
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000 295

Solving Equations by Hybrid Evolutionary Computation Techniques
Jun He, Jiyou Xu, and Xin Yao

Abstract—Evolutionary computation techniques have mostly
been used to solve various optimization and learning problems.
This paper describes a novel application of evolutionary com-
putation techniques to equation solving. Several combinations
of evolutionary computation techniques and classical numerical
methods are proposed to solve linear and partial differential
equations. The hybrid algorithms have been compared with
the well-known classical numerical methods. The experimental
results show that the proposed hybrid algorithms outperform the
classical numerical methods significantly in terms of effectiveness
and efficiency.

Index Terms—Adaptation, hybrid algorithms, linear equations,
partial differential equations.

I. INTRODUCTION

T HERE has been a huge increase in the number of papers
and successful applications of evolutionary computation

techniques in a wide range of areas in recent years. Almost all of
these applications can be classified as evolutionary optimization
(either numerical or combinatorial) or evolutionary learning (su-
pervised, reinforcement, or unsupervised). This paper presents
a very different and novel application of evolutionary computa-
tion techniques in equation solving, i.e., solving linear and par-
tial differential equations by simulated evolution.

One of the best-known numerical methods for solving linear
equations is the successive overrelaxation (SOR) method [1].
However, it is often very difficult to estimate the optimal re-
laxation factor, which is a key parameter of the SOR method.
This paper proposes a hybrid algorithm combining the SOR
method with evolutionary computation techniques. The hybrid
algorithm does not require a user to guess or estimate the op-
timal relaxation factor. The algorithm “evolves” it.

Unlike most other hybrid algorithms where an evolutionary
algorithm is used as a wrapper around another algorithm (often a
classical algorithm), the hybrid algorithm proposed in this paper
integrates the SOR method with evolutionary computation tech-
niques, such as recombination and mutation. It makes better
use of a population by employing different equation-solving
strategies for different individuals in the population. Then these
individuals can exchange information through recombination.
Experimental results show that the hybrid algorithm can solve
equations within a small fraction of time needed by the classical
SOR method for a number of problems we have tested.

Manuscript received September 28, 1999; revised February 3, 2000. This
work was supported in part by the State Key Laboratory of Software Engi-
neering, Wuhan University, Wuhan, China.

J. He and J. Xu are with the Department of Computer Science, Northern Jiao-
tong University, Beijing 100044, China (e-mail: jhe1998@263.net).

X. Yao is with the School of Computer Science, University of Birmingham,
Edgbaston, Birmingham B15 2TT, U.K. (e-mail: x.yao@cs.bham.ac.uk).

Publisher Item Identifier S 1089-778X(00)04472-6.

Built on the work of solving linear equations, this paper also
proposes two hybrid algorithms for solving partial differential
equations, i.e., the Dirichlet problem [2]. Both hybrid algo-
rithms use the difference method [2] to discretize the partial
differential equations into a linear system first and then solve it.

Fogel and Atmar [3] used linear equation solving as test
problems for comparing recombination and inversion operators
and Gaussian mutation in an evolutionary algorithm. A linear
system of the form

was used in their study. The worth of an individual that encoded
was defined according to the error function

where

However, the emphasis of their study was not on equation
solving, but rather on comparing the effectiveness of recom-
bination relative to mutation. No comparison with classical
equation-solving methods was given, and only small problems

were considered [3]. The problems tested in this
paper have up to 150 equations.

The rest of this paper is organized as follows. Section II de-
scribes the hybrid algorithm for solving linear equations, proves
its convergence, presents its numerical results, and compares it
with the SOR method. Section III gives two hybrid algorithms
for solving partial differential equations, proves their conver-
gence, presents their numerical results, and compares them with
the SOR method. Section IV concludes the paper.

II. HYBRID ALGORITHM FORSOLVING LINEAR EQUATIONS

Consider the following linear equations:

(1)

where and .
Let

diag

diag (2)

Then substituting (2) into (1), we have

(3)

1089–778X/00$10.00 © 2000 IEEE

296 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000

The SOR method [1] for solving (3) can be described as

(4)

If we rewrite as

then (4) can be rewritten in the matrix form

That is

(5)

where

where is called the relaxation factor, which influ-
ences the convergence rate of the SOR method greatly. The op-
timal relaxation parameter has been discussed for some special
matrix [4]. But, in general, it is very difficult to estimate the
prior optimal relaxation factor.

The key idea behind the hybrid algorithm that combines
the SOR method and evolutionary computation techniques is
to self-adapt the relaxation factor used in the SOR method.
For different individuals in a population, different relaxation
factors are used to solve equations. The relaxation factors will
be adapted based on the fitness of individuals (i.e., based on
how well an individual solves the equations).

A. The Algorithm and Its Convergence

Similar to many other evolutionary algorithms, the hybrid
algorithm always maintains a population of approximate solu-
tions to linear equations. Each solution is represented by an in-
dividual. The initial solution is usually generated by the SOR
method using an arbitrary relaxation factor. Different indi-
viduals use different relaxation factors.

Recombination in the hybrid algorithm involves all individ-
uals in a population. If the population size is, then the re-
combination will have parents and generates offspring
through linear combination. Mutation is achieved by performing
one SOR iteration as given in (5). The mutation is stochastic be-
cause used in the iteration is generated at random between 0
and 2. The fitness of an individual is evaluated based on the
error of an approximate solution. For example, given an ap-
proximate solution (i.e., an individual), its error is defined by

. The relaxation factor is adapted after each
generation, depending on how well an individual performs (in
terms of error). The main steps of the hybrid algorithm are de-
scribed as follows.

1) Initialization: Generate an initial population of approxi-
mate solutions to the linear equations using different ar-
bitrary relaxation factors. Denote the initial population as

where is the population size.
Let where is the generation counter.

2) Recombination:Let be an ma-
trix, which satisfies for , and

for . Then generate an inter-

mediate population
through the following recombination:

...
... (6)

Many different methods for choosing matrix can be
used in practice. can be chosen either deterministically
or stochastically. This paper will show, in the next section,
that even a very simple choice ofcan work well for the
hybrid algorithm.

3) Mutation: Generate the next intermediate population
from as follows: for each individual

in population , produce an
offspring according to (5)

(7)

Only one iteration is carried out for each mutation. The
mutation is stochastic because both and are sto-
chastic. Both and depend on , which is adapted
stochastically during the adaptation step after each itera-
tion.

4) Adaptation:Let and be two individuals with relax-
ation factors and , respectively, and let

and be their errors, respec-
tively. Then the relaxation factors and are adapted
as follows.

a) If , then move toward using

(8)

where is a random number in ,
and move away from using

if
if

(9)

where is a random number in (0.008, 0.012).
b) If , adapt and in the same

way as above, but reverse the role ofand .
c) If , no adaptation.
The idea of adapting parameters can be applied to

many different domains. For example, back-propagation
algorithms for neural-network training can be accelerated
using self-adaptive learning rates [5].

5) Selection and Reproduction:The best individuals in
population will reproduce (i.e., each individual
generates two offspring), and then form the next genera-
tion of individuals.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000 297

6) Halt: If the error of the population:
is less than a given threshold,

then the algorithm terminates; otherwise, go to step 2).
There are a few parameters in the above algorithm which may

be tuned in practice to optimize the algorithm’s performance.
However, our experience with the algorithm so far has indicated
that those parameters, e.g., matrix, initial relaxation factors

’s, etc., are not critical. Hybrid algorithms with different pa-
rameter settings can all outperform the classical SOR method.
The experimental result and comparison are given in the next
section.

The following theorem establishes the convergence of the hy-
brid algorithm.

Theorem 1: If there exists an (0 1) such that, for the
norm of

then

where is the solution to the linear equations, i.e.,

Proof: The individuals in the population at time are
. Let the error between the approximate

and exact solutions be . According to recom-
bination

Since and , then for

According to mutation, for

Since , then

Therefore

According to selection, we have for

This means that the sequence
is strictly monotonic decreasing,

and thus convergent.
The following theorem justifies the adaptation method for re-

laxation factors used in the hybrid algorithm.
Theorem 2: Let be the spectral radius of matrix , let
be the optimal relaxation factor, and let and be the

relaxation factors of individuals and , respectively. Assume
is monotonic decreasing when , is monotonic

increasing when , and . Then

1) when for ,
and

2) when sign , where
, and or .

Proof: The first result can be derived directly from the
monotonicity of . The second result can also be derived
from the monotonicity of by letting .

B. Numerical Experiments

In order to evaluate the effectiveness and efficiency of the
proposed hybrid algorithm, numerical experiments have been
carried out on a number of problems. The first problem is to
solve the following linear equations:

where and for , and for
. The dimension in all of our

experiments. The problem is to be solved with an error smaller
than .

Table I shows the numerical results achieved by the clas-
sical SOR method with different relaxation factors, i.e.,

, which are common values used in the SOR
method.

Table II gives the numerical results produced by the hybrid
algorithm with different initial relaxation factors. The hybrid al-
gorithm used in all of our experiments was very simple, and had
population size two. That is, only two individuals were used.
Two experiments were carried out using the hybrid algorithm,
one with initial relaxation factors 1.0 and 1.25, and the other
with initial relaxation factors 1.5 and 1.75. The number of itera-
tions used to produce results in Table II and that used to produce
results in Table II were the same. Table II lists the results of both
individuals in a population for the two experiments.

Since only two individuals were used in a population in our
experiment, the recombination matrix was chosen as follows: if
the fitness of the first individual was better than the second, let

else, let

It is very clear from Tables I and II that the hybrid algorithm
performed much better than the classical SOR method. Hybrid
algorithms with different initial relaxation factors have all found

298 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000

TABLE I
ERRORS PRODUCED BY THE CLASSICAL

SOR METHOD WITH DIFFERENTRELAXATION FACTORS

TABLE II
ERRORSPRODUCED BY THEHYBRID ALGORITHM WITH DIFFERENTINITIAL

RELAXATION FACTORS

Note: The factors were adapted dynamically during execution of the algo-
rithm. The two columns under the algorithm indicate two individuals. A total of
ten independent runs were conducted. The average results are reported here.

approximate solutions with an error smaller than
within 1000 iterations, while none of the classical SOR method
could find an approximate solution with an error smaller than

after 1000 iterations, no matter which relaxation
factor had been used. After 1000 iterations, there was at least
eight orders of magnitude difference between the error gener-
ated by the classical SOR method and that produced by the hy-
brid algorithm. Table III shows how changed dynamically as
the hybrid algorithm progressed.

To evaluate the hybrid algorithm further, ten additional test
problems, labeled fromP1 to P10, with 150 variables were
generated at random. That is, matricesin problemsP1–P10
were all generated at random:’s were generated uniformly at
random in [16, 25], and ’s were generated uniformly
at random in [0, 150]. for all problems. All problems
were required to be solved with an error smaller than .
The maximum number of iterations allowed was 1000.

Table IV compares the number of iterations needed by the
classical SOR method and that needed by the hybrid algorithm
to solve the linear equations to the given preciseness

TABLE III
VALUE OF ! FOR DIFFERENTINDIVIDUALS AT DIFFERENTGENERATIONS

OF THE HYBRID ALGORITHM; RESULTS HAVE BEEN AVERAGED OVER

TEN INDEPENDENTRUNS

. Two observations can be made immediately from the
table. First, except for problemsP2 andP3 where the SOR
method with performed the same as hybrid algo-
rithms, the SOR method performed much worse than the hybrid
algorithm for all other problems. Second, the SOR method was
extremely sensitive to the relaxation factor, while the hybrid
algorithm was very robust against different initial values of.
This indicates that the simple adaptation scheme for relaxation
factors had worked quite effectively in the hybrid algorithm.

III. H YBRID ALGORITHMS FOR PARTIAL

DIFFERENTIAL EQUATIONS

Similar ideas as described in Section II can be applied to
solve partial differential equations. This section proposes two
hybrid algorithms combining evolutionary computation tech-
niques with the difference method [2] for solving the Dirichlet
problem [2].

The Dirichlet problem can be described as follows:

in
on

(10)

where is an open domain in , is its boundary, and is

We assume that matrix is symmetric and uniformly
positive definite, and that is in .

A. Two Hybrid Algorithms

Both algorithms introduced in this section are the simplest of
their more general versions. That is, we only describe the ver-
sion with two individuals, i.e., the population size is two in both
cases. The first algorithm is similar to that given in Section II
because it first discretizes the partial differential equation (10)
into a linear system using the difference method, and then solves
it using the algorithm given in Section II.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000 299

TABLE IV
NUMBER OF ITERATIONS NEEDED BY THE CLASSICAL SOR METHOD AND

THAT NEEDED BY THE HYBRID ALGORITHM TO SOLVE THE TEN PROBLEMS

TO THE GIVEN PRECISENESS(" = 10)

The second algorithm differs from the first one in that it uses
two different discretization methods. Each discretization leads
to a different linear system. Each linear system is solved by an
individual. The two individuals usually use different relaxation
factors. There is no dynamic adaptation of relaxation factors as
described in Section II because the two individuals solve two
different linear systems.

Solving the Dirichlet problem as defined by (10) numerically
is often done by using the difference method. A linear discrete
system is then obtained

in
on

(11)

This system can be solved by the classical SOR method or the
hybrid algorithm introduced in Section II using iteration

where denotes the iteration matrix.
The first hybrid algorithm for solving partial differential

equations can be described as follows.

1) Initialization: Generate an initial population of two indi-
viduals with two different initial relaxation
factors . Let where is the generation
counter.

2) Recombination:Two parents are used to
generate two offspring in recombination
as follows:

where , . Both and can
be deterministic or stochastic. In the more general case
of more than two individuals, the recombination given in
Section II is used.

3) Mutation: Each individual (after recombination) is mu-
tated as follows:

where .
4) Adaptation: Adapt the relaxation factor for each indi-

vidual as described by the algorithm given in Section II.
5) Selection and Reproduction:The two mutated offspring

replace the previous population, i.e.,

6) Halt: If the error of the best individual in the population
is smaller than the given error , then terminate the al-
gorithm; otherwise, go to step 2).

The above algorithm can be regarded as a specific version of
the hybrid algorithm given in Section II when the population
size is two. The following theorem establishes the convergence
of the hybrid algorithm, where its proof can refer to the proof of
Theorem 1.

Theorem 3: If there exists some 1) such that

and

for all and , then

where and are solutions to (11).
Proof: The same as the proof for Theorem 1.

While the above hybrid algorithm is virtually the same as
that given in Section II, the second hybrid algorithm described
below is quite different. It uses different discretization methods
to generate different linear systems, each of which is then solved
by an individual. Let the two discretized systems of the Dirichlet
problem, i.e., (10), be

in
on

(12)

and

in
on

(13)

Then the two individuals, which represent two approximate so-
lutions to the above two systems, respectively, can be repre-
sented by .

The second hybrid algorithm can be described as follows.

1) Initialization: Generate an initial population of two indi-
viduals . Let where is the generation
counter.

2) Recombination:Similar to the first hybrid algorithm, re-
combination is based on weighted averaging

(14)

300 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000

where and . Both can be chosen
deterministically or stochastically.

3) Mutation:Mutation is applied to recombined individuals,
and is equivalent to one iteration in the SOR method

(15)

4) Selection and Reproduction:The mutated offspring re-
place the parents. This is similar to generational evolu-
tionary algorithms. That is

(16)

5) Halt: If the error of the best individual in the population
is smaller than the given error , then terminate the al-
gorithm; otherwise, go to step 2).

It is worth noting that the second hybrid algorithm does not
adapt relaxation factors dynamically. The relaxation factors are
fixed after initialization. This is mainly because the optimal re-
laxation factor is problem dependent, and the two individuals in
the second hybrid algorithm are approximate solutions to dif-
ferent systems. It is not reasonable to mix two relaxation factors
together, as was done in Section II, although it is useful to adapt
the relaxation factor within an individual. It is shown later in
this section that the second hybrid algorithm can outperform the
classical method, even without adaptation of relaxation factors.

The following theorem establishes the convergence of the
second hybrid algorithm.

Theorem 4: If there exists an (0 1) such that

and

then

where are solutions to the following equations:

(17)

Proof: Let the two individuals at time be and .
According to recombination

Rewrite it in the matrix form

where is a unit matrix.
According to mutation

Rewrite it in the matrix form

According to selection

Consider recombination, mutation, and selection together, we
have

Let

We have

Since , we have

Because and , we get

In other words, the sequence is
strictly monotonic decreasing, and is convergent.

If and , (17) becomes

where is the solution to (12) and (13), respectively.
If and , the relationship between and

is

i.e., is a linear combination of , where
is the solution to to and is the solution to

.

B. Numerical Experiments

Numerical experiments have been carried out on a number
of test problems in order to evaluate the strength and weakness

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000 301

of proposed hybrid algorithms. The first problem is to solve the
following partial differential equations:

(18)

where and
. The exact solution to the problem is

.
1) Results of the First Hybrid Algorithm:Using the five-

point difference method, we can obtain a discrete system for
(18)

(19)

where the mesh , and
.

The above discrete system can be solved by the SOR method
as follows: for

(20)

where is the relaxation factor.
The first hybrid algorithm was implemented in our experi-

ment as follows.

1) Initialize the population with two individuals

and . Let . Two different relaxation
factors should be used for two individuals.

2) Recombine two individuals and as follows.

a) If the fitness of is higher than that of , then

b) If the fitness of is higher than that of , then

3) Mutate and using one SOR iteration as
described by (20): for

(21)

4) Adapt relaxation factors as follows.

a) If the fitness of is higher than that of

, then

if
if

and , where
and are

random numbers.
b) If the fitness of is higher than that of

, then

if
if

and , where
and are

random numbers.

5) Replace the old generation with mutated offspring, i.e.,
and . Let .

6) If the error of the best individual is smaller than the
given error , terminate the algorithm; otherwise, go to
step 2). Here, we define

Table V summarizes the numerical results produced by the
SOR method and those by the first hybrid algorithm. The hy-
brid algorithm was initialized with the same relaxation factors as
those used by the SOR method. It is clear from Table V that the
hybrid algorithm performed significantly better than the SOR
method. The hybrid algorithm was able to find a better approx-
imate solution after 300 iterations than that could be found by
the SOR method after 1000 iterations. Furthermore, different re-
laxation factors had a crucial impact on the performance of the
SOR method. The SOR method with relaxation factor 1.25 per-
formed much worse than that with relaxation factor 1.75. How-
ever, the hybrid algorithm is much more robust against changes
in initial relaxation factors. This reduces the burden on the user
to find/guess a near-optimal relaxation factor.

302 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000

TABLE V
ERRORSPRODUCED BY THE CLASSICAL SOR METHOD AND BY THE

FIRST HYBRID ALGORITHM

To further evaluate the proposed hybrid algorithm, the fol-
lowing five more problems (problemsP1–P5) were tested using
both the SOR method and the hybrid algorithm:

P1

P2

P3

P4

P5

where gives the exact solution, and gives the
right-hand function of (18). All five problems are required to be
solved within the given error . The maximum number
of iterations allowed for each algorithm is 1000.

Table VI shows the number of iterations needed for each al-
gorithm to find an approximate solution with an error less than

. The error was checked every ten iterations. From the
table, the hybrid algorithm performed consistently better than
the SOR method. It could find an approximate solution within
the given error in less than one-third of the time needed by the
SOR method for four problems and in less than half the time for
the other.

2) Results of the Second Hybrid Algorithm:The second hy-
brid algorithm made use of different discretizations of the partial
differential equation (18). The first discretization was the same
as that used previously for the first hybrid algorithm. The dis-
crete system as given by (19) was obtained using the five-point
difference method. The discrete system could be solved by the
SOR method using iteration 20.

TABLE VI
NUMBER OF ITERATIONS NEEDED BY THE SOR METHOD AND THAT NEEDED

BY THE FIRST HYBRID ALGORITHM TO SOLVE THE FIVE PROBLEMS

TO THE GIVEN PRECISENESS(" = 10)

The second discretization of partial differential equation (18)
used the nine-point difference method. The second discrete
system obtained was as follows:

(22)

where the mesh , and
.

In the above system, the values of
were not given. We used the values from

the five-point difference method instead.
The second discrete system could be solved by the SOR

method using the following iteration: for

(23)

where is the relaxation factor.
The implementation details of the second hybrid algorithm

are as follows.

1) Initialize the population with two individuals:

and for , where

and are approximate solutions to the first and second
discrete systems, respectively. Let .

2) Recombine and to generate two individuals as
follows:

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000 303

and

.

3) Mutate and with one SOR iteration using
(20) and (23), respectively

for (24)

where is a random number, and

for (25)

where is a random number.
4) The mutated individuals replace the old individuals, i.e.,

and . Let .
5) If the error (as defined in the first hybrid algorithm) is

less than the given value, then terminate the algorithm;
otherwise, go to step 2).

Table VII gives the errors produced by the SOR method and
the second hybrid algorithm. An interesting observation can be
made from this table. The second hybrid algorithm was not
able to converge as fast as the SOR method initially since no
adaptation of relaxation factors was used. However, it kept im-
proving its approximation constantly until 1600 iterations, while
the SOR method was unable to improve its approximation sig-
nificantly after 1100 iterations. The hybrid algorithm outper-
formed the SOR method quickly after 1200 iterations.

Five more problems (problemsP1–P5) were also used as test
problems for the second hybrid algorithm

P1

P2

P3

P4

P5

TABLE VII
ERRORSPRODUCED BY THE SOR MEHTOD AND THE SECOND HYBRID

ALGORITHM; RESULTSHAVE BEEN AVERAGED OVER TEN INDEPENDENTRUNS

where gives the exact solution, and gives the
right-hand side function in (18). Table VIII compares the results
of the first and second hybrid algorithms.

It is interesting to note from Table VIII that the second hy-
brid algorithm, which used two different discretization but no
adaptation of the relaxation factor, performed consistently better
than the first hybrid algorithm for all five problems, although the
different was not huge. This appeared to indicate that having a
finer discretization and mixing it with a different discretization
helped to improve the performance of hybrid algorithms, even
without self-adaptation of relaxation factors. The recombination
operator used in the hybrid algorithms was able to exchange
useful information between different individuals and find better
solutions.

Table IX compares the error and the number of iterations used
to find approximate solutions by the SOR and the second hybrid
algorithm. The table shows that the second hybrid algorithm
could find more accurate approximate solutions than the SOR
method using a slightly higher number of iterations.

IV. FUTURE WORK AND CONCLUSIONS

This paper has proposed three hybrid algorithms for solving
linear and partial differential equations. The significance of this
work lies in the novel use of evolutionary computation tech-
niques in an area where they had seldomly been used. The hy-
brid algorithms integrate the classical SOR method with evolu-
tionary computation techniques. The recombination operator in
the hybrid algorithms mixes two parents by a kind of averaging,
which is similar to the intermediate recombination often used

304 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000

TABLE VIII
ERRORSPRODUCED BY THEFIRST AND SECOND HYBRID ALGORITHMS

USING THE FIVE-POINT DIFFERENCEMETHOD

TABLE IX
ERRORS ANDNUMBER OF ITERATIONS NEEDED BY THE SOR MEHTOD

AND THE SECOND HYBRID ALGORITHM; NUMBER OF ITERATIONS IS

REPRESENTED BY THENUMBER IN THE BRACKETS

in evolution strategies [6], [7]. The mutation operator is equiva-
lent to one iteration in the SOR method. However, the mutation
is stochastic as a result of stochastic self-adaptation of the re-
laxation parameter .

The proposed hybrid algorithms differ from most evolu-
tionary algorithms. They integrate evolutionary computation
techniques with classical methods, rather than using an evolu-
tionary algorithm as a wrapper around the classical method. The
hybrid algorithms, as described in this paper, can have different
variants, depending on how recombination and mutation are
implemented. The algorithms can be made more stochastic by
introducing random recombination. Our current implementa-
tion uses random mutation, but deterministic recombination.

Numerical experiments with various test problems have
shown that the hybrid algorithms perform much better than
the classical SOR method. They are more efficient and robust
than the classical method. They are also very simple and easy
to implement.

Because the SOR method is very sensitive to the relaxation
factor , it is often necessary to guess an appropriate relax-
ation factor by trial and error. For example, we knew
gave the SOR method the best performance for the problems
we considered here only after we had experimented with

. However, the hybrid algorithms presented in
this paper were much more robust and much less dependent on
the initial values of . There was no need for any preliminary
experiments to estimate the relaxation factor. Hence, in general,
the hybrid algorithms need much less time to use than the SOR
method. In addition, the population nature of the hybrid algo-
rithms makes parallelization of the algorithms very straightfor-
ward by running each individual on a processor.

Future work can be done to further improve the hybrid al-
gorithms proposed in this paper. First, self-adaptation of relax-
ation factors can be introduced into the second hybrid algo-
rithm for solving partial differential equations when different
discretizations are used. Second, the impact of an increased pop-
ulation size on the performance of hybrid algorithms should be
studied. Third, the impact of different recombination parameters
(e.g., matrix , , and) should be investigated. Fourth, the
self-adaptation scheme for relaxation factors should be studied
further. Fifth, parallel hybrid algorithms should be investigated.
Lastly, the impact of multiple discretizations (more than two)
on the performance of hybrid algorithms should be studied.

ACKNOWLEDGMENT

The authors are grateful to the three anonymous referees and
D. Fogel for their constructive comments.

REFERENCES

[1] J. Ortega, Introduction to Parallel and Vector Solution of Linear
System. New York: Plenum, 1989.

[2] G. F. P. J. F. Botha,Fundamental Concepts in the Numerical Solution of
Differential Equations. Chichester, U.K.: Wiley, 1983.

[3] D. B. Fogel and J. W. Atmar, “Comparing genetic operators with
Gaussian mutations in simulated evolutionary process using linear
systems,”Biol. Cybern., vol. 63, no. 2, pp. 111–114, 1990.

[4] D. Young,Iterative Solution of Large Linear System. New York: Aca-
demic, 1971.

[5] R. Salomon and J. L. van Hemmen, “Accelerating backpropagation
through dynamic self-adaptation,”Neural Networks, vol. 9, no. 4, pp.
589–601, 1996.

[6] H.-P. Schwefel,Evolution and Optimum Seeking. New York: Wiley, ,
1995.

[7] T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary computation:
Comments on the history and current state,”IEEE Trans. Evol. Comput.,
vol. 1, pp. 3–17, Jan. 1997.

