly harmonic.
Applying this again to v and so on recursively we conclude that g = hy + |x|?hy_5 + [x|*hy_4 +---,
where hj € Hj. This yields the direct sum decomposition P, = H; ® |X|2Hg,2 @ ---. Since both the
Laplacian and the operation of multiplying by |x|*> commute with rotations (see the discussion in
Section 2.7a below), the summands in this decomposition are SO(n)-invariant, a fact that is useful
in discussing spherical harmonics and the symmetry group SO(n).

The idea behind the definition of L in (20) was that to solve Au = q € Py, we seek U in
the special form u = (|x|?> — 1)p(X) to obtain a new problem, Lp = @, whose solution is unique.
Frequently it is easier to solve a problem if you restrict the form of the solution to obtain uniqueness.

Homogeneous harmonic polynomials arise since, when restricted to the unit sphere you can
show that they are exactly the eigenfunctions of the Laplacian on the sphere; the dimensions of the
eigenspaces are the numbers just computed. As above, when n = 3 this number is 2¢+4 1. Atoms
are roughly spherically symmetric and this number arises as the maximum number of electrons in
an atomic subshell. There are 2+ 1 electrons with spin i%, so 2(2¢+1) in all. Thus the subshells
contain at most 2,6,10, 14, ... electrons.

dimH;, = dimP; — dimP,_, = <

In high school we solve polynomial equations in one variable and systems of linear equations.
These are the first steps in understanding the solutions of a system of k polynomial equations

fi(z) =0, f2(z) =0, ..., fk(z) =0

in n unknowns z = (zy,...,zn). From experience we know that it is simplest to allow complex
numbers as solutions. If there are more equations than unknowns (K > n), then usually there will
be no solutions, that is, no common zeroes [CHALLENGE: restate this precisely and then prove it,
say for any smooth functions f;], while if there are more unknowns than equations there are usually
infinitely many solutions. If there are the same number of equations as unknowns, then usually there
are only finitely many solutions. While plausible, this is not obvious (it is false for non-polynomials

2To prove U= 0, one can use the divergence theorem to see that Jx<1 |Oul?dx = — Jix<1uBudx =0, so Ou=0.
Thus U= const. = 0. Another approach uses the maximum principle for harmonic functions.

30ne can also give a purely algebraic proof that if p € P, satisfies A(|x|2p) = 0, then p =0 —hence the map
M : P, — P, defined by Mp := A(|x|?p) is an isomorphism of P;.
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as sinX = 0, which has infinitely many solutions—hardly a surprise if one views its Taylor series as
a polynomial of infinite degree).
Bezout [1730-83] made this precise for two polynomial equations in two variables:

(21) f(x,y)=0  g(xy)=0.

If f has degree k and g degree ¢, he proved that there are exactly k¢ solutions, possibly complex,
unless f and g have a common (non-constant) polynomial factor (see [Wa], [Ful]).

As usual, it is enlightening to introduce geometric language and think of the two equations
as defining two curves C; and C,. The common solutions of are the points where the curves
intersect.

We examine in the special case where f(x,y) = a;x>+ax?y+---+ajo and g are both
cubic polynomials. Say they intersect at the nine points p; = (X1,Y1), ..., P9 = (X9,Y9). So far this
is quite general. But now assume that six of these, pi, ..., Pe, happen to lie on a conic [, so they
are also roots of the quadratic polynomial q(X,y) = O that defines ['. By Bezout, we know that
C; and I intersect in six points, so it is quite special if C, and I intersect in the same six points.
For simplicity also assume that the conic [ is irreducible, that is, it is not the product of two non-
constant polynomials of lower degree (this is the case if I is the product of two linear polynomials
and hence is just two straight lines). We claim that the remaining three points p7, ps, P9 lie on a
straight line.

Here is an algebraic proof. For any linear combination h(x,y) :=a f (x,y) +pg(X,y), notice that
the cubic curve C defined by h = 0 automatically contains the points where C; and C, intersect.
Pick another point v on the conic I' and choose o and [ so that v is also a zero of h. Then the
cubic curve C also intersects the conic I at the seven points V, py, ..., P¢. But by Bezout’s theorem
C and I' have 3-2 = 6 points of intersection unless h and g have a common factor. Thus there must
be a common factor. Because q is irreducible, the factor must be q itself, so h(X,y) = q(X,y)r(x,y)
where, by matching degrees, r(X,y) is a linear polynomial. Thus p7,ps, Pg, which are zeroes of
h =0 but not g = 0, are roots of the linear polynomial r = 0 and thus lie on a straight line.

We can reinterpret this to obtain a classical theorem of Pas-
cal [1623-1662]. Connect any six points pi, ..., Ps on a conic to
obtain a “hexagon”, probably with self-intersections. Some ter-
minology for hexagons: a pair of sides separated by two sides is
called opposite (as p;p2 and psps) while the points of intersec-
tion of opposite sides are called diagonal points. Thus a hexagon
has three diagonal points (circled in Figure 2). Pascal’s theorem Figure 2
asserts that these three points always lie on a straight line.

To prove it, take the alternate edges of the hexagon, PPz, P3P+, P5Ps, and PPz, PaPs,
PsP1, to obtain two triangles whose sides contain these edges. To each triangle we associate a
cubic polynomial by taking the product of the three linear polynomials determined by the edges of
the triangle. Note that here a triangle is the union of the three entire lines, not just the segments
joining vertices. Then the points py, ..., Ps plus the three diagonal points are the nine points of
intersection of these triangles. Now apply the preceding algebraic result. To include the possibility
that some pairs of opposite sides might be parallel—so the corresponding points of intersection are
at infinity—it is better if one works in the projective plane.

The algebraic reasoning generalizes immediately: Let f(x,y) =0, g(x,y) = 0 be polynomials
of degree n that intersect at n? points. If kn of these points lie on an irreducible curve defined by a
polynomial of degree k, then the remaining n(n —k) points lie on a curve defined by a polynomial




14

of degree n —k. This generalization illustrates the power of the algebraic approach, despite the loss
of the special beauty of a purely synthetic geometric proof.

2.6 If asolution does not always exist, find the obstructions.

If an equation does not have a solution, it is important to understand the reason. If you are
trying to fit a straight line p = at +b to the k data points (t;,p1), ..., (tk, Pk) that were found
experimentally, then it is unlikely there will be a choice of the coefficients a and b that fits the data
exactly. In this situation one seeks an “optimal” approximate solution. A typical approach to solving
F(x) =y approximately is to find a solution Xo that minimizes the error: E(x) = ||[F(x) —y|. A
non-trivial human decision is choosing a norm (or some other metric) for measuring the error. One
often uses a norm arising from an inner product; the procedure is then called the Method of Least
Squares. Here is a brief (but complete) outline.

First observe that if a linear space V has an inner product (written as (X,y)), and SCV isa
subspace, then the orthogonal projection ys of y into S has the property that y — Y is perpendicular
to S. The projection ys is the point in S closest to y since for any w € S we have y —w = (Y —Ys) +
(Ys—Ww). Because (Y —VYs) L (Yys—W) € S, by Pythagoras

ly =wi? = [ly = ysll* + llys = wll* = lly - ys|I*.

For least squares to minimize the error ||Lx —Y|| we thus want to pick X so that ys:= LX is
the orthogonal projection of y into S :=image (L). Then y —ys =Yy — Lx will be perpendicular to
image (L) so for every vector z

0= (y—Lx,Lz) = (L*(y—Lx), z).

Therefore L*(y — Lx) = 0. We can rewrite this by saying the desired X is a solution of the normal
equation L*Lx = L*y. Since L*L is a square matrix, the normal equations have a (unique) solution
if ker(L) = 0. [If you have never done so, a simple but useful exercise is to set-up the normal
equations for the above example of fitting a straight line to some data.]

There are situations where other procedures are more appropriate to minimize the error F(x) —
y. For nonlinear problems not much is known. In linear and nonlinear programming there is related
work to find optimal solutions of inequalities.

Now, say you want to solve an equation that you believe should have an exact solution under
suitable conditions. You thus need to determine and understand these conditions.

The simplest case is a system of linear algebraic equations AX =Y (the matrix A is not assumed
to be square). A basic—but insufficiently well known—result in linear algebra uses the adjoint
equation (duality) and says that for a given Yy there is at least one solution if and only if y is
orthogonal to all the solutions z of the homogeneous adjoint equation, A*z = 0. Here is the short
proof.

Say z satisfies Axz = 0. If there is a solution of Ax =y, then taking the inner product with z
we obtain

(22) (z,y) = (z, AX) = (A"2,x) = 0.
Thus z is orthogonal to y. This computation shows that
(23) image (A)* = ker(A®).

The proof of formula (23) is the same in infinite dimensional Hilbert spaces. If V is a linear

subspace of a Hilbert space, then (V) =V = closure of V . Thus, in a Hilbert space, image(A) =
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ker(A*)*. In some important cases—including R" where it is evident—one can show that image (A)
is closed. One then has

(24) image (A) = ker(A*)*.

Frequently this is called the Fredholm [1866-1927] alternative, since it can be phrased as the fol-
lowing alternative: “Either you can always solve AX =Y, or else there are obstructions. These
obstructions are precisely that y must be orthogonal to all the solutions of the homogeneous adjoint
equation.”

As another example, consider solving the differential equation u” = f, where we assume f(x)
is periodic, say with period 21T, and we seek a solution U(X) that is also periodic with the same
period, so both U and U’ are periodic (that u” will be periodic follows from the differential equation).
Thus we are solving the differential equation on the circle, S'. This is a simple example of an
“elliptic differential operator” on a “compact manifold without boundary.”

First we solve the equation directly. The general solution of u” = f is u(x) =u(0) +u’(0)x+
J&(x—t)f(t)dt. To insure that U is periodic we need U(211) = u(0) and u’(2m) = u’(0). The second
condition imposes the requirement

21
(25) /o f(x)dx =0,

and we use the first condition to solve for u’(0). The upshot is that a solution exists if and only f
satisfies (23). This solution is not unique since the constant u(0) can be chosen arbitrarily.

Next we interpret using the Fredholm alternative. Write our equation as Lu = f, where
Lu:=u”", so L is formally self-adjoint: L*v =Vv”. The Fredholm alternative says that to find
the image of L, we should first find the periodic solutions of the homogeneous adjoint equation,
7" = 0. Although this equation can be solved by a mental computation, we use a different method
that generalizes. Multiply the equation z” = 0 by z and integrate by parts to obtain

21 21
(26) 0=(z,Lz)= / 27" dx = —/ 1Z|*dx,
0 0

so 2/ =0 and z is constant. The Fredholm alternative then states that f is in the image of L precisely
when it is orthogonal to the constants:

{1, f)=o.

This is just equation (23).
This example may be generalized to solving the Laplace equation on the torus T". Here we are

given a (smooth) function f(X;,Xy, ...,Xn) that is periodic with period 21T in each variable and seek
a periodic solution u(Xj,Xz, ...,Xn) of
(27) Au = f(x),

where AU 1= Uy,x, 4 Uxyx, + - - - + Ux,x, - Using Fourier series, it is straightforward to show that there
is a solution if and only if the same condition holds,

(28) - f(x)dx=0,

where, in this formula we integrate from O to 2Tt in each variable X;,Xp, ...,Xn. Just as for u” = f

the Fredholm alternative gives for the Laplace equation (27); to compute kerA you merely

replaces the integration by parts in by the divergence theorem (cf the footnote in Section 2.5).
Almost 100 years ago, Fredholm proved that the Fredholm alternative holds for the Laplace

equation. We now know that it holds for many linear “elliptic” partial differential equations with

various boundary conditions. The Fredholm alternative is more interesting for these differential
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operators than in finite dimensional spaces since for them the kernels of L and L* are finite dimen-
sional (this is elementary for ordinary differential operators, but deeper for elliptic partial differen-
tial operators). Thus there are only a finite number of obstructions to solving Lu = f, despite the
function space being infinite dimensional.

The Hodge [1903-75] theorem for compact manifolds is a straightforward consequence (essen-
tially algebraic) of the Fredholm alternative applied to the Hodge Laplacian on differential forms.

Since it is both instructive and (to my surprise) not readily accessible in the literature, we will
show in detail that the Fredholm alternative holds for the second order ordinary differential equation

(29) Mu := a(x)u” +b(x)u" +c(x)u = g(x),

where the coefficients and g(x) and their derivatives are smooth functions that are periodic with
period 271. To avoid singularities also assume a(X) # 0. We seek a smooth solution u(X) that is
also periodic with period 21t. In other words, we are solving on the circle S! = {0 < x < 2m}
with the end points X = 0 and X = 2Tt being thought of as the same point.

The computation shows that if g is in the image of M, that is, if you can solve (29), then
g is orthogonal to the kernel of M*. The converse is more complicated.

The details are a bit simpler if we assume we have already made the standard reduction to a
first order system of the form

(30) Lu:=u"+AX)u= f(x),

where A(X) is a square matrix and f(X) a vector, with all the elements of A and f being smooth
periodic functions (we always assume the period is 2TT). We seek a smooth periodic (vector) solution
u. Our short proof uses the existence theorem for ordinary differential equations.

One tool we use is the fundamental matrix solution S(x) and the resulting formula for the
general solution of the inhomogeneous equation (knowing one can find S(x) is the only place we
use the existence theorem for ordinary differential equations). The question thus reduces to finding
a constant vector C := u(0) so that u is periodic, that is, u(21) = u(0). Using we can write
u(2m = u(0) as

21
(31) [1—s@mC=s(2m [ S (t)f(t)dt.
0
From it is clear that in the special case where 1 is not an eigenvalue of S(211), that is, if the
homogeneous equation has no solutions with period 2T, then we can solve uniquely for C. But
1 might be an eigenvalue of S(2T1); we must look deeper.

Both to treat the general case and to relate this to the homogeneous adjoint equation L*v =
—V 4+ A*(x)v =0, we need the observation that the fundamental matrix solution of the adjoint
operator is S*~!. Thus the general solution (not necessarily periodic) of L*z =0 is z(t) := S*~!(t)Z
where Z can be any vector. Consequently z(t), which we have just noted is a solution of the
homogeneous adjoint equation, is periodic with period 27t if and only if S~1*(2m)Z = S~!*(0)Z,
that is, if Z € ker[S~!*(2m) —1].

From here, the reasoning is straightforward. For instance we deduce the Fredholm alternative
for periodic solutions of follows. Rewrite (31)) as

21
s ‘(2n)—I]C:/O SO f()dt.

Let V be the right hand side of this. By linear algebra, one can solve this algebraic equation for
C if and only if V is orthogonal to ker[S~!(21) — I]*, that is, to all vectors Z € ker[S~'*(2m) —I].



However, V being orthogonal to these vectors Z means

21 21
0=2.V = z.s-l(t)f(t)dt:/ 2(t) - F(t) dt,
0 0

where Z -V is the usual inner product in R" Consequently, has a periodic solution if and only
if f is orthogonal in L,(S') to the periodic solutions of the homogeneous adjoint equation. This
completes the proof.

Another easy consequence of this approach is that the dimension of the space of 2Tt periodic
solutions of Lu =0 and of L*v =0 are equal. Indeed, from (31), the dimension of the space of
periodic solutions of Lu = 0 is dimker[l —S(2m)]. Similarly, since S*~! is the fundamental matrix
for L*, then the dimension of the space of periodic solutions of L*v = 0 is dimker[l —S*~!(2m)].
But | —S*~' = —[(1 =S)S™!]*. Thus | —S is just | —S*~! multiplied by an invertible matrix and
then taking an adjoint so the dimensions of their kernels are equal.

The reader may wish to use these ideas to prove that the Fredholm alternative holds for the
boundary value problem L :=u"” 4 c(x)u = f(x) on the interval 0 < x < 1, with the “Dirichlet”
boundary conditions u(0) =0, u(1) =0 for both L and L*.

All of this has treated linear equations. Understanding obstructions to existence for nonlinear
equations is much more complicated, even in Euclidean space for real solutions of a system of
polynomial equations.

The next example gives the flavor of the issues for a simple nonlinear differential equation.
Recall that the curvature K(X) of a smooth curve y = y(X) is given by

y//
(32) k(x) = W
The “inverse curvature problem” is, given a smooth function k(x), 0 < x < 1, to find a smooth curve
y = Y(X) having this function as its curvature.

A circle of radius R has curvature 1/R. Thus, if K(X) = 2, then a semi-circle of radius 1/2
solves our problem. However, if k(X) =4, then the circle of radius 1/4 supplies a solution for
only half the desired interval 0 < X < 1. This leads us to suspect that if there is a solution, then the
curvature can’t be too large for too much of the interval.

To find an obstruction, note that y” /(1 +y'2)3/2 = (y'/y/1+Yy'2)’. Thus we integrate both sides
of

X I A N A ()
9 MO = S~ Ty
Let y=Y'(0)/\/1+Y(0)2 so |yl <1 and

X
/k(t)dtgl—ygz, 0<x<1.
0

This inequality embodies our suspicion that “the curvature can’t be too large for too much of the
interval.” For the case of constant curvature k(x) =c¢ > 0, for x =1 this condition is ¢ <2, which is
sharp. For non-constant K a necessary and sufficient condition is that there is a constant y € [—1, 1]
such that | [f'k(t)dt+y| <1 forall 0 <x < 1. If we assume the curve is convex, that is, k(x) > 0,
then we may choose y= —1 and find that a necessary and sufficient condition is simply fol k(t)dt <
2. The necessity is immediate from (33), while the sufficiency follows by solving for y'(x) and
integrating. Implicitly we have not permitted vertical tangents (y'(x) = 4-00) inside the interval but
do allow them at the boundary points—as in the case of a semicircle of radius 1/2.



A standard variant of this problem is to impose boundary conditions such as y(0) =y(1) =0. I
leave you the pleasure of discovering necessary and sufficient conditions for solving this boundary
value problem in the special case of a convex curve. Assuming existence, is the solution of this
boundary value problem unique?

Another variant: For a plane curve (X(S),Y(S)) parameterized by arc length, 0 < s <L, one
can compute the curvature K(S). Investigate the inverse problem: given K(s), 0 <s <L, find the
curve. What if you require the curve to be a smooth (simple?) closed curve?

The difficulties here are because this problem is global for the whole interval 0 < x < 1. If
we are satisfied with a local solution, defined only in some neighborhood of X = 0 then a solution
always exists.

For surfaces z := u(x,y) in R? one analogue of this uses the mean curvature H:

Uu
(34) H) =1 (——=5m)
For instance the mean curvature of a sphere of radius R is 2/R, while the mean curvature of a right
circular cylinder of radius R is 1/R. For a cylindrical surface where z = u(x) does not depend on
y, the mean curvature equals the curvature of the curve z = u(X).

The inverse mean curvature problem is, “Given H(X,y) and a connected region Q € R?, is
there a surface z = u(X,y) having mean curvature H for all (x,y) € Q?”

As in the previous case, we anticipate that if H is too large in some sense, then the desired
surface will not exist over all of Q. The obstruction is a (possibly surprisingly) straightforward
extension of (33). Integrate both sides of over any region W C Q with sufficiently smooth
boundary dw. Then by the divergence theorem

Uu-v
H(x,y)dxd :/ ————=ds,
//oo (x.y) dxdy 9w /1 +|0ul?
where ds is the element of arc length and v the unit outer normal vector field. Since |Cu-

v|/+/14|0uf? < 1 we have the obstruction
’// H(x,y) dxdy‘ < Length (0w).
w

In particular, if H(X,y) > const. ¢ > 0 and Q is a disk of radius R, then ¢ <2/R (see [K, p. 37] for
a bit more).

Our understanding of obstructions to the existence of a solution of most nonlinear partial dif-
ferential equation is very incomplete; many of the known obstructions use Noether’s theorem men-
tioned in Section 2.7d. The border between existence and non-existence is still largely uncharted
territory.

2.7 Exploit symmetry.
a) Simple symmetry

One familiar example of symmetry in algebra occurs for a polynomial p(z) =anz"+---+ap
with real coefficients. Here the coefficients are invariant under complex conjugation so for any
complex number z we have ﬁ =Yak=y akZ* = p(z). Thus if z is a complex root, then so is
Z. Since taking the complex conjugate a second time brings us back to the original root, we don’t get
even more roots this way (but in the last example in this section, repeatedly using a symmetry will
give us infinitely many integer solutions of x> —2y?> = 1). The nature of complex conjugation as a
symmetry is clearer if one uses different (more cumbersome) notation for the complex conjugation
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operator, say write T(z) =Z. Thus T2 =Identity and (T p)(z) = T(p(z)). For a polynomial with
real coefficients p(z) = p(Z) means Tp = pT, thatis, T and p commute; it may be clearer if we
write this as T pT ~! = p, so p is fixed under the automorphism T . Galois’ deep contribution to the

theory of solving polynomial equations was to show how to exploit related symmetries.

A variant of this reasoning is also useful to solve the equation F(x) = c. Assume that F
commutes with some map T, so TF = FT, and that ¢ is invariant under T: T(c) =c. If Xo is a
solution of F(X) = c, then X is not necessarily invariant, but by the above reasoning T (X¢) is also
a solution. If you also know that the solution of F(X) = ¢ is unique, then T (Xo) = Xo, that is, this
solution X is invariant under T . Here are three similar instances.

i). Let f be a homeomorphism of the sphere S* € R*, and let ¢ : (X,Y,2) — (X,Yy, —2) be a reflection
across the equator. Assume that ¢ € S? is fixed by ¢, that is, ¢(C) = C so ¢ is on the equator
z =0, and assume that f and ¢ commute, fod =do f. If f(py) =c, then py = (Xo,Y0,20) is also
invariant under ¢ and hence py is also on the equator. Thus f maps the equator onto itself.

if). The second example is the solution u(x,t) of the wave equation Uxx — Uyt = O on the interval
—1 <x <1 with the boundary conditions u(—1,t) = u(1,t) = 0. If the initial position u(x,0) and
the initial velocity Ut(X,0) are both even functions, that is, invariant under the map T : X — —X,
then so is the solution u(X,t). This follows as soon as you know the uniqueness of the solution of
the wave equation with given initial conditions. A

Using the linearity of this problem, even if we did not have uniqueness we could still have
obtained an invariant solution by letting ¢ (X,t) be any solution; since T2 = I, then the average u:=
%(q) +T¢) is an invariant solution. One generalizes the construction of U in similar situations by the
important procedure of averaging over the group of symmetries. One application in electrostatics is
the method of images.

iii). A Markov chain example. In an experiment you are placed in a five room =

“house” (see Figure 3). Every hour the doors are opened and you must move ﬁ\

from your current room to one of the adjacent rooms. Assuming the rooms are | — —{ =

all equally attractive, what percentage of the time will you spend in each room? T

(The extent to which the experimental percentage differs from this measures the 4 E 13 3
igure

desirability of each room).

To solve this problem one introduces the 5 x 5 transition matrix M = (mj;) of this Markov
[1856-1922] chain: if you are currently in room j, then m;j is the probability you will next be in
room i (CAUTION: some mathematicians interchange the roles of i and j). For this, we number the
rooms, say clockwise beginning in the upper left corner with ps referring to the center room. Then,
for instance, M, = M3y = Msp = % since if you are in room 2, it is equally likely that you will next
be in rooms 1, 3, or 5, but you won’t be in rooms 2 or 4. Proceeding similarly we obtain

<

I
W= O Wi~ O
W= O W~ O W~
W= O Wi~ O
W= O W= O W=
O Bl—B =

The elements of M are non-negative and the sum of every column is 1: no matter where you are
now, at the next step you will certainly be in one of the rooms.

*Proof of Uniqueness. Say U and V are both solutions with the same initial position and velocity, then W:=u—V is
also a solution with w(x,0) =w;(x,0) = 0. Apply conservation of energy to W(x,t). Since E(0) =0, then E(t) =0
for all t. Hence w(x,t) = const.. Since w(x,0) = 0, then w(x,t) =0 so u(x,t) = v(xt).
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It is useful to introduce column probability vectors P = (py, ..., ps) with the property that p;
gives the probability of being in the j™ room at a given time. Then 0 < p j<land ypj=1.1If
Puow describes the probabilities of your current location, then Ppexy = MPyqy , gives the probabilities
of your location at the next time interval. Thus, if one begins in Room 1, then Py = (1,0,0,0,0),
and after the first hour P; = (0, %,0, %, %) = MPy. In the same way, at the end of the second hour
P, := MP; = M?Py, and Py := MP,_; = M*P.

For a matrix M arising in a Markov process (non-negative elements and the sum of each column
is one), if A is any eigenvalue of M* (and hence M), then |A| < 1. To see this, let v:= (vy,...,Vy) be
a corresponding eigenvector, M*v = Av, with largest component Vg, that is, |Vi| < |vi|. Then |(A —
Mik)Vk| = |zi¢kmikviy < (Zi¢kmik)|vk|. Since y;imix = 1 then A — M| < 1—myk. Consequently
IA] < |A —myk| + M < 1 (this reasoning is a special case of Gershgorin’s theorem).

Moreover, if we assume all the elements of M are positive, then equality |A| =1 occurs only if
A=1andVv; =V, =...=Vy. Thus |A| < I except for the one dimensional eigenspace corresponding
toA=1.

In seeking the long-term probabilities, we are asking if the probability vectors P, = MKPy, k =
1,2,... converge to some “equilibrium” vector P independent of the initial probability vector Py. If
s0, then in particular P = limMKt'Py = limMMXPy = MP, that is, P = MP so P is an eigenvector
of M with eigenvalue 1. Moreover, choosing Py to be any standard basis vector €j and since the
j™ column of M" is M"ej — P, it follows that MK — M., where all the columns of M, are the
same eigenvector P. In addition, still assuming convergence to equilibrium, every eigenvector of
M with eigenvalue A = 1 must be a multiple of P.

Although A =1 is always an eigenvalue of M (since it is an eigenvalue of M* with eigenvector
(1,...,1)), the limit MKP, does not always exist. For example, it does not exist for the transition
matrix M = ((1) (1)) for a two room “house.” If M = |, then the limit of MXP, exists but is not in-
dependent of Py. However the limit MXPy does exist and is independent of the initial probability
vector Py if all of the elements of M —or some power of M—are positive. If M is diagonaliz-
able, this follows from the above information on its eigenvalues. For the general case one must
work harder. [I In our case all the elements of M? are positive since after two steps there is a pos-
itive probability that one will be in each of the rooms. It remains to find this limiting probability
distribution P by solving P = MP.

Here is where we can use symmetry. Since the four corner rooms are identical, M must com-
mute with the matrices Tjj that interchange the probabilities of being in the corner rooms, p; and
pj for 1 <i,j<4. Since M(TjjP) = TijMP =T;;P, we see that T;;jP is also a probability eigen-
vector with eigenvalue A = 1. Thus, by uniqueness of this probability eigenvector, TjjP =P so
“by symmetry” P has the special form P = (X,X,X,X,y) with 1 =¥ pj = 4x+y. The system of
equations P = MP now involves only two unknowns X, Y. Its first equation is X = %X + %X + %y, that
is 4Xx = 3y. Combined with 4X+Yy =1 one finds X = %, y= JT. Therefore 25% of the time is spent

3The simplest proof I know for the convergence without assuming M is diagonalizable is in [Be, p. 257]. One shows
that M*K converges as K — oo to a matrix M7, each of whose rows are the same, so for any given column all the elements
are the same. Since the proof does not seem to be widely known, here is a sketch. AVERAGING LEMMA: If one takes a
weighted average W = C;W; + W, + - - - + CaWy Of real numbers wy, ..., wn, where 0 <y<cjand¢c;+---+ch=1,
then the average lies between the max and min of the w; with the quantitative estimate YWiax + (1 — Y)Wpip < W <
(1= Y)Wnax + YWmin -

To apply this let y > 0 be the smallest element of M. Because the sum of the elements in any row of M* is 1, if w is
any vector then the elements of z:= M*w are various averages of W. Thus the above estimate gives the upper bound for
Zmax < (1 —Y)Wmax + YWmin and similarly YWmax + (1 —Y)Wiin < Zmin - These imply Zmax — Zmin < (1 —2Y) (Wmax —Wmin ) -
Because 0 < 1 —2y < 1, iterating this contraction proves that each element of the vector M*kw converges to the same
number. To get the jM column of MY use the case where W is the j™ standard basis vector.
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in the center room and 18.75% in each of the corner rooms. Symmetry turned a potentially messy
computation into a simple one.

Figure 1 at the end of Section 2.3a gives added insight. To exploit symmetry one seeks changes
of variable T so that the old problem P and new problem Q are identical: P =T ~!PT.

b) Translation invariance

If there are families of symmetries, one can obtain more information. We first discuss this for
a linear differential equation with constant coefficients, Lu = au” +bu’ +cu. Here L commutes
with all the translation operators Ty defined by (Tqu)(X) := u(X+ o). These translations Tqy
are a continuous group of symmetries: ToTg = Ty pg. The eigenfunctions of translations are just
exponentials: Tq€™ = pe™, where = e . We claim that these exponentials are also eigenfunctions
of L. While this is simple to show directly, we prove more generally that this is true for any linear
map L that commutes with all translations; some other instances are constant coefficient linear
difference and linear partial differential equations (in this PDE case X, 0, and C are vectors and CX
becomes the inner product), and convolution equations.

Write g(x;A) := Le™. Since Toe™ = e, we have

TaLe™ =To(q(x;A) =q(x4+0;A)  and  LTg(eM) = e Le™ = erq(x;\).

Comparing these at x = 0, we see that if the linear map L commutes with translations, then
q(a;A) = q(0;A)er for any a. Equivalently, q(x;A\) = q(0;A)e?. Writing Q(A) := q(0;A), we
conclude

(35) LeM = Q(A)eM.

Thus e is an eigenfunction of L for any A, and the corresponding eigenvalue is Q).
Working formally, we apply to find some solution of Lu= f. Write f and also seek a
solution U as linear combinations of exponentials:

fo=5Hhe™,  u=Ywme™ so  Lu=YuQAe™

(or integrate: f(x) = [ f\edA, etc.). To solve the homogeneous equation Lu = 0 use the roots
of Q(A) while for the inhomogeneous equation use (35) and match coefficients to conclude that
uy = f/Q(A). Thus a solution is u(x) = ¥ [y /Q(A)]e**. One recognizes these formulas as the
standard Fourier series/integrals and Laplace transform methods. This is why Fourier series and
Fourier and Laplace transforms are so useful for constant coefficient differential equations. The
value of Q(A) is determined separately for each problem. Since Q(A) appears in the denominator
of the solution, its zeros play an important role, especially for partial differential operators, although
we shall not pursue this further here. The point is that just by using translation invariance we know
how to proceed.

As a quick application, return to the special case Lu = au” +bu’ + cu, where a,b and ¢ are
constants. Then LeM = (aA? +-bA +c)e™, so Q(A) = aA? +DbA +c. In particular, if Q(r) = 0, then
u(x) = e is obviously a solution of the homogeneous equation Lu = 0, while if Q(r) # 0, then
u(x) =e™/Q(r) is a particular solution of the inhomogeneous equation Lu = e™; if Q(r) =0 but
Q/(r) # 0, then one can take the derivative of with respect to A and evaluate at A =r to solve
Lu = e"™. Similarly, if r is a double root of Q(A) =0 then also Q’(r) = 0; here taking the derivative
of equation with respect to A and evaluating at A = r reveals that u(x) = xeM is also a solution
of the homogeneous equation, a fact that often is bewildering in elementary courses in differential
equations.

We will look at this simple example a bit more. Let S(t) be a fundamental matrix solution of
the first order constant coefficient system Lu :=u’+ Au = 0, where A. This system is translation
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invariant so S(t + ) is also a solution for any a. Since the general solution has the form S(t)C
for some constant matrix C we know that S(t +a) = S(t)C. Setting t =0 gives S(a) =C so
we deduce that the general exponential addition formula S(t 4+ a) = S(t)S(a) holds for more than
the special case of U —u = 0f By writing U” +u = 0 as a first order system, one finds that this
general addition formula implies the usual formulas for sin(t + o) and cos(t + a). Further, since
S(t)S(—t) =1, then S™!(t) = S(—t). Thus Green’s function G(t,T) = S(t)S~!(1) =S(t —1).

There is an interesting cultural difference between the way mathematicians and physicists usu-
ally write the general solution of u” +u = 0. Mathematicians write u(x) = Acosx + Bsinx, which
emphasizes the linearity of the space of solutions, while physicists write u(X) =Ccos(X+a), which
emphasizes the translation invariance.

As an exercise apply translation invariance to develop the theory of second order linear differ-
ence equations with constant coefficients, aup2 + buny; +cun = f(n). The Fibonacci [c. 1180-
1250] sequence Upsp = Unsg + Up, with initial conditions Uy = 0, u; = 1, is a special case.

Invariance under multiplication X — CX is related closely to translation invariance: if we let X =
e?, then translating z multiplies X by a constant. With this hint, one can treat the Euler differential
operator Lu = ax?u” + Bxu’ 4 yu, where a,P,y are constants; this operator commutes with the
stretching X — cX. Here the analog of the Fourier transform is called the Mellin transform.

The Laplace operator in Euclidean space is invariant under translations and orthogonal trans-
formations; on a Riemannian manifold this property generalizes by the Laplacian being invariant
under all isometries. The wave equation is invariant under Lorentz transformations (see the end
of this Section). The basic point is that invariance under some large group automatically implies
fundamental formulas and identities.

¢) More complicated group invariance

In more complicated problems, there may be some symmetry but it may not be obvious to
find or use. Sophus Lie [1842-99] created the theory of what we now call Lie groups to exploit
symmetries to solve differential equations. His vision was to generalize Galois theory to differential
equations. The resulting theory has been extraordinarily significant throughout mathematics. As
our first example, observe that the differential equation

2 2

dy = ax +by. a,b,c,d constants

dx  cx2+dy?
is invariant if one makes the change of variable (a stretching) X — AX, y — Ay for any value of
A > 0. In other words, if y = ¢(X) is a solution, then so is Ay = §(Ax), that is y = ¢(Ax)/A. This
motivates us to introduce a new variable that is invariant under this stretching: w = y/X. Then
w satisfies xw' = (a+bw?)/(c+dw?) —w, which can be solved by separation of variables. The
equation dy/dx = (ax+by+ p)/(cx+dy+q) has the symmetry of stretching from the point of
intersection of the lines ax+ by + p = 0 and cx+dy+ g = 0. Lie showed that many complicated
formulas one has for solving differential equations are but special instances of invariance under a
family of symmetries. His work showed that a daunting bag of tricks that demoralize undergraduates
were merely instances of exploiting symmetries. The next example is not as simple, so we’ll be a
bit more systematic.

Nonlinear equations of the form Au = f(x,u) arise frequently in applications. For instance the
special cases where f(x,u) has the forms |x|2uP and |x|% arise in astrophysics (Emden-Fowler

SConversely, if the square matrix S(t) is differentiable and satisfies the functional equation S(t + o) = S(t)S(a) for
all o, then differentiating this with respect to t and setting t = 0 we conclude that S satisfies S + AS = 0, where
A=-5(0).
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equation), complex analysis, and conformal Riemannian geometry. We briefly discuss
(36) Au = |x|%"

in R" from the view of symmetry. While there are systematic approaches to seek symmetry, in
practice one usually tries to guess; the method is of no help if finding symmetries is as difficult as
solving the original problem.

For the right side suggests we seek a symmetry group in the form G : (X,u) — (ax, u+A),
that is, we try the change of variables X = ax, U= u-+ A, where 0 > 0, A are constants. Let
A =09?/0%2 +--- = a~2A be the Laplacian in these new variables. Then 0(X) is a solution of
Aa = [0°+2e* ! |%|%Y. Thus if we pick a®t?e* =1, so A = —(c+2)Ina, then 0(X) is a solution
of for any value of a. In other words, if u = ¢(x) is a solution then so is u(x) — (c+2)Ina =
¢ (ax), that is, u(x) = ¢(ax)+ (c+2)Ina for any o > 0. The symmetry group is Gq : (X,U) —
(ax,u—(c+2)Ina). This is the identity map at a = 1.

To go further, recall that the Laplacian is invariant under the orthogonal group: if u(x) is a
solution, so is U(RX) for any orthogonal transformation R. It thus is reasonable to seek special
solutions U = u(r), where r = |x|, that are also invariant under the orthogonal group. Writing the
Laplacian in spherical coordinates leads us to consider

" —1 _
u’ 4 ==u' = reY,
where U’ = du/dr. We know this equation is invariant under the change of variables
37 r=ar, Ud=u—(c+2)lna.

For fixed r and u, as we vary qQ, defines a curve in the F,0 plane. It is natural to define
new coordinates in which these curves are straight lines, say parallel to the vertical axis. We want
one function s = s(F(r,u,a), d(r,u,a)) =s(ar,u—(c+2)Ina) that is
constant on each of these curves; this function is used to select which of
these curves one is on. The other function v = Vv(F(r,u,a), d(r,u,a)) =
v(ar,u—(c+2)Ina) is used as a normalized parameter along these
curves, chosen so that the directional derivative of v along these curves
is one; see Figure 4. Thus, the conditions are

0s ov
(38) — =0 and — =1.
oa a=1 oa a=1
By the chain rule these can be rewritten as
(39) rss —(c+2)sy =0 and rvi —(c+2)vy =1,
where S; etc. are the partial derivatives. Using the tangent vector field V to our curves,
_or 0+OU a_ra_(c+2)a
" 0a|,_,0r  da|,_,0u or ou’

we can rewrite as
Vs=0 and Vv=1;

V is called the infinitesimal generator of the symmetry. In these new coordinates, by integrating
(38)) the invariance is simpler:

40) §=s and V=v+a.

An obvious particular solution of the second equation in (39) is v = Inr; an equally obvious
solution is V= —u/(c+2), which would also work.
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The first equation in is straightforward to solveﬂ for variety we use an alternative approach
to obtain s(r,u). Eliminate a from the formulas and find that 0+ (c+2)Inf =u+(c+2)Inr.
Thus the function s = (C+2)Inr +u is constant along each of these curves. Since any function of s
has the same property one can use this flexibility to choose a “simple” S. In these new coordinates,
S=u+(c+2)Inr, v=Inr. After a computation that is not painless one finds that v(s) satisfies

V=(n—2)[1 - (c+2)V]V* — e’

where V= dv/ds and V = d?v/ds?. Since this does not involve Vv itself[§ the substitution w = v
gives a first order equation for w(s), which simplifies significantly if n = 2, exactly the case of
interest in applications.

It is a useful exercise to repeat this analysis for Au = |x|2u? in R" and notice that the resulting
equation simplifies dramatically when (a+2)/(b— 1) = (n—2)/4, again exactly the situation of
applications to physics and geometry. By using symmetry one can solve some problems that are
otherwise impenetrable.

One impressive application of symmetry was G. 1. Taylor’s [1886—1975] computation of the
energy in the first atomic explosion just by exploiting symmetry and taking measurements from
publicly available photographs. For “security reasons” he did not have access to any technical data
(see [B-K, Chapter 1] for an exposition). The monographs [B-K] and [Ol] show how to apply and
exploit symmetry for ordinary and partial differential equations (it would be nice if there were a
more accessible, less general, treatment).

Before the next example we should point out that in applications, invariance under the stretching
X — AX arises frequently—since one uses stretchings to change to “dimensionless” variables (this
is because the basic equations for any phenomena should be invariant if one changes from one
set of units of measurement to another, say from “feet” to “meters”). Here is a small but useful
mathematical application. For a bounded open set Q € R" say, generalizing the usual space C! (see
also Section 3.2 below), for smooth functions u, which we assume have compact support in Q, we
define a similar norm using the Lp norm of the first derivatives:

1/p
ol 0= | [ [OUGOPa| " p 1,
and ask when the following inequality holds:

41) sup|u(z)| < c(p,n, Q) [[ull, ,()»

zcQ

with the constant ¢ independent of U (one should think of as a version of the mean value
theorem).

Since the left side of the inequality is invariant under stretching while, for most values of p the
right side is not, we try a stretching to see what information it yields. For simplicity, say Q contains
the origin, so it contains some disk {|x| < a} € R", and let () be a fixed smooth function that
is zero for |x| > a (but not identically zero). Then let u(x) = ¢(Ax) where A > 1 is a constant.
Computing both sides of with this function we obtain

Sgp‘q)’ < C(pa an))\(p_n)/p Hq)HHl_p(Q)'

"To solve a(x,y)Px + b(x,y)Py = 0 for Y(x,y), solve the ordinary differential equation dy/dx = b/a and write its
solution in the form Y(X,y) = C, where C is the constant of integration. This W(X,Y) is a solution of the partial differential
equation, as is any function of it. In our application the solution of du/dr = —(c+2)/r is u= —(c+2)Inr +C so
Y(r,u)=u+(c+2)lnr.

8Note that because of the invariance in these variables, we knew in advance that this equations would not involve
V.
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Since this is to hold for any A > 1, we see that if p—n < 0, there is a contradiction if we let A — .
Thus, we conclude that p > n is a necessary condition for inequality to be valid. If p > n then
in fact the inequalities do hold; they are called Sobolev inequalities. If p=n this H; , norm is
invariant under stretchings, a fact that results in important and interesting properties.

d) Noether’s Theorem

Most “natural” differential equations arise as Euler-Lagrange equations in the calculus of vari-
ations. Many believe one should always formulate fundamental equations using variational princi-
ples. E. Noether’s [1882—-1935] theorem shows how symmetry invariance of a variational problem
implies basic identities, including conservation laws. While shorter direct proofs of these conser-
vation laws might be found after one knows what to prove, there is a view that the symmetry is
considerably deeper and more basic. Moreover, symmetry gives a way of finding new conservation
laws.

To give a taste of the procedure we will deduce the standard “conservation of energy” for the
vibrating string Q = {a < X < b}. A function u(X,t) gives the displacement of a point X € Q at
time t. The wave equation ug = C2Uyy, governs the motion; here C is the speed of sound. For
simplicity we assume that ¢ = 1. To eliminate the possibility of energy being added at the ends of
the string, we will assume the string is fixed at the boundary, so u(a,t) =u(b,t) =0,t >0, as is
typical for violin strings. In we saw that the wave equation is the Euler-Lagrange equation for
the functional

B
(42) J[u] = %/Q/a (u? —u2)dxdt.

If we make the change of variables T =t + €, since the integrand does not contain t explicitly,
the functional J is invariant. Thus dJ[u] / ds‘ .o — 0. By an explicit computation we will show that
this obvious fact implies conservation of energy.

With an eye toward generalization, it is useful to think of this as a change of variable in all the
variables: f=t+¢€, X=X, 0 =u from (x,t,u) space to (X,f,0) space. This translation of t by €
takes the graph u = u(x,t) into the graph 0 = 0(X,{;€), thus J[A(X,f;€)] = J[u(x,t)]. Because of
this invariance, we clearly have dJ[0] /de|__, = 0. Now

dJ|a] d 1//ﬁ+s 2 2
0=—-+ = — 5 Us(X, £ —€)" —ux(x,T—¢€)7| dxdf
de |, de 8202 QJa+e [ e, ) (% ) ]
t=B B
(43) _ %/ [ ()% — Ue(x,1)?] dx +// (—UpUi + Uyl ) dxdlt.
Q t=a QJa

To go further, observe that in this last term UsUgt = (U? )¢ — Ul and UyUy = (UxUg)x — Uxxlt. Since
we assumed U(X,t) is an extremal of this functional, it satisfies the wave equation; thus the final
integrand above is

—UgUgt + Uxlxe = —(U)t 4 (Uxlg)x + (Ut — U ) Up = — (U )¢ + (Ul )x-

We use this to simplify the last integral in by evaluating the t integral in the first term and the
X integral in the second:
t=p

+0

t=a

B B
(44) /Q/a [—Ututt+uxu>¢]dth:/Q/a [—(uf)t+(uxut)x]dxdt:—/Qut(x,t)de

where in the last term we used that u(x,t) = 0 for x on the boundary of Q (the ends of the string),
so the velocity Ut(X,t) = 0 on the boundary of Q.
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Substituting (44)) in we conclude that

t=p
0= —%/ [ut(x,t)2 + ux(x,t)z} dx
Q t=0a
Thus the function
(45) E(t):= %/ (U +u2) dx = constant
Q

is constant as a function of time. Since E(t) is the energy, this formula is called “Conservation of
Energy.”

Similarly, for any functional of the form J[u] = 1 [ f F (X, u,ut,ux) dxdt, where the integrand
does not depend explicitly on t, identical reasoning gives [q(FyUt —F)dx = const. For more on
Noether’s Theorem see the references [G-F], [G-H], [B-K], and [Ol].

e) Using symmetry for Pell’s equation

Here is another way to use symmetry. We want all the integer solutions of
(46) X2 —2y* =1.

By experimentation you quickly find the solution X =3, y = 2. Are there any others? Can you find
all the solutions? They are the integer lattice points on the hyperbola (46).

Writing X := (X,y) and Q(X) := x?> —2y?, seek a symmetry of the hyperbola Q(X) =1 as a
linear change of variables R : (X,y) — (ax+ by, cx+dy) defined by the matrix R = (‘f:‘ 3) . We want R
to have the property Q(RX) = Q(X); in more formal language, we want the group of automorphisms
R of the quadratic form Q. If we can find R, and if we have one solution X; = (X, y;) of Q(X) =1,
then X, := RX; = (ax; +by;, ¢x; +dy;) is another solution since Q(X;) = Q(RX;) = Q(X;) = 1.
Thus, knowing R enables us to construct new solutions from old ones.

These automorphisms R embody the symmetries of the polynomial Q(X), much as the ro-
tations T (orthogonal transformations) embody the symmetries of the more familiar polynomial
P(X) := x> +y? since P(TX) = P(X). If X, is a point on a circle centered at the origin, then
Xo :=TXj is another point on the same circle.

For our quadratic polynomial the obvious symmetries are X — £X and y — +Yy. We want more.
Since

Q(RX) = (ax +by)? —2(cx+dy)? = (a®> —2¢?)x* +2(ab — 2cd )xy + (b* — 2d?)y?,

the condition Q(RX) = Q(X) means a?> —2¢?> = 1, ab—2cd =0, and (b*> —2d?) = —2. If we
pick a and c to satisfy the first of these, which is just the original equation (46)), then the other
two conditions imply d = 4+a and b = 4+2c. This yields all the symmetries R of our quadratic
polynomial.

For our purposes it is enough to use the solution (3,2) we found of soa=3,c=2b=
4,d=3,and R=(3%). We began with the solution X := (X, y;) = (3, 2). Using this we find the
solutions X, = RX; = (17,12), X3 = RX; = (99,70), etc. of (46). Since detR = 1 and the elements
of R are integers, both the symmetry R and its inverse R™! take integer lattice points to integer
lattice points.

The mapping R has two basic geometric properties. To describe them take two points V| :=
(X1,Y1) and Vs, := (X2,¥2) both on the right (X > 0) branch of the hyperbola x> —2y? = 1. Call
this right branch ', and say that V; is below V, (and write V| < V) if y; < Yy,. The geometric
properties are:

e R preserves the branch: if a point V is on I', then so is RV .
e R preserves the order on I': If V| <V, then RV| < RV;.
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Note that R~! also has these properties. Since R is a continuous map from the hyperbola to itself,
by connectedness, it maps the right branch, [, either to itself or to the left branch. Checking the
image of one point, say (1,0) we see that the image is in I". Moreover, since R is invertible as a
map of the whole plane, its restriction to [ is invertible. Therefore it is either monotonic increasing
or decreasing as a function of the y coordinate on I'. Again checking the image of (1,0), we
conclude that the restriction of R to I" is an increasing function of the y coordinate. This implies
that R preserves the order on I.

Our particular solution X; := (3,2) is the positive integral solution with the smallest possible
positive value for y; . Writing Xo = (1,0), this means X < X; and there is no other integral solution
between X and X; . Since Q(RX;) = Q(X;) =1 we see that X, :=RX; = (17, 12) is also a solution
of (46). Similarly Xy := (Xk, Yk) = RXk_1 = RKX, are all positive integer solutions for any positive
integer k. These solutions are distinct since their y coordinates are increasing, so Xk < X1 .

Moreover, these are all the positive integral solutions. If there were another, Z, then for some
k we have Xk < Z < Xgy1. Therefore R1Z is yet another solution and because R preserves the
order of the points on the hyperbola,

X1 =R X <R7'Z <R X1 = Xk
Continuing, we obtain a solution R™%Z between X, and X; since
Xo =R X < RKZ < Ry, = X;.

This contradicts the fact that X; = (X1, Y1) = (3, 2) was the positive solution whose second coordi-
nate was as small as possible. We conclude that Xy = RkXO, that is, the orbit of Xq after repeated
action by R, are all of the integer solutions.

The matrix R¥ can be computed explicitly by first diagonalizing it. This gives RK = SAKS~!
where A is the diagonal matrix of eigenvalues 34+ 2+/2 of R and S is the matrix whose columns
are the corresponding eigenvectors (£+/2, 1); these vectors also determine the asymptotes of the
hyperbola. Thus Xx = RX, has the formula

o _ (34+2vV2)K+(3-2v2)X (3+2v2)%—(3-2v2)%
k= > ) NG ;

which shows that explicit formulas may be more complicated—and possibly less desirable—than
you might anticipate. Perhaps of greater value, this formula leads us to define R!, —c0o <t < o0, by
the rule R' = SA!S™! so RS = RSR!. If we let X(t) = R'Xy, and write X(t) = (x(t), y(t)), then

from with k replaced by t we see that x(t) = 3(a'+a™") and, y(t) = Tlﬁ(at —a '), where

o = 3 +2+/2. By a straightforward computation one can verify that X(t)> —2y(t)? = 1, that is, the
points X(t) are all on our hyperbola. It is now evident that X(t) > 1 and dy/dt > 0 so the “orbit”
of X(t) is the entire right branch I' of the hyperbola with y(t) an increasing function of t. Thus
X(s) < X(t) if and only if s <t. As a bonus, we see that every symmetry of the right branch of the
hyperbola x*> —2y? = 1 has the form R for some real t.

One can use this to find all integer solutions of x> —2y*> = k for integers k: assuming one has
some solution one gets all solutions. Moreover this works for all “Pell” equations: x> —Dy? =k with
D > 0 not a perfect square. For a given k, once one finds some particular solution (X,y) all the others
can be found using the solutions of x> — Dy? = 1. For our example we found the particular solution
by trial and error; in general there may not be any solution; for instance, there is no solution of
x> — 2y? = 3 since there is no non-trivial solution in the integers mod3. One constructive approach
that always works for the special case X% — Dy2 = 1 uses continued fractions (see [Da], [N-Z-M)),
another (non-constructive) uses Minkowski’s [1864—1909] geometry of numbers (see [Art]).

47
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An essentially identical computation to finding the symmetries of x> —2y? yields all linear
changes of variable X' = ax+ Bt, t' = yx+ &t that preserve the wave operator 02 /dt> — c2d°/dx?,
where C is a constant (the speed of sound or light). By the chain rule,

Utt — CPUxx = (& — 2P )Upy + 2(BS— c2ay)uxy + (B — ¢ Uy .

Thus we want & —c?y = 1, Bd—c?ay= 0, and B? —c?a? = —c?. First pick y and & so that
& — ¢y =1, and then let B = #c?y, o = £3. To preserve orientation we use the + signs. Since
c2a? — B% = c? and cosh’0 —sinh?0 = 1, it is traditional to write a = cosho, B = ¢ sinho. For
any real O the transformation

X' = (cosho) X+ (C sinho)t

(48) A
t'= (E sinh0) X + (cosho)t

preserves the wave operator. This is called a Lorentz transformation. Lorentz [1853-1928] trans-
formations also preserve arc length ds? := dx’? — ¢ dt’? = dx? — ¢?>dt? in space-time and are fun-
damental in the study of the wave operator and special relativity.

In special relativity it is enlightening to replace the parameter O in by one that is physically
more meaningful. If the X-axis moves with constant velocity V relative to the x'-axis, for an
observer on the x'-axis, X'/t' =V is the constant velocity of the origin x = 0 of the x-axis. But
from with X =0

X/
V = — =ctanhQ,
t/

so sinha = (V/c)/y/1—(V/c)? and coshc = 1/4/1—(V /c)?. We can use this to rewrite the
Lorentz transformation in terms of the velocity V as

, X+Vt v (V/cH)x+t

VI=(V/e)? VI=(V/e?

It is physically obvious that to get the inverse transformation just replace V by —V .

3 Some Procedures To Prove Existence

Existence of a solution of an equation may be approached in different ways. One should first
try to find a “simple” expression for the solution, perhaps using some of the procedures discussed
already. The following discussion assumes this has been used as much as possible.

There are two types of existence procedures: those that construct a specific solution, and those
that merely prove a solution exists. As examples, I present one constructive approach and two purely
existential approaches to proving the existence of a solution. Recall Hermann Weyl’s [1885-1955]:
“Whenever you can settle a question by explicit construction, be not satisfied with purely existential
arguments.” In the light of this dictum it is useful to reflect on the constructive and non-constructive
approaches discussed in Section 2.2 for solving ax =b (modm).

3.1 Iteration methods

A frequent procedure is to begin with a simpler problem that one knows how to solve and use
that to solve nearby more complicated problems. Physicists and engineers call this “perturbation
theory.” Within mathematics the standard examples of these are iterative proofs of the implicit and
inverse function theorems, and the existence of a solution of an ordinary differential equation. Often
mathematicians refer to this method as finding a fixed point of a “contracting map”—but when one
examines the proof, the essence is a simple iteration procedure (see [K-F]).
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Although iterative methods were developed primarily for nonlinear problems, they can be im-
portant even in finite dimensional linear algebra. Here is an example. Say you know the inverse of
a matrix A and someone gives you a matrix B that is almost the same as A. One suspects that B~
will be near A~!'. This situation arises in models of the economy where the matrix A = (a;;) may
be very large, say with 10,000 rows and columns. Perhaps one identifies the 10,000 most significant
ingredients in the economy, say steel, oil, wheat, electricity, cotton, the average hourly wage of a
worker, etc. Then ajj may represent the effect of increasing the cost of the i" ingredient on the
cost of the j" ingredient. For instance, if one increases the cost of oil by $1 per barrel, this will
increase the cost of steel a certain amount. The matrix B may be the version A obtained from the
next month’s data.

This linear algebra problem is so large that it is best treated using analysis. The first step is to
use the idea in Section 2.3: find a simpler equivalent problem. Write

B=A—(A—B)=A[l-A'(A-B)]=A(I-C),

where C = A~!(A —B) is presumably small since we assumed that B is near A. Then B~! =
[I —C]7'A~!] 5o all we need to do is compute the inverse of | —C, that is, we want a matrix D

so that (I —C)D = 1. Thus we have reduced to the special case when A is the identity matrix
and B=1—C. Since C is small, we rewrite (I —C)D =1 as D =1+ CD and use the successive
approximations Dy = | +CDy, with the initial guess Do = |. This gives

D, =1+C, D, =14+C+C?, D;=14C+C*+C3, etc.

If C is small, then by picking k large Dy is an approximation to (1 —C)~!. This should not surprise
us since we know the Taylor series for 1/(1 —X) for small x.

In computational problems, one may be able to use a different iteration method that converges
faster. Newton’s method is an example. For instance, with the usual method taught in schools for
finding square roots (really just a version of preceding iteration method), you get one additional
decimal place at each iteration, while with Newton’s method you get double the number of decimal
places with each iteration (see [D-B, Sec. 6.3]).

3.2 Variational methods
An example illustrates the issues vividly. Say we want to solve the system of equations
x> +2xy — 3y cosxe¥"X = —7
Yy +x>—3eimX= 5

Is there a solution? Without further insight this may not be obvious. But these two equations state
that the gradient of the function

u(x,y) == 1x*+ Ly® +x%y — 3yes™* 4 7x — S5y

is zero. Thus, the solutions of our equation correspond to the critical points of u(x,y). It is obvious
that as one goes far from the origin then U becomes large. Thus, there is some point (Xo,Yo) Where
u takes on its minimum value. This minimum gives one solution of our equations. To determine if
there are others would require a more detailed investigation.

This approach is a useful technique for proving that certain differential equations always have
at least one solution. The method is called the “direct method in the calculus of variations.” By the
method of Section 2.2 a critical point of the functional

(49) J(u) = %//Q(uiJrui)dxdy.

with u = f on the boundary of Q is a solution of the Laplace Equation Au = 0 in a region Q.
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Following the example at the beginning of this section, to find a solution of Au = 0, we can
seek a minimum U of J. Since the functional J is non-negative, this leads one to assert that it
attains its minimum at some function U, and proves the existence of a solution of Au = 0 with the
prescribed boundary values. This assertion is called Dirichlet’s Principle.

After Riemann [1826-66] dramatically applied this reasoning in his work on complex analysis,
Weierstrass [1815-96] pointed out this “principle” is false since he exhibited a similar functional J
that only has an infimum and does not attain a minimum value in the class of admissible functions.
Nonetheless, everyone—including Weierstrass—believed that Riemann’s results were essentially
correct. This forced mathematicians to develop the concept of compactness in function spaces,
where is it considerably more subtle than in Euclidean space. The gap remained until Hilbert’s
work in 1901 and 1909. In this context, it is interesting to note Nietzsche’s remark: “Great men’s
errors are to venerated as more fruitful than little men’s truths”.

3.3 Fixed point methods
Another example. Say you want to solve the system of equations
2X 4 ye2sinYy
7+ X2 4y
2X+ 71y = 9 — cos(xy + 19¢*™)

3Xx— Sy= —13

Is there at least one solution? Again, to most people this is not immediately obvious. You look at
the equations . . . The equations look at you.

Eventually you may be led to write this in the form LX = F(X), where X = (X,y), L is the
2 x 2 matrix on the left side, and F(X) is the nonlinear right side. The key observation is that the
vector function F(X) is bounded independently of X. In fact ||F(X)|| < 100 (the size of the bound
is unimportant for us). Moreover, the matrix L is invertible, so we can rewrite our equations in the
symbolic form

X=T(X) where T(X)=L"'F(X).
If we view T (X) as a map from the plane RR? to itself, then the equation X =T (X) means that the
solution X we seek is a fixed point of the map T . Since ||F (X)|| < 100, we know that || T (X)|| <R
for some constant R that is independent of X (we can let R = 10,000, but that is irrelevant for
our immediate concerns). Thus we have found the a priori inequality: if a solution of our equation
exists, it must lie in the closed disk B = {||X|| <R}. Since T maps any point X into B, in particular
it maps B into B.

Now we can invoke the Brouwer [1881-1966] fixed point theorem, a result customarily proved
in topology courses (see [doC, p. 75] for a slick proof using Stokes’ theorem). It asserts that any
continuous map of a closed disk to itself must have at least one fixed point. This fixed point is the
solution we seek.

The Schauder fixed point theorem generalizes the Brouwer theorem to infinite dimensional
spaces. This generalization requires an additional compactness assumption. If B is a Banach space
and S C B, then a continuous map T : S — B is compact if for any bounded set Q C S the closed
set f(Q) is compact. For example, consider the Banach spaces C(S') and C!(S!) of 2rtperiodic
continuous functions and periodic continuously differentiable functions on the circle S' with the
usual norms

u = u(x d |u = u(x u'(x)].

ulles) = max [u(x)| and lullcys) = max |u(x)|+ max |u(x)|
We should (but will not) write Cperiogic to emphasize the periodicity. The Arzeld-Ascoli theorem
implies that the identity map id : C'(S!) < C(S!) is compact. The Schauder fixed point theorem
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says that if S C B is a closed, convex, bounded set and if T : S — S is a compact map, then T has
a fixed point (see [13, p. 32]). Schauder devised it specifically for partial differential operators. As
an application we prove the existence of at least one periodic solution u(x) with period 21T of

u+u=F(x,u),

assuming only that F(X,s) is a smooth function, periodic with period 27 in X and uniformly
bounded, |F(x,s)| <k, where the constant K is independent of X and s.
A key observation is that the linear equation Lu = u’+u = f(X) has a unique 2T periodic
solution for any smooth periodic function f(X). A direct computation gives
! Zn Lf(t)d " X () d
u(x) = e2“—1/0 etf(t) t+/0 e XF (1) dt

(solve for u(x) as usual—see (I3)—and then pick the constant of integration, u(0), to force the
periodicity: U(21T) = u(0)). This formula also yields the inequality [|ullc(s) < [ fllc(s) = IILullc(g)) -
However |u’| = |Lu—u| < |Lu| + |u| so we obtain the estimate

(50) Juller(sy < 3[|Lulles)-

This asserts that L=! : C(S') — C!(S') is a continuous map. Rewrite our problem as u=L~'F(x,u).
Thus we seek a fixed point of the map T (u) := L~!F(x,u). Since we defined T as the composition

cish -Fc(s') el <L csh,

it is a compact map. Because F(x,S) is bounded, then for some constant K,
IT(U)lcsy <K forall ueC(s).
This proves a priori that any solution U of this problem must satisfy
[ulleg)y =T Wllesy < K.

Thus let B be the ball
B:={ueC(S"):[|ulles) <K}

The Schauder theorem shows there is at least one periodic solution u € B and u € C'(S'). Using a
bootstrap argument, if F(X,s) is smooth, then so is this solution u.

There is a similar result for Lu := —Au+ cu = F(x,u) with various boundary conditions, as-
suming L is invertible and F is bounded. However one must use more complicated function spaces,
such as Sobolev spaces, to prove an analogue of the fundamental inequality (50).

4 An Open Question

One is not surprised to see a seemingly elementary unsolved problem in number theory. It is
less well-known that there are many interesting and simple-looking nonlinear partial differential
equation about which little is known. Let f(X,y) be a smooth function. Is there always at least one
solution u(x,y) of the Monge-Ampére equation (Monge [1746-1818], Ampere [1775-1836])

(51) Uy — Uy = (X, y)?

This is a modest question. We seek some solution in a possibly small neighborhood of the origin; no
additional conditions such as initial or boundary conditions are imposed. Yet we still do not know
the answer. Many cases have been treated. If f(X,y) has a power series expansion, we can invoke
the Cauchy-Kowalewskaya theorem to get a power series solution. If f(0,0) > 0, we can use the
theory of elliptic partial differential equations to prove that a solution exists, while if f(0,0) <0 we
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appeal to the theory of hyperbolic equations. The difficult case is when f(0,0) = 0. This case has
also been treated if either f(x,y) > 0 near the origin, or if Of(0,0) # 0, [Linl1], [Lin2]. Nothing
more is known. Perhaps there are smooth functions with f(0,0) = 0 for which no solutions exist.

A similar differential equation arises in geometry. Locally, an abstract two dimensional surface
with a Riemannian metric is a neighborhood of the origin in the U,V plane where one specifies the
element of arc length

(52) ds? = E (u,v)du® +2F (u,v) dudv+ G(u,v) dv?

of curves in that neighborhood. You always get an arc length of this form if you consider the curves
u(t), v(t) on a two-dimensional surface with local coordinates U,V in R". Does this give all possible
abstract Riemannian metrics for the special case of surfaces in R*? In other words, given any arc
length ds? of the form (52)), locally can one always find a surface X = x(u,V),y = y(u,v), z=z(u, V)
in R? having this as its arc length? More briefly, can every abstract two-dimensional Riemannian
manifold be locally isometrically embedded in R*? One can show that there is a surface in R*
having this arc length, but the more interesting R? case is still open. In one approach, the partial
differential equation to be solved is essentially (51). Here the Gauss curvature K(X,y) plays the role
of the function f(X,y), so we know there is a local embedding if K(0,0) # 0. The difficult case
remaining is when K(0,0) =0.
Problems such as this are challenges for the future.

| find that the harder | work, the more luck | seem to have.
Thomas Jefferson (1743-1826)

When | am working on a problem I never think about beauty. I only
think about how to solve the problem. But when | have finished, if
the solution is not beautiful, | know it is wrong.

Buckminster Fuller (1895-1983)
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